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1 Introduction

For background about differential geometry, the reader can see the appendix.
Let us consider X0, X1, . . . , Xm m + 1 smooth vector fields on Rd. Let us consider Bi

t

m independent Brownian motions. We consider the equation in Stratonovitch sense on
Rd:

dxt(x) = X0(xt(x))dt +
∑
i>0

Xi(xt(x))dBi
t (1)

issued of x ∈ Rd. If we perform a change of coordinates through a diffeomorphism
of Rd, the vector fields are transformed according this change of coordinates, and
since in Itô-Stratonovitch Calculus, the Itô formula is the traditional one, equation
(1) has a meaning independent of the system of coordinates chosen. This means
that we can look at (1) on a manifold. On Rd, we can consider the quadratic form
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12 Positivity theorem for a general manifold

g(x)−1 : ξ → ∑i>0 < Xi(x), ξ >2. This quadratic form depends smoothly on x. We
say that we are in an elliptic situation if this quadratic form is non-degenerated. We can
introduce the measure on Rd dµ(x) = detg(x)1/2dx where dx is the Lebesgue measure
on Rd. dµ is transformed intrinsically under a change of coordinates. We say that Rd

endowed with the family of quadratic forms g(x) is a Riemannian manifold endowed
with the Riemannian measure dµ. These considerations lead to the definition of a general
(curved) Riemannian manifold. If X is a vector field on Rd, we can define its divergence
with respect of the measure dµ by the following integration by parts formula:

∫
Rd

X f dµ =
∫

Rd
f divXdµ (2)

If f is a function on Rd, the differential d f (x) can be assimilated via the non-degenerated
quadratic form g(x) to a vector field grad f (We suppose that we are in an elliptic
situation). The Laplace-Beltrami operator is therefore ∆ = div grad. Moreover, (1)
generates a Markov process whose generator is L = X0 + 1/2

∑
i>1 X2

i . We can find a
drift X̃0 such that

−L = X̃0 + ∆ (3)

All these considerations are invariant under a change of coordinates on Rd, and apply to
a general manifold.

Let us consider a general Riemannian manifold M, endowed with its Riemannian
measure dy. On the space C∞K (M) of smooth functions f with compact support on M,
there is a canonical second order operator ∆ called the Laplace-Beltrami operator. ∆ is
symmetric positive: ∫

M
g(y)∆ f (y)dy =

∫
M

f (y)∆g(y)dy (4)

By analytical methods (see Gilkey(1995) for instance), we can solve the parabolic
differential equation:

∂

∂t
ut = −∆u ; u0 = f (5)

where f is smooth with compact support. We call ut = exp[−t∆] f . By classical
analytical technics (see Gilkey, 1995), the semi-group has smooth heat-kernels:

ut(x) =
∫

M
pt(x, y) f (y)dy (6)

where (t, x, y)→ pt(x, y) is smooth from R+∗ ×M×M into R+∗. The fact that pt(x, y) > 0
can be proved by analytical methods based upon the maximum principle.

Let us suppose that M is compact. By using a finite cover by small balls and some
suitable partition of unity, we can write ∆ under Hoermander’s form:

−∆ = X0 + 1/2
∑

X2
i (7)
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for some suitable smooth vector fields on M (this decomposition is still true over each
relatively compact open subset of M in the non compact case). Reciprocally, we can
consider an Elliptic Hoermander’s type operator L on M: the vector fields Xi i � 0 span
in all points the tangent space of M if L = X0 + 1/2

∑
i>0 X2

i . In such a case, we can
introduce a metric on M and a drift X̃0 such that

−L = X̃0 + ∆ (8)

where ∆ is the Laplace-Beltrami operator associated to the Riemannian metric. We can
solve the linear parabolic equation:

∂

∂t
ut = Lut ; u0 = f (9)

We get a semi-group exp[tL] and we can show that there exists a smooth in (x, y) strictly
positive heat-kernel such that:

exp[tL] f (x) =
∫

M
pt(x, y) f (y)dy (10)

The proofs of these results are based upon elliptic theory and the maximum principle
(Gilkey, 1995). The natural geometrical object associated with these operators is the
Riemannian metric.

There are other distances, called Carnot-Caratheodory distances, which are
associated with non-integrable systems of subspaces of the tangent space of the
manifold. It is a natural object in Sub-Riemannian geometry. The big difference is the
following: if the Riemannian distance is Lipschitz, a Sub-Riemannian distance is in
general only Hoelder. Hoermander type operators are associated to Sub-Riemannian
geometry. They are of the shape L = 1/2

∑
X2

i . If in all x, the Lie algebra spanned by
the Xi is equal to the tangent space of M (Strong Hoermander’s hypothesis), the semi-
group exp[tL] has a smooth strictly positive heat-kernel pt(x, y) (Hoermander, 1967).
We are motivated by an extension of this theorem to Hoermander’s type operator with
drift L = X0 + 1/2

∑
X2

i .
Let us consider a general manifold M and some smooth vector fields Xi, i = 0, . . . ,m.

In x, let us introduce the Lie ideal spanned by the vector fields Xi, X0 excluded in the Lie
algebra spanned by all the vector fields Xi, X0 included. It is constructed as follows: we
consider the space F0(x) spanned by the vector fields Xi, i � 0 in x. We define inductively
Fn(x) the linear space spanned by the Lie Brackets between an element of Fn−1(x) and
a vector Xi i = 0, . . . ,m. We suppose that in x, ∪Fn(x) = Tx(M). This Hypothesis
is called weak Hoermander’s hypothesis in x. Let us consider a Hoermander’s type
operator L = X0 + 1/2

∑
i>0 X2

i . Hoermander’s theorem (Hoermander, 1967) states that
the semi-group generated by L has a smooth density pt(x, y) if the weak Hoermander
hypothesis is checked in all x. We want to know when p1(x, y) > 0. For that, we consider
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the control equation:

dxt(h) = X0(xt(h))dt +
∑
i>0

Xi(xt(h))hi
tdt (11)

starting from x, where hi
t belongs to L2([0, 1]). In Rd, when Hoermander’s condition is

satisfied in x and when the vector fields Xi are bounded with bounded derivatives of all
orders, Ben Arous and Léandre (1991) have given the following criterion: p1(x, y) > 0 if
and only if there exists a h such that x1(h) = y and such that h′ → x1(h′) is a submersion
in h.

This last condition is called Bismut condition (Bismut, 1984).
The boundedness assumption in this theorem can be seen as a compactness

assumption. Let us namely compactify Rn by adding a point at the infinity. We get the
sphere S n. The vector fields Xi bounded with bounded derivatives can be extended into
smooth vector fields over S n equal to 0 at the infinity.

Tools used by Ben Arous and Léandre were Malliavin Calculus. This theorem was
generalized by Léandre (1990) for jump processes. An abstract version for diffusions
was given by Aida, Kusuoka and Stroock (1993). Bally and Pardoux (1998) have given
a version of this theorem for the case of a stochastic heat equation. A. Millet and M. Sanz
Solé(1997) have given a positivity theorem for the case of a stochastic wave equation.
Fournier (2001) has generalized the theorem of Léandre (1990) for the case of a non-
linear jump process associated to the Boltzmann equation. Léandre (2003a) has studied
the case of a delay equation on a manifold.

By using the mollifier in Malliavin sense introduced by Jones and Léandre (1997)
and Léandre (1994), our goal is to remove the boundedness assumption in the theorem
of Ben Arous and Léandre, and to generalize it to a general manifold M not necessarily
complete. Our theorem is the following:

Main Theorem. Let us suppose that in all points x of the manifold M, the weak
Hoermander’s hypothesis is checked. Then p1(x, y) > 0 if and only if there exists an
h such that x1(h) = y and such that h′ → x1(h′) is a submersion in h.

We refer for more details on Malliavin Calculus to the review of Meyer (1984), to
the surveys of Léandre (1988), Léandre (1990), Kusuoka (1992) and Watanabe (1992)
for the application of Malliavin Calculus to heat kernels in the compact or the bounded
case. In the first part, we give a proof of the main theorem. In the second part, we give
some extensions to other processes than diffusions.

2 Proof of the main theorem

Let us show that the condition is sufficient.
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Let us introduce the solution of the stochastic differential equation in Stratonovitch
sense, where Bi

t are some independent Brownian motions:

dxt(x) = X0(xt(x))dt +
∑
i>0

Xi(xt(x))dBi
t (12)

starting from x. Let us introduce the exit time τ of the manifold. If f is a smooth function
on M, we have classically (see Ikeda-Watanabe (1981), Nualart (1995)):

∫
p1(x, y) f (y)dy = E[ f (x1(x))1τ>1] (13)

where pt(x, y) is the heat-kernel associated to the heat semi-group associated to the
Hoermander’s type operator L = X0+1/2

∑
i>0 X2

i . In general, we cannot apply Malliavin
Calculus to the diffusion xt(x). In order to be able to apply Malliavin Calculus, we
introduce the mollifiers of Jones-Léandre (1997) and Léandre (1994). We consider a
smooth function d from M into R+, equal to 0 only in x and which tends to ∞ when y
tends to infinity, the one compactification point of M. We consider a smooth function
over ] − k, k[ (k ∈ R+), equal to 1 over [−k/2, k/2] and which behaves as 1

(k−y)r when
y → k−. Outside ] − k, k[, this function, called gk(y) is equal to ∞. We suppose that
gk ≥ 1.

We choose a big integer r. We choose a smooth function from [1,∞[ into [0, 1], with
compact support, equal to 1 in 1 and which decreases.

The mollifier functional of Jones-Léandre (1997) is

Fk = h(
∫ 1

0
gk(d(xs(x)))ds) (14)

Lemma. Fk belongs to all the Sobolev spaces in the sense of Malliavin Calculus
if r is big enough, and is equal to 1 if sups d(xs(x)) ≤ k/2, is smaller than 1 if
sups d(xs(x)) > k/2 and is equal to 0 almost surely if sups d(xs(x)) ≥ k. Moreover,
Fk ≥ 0.

Proof of the Lemma. The support property of Fk comes from the fact that the paths
of the diffusion s → xs(x) are in fact almost surely Hoelder with a Hoelder exponent
strictly smaller than 1/2, instead of being only continuous.

Let us show that Fk belongs to all the Sobolev spaces.
Let us introduce some smooth vector fields Xk

i which are equal to Xi for d ≤ k and
which are equal to 0 if d ≥ k + 1. We consider the stochastic differential equation in
Stratonovitch sense starting from x:

dxk
t (x) = Xk

0(xk
t (x))dt +

∑
i>0

Xk
i (xk

t (x))dBi
t (15)
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Since we consider a Stratonovitch equation, its solution is the limit in all the Lp

of the solution of the random ordinary differential equation got when we replace
the Stratonovich differential dBi

t by the random ordinary differential of the polygonal
approximation of the leading Brownian motion. It is called Wong-Zakai approximation
(Ikeda-Watanabe (1981)). This explains, as we will see later, that the rules of
computations with this equation are formally the same as for the solution of an ordinary
differential equation, unlike an Itô equation. We put

F̃k = h(
∫ 1

0
gk(d(xk

s(x)))ds) (16)

We get clearly F̃k = Fk. The interest to use the diffusion xk
t (x) instead of the

initial diffusion is that we can apply Malliavin Calculus to it. Let us recall quickly
how we proceed (see Meyer (1984) for a detailed exposition). Since the vector fields
Xk

i have compact support, we can exhibit a smooth version of x → xt(x) (See Ikeda-
Watanabe(1981) and Meyer (1981)). We put

φk
t (x) =

∂

∂x
xk

t (x) (17)

which is the solution of the linear equation in Stratonovitch sense:

dφk
t (x) =

∂

∂x
Xk

0(xk
t (x))φk

t (x)dt +
∑
i>0

∂

∂x
Xk

i (xk
t (x))φk

t (x)dBi
t (18)

If we perturb dBi
t into dBi

t + λh
i
tdt, we get by Ikeda-Watanabe (1981) and Meyer

(1981) a smooth version of the solution xk
t (λ, x). Moreover , ∂

∂λ
xk

t (0, x) is solution of
the stochastic differential equation with second member which is deduced from the
first one by taking formally the derivative of the equation of xk

t (λ, x). These formal
considerations are justified because the vector fields have compact supports (see Ikeda-
Watanabe (1981) and Meyer (1981)). We get, in Stratonovitch sense:

d
∂

∂λ
xk

t (0, x) =
∂

∂x
Xk

0(xk
t (x))

∂

∂λ
xk

t (0, x)dt

+
∑
i>0

∂

∂x
Xk

i (xk
t (x))

∂

∂λ
xk

t (0, x)dBi
t +
∑
i>0

Xk
i (xk

t (x))hi
tdt

(19)

Since we consider Stratonovitch differential, we can solve (19) by the method of
variation of constant. We get:

∂

∂λ
xk

t (0, x) = Dhxk
t (x) = φk

t (x)
∫ t

0
(φk

s(x))−1Xk
i (xk

t (x))hi
tdt (20)
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Therefore the random kernel of Dxk
t (x) is given by

Dxk
t (x)(s) = φk

t (x)(φk
s(x))−1Xk

i (xk
s(x))

for s ≤ t. Since the vector fields have compact supports, φk
t (x) as well as its inverse are

bounded in all Lp for finite p. So the kernel of Dxk
t (x) are bounded in all the Lp (see

Meyer (1984)).
Moreover, the path t → xk

t (x) is Hoelder with Hoelder exponent strictly smaller
than 1/2. By Kolmogorov lemma (see Meyer (1981)), the Hoelder norm of the diffusion
t → xk

t (x), t ≤ 1 belongs to all the Lp. We deduce that for r big enough (see Jones-
Léandre (1997) (2.14))

P{sup
t

1(
k − d(xk

t (x)
)+ > 1

ε
;
∫ 1

0

dt

(k − d(xk
t (x)))+r

< C} < C(p)ε p (21)

for all p.
The kernel of the first derivative of F̃k is not 0 only when sup d(xk

t (x)) ≤ k. It is given
by

h′
(∫ 1

0
gk(d(xk

t (x))dt

) ∫ 1

0
g′k(d(xk

t (x)))d′(xk
t (x))Dxk

t (x)(s)dt (22)

It remains to use the inequality

|
∫ 1

0
g′k(d(xk

t (x)))d′(xk
t (x))Dxk

t (x)(s)dt|

≤
(∫ 1

0
(g′k(d(xk

t (x))

)2
dt)1/2

(∫ 1

0
(d′(xk

t (x))Dxk
t (s)(s))2dt

)1/2 (23)

and to use (21) in order to deduce that DF̃k(s) is bounded in all the Lp. The same holds
for the derivatives of higher order of F̃k. �

We introduce the auxiliary measure µk:

µk : f → E[Fk f (x1(x))] (24)

To the measure µk, we can apply Malliavin Calculus. Namely, µk[ f ] = E[F̃k f (xk
1(x))].

In particular µk has a density qk smaller than p1(x, y). In particular, if there exists a h
such that x1(h) = y and h′ → x1(h′) is a submersion in h, we can find k large enough
such that qk(y) > 0, by the positivity theorem of Ben Arous and Léndre (1991) in the
compact case with the extra-condition that F̃k has to be strictly positive. This shows that
the condition is sufficient.
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In order to show that the condition is necessary, we remark that if p1(x, y) > 0 in y,
qk(y) is still strictly positive for k large enough , because for k enough large, for ε small

|E[(1τ>1 − Fk) f (x1(x))]| ≤ ε‖ f ‖∞ (25)

where ‖ f ‖∞ denotes the uniform norm of f .
Therefore, it is enough to apply the Ben Arous-Léandre result in the other sense.

Remark: Let us suppose that Hoermander’s condition is satisfied only in x. We can
suppose that h is decreasing and that gk decreases to 1, such that Fk increases to 1τ>1. By
Malliavin Calculus, µk has a density qk, which increases. Let us consider the function
f = 1A for a set A of measure 0 for the Lebesgue measure over M. We have:

µk[ f ] = 0 (26)

But
µk[ f ] = E[Fk f (x1(x))] = 0 (27)

anf Fk f (x1(x)) increases and tends to 1τ>1 f (x1(x)), which is in L1. We deduce that

E[1τ>1 f (x1(x))] = 0 (28)

This means that the the law of x1(x) has a density without to suppose that Hoermander’s
hypothesis is satisfied in all points.

Remark: The localization procedure given in this work is a localization procedure of
all the paths between 0 and x1(x), when we cannot apply Malliavin Calculus to all the
diffusions xt(x). It is different of various localization procedures, developped in Léandre
(1988) for instance, in order to get some estimates of hypoelliptic heat-kernels in small
time, which were used when we can apply the machinery of the Malliavin Calculus to
all the diffusion xt(x): namely, in Léandre (1988), we consider vector fields Xi on Rn

with bounded derivatives of all orders in order to apply Malliavin Calculus. This allows
to get a rough estimate of the heat kernel. Nash inequality (Carlen-Kusuoka-Stroock
(1987)) allows to get rough estimates of the heat kernel: in Léandre (2002) we mix
the localization procedures developped in this part and the Nash inequality, in order to
localize the estimates which were got previously by Malliavin Calculus (see Kusuoka
(1992), Léandre (1988), Léandre (1990), Watanabe (1992)) under the restrictions of
Malliavin Calculus, and to avoid the classical boundedness assumption of Malliavin
Calculus.

Remark: Since the Laplace-Beltrami operator is an elliptic Hoermander’s type
operator on each locally compact open subset of the manifold, we can apply the previous
localization method to show that the heat-kernel associated to the Laplace-Beltrami
operator on a Riemannian manifold is strictly positive.
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Remark: If the drift X0 is identically equal to 0, this theorem recovers the fact that
the heat kernel associated to the operator 1/2

∑
X2

i under the strong Hoermander’s
hypothesis is strictly positive, by using the technics of Léandre (1988) Theorem II.1.

3 Extensions

The main novelty of the Malliavin Calculus with respect to its preliminary forms (See
works of Hida, Elworthy, Albeverio, Fomin, Berezanskii..) is the following: it can be
applied to diffusions, and can differentiate some functionals which are only almost
surely defined. There are other examples of Wiener functionals, almost surely defined,
where we can apply the Malliavin Calculus and where we can get some positivity
theorems. We sketch the proof only.

Nualart-Sanz (1985) consider some smooth vector fields Xi, i = 0, . . . , d on Rn with
derivatives at each order bounded. They consider d independent Brownian sheets Bi(s, t)
s ≥ 0, t ≥ 0. Let us recall that it is a Gaussian process indexed by R+ × R+ defined by:

E[B(s, t)B(s′, t′)] = (s ∧ s′)(t ∧ t′) (29)

and

(3.2) E[B(s, t)] = 0

They consider the Cairoli equation (δ denotes the Itô integral):

x(s,t) = x +
∑
i>0

∫
[0,s]×[0,t]

Xi(x(u,v))δB
i(u, v) +

∫
[0,s]×[0,t]

X0(x(u,v))dudv (30)

By Malliavin Calculus, Nualart-Sanz (1985) can show if st > 0, that x(s,t) has a law
having a smooth density with respect of the Lebesgue measure on Rn if in all x, the
vector fields Xi i � 0 span Rn (Nualart-Sanz (1985) study in fact a more degenerated
situation). Millet-Sanz (1997) have shown that this density is strictly positive under this
non degenerate assumption (They establish in fact under a more general assumption a
necessary and sufficient condition for this density to be strictly positive).

By using the fact that the path (s, t)→ x(s,t) is Hoelder, we can remove the hypothesis
that the derivative at each order of the vector fields are bounded. If we remove these
hypothesis, the two-parameter diffusion can blow up. We introduce O the measurable
set where x(u,v) does not blow up on [0, s] × [0, t]. By using the technics of Part III, we
can prove the following theorem:

Theorem III.1. Let us suppose that the vector fields are smooth, and that in all x the
vector fields Xi i > 0 span Rn. Let us consider the measure: f → E[1O f (x(s,t))]. This
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measure is bounded below by a measure having a strictly positive smooth density with
respect of the Lebesgue measure.

We can restrict the Brownian sheet B(t, x) to the set R+ × [0, 1] and study the Walsh
equation:

∂

∂t
x(t, x) =

∂2

∂x2
x(t, x) + ψ(x(t, x)) + φ(x(t, x))

∂2

∂t∂x
B(t, x) (31)

where ψ and φ are bounded smooth functions with bounded derivatives at each order
and ∂2

∂t∂x B(t, x) is the formal white noise associated to B(t, x). We refer to Walsh (1986)
for a complete study of this stochastic heat equation. We consider the initial smooth
condition x(0, x) = x0(x) and the Neumann boundary conditions:

∂

∂x
x(t, 0) =

∂

∂x
x(t, 1) = 0 (32)

We suppose that φ > 0 in order to simplify the exposition.
Pardoux-Zhang (1993) have shown that under these conditions, we can apply the

Malliavin Calculus to the solution xt(x) of (31). The final result of Bally-Pardoux (1998)
is the following: let us consider 0 ≤ x1 < x2 < · · · < xd ≤ 1. Under these assumptions
the law of x(t, x1), . . . , x(t, xd) has a strictly positive smooth density.

But we remark that (t, x) → x(t, x) is almost surely Hoelder, if x → x0(x) is smooth
(see Walsh (1986)). Let us introduce the measurable set O where the solution x(s, x)
does not blow-up on [0, t] × [0, 1]. We can get by using the technics of the third part:

Theorem III.2. Let us suppose that φ and ψ are smooth and that φ > 0. Let us consider
0 ≤ x1 < x2 · · · < xd ≤ 1. Let us consider the measure over Rd:

f → E[1O f (x(t, x1), . . . , x(t, xd))] (33)

This measure is bounded below by a measure having a strictly positive density on Rd.

The last studied extension is the case of a delay equation on a manifold M. Let us
consider a compact Riemannian manifold. If t → xt is a semi-martingale on M, we
can define the parallel transport from t to t′ on the tangent bundle of M endowed with
the Levi-Civita connection (See appendix) τt′,t for t < t′. Let us consider some smooth
vector fields Xi on M and d independent Brownian motions Bi.

Léandre-Mohammed (2001) have introduced and studied the following delay
equation on a manifold in Statonovitch sense:

dxt = τt,t−δ
∑

Xi(xt−δ)dBi
t (34)
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with initial condition on [−δ, 0] equal to the finite energy path s→ γs defined on [−δ, 0].
The parallel transport considered is the stochastic parallel transport associated to the
solution.

Let us suppose that the vector fields Xi span in all points the tangent space.
Under these assumptions, Léandre (2003a) has shown that if t > 0 the law of xt

has a strictly smooth density with respect of the Riemannian measure, by using the
Malliavin Calculus. We remark that t → xt is Hoelder. This will allow us to remove the
compactness hypothesis on M. If M is not compact, s→ xs can blow up on [0, t]. Let us
introduce the measurable set O where s → xs does not blow-up on [0, t]. By using the
technics of the part III, we get the following theorem:

Theorem III.3. Let us suppose that the smooth vector fields Xi on the non-compact
manifold M span in all points the tangent space of M. Let us introduce the measure
f → E[1O f (xt)]. This measure is bounded below by a measure having a smooth strictly
positive density on M.

4 Appendix: a brief review about stochastic differential geometry

We refer to Elworthy (1982), Emery (1989) and Ikeda-Watanabe (1981) for an extensive
study of the material of this part.

Let us recall that a smooth manifold of finite dimension M is locally homeomorphic
to an open subset of Rn and that the transition function between different local charts are
smooth. We can define the algebra C∞(M) of smooth functionals over it. Let (Ω, Fs, P)
be a filtered probability space. A continuous semi martingale xs with values in M is
a process such that, by definition, f (xs) is a semi-martingale with values in R for any
smooth functions f .

A vector field X is an operator on C∞(M) such that

X( f g) = gX( f ) + f X(g) (35)

We check that XY−YX is still a vector field called the Lie bracket [X,Y] of the two vector
fields X and Y . Let Xi, i = 0, . . . , d some smooth vector fields with compact support: Xi f
is equal to zero if the support of f does not intersect the support of Xi. Let Bi

t some
independent Brownian motions over R. We introduce the solution of the Stratonovitch
differential equation:

dxt(x) = X0(xt(x))dt +
∑
i>0

Xi(xt(x))dBi
t ; x0(x) = x (36)
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This means that for all smooth functions f , the process xt(x) has to satisfy:

f (xt(x)) = f (x) +
∫ t

0
X0 f (xs(x))ds +

∑
i>0

∫ t

0
Xi f (xs(x))dBi

s (37)

This differential equation has a unique solution which is a semi-martingale. We can
extend this notion to the case where the vector have no-compact supports, if we take
care that the solution of (37) can have an blowing-up time τ(x).

Let L be the operator X0 + 1/2
∑

i>0 X2
i . We can consider the semi-group exp[tL]. It

has the following stochastic representation:

exp[tL] f (x) = E[1τ(x)>t f (xt(x))] (38)

We can consider a vector field as a section of a linear bundle T (M) called the
tangent bundle, by looking at a trivialization of M and patching together these
trivializations modulo linear maps in the fiber related to the differential of the transition
diffeomorphism between the local charts of M. A Riemannian metric is a strictly
positive quadratic form over Tx(M), which is intrinsic (it depends consistently upon the
different change of trivialization of T (M)), and which depends smoothly on x. Let us
write in local coordinates the metric

∑
gi, j(x)dx ⊗ dx j. We can see that the measure

det(gi, j(x))−1/2∏ dxi is intrisically defined. This allows to define the Riemannian
measure dx on M.

The application X(x) → X f (x) defines a continuous form on the tangent space. By
duality, we can write X f (x) =< X, grad f >Tx(M). Moreover, we have some integration
by parts formulas:

intMX f (x)dx =
∫

M
f (x) divX(x)dx (39)

The Laplace-Beltrami operator is defined intrinsically by:

∆ f = div grad f (40)

We can write ∆ in local coordinates. For that, let us recall that there is a unique
differential operator ∇Y for a vector field Y acting on the vector fields, which satisfies to
the following requirements:

∇Y( f X) = f∇Y X + (Y f )X (41)

∇λY+λ′Y ′X = λ∇Y X + λ′∇Y ′X (42)

X < Y,Z >=< ∇XY,Z > + < Y,∇XZ > (43)

∇XY − ∇Y X = [X,Y] (44)
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(43) says that the connection∇ is metric. (44) says that the connection is without torsion.
In local coordinates, if X =

∑
λi
∂
∂xi

and Y =
∑
µ j
∂
∂x j

, we have:

∇XY =
∑
λi
∂

∂xi
Y +
∑
Γ j,kλ jµk

∂

∂xi
(45)

The set of Γi
j,k, called the Christoffel-Symbols of the Levi-Civita connection, defines in

local coordinates a 1-form A with values in the endomorphism of Tx(M).
Let (gi, j) = (gi, j)−1. In local coordinates,

∆ f = gi, j

(
∂2

∂xi∂x j
f (x) − Γk

i, j
∂

∂xk
f (x)

)
(46)

(We use Einstein summation convention).
The Laplace-Beltrami operator is locally an Hoermander’s type operator. It generates

a semi-group called the heat semi-group on the manifold.
If xs is a semi-martingale with values in M, we can solve in local coordinates the

linear equation:

dτt = −Adxtτt (47)

Since, in Stratonovitch Calculus, the Itô formula is the traditional one:

f (xt) = f (x) +
∫ t

0
< d f (xs), dxs > (48)

the local linear differential equations (47) patch together, and we get a global process
which is an isometry from Tx0 (M) to Txt (M) called the stochastic parallel transport along
the semi-martingale xt.

This allows to get the construction of Eells-Elworthy-Malliavin of the Brownian
motion starting from x on the Riemannian manifold M:

dxs(x) = τsdBs (49)

where s → τs is the stochastic parallel transport for the Levi-Civita connection along
the solution xs(x) and Bs a linear Brownian motion in Tx(M). (49) has a unique solution
up to an exit stopping time τ(x). We get:

exp[−t/2∆] f (x) = E[1τ(x)>t f (xt(x))] (50)

Remark. The equation (49) can be extended in the degenerated case by using
Langerock’ connection, in order to get geometrical degenerated operators (Léandre
(2004)).
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