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Abstract

Data collected by statistical offices generally contain errors, which have to be corrected before
reliable data can be published. This correction process is referred to as statistical data editing. At
statistical offices, certain rules, so-called edits, are often used during the editing process to determine
whether a record is consistent or not. Inconsistent records are considered to contain errors, while
consistent records are considered error-free. In this article we focus on automatic error localisation
based on the Fellegi-Holt paradigm, which says that the data should be made to satisfy all edits by
changing the fewest possible number of fields. Adoption of this paradigm leads to a mathematical
optimisation problem. We propose an algorithm for solving this optimisation problem for a mix of
categorical, continuous and integer-valued data. We also propose a heuristic procedure based on
the exact algorithm. For five realistic data sets involving only integer-valued variables we evaluate the
performance of this heuristic procedure.
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1 Introduction

Data collected by statistical offices generally contain errors. In order to be able to publish
reliable statistical information these errors have to be corrected. This correction process
is referred to as statistical data editing. At statistical offices, certain rules, so-called edits,
are often used to determine whether a record, i.e. the data of an individual respondent,
is consistent or not. An example of such an edit is that the sum of the profit and the
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costs of an enterprise should equal its turnover. Inconsistent records are considered to
contain errors, while consistent records are considered error-free. If a record contains
errors, the erroneous fields in this record need to be identified. In former days and
often still nowadays, detected errors or inconsistencies were reported and explained on
paper computer output or on a computer screen. Subsequently, subject-matter specialists
corrected the errors by consulting the questionnaire, or by re-contacting the supplier
of the information. This traditional form of statistical data editing, called manual (or
interactive) editing, leads to statistical data of good quality, but is very costly in terms
of resources and timeliness.

Several studies (cf. Granquist, 1995, 1997; Granquist and Kovar, 1997) have
demonstrated that in order to obtain reliable publication figures only the most influential
errors have to be edited manually. This observation, which has been confirmed by
practical experience at several statistical offices, allows one to improve the efficiency of
the statistical data editing process. For instance, at Statistics Netherlands most structural
business surveys are nowadays treated by a combination of selective (or significance)
editing (cf. Lawrence and McKenzie, 2000; Hoogland, 2002; Hedlin, 2003), automatic
editing, and macro-editing (cf. Granquist, 1990). After data entry, simple checks, such as
range checks, and simple automatic corrections, for instance in cases where a respondent
filled in a financial figure in Euros instead of the requested thousands of Euros, are
applied. Next, selective editing is applied to split the data into a critical stream and a
non-critical stream. The former stream consists of those records that are the most likely
ones to contain influential errors; the latter stream consists of the remaining records. The
records in the critical stream are edited in a traditional, manual manner. The records in
the non-critical stream are edited automatically. The final editing step we apply is macro-
editing. Macro-editing consists of verifying whether the figures to be published seem
plausible. Macro-editing is applied after outliers have been detected, raising weights
have been determined, and the publication figures have been computed. It can lead to the
detection of errors that would go unnoticed with selective editing or automatic editing.
Only after the macro-editing step has been successfully completed can the publication
figures be published. For more information on the statistical data editing strategy of
Statistics Netherlands for structural business surveys we refer to De Jong (2002) and
Hoogland (2002).

In this article we focus on automatic editing. Generally speaking, statistical data
editing can be subdivided into the error localisation step and the imputation step. In
the error localisation step the errors in the data are detected, in the imputation step the
erroneous data are replaced by more accurate data and the missing values are filled in.
To automate the statistical data editing process, both error localisation and imputation
need to be automated.

In this article we restrict ourselves to discussing how to automate the error
localisation step. To this end, one generally uses the (generalised) paradigm of Fellegi
and Holt (1976) as a guiding principle to identify the errors. This (generalised) paradigm
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says that the data of a record should be made to satisfy all edits by changing the fewest
possible (weighted) number of fields. Here each variable is given a weight, the so-
called reliability weight, which is a measure for the level of confidence in the values
of this variable. The higher the reliability weight of a variable, the more reliable its
observed values are considered to be. In the original form of the Fellegi-Holt paradigm
each variable was given a reliability weight of 1. Using the (generalised) Fellegi-
Holt paradigm, as we do in the present article, the error localisation problem can be
formulated as a mathematical optimisation problem.

Solving this mathematical optimisation problem is, however, a non-trivial matter.
Overviews of various algorithms for solving the error localisation problem based on the
Fellegi-Holt paradigm have been given by Liepins, Garfinkel and Kunnathur (1982),
and De Waal and Coutinho (2005). Most algorithms and software packages for solving
this problem described in the literature are either designed for categorical (discrete) data
or for continuous data. Algorithms for categorical data have been proposed by Fellegi
and Holt (1976), Garfinkel, Kunnathur and Liepins (1986), Winkler (1998), Bruni, Reale
and Torelli (2001), Bruni and Sassano (2001), and Boskovitz, Goré and Hegland (2003).
Software packages for categorical data include SCIA (cf. Barcaroli et al., 1995) by
ISTAT, and DISCRETE (cf. Winkler and Petkunas, 1997) by the US Bureau of the
Census. Algorithms for solving the problem for continuous data have been proposed
by Fellegi and Holt (1976), Sande (1978), McKeown (1984), Garfinkel, Kunnathur
and Liepins (1988), Ragsdale and McKeown (1996), and Riera-Ledesma and Salazar-
González (2003). Software packages for continuous data include GEIS (cf. Kovar and
Whitridge, 1990) by Statistics Canada, SPEER (cf. Winkler and Draper, 1997) by the US
Bureau of the Census, AGGIES (cf. Todaro, 1999) by NASS, a SAS program developed
by the Central Statistical Office of Ireland (cf. Central Statistical Office, 2000), and
CherryPi (cf. De Waal, 1996) by Statistics Netherlands. The latter program is nowadays
a module of version 1.0 of SLICE, a general software framework for automatic editing
and imputation developed by Statistics Netherlands (cf. De Waal, 2001). Algorithms
for solving the error localisation problem in a mix of categorical and continuous data
are proposed by Sande (1978), Schaffer (1987), De Waal (2003a and 2003b), and De
Waal and Quere (2003). In the present article we extend the latter algorithm to a mix
of categorical, continuous, and integer-valued data. With the exception of De Waal
(2003a), part of which formed the basis of the present article, such an algorithm has
not yet been described in the literature before.

The remainder of this article is organised as follows. Section 2 sketches the error
localisation problem by means of an example. Section 3 describes the edits we consider
in this article. Section 4 formulates the error localisation problem as a mathematical
optimisation problem. Section 5 sketches the algorithm for solving the error localisation
problem in a mix of categorical and continuous data proposed by De Waal and Quere
(2003). Section 7 extends this algorithm to a mix of categorical, continuous and
integer data. Essential in this extended algorithm is Fourier-Motzkin elimination for
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integer data, which we describe in Section 6. This elimination method is due to Pugh
(cf. Pugh, 1992; Pugh and Wonnacott, 1994), who applied this technique to develop
so-called array data dependence testing algorithms. Section 8 discusses a heuristic
approach based on the exact algorithm described in Section 7. This heuristic procedure
is easier to implement and maintain than the exact algorithm. Computational results
for this heuristic procedure are given in Section 9. We conclude the article with a brief
discussion in Section 10. In the present article we do not discuss the statistical quality
of automatically edited data. For evaluation studies of this aspect of automatic editing
we refer to Hoogland and Van der Pijll (2003), and Pannekoek and De Waal (2005).

2 An illustration of the error localisation problem

In this section we illustrate the error localisation problem for a mix of continuous and
integer data by means of an example. We also sketch the idea of our solution method
for such data, which basically consists of testing whether all integer-valued variables
involved in a solution to the corresponding continuous error localisation problem, i.e. the
error localisation problem where all numerical variables are assumed to be continuous,
can indeed attain integer values.

Suppose a set of edits is given by

T = P +C, (1)

0.5T ≤ C, (2)

C ≤ 1.1T, (3)

T ≤ 550N, (4)

320N ≤ C (5)

T ≥ 0, (6)

C ≥ 0, (7)

N ≥ 0, (8)

where T denotes the turnover of an enterprise, P its profit, C its costs, and N the number
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of employees. The turnover, profit and costs are continuous variables, the number of
employees an integer one. The original edits, (1) to (8) in this case, are called the explicit
edits.

Let us consider a specific record with values T = 5,060, P= 2,020, C = 3,040 and N
= 5. This record fails edit (4). We apply the Fellegi-Holt paradigm, and try to make the
record satisfy all edits by changing as few variables as possible. As T and N occur in the
failed edit, it might be possible to satisfy all edits by changing the value of one of these
variables only. However, if we were to change the value of T , we would also need to
change the value of P or C in order not to violate (1). We therefore start by considering
the option of changing N. We first treat N as a continuous variable. To test then whether
N can be changed so that all edits (1) to (8) become satisfied, we eliminate N by means
of Fourier-Motzkin elimination (cf. Duffin, 1974; Chvátal, 1983; Schrijver, 1986; see
also Section 5 of the present article). We combine all upper bounds on N (in this case
only (5)) with all lower bounds on N (in this case (4) and (8)), to eliminate N from these
edits. We obtain a new constraint, given by

320T ≤ 550C (combination of (4) and (5)) (9)

An edit such as (9) that is implied by the original set of edits is called an implicit, or
implied, edit.

The constraints not involving N, i.e. (1), (2), (3), (6), (7) and (9) are all satisfied by the
original values of T , P and C. A fundamental property of Fourier-Motzkin elimination
is that a set of (in)equalities can be satisfied if and only if the set of (in)equalities after
the elimination of a variable can be satisfied. This implies that the edits (1) to (8) can
be satisfied by changing the value of N only. That is, if N were continuous, the (only)
optimal solution to the above error localisation problem would be: change the value
of N. However, N is an integer-valued variable. So, we need to test whether a feasible
integer value for N exists. By filling in the values for T , P, and C in (4) and (5) we find
9.2 ≤ N ≤ 9.8. In other words, a feasible integer value for N does not exist. Changing
the value of N is hence not a solution to this error localisation problem.

The next best solution to the continuous error localisation problem is given by:
change the values of T , P and C (see Section 5 for an algorithm to obtain this solution).
This is obviously also a feasible solution to the error localisation problem for continuous
and integer data under consideration, as in this solution variable N retains its original
value, i.e. 5, which is integer. It is the (only) optimal solution to our problem as this is
the best solution to the corresponding continuous error localisation problem for which
all integer-valued variables can indeed attain integer values.

In this example it is quite easy to check whether a solution to the continuous error
localisation problem is also a solution to the error localisation problem for continuous
and integer data. In general, this is not the case, however. In Sections 6 and 7 we describe
in detail how to test whether integer variables involved in a solution to the continuous
error localisation problem can indeed attain feasible integer values.
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3 The edits

3.1 Formal definition of edits

We denote the categorical variables by vi (i=1,. . . ,m) and the numerical variables by x j

( j=1,. . . ,n). For categorical data we denote the domain, i.e. the set of the possible values,
of variable i by Di. I denotes the index set of the integer variables, i.e. x j ( j=1,. . . ,n) is
an integer-valued variable if and only if j ∈ I and a continuous variable otherwise. We
assume that each edit k (k=1, . . . , K) is given by

IF vi ∈ Fk
i (for all i=1,. . . ,m) THEN (x1, . . . , xn) ∈ {x|a1kx1 + · · · + ankxn + bk ≥ 0}, (10a)

or by

IF vi ∈ Fk
i (for all i=1,. . . ,m) THEN (x1, . . . , xn) ∈ {x|a1kx1 + · · · + ankxn + bk = 0}. (10b)

Edit k is satisfied by a record (v1,. . . , vm, x1,. . . , xn) if (10a), respectively (10b) holds
true. The a jk ( j=1,. . . ,n; k=1,. . . ,K) and the b j ( j=1,. . . ,n) are assumed to be rational
numbers. Fk

i ⊆ Di for all iand k. We often refer to edits of type (10a) as inequality edits
and to edits of type (10b) as balance edits.

The condition after the IF-statement, i.e. “vi ∈ Fk
i (for all i=1,. . . ,m)”, is called the

IF-condition of the edit. The condition after the THEN-statement is called the THEN-
condition. A categorical variable vi is said to enter an edit k given by (10) if Fk

i ⊂ Di and
Fk

i � Di, i.e. if Fk
i is strictly contained in the domain of variable i. That edit is then said

to be involved with this categorical variable. A numerical variable x j is said to enter the
THEN-condition of edit k given by (10) if a jk � 0. That THEN-condition is then said to
be involved with this numerical variable. By multiplying the a jk ( j=1,. . . ,n; k=1,. . . ,K)
and the b j ( j=1,. . . ,n) involved in the THEN-condition of the k-th (k=1,. . . ,K) edit of
type (10) by an appropriately chosen integer we can ensure that in each THEN-condition
these coefficients become integral and that their greatest common divisor in this THEN-
condition equals 1. Such an edit is then said to be normalised.

If the set in the THEN-condition of (10) is the entire n-dimensional real vector space,
then the edit is always satisfied and may be discarded. If the set in the THEN-condition
of (10) is empty, then the edit is failed by any record for which the IF-condition holds
true, i.e. for any record for which vi ∈ Fk

i for all i=1,. . . ,m. If a set Fk
i = ∅ for some

i=1,...m, then the edit is by definition satisfied and may be discarded. If the IF-condition
of an edit does not hold true for a particular record, the edit is satisfied, irrespective of
the values of the numerical variables (provided they are not missing).

All edits given by (10) and all integrality constraints have to be satisfied
simultaneously. We assume that the edits and integrality constraints can indeed be
satisfied simultaneously. We also assume that for each variable entering the edits a value
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has to be filled in. Any field for which the value is missing is hence considered to be
erroneous. An edit involved with a missing value is considered failed. Any non-integral
value for an integer-valued variable is also considered erroneous.

3.2 Examples of edits

Below we illustrate what kinds of edits can be expressed in the form (10) by means of a
number of examples, which are taken from De Waal (2003b).

(i) Turnover – Profit ≥ 0.

This is an example of a numerical edit. The edit can be formulated in our standard
form as:

IF vi ∈ Di (for all i=1,. . . ,m) THEN (Profit, Turnover) ∈ {(Profit, Turnover)|
Turnover – Profit ≥ 0}.
In the remaining examples we will be less formal with our notation, as we will
omit the terms “vi ∈ Di” from the edits.

(ii). IF (Gender = “Male”) THEN (Pregnant = “No”).

This is an example of a categorical edit. It can be formulated in our standard form
as:

IF ((Gender = “Male”) AND (Pregnant = “Yes”)) THEN ∅.
(iii) IF (Occupation = “Statistician”) THEN (Income ≥ 1,000 Euro). (11)

This is an example of a mixed edit. Conditional on certain categorical values, a
certain numerical constraint has to be satisfied.

(iv) IF ((Occupation = “Statistician”) OR (Education = “University”)) THEN (Income
≥ 1,000 Euro). (12)

This edit can be split into two edits given by (11) and

IF (Education = “University”) THEN (Income ≥ 1,000 Euro).

(v) IF (Tax on Wages > 0) THEN (Number of Employees ≥ 1). (12)
Edit (12) is not in our standard form (10), because the IF-condition involves a

numerical variable. To handle such an edit, we introduce an auxiliary categorical
variable TaxCond with domain {“false”, “true”} during a pre-processing step. Initially,
TaxCond is set to “true” if Tax on Wages > 0 in the unedited record, and to “false”
otherwise. Its reliability weight is set to zero. We now replace edit (12) by the following
three edits of type (10):
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IF (TaxCond = “false”) THEN (Tax on Wages ≤ 0),

IF (TaxCond = “true”) THEN (Tax on Wages ≥ ε),
IF (TaxCond = “true”) THEN (Number of Employees ≥ 1),

where ε is a sufficiently small positive number. The initial value of TaxCond may be
considered erroneous by the algorithm proposed in this article.

4 A mathematical formulation of the error localisation problem

In this section we give a mathematical formulation of the error localisation problem for
a mix of categorical, continuous and integer data. For each record (v0

1, . . . , v
0
m, x

0
1, . . . , x

0
n)

in the data set that is to be edited automatically we have to determine, or more precisely:
have to ensure the existence of, a synthetic record (v1,. . . , vm, x1,. . . , xn) such that

m∑
i=1

wc
i δ(v

0
i , vi) +

n∑
j=1

wr
jδ(x0

j , x j) (13)

is minimised subject to the conditions that all edits k = 1,. . . ,K of type (10) become
satisfied, x j is integer for j ∈ I, and the remaining x j are continuous. Here wc

i is
the reliability weight of categorical variable i (i=1,. . . ,m), wr

j the reliability weight of
numerical variable j ( j=1,. . . ,n), δ(y0, y) = 1 if y0 � y or y0 is missing, and δ(y0, y) = 0
if y0 = y. The objective function (13) is the weighted number of fields that have to
be changed. The variables for which the value in the synthetic record differs from the
original value plus the variables for which the original value was missing together
form an optimal solution to the error localisation problem. Whenever we refer to the
error localisation problem in the remainder of this article, we will mean the above
mathematical optimisation problem.

Note that if wc
i = 1 for all i=1,. . . ,n and wr

j for all j=1,. . . ,m, then minimising the
objective function (13) reduces to the original paradigm of Fellegi and Holt (1976). The
objective function (13) is the most natural generalisation of the paradigm of Fellegi and
Holt.

Our aim is to find several, preferably all, optimal solutions to the error localisation
problem. The reason for pursuing this goal instead of finding only one optimal solution
is that the actual statistical problem of automatic statistical data editing is more
comprehensive than the above optimisation problem. This statistical problem is the
problem of obtaining high quality data from a data set with errors in an efficient
manner. Statistical aspects, such as the probability distribution of the corrected data,
need to be taken into account besides the (weighted) number of fields that need to be
modified. By generating several optimal solutions to our optimisation problem, we gain
the option to later use a secondary, statistical criterion to select one optimal solution
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that is best from a statistical point of view (cf. Stoop, 2003). The variables involved
in the selected optimal solution are set to missing. They are subsequently imputed
during the imputation step, for instance by means of regression imputation or donor
imputation (see Kalton and Kasprzyk, 1986, and Kovar and Whitridge, 1995, for an
overview of imputation methods). In the present article we will not examine the process
of selecting one optimal solution from several optimal solutions, neither will we examine
the imputation process.

5 A branch-and-bound algorithm for categorical and continuous data

In this section we sketch the branch-and-bound algorithm for solving the error
localisation problem for a mix of categorical and continuous data proposed by De Waal
and Quere (2003). We assume for the moment that no values are missing. The algorithm
is based on constructing a binary tree. An example of such a tree is given in Figure 1.

N1:

V1

N2:

V2

N9:

V3

N3:

V3

N6:

V3

N10:

V2

N13:

V2

N4 N5 N7 N8 N11 N12 N14 N15

fix V1 eliminate V1

fix V2 eliminate V2

fix V2 eliminate V2

fix V2 eliminate V2

fix V3 eliminate V3

fix V3 eliminate V3

fix V3 eliminate V3

Figure 1: A binary tree involving three variables.

In each node of this tree we select a variable that has not yet been selected in any
predecessor node. If all variables have been selected, we have reached a terminal node
of the tree. After selection of a variable two branches are constructed: in one branch the
selected variable is fixed to its original value, in the other branch the selected variable is
eliminated from the set of current edits. For instance, in node N1 of Figure 2 variable V1
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is selected. In the left-hand branch variable V1 is fixed to its original value, in the right-
hand branch V1 is eliminated. A variable that has either been fixed or eliminated is said
to have been treated (for the corresponding branch of the tree). Fixing a variable to its
original value corresponds to assuming that this value is correct, eliminating a variable
from the set of current edits corresponds to assuming that the original value of this
variable is incorrect and has to be modified. In the algorithm, all continuous variables
are selected before any categorical variable is. When a variable is fixed or eliminated,
the set of current edits is updated. The set of edits corresponding to the root node of our
tree is the original set of edits.

We now discuss how to update the set of current edits. We distinguish between fixing
and eliminating a variable, and also between categorical and continuous variables. To
fix a variable, either continuous or categorical, to its original value we substitute this
value in all current edits. Note that, given that we fix this variable to its original value,
the new set of current edits is a set of (implicit) edits for the remaining variables in the
tree, i.e. the remaining variables have to satisfy the new set of edits. As a result of fixing
the selected variable to its original value some edits may become satisfied, for instance
when a categorical variable is fixed to a value such that the IF-condition of an edit can
never become true anymore. These edits may be discarded from the new set of edits.
Conversely, some edits may become violated. In such a case this branch of the binary
tree cannot result in a solution to the error localisation problem.

Eliminating a variable amounts to generating a set of implicit edits that do not involve
this variable. That set of implicit edits becomes the set of current edits corresponding
to the new branch of the tree. If a continuous variable is to be eliminated, we basically
apply Fourier-Motzkin elimination (cf. Duffin, 1974; Schrijver, 1986) to eliminate that
variable from the set of edits. Care has to be taken in order to ensure that the IF-
conditions of the resulting edits are correctly defined. In particular, if we want to
eliminate a continuous variable xr from the set of current edits, we start by copying
all edits not involving xr from the set of current edits to the new set of edits.

Next, we examine all edits involving xr pair-wise. Suppose we consider the pair
consisting of edits s and t. We start by checking whether the intersection of the IF-
conditions is non-empty, i.e. whether the intersections Fs

i ∩ Ft
i are non-empty for all

i=1,. . . ,m. If any of these intersections is empty, we do not consider this particular
combination of edits anymore. If all intersections are non-empty, we try to construct
an implicit edit. If edit s is a balance edit (10b), we use the equality

xr = − 1
ars

⎛⎜⎜⎜⎜⎜⎜⎝bs +
∑
j�r

a jsx j

⎞⎟⎟⎟⎟⎟⎟⎠
to eliminate xr from the THEN-condition of edit t. Similarly, if edit s is an inequality
edit (10a) and edit t is a balance equality, the equality in the THEN-condition of edit t
is used to eliminate xr from the THEN-condition of edit s.
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If both edits s and t are inequality edits, we check whether the coefficients of xr in
those inequalities have opposite signs, i.e. whether ars × art < 0. If the coefficients of
xr in the two inequalities do not have opposite signs, we do not consider this particular
combination of edits anymore. If the coefficients of xr in the two inequalities do have
opposite signs, one of the inequalities can be written as a lower bound on xr and the
other as an upper bound on xr. Combining these two bounds leads to an inequality not
involving xr. To be precise, we generate the THEN-condition:

(x1, . . . , xn) ∈ {x|ã1x1 + · · · + ãnxn + b̃ ≥ 0}, (14)

where

ã j = |ars| × ajt + |art| × ajs for all j = 1, . . . , n

and

b̃ = |ars| × bt + |art| × bs.

The above THEN-condition forms the THEN-condition of a new implied edit. Note
that xr indeed does not enter this THEN-condition. The IF-condition of this implicit
edit is given by the intersections Fs

i ∩ Ft
i for all i=1,. . . ,m. Intuitively it is clear that the

IF-condition of the new implicit edit is given by the intersections Fs
i ∩ Ft

i (i=1,. . . ,m),
because two (numerical) THEN-conditions can only be combined into the (numerical)
THEN-condition of an implicit edit for the overlapping part of their corresponding
categorical IF-conditions. Note that if we eliminate a continuous variable in any of
the ways described above, the resulting set of edits is a set of implicit edits for the
remaining variables in the tree. That is, this resulting set of edits has to be satisfied by
the remaining variables in the tree. Repeatedly applying the above elimination process
until all continuous variables have been eliminated results in edits with two kinds of
THEN-conditions, namely edits with a THEN-condition that is trivially true, e.g. “1 ≥
0”, and edits with a THEN-condition that is trivially false, e.g. “0 ≥ 1”. The edits with a
THEN-condition of the former kind are deleted.

As we already mentioned before, categorical variables are treated, i.e. fixed or
eliminated, after all continuous variables have been treated. So, when the categorical
variables may be selected all edits in the set of current edits have the following form:

IFvi ∈ Fk
i (for i = 1, . . . ,m) THEN(x1, . . . , xn) ∈ ∅. (15)

To eliminate categorical variable vr from the set of edits given by (15), we start by
copying all edits not involving vr to the new set of edits. Next, we basically apply the
method of Fellegi and Holt to the IF-conditions to generate the IF-conditions of the
new edits (cf. Fellegi and Holt, 1976). In the terminology of Fellegi and Holt, field vr is
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selected as the generated field. We start by determining all index sets S such that
⋃
k∈S

Fk
r = Dr (16)

and
⋂
k∈S

Fk
i � ∅ for all i = 1, . . . , r − 1, r + 1, . . . ,m. (17)

From these index sets we select the minimal ones, i.e. the index sets S that obey
(16) and (17), but none of their subsets obey (16). Given such a minimal index set S we
construct the edit given by

IFvr ∈ Dr, vi ∈
⋂
k∈S

Fk
i (for i = 1, . . . , r − 1, r + 1, . . . ,m) THEN(x1, . . . , xn) ∈ ∅.

Note that if we eliminate a categorical variable in the way described above, the
resulting set of edits is a set of implicit edits for the remaining variables in the tree.
That is, this resulting set of edits has to be satisfied by the remaining variables in the
tree.

If values are missing in the original record, the corresponding variables only have to
be eliminated (and not fixed) from the set of current edits. These variables are considered
erroneous, and have to be imputed.

We have now explained how the set of current edits changes if we fix or eliminate
a variable. After all categorical variables have been treated we are left with a set of
relations involving no unknowns. This set of relations may be the empty set, in which
case it obviously does not contain any self-contradicting relations. A self-contradicting
relation is given by

IF vi ∈ Di (for i = 1, . . . ,m) THEN (x1, . . . , xn) ∈ ∅.
We have the following theorem.

Theorem 1 A set of relations obtained after all categorical variables have been treated
contains no self-contradicting relations if and only if the variables that have been
eliminated in order to reach the corresponding terminal node of the tree can be imputed
consistently, i.e. modified such that all original edits can be satisfied.

Theorem 1 follows from a repeated application of the following theorem, which is
proved in De Waal and Quere (2003), and the fact that eliminating a variable amounts
to generating a set of implied edits for the remaining variables

Theorem 2 Suppose that the index set of the variables in a certain node is given by T0,
and the set of current edits corresponding to that node by Ω0. Suppose furthermore that
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to obtain a next node variable r is either fixed or eliminated. Denote the index set of the
resulting variables by T1 (T1 = T0 − {r}) and the set of edits corresponding to this next
node by Ω1. Now, if there exist values ui for i ∈ T1 that satisfy the edits in Ω1, then there
exists a value ur for variable r such that the values ui for i ∈ T0 satisfy the edits in Ω0.

In the algorithm we check for each terminal node of the tree whether the variables
that have been eliminated in order to reach this node can be imputed consistently. Of all
sets of variables that can be imputed consistently we select the ones with the lowest sums
of reliability weights. In this way we find all optimal solutions to the error localisation
problem.

The algorithm may seem rather slow because an extremely large binary tree has to be
generated to find all optimal solutions, even for moderately-sized problems. Fortunately,
the situation is not nearly as bad as it may seem. First, balance edits can often be handled
more efficiently than we described here (cf. De Waal and Quere, 2003; De Waal, 2003a).
Second, if the minimum number of fields that have to be changed in order to make a
record pass all edits is large, we feel that the record should not be edited automatically.
In our opinion, the quality of such a record is too low to correct it automatically. We
suggest that such a record should either be edited manually, or be discarded completely.
This is similar to selective editing (cf. Lawrence and McKenzie, 2000; Hedlin, 2003)
where (only) the very influential and very contaminated records are selected for manual
correction. Such very influential and very contaminated records can be corrected by
using subject-matter knowledge or, in the worst case, by re-contacting the supplier of
the data. By specifying an upper bound on the number of fields that may be changed,
the size of the tree can drastically be reduced. Third, the size of the tree can also be
reduced during the execution of the algorithm, because it may already become clear in
an intermediate node of the tree that the corresponding terminal nodes cannot generate
an optimal solution to the problem. For instance, by fixing the wrong variables we may
make the set of current edits infeasible, which may be noticed in an intermediate node.
Fourth, the value of the objective function can be used as an incumbent in order to
reduce the size of the tree. This value cannot decrease while going down the tree. So, if
the objective value exceeds the value of an already found (possibly suboptimal) solution,
we can again conclude that the corresponding terminal nodes cannot generate an optimal
solution to the problem. In other words, the objective value of the best already found
solution is used as the bound in our branch-and-bound scheme. During the execution of
the algorithm the bound is updated.

In their article Fellegi and Holt (1976) describe a method for solving the error
localisation problem that is also based on generating implicit edits. They propose to
generate a, generally very large, set of implicit edits, which they refer to as the complete
set of edits, for all records simultaneously before the error localisation problem is
actually solved for each record. Given this “complete” set of edits, the error localisation
problem can, for each record, be formulated as a set-covering problem (see, e.g.,
Nemhauser and Wolsey, 1988, for more on the set-covering problem in general). In
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contrast, in our algorithm we generate implicit edits while solving the error localisation
problem for each record separately. The implicit edits are generated conditional on
which variables have been selected for elimination and on the observed data in the record
under consideration. As a result, our sets of implicit edits are generally much smaller
than the “complete” set of edits generated by the approach of Fellegi and Holt. Over
the years, generating this “complete” set of edits has often proven to be infeasible for
large or even moderately-sized problems (cf. Winkler, 1996). This has been confirmed
by some earlier experiments at Statistics Netherlands. Generating the smaller sets of
implicit edits in our algorithm has turned out to be feasible for most records arising in
practice. We refer to De Waal and Quere (2003) and Section 9 of the present article for
confirmation of this assertion.

6 Fourier-Motzkin elimination in integer data

An important technique used in the algorithm described in Section 5 is Fourier-Motzkin
elimination for eliminating a continuous variable from a set of linear (in)equalities.
Fourier-Motzkin elimination can be extended to integer data in several ways. For
example, Dantzig and Eaves (1973) and Williams (1976 and 1983) describe extensions
of Fourier-Motzkin elimination to integer programming problems. Unfortunately, these
methods seem too time-consuming in many practical cases. Pugh (1992) proposes an
alternative extension that he refers to as the Omega test. Pugh (1992) and Pugh and
Wonnacott (1994) claim a good performance of this test for many practical cases. Below
we briefly explain the Omega test. For more details we refer to Pugh (1992), and Pugh
and Wonnacott (1994).

The Omega test has been designed to determine whether an integer-valued solution
to a set of linear (in)equalities exists. Suppose linear (in)equality k (k=1,. . . ,K) is given
by

a1kx1 + · · · + ankxn + bk ≥ 0,

or by

a1kx1 + · · · + ankxn + bk = 0.

To simplify our notation we define x0 = 1 and a0k = bk (k=1,. . . ,K), and re-write the
above linear (in)equality as

a0kx0 + a1kx1 + · · · + ankxn ≥ 0, (18a)

respectively as

a0kx0 + a1kx1 + · · · + ankxn = 0. (18b)
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Without loss of generality we assume that redundant equalities have been removed,
and that all (in)equalities are normalised, i.e. that all a jk ( j=0,. . . ,n; k=1,. . . ,K) are
integer and the greatest common divisor of the a jk in each constraint k equals 1. All
variables x j ( j=0,. . . ,n) are integer-valued in this section.

We start by “eliminating” all equalities until we arrive at a new problem involving
only inequalities. In this context, we say that all equalities have been eliminated once
we have transformed the original system of (in)equalities (18) into an equivalent system
of (in)equalities of the following type:

x′k =
∑
j>k

a′jk x′j for k = 0, . . . , s − 1,
(19a)

∑
j≥s

a′jk x′j ≥ 0 for k = s, . . . ,K′,
(19b)

where s is the number of equalities in the system (19), and the a′jk are integer. The
x′j are a permutation of the x j, possibly supplemented by some additional, auxiliary
variables (see Subsection 6.1). We call a set of (in)equalities (18) equivalent to a set of
(in)equalities (19) if a solution to the system (18) can be extended to a corresponding
solution to the system (19), and conversely a solution to the system (19) is also a solution
to the system (18) if we disregarded the additional variables. In (19), the first s x′j,
which are only involved in equalities, are expressed in terms of the remaining variables,
which may also be involved in inequalities. Owing to the possible introduction of
additional variables, the system (19) may have more equalities than the original system
(18), so K′ ≥ K. The original system (18) has an integer-valued solution if and only if
the system (19b) has an integer-valued solution. Namely, an integer solution for the x′j
( j ≥ s) to the system (19b) yields an integer solution to the system (19), i.e. the
system consisting (19a) plus (19b), by applying back-substitution to the x′j ( j < s). In
other words, to check whether a system (18) has an integer-valued solution, we only need
to check whether the inequalities (19b) of the equivalent system (19) have an integer-
valued solution. In this sense the equalities of (18) have been eliminated once we have
transformed a system given by (18) into an equivalent system given by (19).

6.1 Eliminating equalities

We now discuss how to eliminate an equality. As usual we denote the number of
numerical, in this subsection: integer-valued, variables by n. We define the operation
c mod d involving two integers c and d by

c mod d = c − d �c/d + 1/2� , (20)

where �u� denotes the largest integer less than or equal to u. If d is odd, the value
of c mod dlies in [−(d − 1)/2, (d − 1)/2]. If d is even, the value of c mod d lies in
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[−d/2, d/2 − 1]. If �c/d� < 1/2, then c mod d = c mod d. If �c/d� ≥ 1/2, then
c mod d = −c mod d. Here, the mod d operator assumes values in [0, d-1].

To eliminate an equality s given by

n∑
j=0

a jsx j = 0, (21)

we select an r such that ars � 0 and |ars| has the smallest value among the a js ( j=0,. . . ,n).
If |ars| = 1, we eliminate the equality by using this equality to express xr in terms of
the other variables, and substitute this expression for xr into the other (in)equalities.
Otherwise, we define γ = |ars| + 1. Now we introduce a new variable σ defined by

γσ =

n∑
j=0

(a jsmod γ) x j. (22)

This variable σ is integer-valued. This can be shown as follows.

n∑
j=0

(a jsmod γ) x j =

n∑
j=0

(
a js − γ

⌊
a js

/
γ + 1/2

⌋ )
x j = −

n∑
j=0

γ
⌊
a js

/
γ + 1/2

⌋
x j, (23)

where we have used (21). So, σ equals − n∑
j=0

⌊
a js

/
γ + 1/2

⌋
x j, which is integer because

the x j ( j=0,. . . ,n) and their coefficients in (23) are integer.
It is easy to see that arsmod γ = −sign(ars). Now, we use (22) to express xr in terms

of the other variables.

xr = −sign(ars)qσ +
n∑

j=0, j�r

sign(ars)(a jsmod q) x j (24)

Substituting (24) into the original equality (21) gives

− |ars| γσ +
n∑

j=0, j�r

(a js + |ars| (a jsmod γ)) x j = 0. (25)

Because |ars| = γ − 1, (25) can be written as

− |ars| γσ +
n∑

j=0, j�r

(a js − (ajsmod γ) + γ(ajsmod γ)) x j = 0 (26)
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Using (20) on (26), and dividing by γ gives

− |ars|σ +
n∑

j=0, j�r

( ⌊
a js

/
γ + 1/2

⌋
+ (a jsmod γ)

)
x j = 0. (27)

In (27) all coefficients are integer-valued.
It is clear that if the coefficient of variable x j ( j=0,. . . ,n) equals zero in (21), the

corresponding coefficient in (27) also equals zero. It is also clear that the absolute value
of the coefficient of σ in (27) is equal to the absolute value of the coefficient of xr in
(21). However, for all other variables with a non-zero coefficient in (21) the absolute
value of the corresponding coefficient in (27) is smaller than the absolute value of the
coefficient in (21). To prove this statement we first re-write the coefficient of x j ( j � r)
in (27) in the following way:

⌊
a js

/
γ + 1/2

⌋
+ (a jsmod γ) =

⌊
a js

/
γ + 1/2

⌋
+ a js − γ

⌊
a js

/
γ + 1/2

⌋
=

−|ars|
⌊

a js

|ars| + 1
+

1
2

⌋
+ a js ≡ â js,

where we have used again that γ = |ars| + 1. We now consider the cases where a js is
positive and negative separately. If a js > 0, then a js ≥ |ars| by our choice of r. Suppose
a js = λ |ars|, where λ ≥ 1. We then have

â js = a js

(
−1
λ

⌊
λ |ars|
|ars| + 1

+
1
2

⌋
+ 1

)
.

Using

1 ≤
⌊
λ |ars|
|ars| + 1

+
1
2

⌋
≤ λ

for all possible values of |ars|, we obtain 0 ≤ â js ≤ (1 − 1
λ
)a js. Hence, we can conclude

that
∣∣∣â js

∣∣∣ < ∣∣∣a js

∣∣∣. In a similar way, one can show that if a js < 0, then too
∣∣∣â js

∣∣∣ < ∣∣∣a js

∣∣∣.
This is left for the reader to verify.

After a repeated application of the above substitution rule, where each time a new
variable is introduced and an old variable is eliminated, to the original equality (21)
and its derived form(s) (27), the equality is transformed into an equality in which (at
least) one of the coefficients has absolute value 1. The corresponding variable can then
be expressed in terms of the other variables. We substitute this expression into the other
(in)equalities. The equality has then been eliminated.

This process continues until we have eliminated all equalities and we have obtained
a system of the form (19). In the next subsection we explain how integer variables can
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be eliminated from a set of linear inequalities (19b), but first we give an example of how
equalities are eliminated.

Example 1 We repeat part of an example given by Pugh (1992). In this example, four
constraints have been specified:

7x + 12y + 31z = 17, (28)

3x + 5y + 14z = 7, (29)

1 ≤ x ≤ 40, (30)

Note that (30) stands for two inequalities. We wish to eliminate equality (28). Note
that γ = 8, and using (22) we introduce a variable σ defined by

8σ = −x + 4y + z + 1. (31)

We eliminate x from (28) to (30). Applying rule (27) to constraint (28) yields

−7σ − 2y + 3z = 3, (32)

and applying rule (24) to constraints (29) and (30) yields

−24σ − 7y + 11z = 10, (33)

1 ≤ −8σ − 4y − z − 1 ≤ 40. (34)

The absolute values of the coefficients of y and zin (32) are smaller than the absolute
values of the corresponding coefficients in (28). The system (31) to (34) is equivalent to
the system (28) to (30).

6.2 Eliminating an integer variable from a set of inequalities

When an integer variable is eliminated from a set of inequalities involving only integer-
valued variables, two different regions are determined. The first region is referred to as
the real shadow. This is simply the region described by the set of inequalities that results
if we apply the standard form of Fourier-Motzkin elimination. That is, the real shadow
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results if we treat the integer variable that is being eliminated as continuous. The second
region is referred to as the dark shadow. This dark shadow is constructed in such a way
that if it contains a feasible (integer) solution, then the existence of a feasible (integer)
solution to the original inequalities is guaranteed.

We describe the construction of the dark shadow. Suppose that two inequalities

ax ≤ α (35)

and

bx ≥ β (36)

are combined to eliminate the integer variable x. Here a and b are positive integer
constants, and α and β are linear expressions that may involve all variables except x.
Each variable involved in α or β is assumed to have an integer coefficient. The real
shadow obtained by eliminating x from the pair of inequalities (35) and (36) is defined
by

aβ ≤ bα. (37)

We define the real shadow obtained by eliminating a variable xfrom a set of
inequalities S to be the region described by the inequalities in S not involving x, and
the inequalities (37) generated by all pairs of upper bounds (35) on x and lower bounds
(36) on xin S .

Now, consider the case in which there is an integer value larger than or equal to aβ
and smaller than or equal to bα, but there is no integer solution for x to aβ ≤ abx ≤ bα.
Let q = �β/b�, then by our assumptions we have

abq < aβ ≤ bα < ab(q + 1).

We clearly have a(q + 1) − α > 0. Since the values of a, b, α and β are integer, we
have a(q + 1) − α ≥ 1, and hence

ab(q + 1) − bα ≥ b. (38)

Similarly, we obtain

aβ − abq ≥ a. (39)
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Combining (38) and (39), we arrive at

bα − aβ ≤ ab − a − b.

In other words, if

bα − aβ ≥ ab − a − b + 1 = (a − 1)(b − 1), (40)

then an integer solution for x necessarily exists.
To be able to satisfy (35) and (36) by choosing an appropriate integer value for x

it is sufficient that (40) holds true. We therefore define the dark shadow obtained by
eliminating variable x from the pair of inequalities (35) and (36) by the region described
by (40). Note that if (40) holds true, there is an integer value larger than or equal to aβ
and smaller than or equal to bα. We define the dark shadow obtained by eliminating a
variable xfrom a set of inequalities S to be the region described by the inequalities in S
not involving x, and the inequalities (40) generated by all pairs of upper bounds (35) on
x and lower bounds (36) on xin S .

We now consider a set of inequalities S with only integer-valued coefficients and
variables. If the real shadow and the dark shadow resulting from the elimination of x
from S are identical, we say that the elimination, or projection, is exact. In that case,
an integer solution exists if and only if an integer solution to the real/dark shadow
exists. If the real shadow and the dark shadow are not identical, we have the following
possibilities:

• If the dark shadow has an integer solution, the set of inequalities S has an integer
solution.
• If the real shadow does not contain a feasible (integer) solution, there is no integer

solution to the set of inequalities S .
• In all other cases, it is not yet clear whether an integer solution to the set of

inequalities S exists.

In the latter case we know that if an integer solution to the set of inequalities S were
to exist, a pair of constraints ax ≤ α and β ≤ bx would exist such that ab−a−b ≥ bα−aβ
and bα ≥ abx ≥ aβ. From this we can conclude that in such a case an integer
solution to the set of inequalities S would satisfy ab − a − b + aβ ≥ abx ≥ aβ. We
can check whether an integer solution to the set of inequalities S exists by examining
all possibilities. Namely, we determine the largest coefficient amax of x for all upper
bounds (35) on x. For each lower bound β ≤ bx we then test whether an integer solution
exists to the original constraints S combined with bx = β + p for each integer p
satisfying (amaxb − amax − b)/amax ≥ p ≥ 0. That is, in the latter case we examine
�(amaxb − amax − b)/amax�+1 subproblems of the original problem. These subproblems
are referred to as splinters.
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The theory discussed so far shows that if the dark shadow or one of the splinters
has an integer solution, then the original set of inequalities S has an integer solution.
Conversely, because we examine all possibilities, it also holds true that if the original
set of inequalities S has an integer solution then the dark shadow or one of the splinters
has an integer solution. So, we have demonstrated the following theorem.

Theorem 3 If and only if an integer solution to the dark shadow or one of the splinters
exists, then an integer solution to the original set of inequalities S exists.

Note that if the original set of inequalities S involves n integer variables, the dark
shadow and the splinters involve only n-1 integer variables (for the splinters the added
equality bx = β + p first has to be eliminated in order to arrive at a system of inequalities
involving n-1 variables). We have now explained how we can check whether a feasible
integer value exists for an integer variable involved in a set of linear inequalities by
eliminating this variable. In the next subsection we examine how we can test whether
an integer solution exists for several variables simultaneously by eliminating these
variables.

6.3 Eliminating several integer variables from a set of inequalities

Suppose we want to determine whether an integer solution exists for a set of linear
inequalities involving n variables. We solve this problem by eliminating these n
variables. During the elimination process the original problem may split into several
subproblems owing to the splinters that may arise. We apply the procedure sketched
below. We focus on the idea underlying the procedure; the computational efficiency of
the procedure is ignored here.

We construct a list of subproblems. At the start of the procedure the only
(sub)problem is the original problem involving all n variables. We treat each subproblem
that may arise separately. We now consider one of those subproblems. We eliminate
all variables involved in this subproblem by means of standard Fourier-Motzkin
elimination, i.e. we repeatedly determine the real shadow until all variables have
been eliminated. If the final real shadow without any unknowns is inconsistent, the
subproblem does not have a continuous solution, let alone an integer solution. In such a
case this subproblem can be discarded.

If the final real shadow of a subproblem is consistent, and a continuous solution
hence exists, we examine the subproblem again and test whether there is an integer
solution to this subproblem. For this subproblem we iteratively select a variable from
the set of variables that have not yet been eliminated. The selected variable will
be eliminated, using the method of Subsection 6.2. In order to keep the number of
computations limited we choose the variable so that the elimination will be exact if
possible. As a secondary aim we may then also minimise the number of constraints
resulting from the combination of upper and lower bounds. If an exact elimination is
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not possible, we select a variable with coefficients as close as possible to zero. For
such a variable the number of splinters will be relatively small. Testing all splinters for
integer solutions can be quite time-consuming, so creating splinters and testing them
for integer solutions should be avoided as much as possible. For the subproblem under
consideration, we determine the dark shadow and the splinters (if any) by eliminating
the selected variable, using the method of Subsection 6.2. The dark shadow and the
splinters define new subproblems, and are added to the list of subproblems. After this,
we have dealt with the subproblem under consideration, and it is deleted from the list
of subproblems. We continue this process until all variables have been eliminated from
all subproblems on the list of subproblems. The final “subproblems”, or better: final
sets of relations, involve only numbers and no unknowns. As in the continuous case (see
Section 5), such a relation can be self-contradicting, e.g. “0 ≥ 1”. We have the following
theorem.

Theorem 4 If any of the final sets of relations does not contain a self-contradicting
relation, the original set of inequalities has an integer solution. Conversely, if all final
sets of relations contain a self-contradicting relation, the original set of inequalities
does not have an integer solution.

Proof. This follows from a repeated application of Theorem 3. �

7 Error localisation in categorical, continuous and integer data

In this section we integrate the Omega test described in Section 6 with the branch-
and-bound approach for solving the error localisation problem for categorical and
continuous data proposed by Quere and De Waal (2003) (see Section 5). The result of
this integration is an algorithm for solving the error localisation problem for categorical,
continuous, and integer-valued data. The idea of this algorithm is to test whether
the integer-valued variables involved in a solution to the continuous error localisation
problem, i.e. the error localisation problem where all numerical variables are assumed
to be continuous, can attain integer values. This is illustrated in Figure 2 below.

Determine continuous

solution

Test integrality

Figure 2: The basic idea of the error localisation algorithm.



Ton de Waal 79

For a given combination of categorical values, our integrality test reduces to the
Omega test. In other words, we basically apply the Omega test on each possible
combination of categorical values. What complicates the issue is that we do not
explicitly enumerate and test all possible combinations of categorical values. Before we
describe the algorithm, we first explain in Subsection 7.1 how balance edits involving
integer variables can be “eliminated” and in Subsection 7.2 how integer variables can
be eliminated from inequality edits. Finally, Subsection 7.3 describes our algorithm for
solving the error localisation problem for categorical, continuous and integer data.

As usual, the edits are given by (10). For notational convenience, we define x0 = 1
and a0k = bk for k=1,. . . ,K, where K is the number of edits, like we also did in Section
6.

7.1 Error localisation: eliminating balance edits involving integer variables

In our integrality test (see Subsection 7.3) integer variables are treated after all
continuous variables have been treated and before any categorical variable is treated.
That is, once the integer variables are treated all edits involve only categorical and
integer variables. If integer variables are involved in balance edits, we first “eliminate”
these edits. We select a balance edit, and basically apply the technique explained in
Subsection 6.1 to arrive at an equality in which the absolute value of the coefficient
of an integer variable equals 1. During this process the IF-condition of the edit under
consideration does not alter. To be more precise, if the selected edit s is given by

IFvi ∈ Fs
i (for i = 1, . . . ,m) THEN (x1, . . . , xn) ∈ {x|

n∑
j=0

a jsx j = 0}, (41)

with the a js ( j=0,. . . ,n) integer coefficients and the x j ( j=0,. . . ,n) integer variables, we
transform this edit into

IF vi ∈ Fs
i (for i = 1, . . . ,m) THEN (x̃1, . . . , x̃ñ) ∈ {x̃|

ñ∑
j=0

ã js x̃ j = 0}, (42)

where the ã js ( j=0,. . . ,ñ) are integer coefficients, and the x̃ j ( j=0,. . . , ñ) are
the transformed integer variables, possibly supplemented by some auxiliary integer
variables owing to the elimination of the equality. The total number of variables x̃ j

is denoted by ñ (ñ ≥ n). In (42), at least one integer variable, say x̃r, has a coefficient
ãrs with |ãrs| = 1. Below we describe the procedure to transform (41) into (42). For
notational convenience, we write ñ again as n. Likewise, we write the transformed
coefficients ã js ( j=0,. . . , ñ) and transformed variables x̃ j ( j=0,. . . , ñ) again as a js and x j.
It is important to keep in mind, though, that these coefficients and variables may differ
from the original coefficients and variables.
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Because auxiliary variables may need to be introduced during the elimination
process of a balance edit, we may in fact need to introduce some auxiliary balance edits
of which the THEN-conditions are given by equations of type (22) (or equivalently:
of type (24)), and the IF-conditions by the IF-condition of the selected edit s. In each
of these auxiliary equations, the new auxiliary variable is expressed in terms of the
other integer variables x j ( j=1,. . . ,n), i.e. the original integer variables and the already
generated auxiliary variables. The other edits are written in terms of the new auxiliary
variable by applying the substitution (24) to the numerical THEN-conditions as far as
this is permitted by the IF-conditions. The IF-conditions of these other edits are changed
by the substitution process. In particular, an edit t given by

IF vi ∈ Ft
i (for i = 1, . . . ,m) THEN (x1, . . . , xn) ∈ {x|

n∑
j=0

a jt x j ≥ 0}, (43)

involving xr in its THEN-condition gives rise to (at most) two edits given by

IF vi ∈ Ft
i ∩ Fs

i (for i = 1, . . . ,m)

THEN (x1, . . . , xn) ∈ {x| − sign(ars)artγσ +
n∑

j=0, j�r
(a jt + sign(ars)art(a jsmod γ))x j ≥ 0},

(44)
and

IF vi ∈ Ft
i − Fs

i (for i = 1, . . . ,m)

THEN (x1, . . . , xn) ∈ {x| n∑
j=0

a jt x j ≥ 0}. (45)

In (43) to (45) the inequality sign may be replaced by an equality sign. Edits of
type (44) for which Ft

i ∩ Fs
i = ∅ (for some i=1,. . . ,m), and edits of type (45) for which

Ft
i − Fs

i = ∅ (for some i=1,. . . ,m) may be discarded. Edits given by (43) not involving
xr are not modified.

Once we have obtained an edit of type (42) with a coefficient ars such that |ars| = 1,
we use the THEN-condition of this edit to express the variable xr in terms of the other
variables. That is, we use

xr = −sign(ars)
n∑

j=0, j�r

a jsx j. (46)

This expression for xr is then substituted into the THEN-conditions of the other edits
as far as this is permitted by the IF-conditions. The IF-conditions of these other edits are
changed by the substitution process. In particular, owing to this substitution process an
edit given by (43) involving xr in its THEN-condition gives rise to (at most) two edits
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given by (45) and

IF vi ∈ Ft
i ∩ Fs

i (for i = 1, . . . ,m)

THEN (x1, . . . , xn) ∈ {x| n∑
j=0, j�r

(a jt − sign(ars)arta js)x j ≥ 0}, (47)

In (43), (45), and (47) the inequality sign may be replaced by an equality sign. Edits
of type (47) for which Ft

i ∩Fs
i = ∅ (for some i=1,. . . ,m), and edits of type (45) for which

Ft
i − Fs

i = ∅ (for some i=1,. . . ,m) may be discarded. Edits given by (43) not involving
xr are not modified.

The new system of edits is equivalent to the original system of edits, in the sense that
a solution to the original system of edits corresponds to a solution to the new system,
and vice versa. Namely, for the categorical values for which we can use equation (24) or
(46) to eliminate variable xr, we do this (see (44) and (47)). For the categorical values for
which we cannot use equation (24) or (46) to eliminate xr, we simply leave xr untouched
(see (45)). Note that the IF-conditions of an edit of type (44) or (47) where xr has been
eliminated and an edit still involving xr have an empty overlap. An edit of type (44)
or (47) and an edit still involving xr will hence never be combined when eliminating
integer variables from inequality edits (see Subsection 7.2 for the elimination of integer
variables from inequality edits).

We continue “eliminating” balance edits until for each possible combination of
categorical values the associated set of numerical THEN-conditions is either a system of
type (19) or the empty set. The latter possibility occurs if a combination of categorical
values is not allowed by the edits. Note that the balance edits will be eliminated after
finitely many steps. Namely, for each possible combination of categorical values we in
fact implicitly apply the elimination process of Subsection 6.1, which terminates after a
finite number of steps.

After the termination of the above elimination process, we delete all balance edits.
We are then left with a set of edits with linear inequalities involving only integer
variables as THEN-conditions. Because auxiliary variables may have been introduced to
eliminate the balance edits, the total number of integer variables in this system of edits
may be larger than the original number of integer variables. How we deal with a set of
inequality edits involving only integer variables is explained in the next subsection.

7.2 Error localisation: eliminating integer variables from inequality edits

In this subsection we assume that each THEN-condition is either a linear inequality
involving only integer variables or the empty set. When an integer variable is eliminated
from a set of inequality edits, a dark shadow and possibly several splinters are generated.
Below we describe how this dark shadow and these splinters are defined. We start
by selecting an integer variable that we want to eliminate, say xr. The current edits
involving xr are combined into implicit edits not involving xr. We consider all edits
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involving xr pair-wise. Such a pair of edits is given by

IF vi ∈ Fs
i (for i = 1, . . . ,m) THEN (x1, . . . , xn) ∈ {x |

n∑
j=0

a js x j ≥ 0} (48)

and

IF vi ∈ Ft
i (for i = 1, . . . ,m) THEN (x1, . . . , xn) ∈ {x|

n∑
j=0

a jt x j ≥ 0}, (49)

where all involved numerical variables are integer-valued. We assume that the a js,
respectively the a jt, ( j=0,. . . ,n) are normalised.

The real shadow obtained by eliminating xr from the pair of edits (48) and (49) is
defined only if ars × art < 0. Its THEN-condition is then given by (14), and its IF-
condition by vi ∈ Ft

i ∩ Fs
i (for i=1,. . . ,m) . The dark shadow is also only defined if

ars × art < 0. In that case one coefficient is larger than zero, say ars > 0, and the other
coefficient is less than zero, art < 0. The dark shadow obtained by eliminating xr from
the pair of edits (48) and (49) is then defined by

IF vi ∈ Fs
i ∩ Ft

i (for i = 1, . . . ,m)

THENx ∈ {x| n∑
j=0

(arsa jt − arta js)x j ≥ (ars − 1)(−art − 1)}. (50)

If Ft
i ∩ Fs

i is empty for some i=1, . . . , m, edit (50) is deleted. As for the real
shadow, the IF-condition of the dark shadow (50) is given by the intersections Fs

i ∩ Ft
i

(i=1,. . . ,m), because two numerical THEN-conditions can only be combined into an
implicit numerical THEN-condition for the overlapping parts of their corresponding
categorical IF-conditions. Note that for this overlapping part the THEN-condition of the
dark shadow is given by (40). The dark shadow obtained by eliminating xr from a set of
inequality edits is by definition given by the edits not involving xr plus the dark shadows
(50), assuming they exist, for all pairs of edits (48) and (49).

Defining the splinters obtained by eliminating xr from a set of inequality edits is
more complicated than in Section 6. The reason is that here we want to define splinters
for different combinations of categorical values simultaneously, whereas Section 6
considers the case without any categorical variables. We describe one possibility to
define splinters; for an alternative possibility we refer to De Waal (2003a). We write
the inequality edits involving xr as

IF vi ∈ Fk
i (for i = 1, . . . ,m) THEN ark xr ≥ −

n∑
j=0, j�r

a jkx j. (51)
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For negative coefficients ark, the THEN-condition of (51) provides an upper bound
on xr. For positive coefficients ark, the THEN-condition of (51) provides a lower bound
on xr. We start by determining the smallest negative coefficient arq of xr for all edits
(51), i.e. arq is the coefficient of xr in all upper bounds on xr with the largest absolute
value. For each lower bound on xr, we then test whether an integer solution exists to the
original edits combined with

IF vi ∈ Fk
i (for i = 1, . . . ,m) THEN arkxr = −

∑
j�r

a jk x j + p (52)

for each integer p satisfying (−arqark + arq − ark)
/
(−arq) ≥ p ≥ 0. For each possible

combination of categorical values, all splinters required according to the Omega test
described in Subsection 6.2 are taken into consideration. For some combinations of
categorical values, more splinters than necessary are taken into consideration. These
superfluous splinters increase the computing time, but do no harm otherwise. We have
the following theorem.

Theorem 5 The original set of edits with linear inequalities involving only integer
variables as THEN-conditions has a solution if and only if the dark shadow or a splinter
resulting from the elimination of variable xr has a solution.

Theorem 5 follows immediately by noting that for arbitrary, fixed categorical values,
it reduces to Theorem 3.

We now eliminate all integer-valued variables from the original set of inequality
edits. During this process we may have to consider several different sets of edits and
corresponding variables owing to the splinters that may arise. We consider each such set
of edits (and corresponding variables) separately. If a set of edits contains a balance edit,
which happens if this set of edits is a splinter, we apply the technique of Subsection 7.1 to
eliminate that equality from this set. For a set of edits involving only inequality edits, we
select a variable that has not yet been eliminated and proceed to eliminate this variable
using the technique of this subsection. We continue until all integer variables in all sets
of edits have been eliminated, and we are left with one or more sets of edits involving
only categorical variables. The theory of Subsection 7.1 and a repeated application of
Theorem 5 yields the following theorem.

Theorem 6 A set of edits with THEN-conditions involving only integer variables has a
solution if and only if any of the sets of edits involving only categorical variables arising
after the elimination of all integer-valued variables has a solution.

To check the existence of a solution to a set of edits involving only categorical
variables one can use the methodology sketched in Section 5.
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7.3 Error localisation: algorithm for categorical, continuous and integer data

After the preparations in the previous subsections, we are now able to state our algorithm
for solving the error localisation problem for a mix of categorical, continuous and
integer data. We denote the error localisation problem in categorical, continuous and
integer data under consideration by PI . To solve PI we first apply the branch-and-bound
algorithm presented in Section 5 without taking into account that some of the variables
are integer-valued, i.e.we first treat the integer variables as being continuous. We denote
the problem where integer variables are treated as continuous ones by PC . PC is the
continuous error localisation problem.

Let cob j denote the value of the objective function (13) for the best currently found
solution to PI , and S the set of currently best solutions to PI . We initialise cob j to ∞,
and S to ∅. A solution to PC not involving any integer variables is automatically also a
solution to PI . So, whenever we find a solution to PC not involving any integer variables
for which (13) is less than cob j, we update cob j with that value of (13) and set S equal
to the current solution to PC . Also, whenever we find a solution to PC not involving any
integer variables for which (13) is equal to cob j, we add the current solution to PC to S .

Whenever we find a solution to PC involving integer variables for which (13) is at
most equal to cob j, we consider PI . We test whether the variables involved in the current
solution to PC also constitute a solution to PI . The basic idea of this test is illustrated in
Figure 3 below.

Enter values of all variables not in

PC into edits

Eliminate continuous variables in PC

from edits

Eliminate balance edits involving

integer variables in PC

Eliminate integer variables in PC

from inequality edits

Eliminate categorical variables in PC

from edits

Figure 3: The basic idea of the integrality test.
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For the integrality test we first fill in the values of the variables not involved in
the current solution to PC into the edits. Subsequently, we eliminate the continuous
variables involved in the solution to PC . This yields a system of edits (10) in which only
the integer-valued and categorical variables involved in the solution to PC occur.

Next, we eliminate all balance edits with integer-valued variables involved in the
current solution to PC in the manner described in Subsection 7.1. Subsequently, we
eliminate all integer-valued variables involved in the current solution to PC from all
inequality edits in the manner described in Subsection 7.2. During this latter elimination
process the original problem may be split into several subproblems owing to the
splinters that may arise. Finally, we eliminate all categorical variables from each of these
subproblems. For each subproblem we end up with a set of relations not involving any
unknowns. Such a set of relations may be empty. If a set of relations we obtain in this
way does not contain a self-contradicting relation, which is for instance (by definition)
the case if the set of relations is empty, we have found a solution to PI . In that case, if the
value of (13) for the current solution to PI is less than cob j we update cob j accordingly
and set S equal to the current solution of PI , else we add the current solution to PI to S .
If all sets of relations involving no unknowns contain a self-contradicting relation, none
of the subproblems leads to a solution to PI and the solution to PC under consideration
is not a solution to PI . In that case cob j is not updated, and we continue with finding
solutions to PC .

Note that in the above approach, the relatively time-consuming integrality test is
only invoked once a solution to PC with an objective value of cob j or less involving
integer-valued variables has been found, so generally only rather infrequently. We have
the following theorem.

Theorem 7 The above procedure finds all optimal solutions to PI.

Proof. We start by noting that Theorem 1, Subsection 7.1 and Theorem 6 show
that if and only if any of the final sets of relations involving no unknowns obtained
by eliminating all variables involved in a solution to PC does not contain a self-
contradicting relation, the original set of edits can be satisfied by modifying the values
of the variables involved in this solution. Now, the branch-and-bound algorithm for
categorical and continuous data can be used to find all solutions to PC with an objective
value (13) of cob j or less, for any given value of cob j. For each solution to PC with a
value for (13) equal to or less than cob j, we test whether it is also a solution to PI . The
result of this test is conclusive. We update cob j whenever we have found a better solution
to PI than the best one found so far. In other words, all potentially optimal solutions to
PI are considered by the procedure, and all optimal solutions to PI are indeed identified
as such. �

We illustrate the algorithm by means of a simple example involving only two integer-
valued variables.



86 Automatic error localisation for categorical, continuous and integer data

Example 2 We consider a case with only two variables x1 and x2, and three edits given
by

−2x2 + 5 ≥ 0,

5x1 − x2 ≥ 0,

−3x1 + 2x2 ≥ 0.

(53)

Both variables are integer-valued, and their reliability weights equal one. The
original, incorrect record is given by x1 = 1, and x2 = 1. We initialise cob j to ∞, and S
to ∅. We start by solving PC. We select a variable, say x1, and construct two branches:
in the first branch we eliminate x1 from the set of current edits, in the second branch we
fix x1 to its original value. If we eliminate x1 from the set of current edits, we obtain (53)
and x2 ≥ 0 as our new set of current edits. This new set of current edits is satisfied by
the original value of x2. Hence, we have found a solution to PC, namely: change x1. We
test whether this is also a solution to PI. To this end, we start by filling in the original
value of x2 into the original set of edits. We obtain the following set of edits involving
only x1.

5x1 − 1 ≥ 0, (54)

−3x1 + 2 ≥ 0. (55)

The dark shadow obtained by eliminating x2 from (54) and (55) (see (50)) is given
by

7 ≥ 8,

which is clearly a self-contradicting relation. We therefore have to consider the
splinters. In this simple case there are three splinters. For the first splinter we have
to add the constraint

5x1 = 1

to (54) and (55) (see (52)), for the second one the constraint

5x1 = 2,

and for the third one the constraint

5x1 = 3.
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It is clear that none of these three splinters has an integer solution for x1. This would
also follow if we were to apply the proposed algorithm. We conclude that although
changing x1 is a solution to PC, it is not a solution to PI.

After this intermezzo during which we tested whether changing the value of only x1

is a solution to PIwe continue with finding solutions to PC. We now consider the branch
where x1 is fixed to its original value. The corresponding set of current edits is given by
(53),

−x2 + 5 ≥ 0, (56)

2x2 − 3 ≥ 0. (57)

By eliminating x2 we see that changing the value of only x2 is a solution to PC. We
check whether this is also a solution to PI. We fill in the original value of x1 into the
original set of edits. We obtain the system (53), (56) and (57). The dark shadow of (53)
and (57) obtained by eliminating x2 (see (50)) is given by

4 ≥ 1,

and the dark shadow of (56) and (57) obtained by eliminating x2 by

7 ≥ 0.

The above relations are not self-contradicting, so we can conclude that changing the
value of x2 is a solution to PI. We can even conclude that this is the only optimal solution
to PI. A feasible value for x2 is 2.

The method described in this section may appear to be very slow in many cases.
Indeed, it is not difficult to design a set of edits for which the method is extremely slow.
However, we argue that in practice the situation is not so bad. First, like we already
mentioned, the time-consuming algorithm to check potential solutions to PI is only
invoked once a new solution to PC with an objective value less than or equal to the
current value of cob j involving integer variables has been found. In practice, the number
of times that such a solution to PC is found is in most cases rather limited.

Second, whenever we find a solution to PC with an objective value less than or equal
to the current value of cob j we only have to test whether the variables involved in this
particular solution also form a solution to PI . Moreover, often one is only interested
in solutions to the error localisation problem with a few variables, say 10 or less. We
already argued in Section 5 that if a record requires more than, say, 10 values to be
changed, it should not be edited automatically in our opinion as the statistical quality
of the automatically edited record would be too low. This implies that the relatively
time-consuming test described in this section involves only a few variables.

Third, the integrality test becomes only really time-consuming when many splinters
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have to be considered. However, in most edits, either explicit or implicit ones,
encountered in practice the coefficients of the integer variables equal –1 or +1. This
is especially true for balance edits. For an integer variable with coefficient –1 or +1
the elimination from inequality edits will be exact, i.e. the dark shadow and the real
shadow coincide and no splinters have to be generated. For balance edits involving
integer variables with coefficients -1 or +1 no auxiliary variables have to be introduced in
order to eliminate these edits. For such a balance edit the elimination can be performed
very fast.

Finally, we can also resort to a heuristic approach based on the exact algorithm. In
the next section such a heuristic procedure is described.

8 A heuristic procedure

At Statistics Netherlands we originally aimed to develop a software package for a
mix of categorical and continuous data only. In order to achieve this aim a number
of algorithms were considered. For an overview of the algorithms considered we refer
to De Waal (2003a). Most of those algorithms have been implemented in prototype
software, and have subsequently been evaluated. For an assessment of several algorithms
on continuous data we refer to De Waal and Coutinho (2005). As a consequence of our
work the algorithm described in Section 5 has been implemented in SLICE, our general
software framework for automatic editing and imputation (cf. De Waal, 2001). Later
the wish to extend the implemented algorithm to include integer-valued data arose. The
algorithm described in Section 7 was developed to fulfil that wish. However, once this
algorithm was developed we considered it to be too complex to implement and maintain
in production software. We therefore decided not to implement the exact algorithm
of Section 7, but instead to develop a simpler heuristic procedure based on the exact
algorithm. That heuristic procedure, which is described below, has been implemented in
version 1.5 of SLICE.

Only the integrality test for the integer-valued variables involved in a solution to
PC , i.e. a potential solution to PI , differ for the exact algorithm and the heuristic
procedure. In our heuristic procedure, we do not examine splinters; neither do we
introduce auxiliary variables in order to eliminate balance edits.

Whenever we have to eliminate an integer-valued variable xr from a pair of edits s
and t in the heuristic checking procedure, we distinguish between two cases. If either
edit s or edit t (or both) is a balance edit involving xr, we examine whether the coefficient
of xr in the corresponding normalised THEN-condition (if both edits are balance edits,
we examine both normalised THEN-conditions) equals +1 or -1. If this is not the case,
we make the conservative assumption that no feasible integer value for xr exists, and
we reject the potential solution to the PI . If both edits s and t are inequality edits, we
eliminate xr from these edits by determining the dark shadow (see (50)).
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If several integer variables are involved in the solution to PC under consideration, we
repeatedly apply the above procedure until all these variables have been eliminated. If
the resulting set of edits involving only categorical variables has a solution, the solution
to PC is also a solution to PI (see Theorem 6). On the other hand, if the resulting set
of edits does not have a solution we make the conservative assumption that the current
solution to PC is not a solution to PI . This assumption is conservative as we do not check
the splinters.

The above heuristic procedure is considerably easier to implement and maintain
than the exact algorithm of Section 7. The price we have to pay for using the heuristic
procedure instead of the exact algorithm of Section 7 is that we sometimes conclude that
an integer solution does not exist, whereas in fact it does.

9 Computational results

In this section we provide computational results for the heuristic procedure described
in Section 8. The exact algorithm described in Section 7 has not been implemented in
a computer program, and has therefore not been evaluated. The experiments have been
performed on a 1500 MHz PC with 256 MB of RAM. This PC was connected to a local
area network.

The heuristic procedure has been tested on five realistic data sets. We have used
realistic data sets rather than randomly generated synthetic data for our evaluation
study, because we feel that the properties of realistic data are completely different than
those of randomly generated data. Considering that a production version of SLICE for
categorical and continuous data already existed, we decided to implement the heuristic
procedure described in Section 8 directly in SLICE (version 1.5), without implementing
it in prototype software first.

Our experiments have therefore been carried out by means of SLICE 1.5.
This software package has been designed for use in the day-to-day routine at our
statistical office. It has been optimised for robustness against mis-use and for ease of
maintainability. It uses well-tested components that facilitate debugging. Moreover, the
software stores different kinds of metadata, such as which fields are identified as being
erroneous. SLICE 1.5 has not been optimised for speed. The speed of the software can
definitely be improved upon. Compared to the prototype software for categorical and
continuous data on which this production software is based, the production software is
about 16 times or more slower (see De Waal and Quere, 2003, where similar data and
edits were used as in the present article). The prototype software, however, could handle
only a mix of categorical and continuous data, not integer-valued data.

SLICE 1.5 allows the user to specify several parameters, such as a maximum for
the number of errors in a record, a maximum for the number of missing values in a
record, the maximum computing time per record, the maximum number of (explicit
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and implicit) edits in a node of the binary search tree, and a maximum for the number
of determined solutions. In our evaluation experiments we did not set a limit for the
number of missing values in a record. We have set the maximum number of (explicit
and implicit) edits in a node to 3,000, and the maximum computing time per record to
60 seconds. In our experiments we have varied the maximum number of errors and the
maximum for the number of determined solutions.

If a record cannot be made to satisfy all edits by changing at most the specified
maximum number of errors, it is discarded by SLICE 1.5. A record is also discarded by
SLICE 1.5 if it contains more missing values than the specified maximum. Whenever
SLICE 1.5 has found Nsol solutions with the lowest value clow for the objective function
(13) found so far, where Nsol is the specified maximum number of determined solutions,
it from then on searches only for solutions to the error localisation problem for which the
value of the objective function (13) is strictly less than clow. After SLICE 1.5 has solved
the error localisation problem for a record, it returns at most Nsol solutions with the
lowest value for the objective function (13). Owing to the use of the heuristic procedure
of Section 8, these determined solutions may be suboptimal. In case the maximum
number of edits in a node exceeds 3,000 or the maximum computing time per record
exceeds 60 seconds, SLICE 1.5 returns the best solutions (if any) it has determined so
far. So, even if the maximum number of edits in a node or the maximum computing
time per record is exceeded, the heuristic procedure implemented in SLICE 1.5 may
return a solution. For some records the heuristic procedure of SLICE 1.5 could not find
a solution at all.

For Statistics Netherlands improving the efficiency of the data editing process for
economic, and hence mainly numerical, data is much more important than for social,
and hence mainly categorical, data. Therefore, the heuristic procedure has only been
evaluated for purely numerical test data. In fact, all variables in the five data sets were
integer-valued ones. The five evaluation data sets come from a wide range of business
surveys. In Table 1 we give a brief description of each data set.

Table 1: Description of the five evaluation data sets

Name Description

Data set A structural business survey on enterprises in the photographic sector
Data set B structural business survey on enterprises in the building and construction industry
Data set C structural business survey on the retail sector
Data set D survey on environmental expenditures
Data set E Annual Business Inquiry

Data set E, the so-called Annual Business Inquiry data set, is one of the
evaluation data sets from the EUREDIT project. The EUREDIT project (see
http://www.cs.york.ac.uk/euredit) was a large international research and development
project on statistical data editing and imputation involving 12 institutes, including
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Statistics Netherlands, from seven different countries. The project lasted from March
2000 till March 2003. Important aims were the evaluation of current “in-use” methods
for data editing and imputation, and the development and evaluation of a selected range
of new or recent techniques for data editing and imputation. For more information on
the methods examined in the EUREDIT project we refer to Chambers (2004). Owing
to confidentiality reasons the branch of industry to which the businesses in data set E
belong has not been made public.

To the best of our knowledge the five evaluation data sets are representative for many
other data sets from business surveys. A good performance on the five evaluation data
sets hence suggests that the performance on many other business survey data sets arising
in practice will also be acceptable.

In Table 2 below we give a summary of the characteristics of the five evaluation data
sets. In this table the number of integer-valued variables, the number of non-negativity
constraints (i.e. constraints expressing that a variable should have a non-negative value),
the number of inequality edits (excluding the non-negativity constraints), the number
of balance edits, the total number of records, the number of inconsistent records (i.e.
records failing edits or containing missing values), the total number of missing values,
and the average number of errors per inconsistent record are listed.

Table 2: Characteristics of the five evaluation data sets

Data set A Data set B Data set C Data set D Data set E

Number of integer variables 76 53 51 54 26

Number of non-negativity constraints 70 36 49 54 22

Number of inequality editsa 2 16 7 0 15

Number of balance edits 18 20 8 21 3

Total number of records 274 1,478 4,217 1,039 1,425

Number of inconsistent records 157 1,402 2,152 378 1,141

Total number of missing values 0 0 0 2,230 195

Average number of errors per inconsistent record 2.7 2.7 1.6 6.2 2.6

a Excluding non-negativity constraints

In all balance edits corresponding to the five evaluation data sets, the coefficients of
the involved variables equal -1 or +1. Also, in all inequality edits corresponding to data
sets A and C, the coefficients of the involved variables equal -1 or +1. In the equality
edits corresponding to data sets B and E, however, many coefficients of the involved
variables are not equal to -1 or +1.

We have compared the solutions determined by the heuristic procedure implemented
in SLICE 1.5 to the optimal solutions. For purely numerical data, the edits (10) reduce
to linear constraints, and the error localisation problem can easily be formulated as
an integer programming problem (see, e.g., Schaffer, 1987, and Riera-Ledesma and
Salazar-González, 20033). We have therefore used a solver for integer programming
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problems to determine the optimal solutions. For our evaluation study we have used
CPLEX (cf. ILOG CPLEX 7.5 Reference Manual, 2001). Note that although the error
localisation problem for numerical (either continuous or integer-valued) data can quite
easily be solved by a solver for integer programming problems, the error localisation
problem for a mix of numerical (either continuous or integer-valued) and categorical
data quickly becomes very hard to solve for such a solver.

In Table 3 we give the number of records for which the heuristic procedure of SLICE
1.5, with the maximum number of errors set to 10, found an optimal solution, the
number of records for which it could not find a (possibly suboptimal) solution at all,
and the number of records for which it did find solution but exceeded the maximum
computing time per record. In our evaluation study the maximum number of edits in a
node was never exceeded. Note that records for which the heuristic procedure exceeded
the maximum computing time may still be solved to optimality by this procedure.

Table 3: Number of records that were optimally solved, could not be solved, and for
which the maximum computing time per record was exceeded

Data set A Data set B Data set C Data set D Data set E

Number of optimally solved records 120 1,347 2,150 378 1039

Number of unsolved records 4 30 2 0 2

Number of records for which the maximum

computing time (60 seconds) was exceeded 3 14 11 0 0

As described in Sections 7 and 8, the heuristic procedure of SLICE 1.5 consists of
two parts: a branch-and-bound algorithm where all numerical variables are treated as
being continuous ones and an integrality test. In order to assess the slow-down of the
algorithm owing to the integrality test, we compare the computing times of the heuristic
procedure to the computing times if all variables were continuous ones rather than
integer-valued ones. The computing times if all variables were continuous ones are, for
various maximum numbers of errors and maximum numbers of determined solutions,
given in Table 4 below.

Table 4: Computing times of the algorithm if the variables were continuous ones (in
seconds)

Parameters Data set A Data set B Data set C Data set D Data set E

6 errors, 10 solutions 807 1,725 5,158 228 702

8 errors, 10 solutions 1,023 3,163 5,173 631 704

10 errors, 10 solutions 1,131 6,074 5,187 1,384 706

10 errors, 1 solution 1,088 5,626 5,065 1,348 651
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The computational results of the heuristic procedure for various maximum numbers
of errors and maximum numbers of determined solutions are given in Table 5 below. In
this table we also give the increase in computing time (in per cents of the computing
time for the corresponding case for continuous data) owing to the integrality test.

Table 5: Computing times of the heuristic procedure in seconds (between brackets the
increase in computing time owing to the integrality test in per cents of the computing
time for continuous data)

Parameters Data set A Data set B Data set C Data set D Data set E

6 errors, 10 solutions 949 (18%) 1,877 (9%) 5,210 (1%) 238 (4%) 783 (12%)

8 errors, 10 solutions 1,056 (3%) 3,505 (11%) 5,223 (1%) 644 (2%) 962 (37%)

10 errors, 10 solutions 1,152 (2%) 6,959 (15%) 5,307 (2%) 1,397 (1%) 1,129 (60%)

10 errors, 1 solution 1,089 (0%) 6,652 (18%) 5,184 (2%) 1,348 (0%) 1,073 (65%)

For data sets A to D, the increase in computing time owing to the integrality test
is rather small, namely between 0% and 18%. For data set E, however, the increase in
computing time owing to the integrality test is quite large (up to 65%).

The effect of increasing the maximum number of errors on the relative computing
time of the integrality test depends on the data set under consideration. For data sets
A and D, the relative increase in computing time owing to the integrality test becomes
less with increasing maximum numbers of errors. For data set B the relative increase
in computing time owing to the integrality test gradually becomes more with increasing
maximum numbers of errors. For data set C, this relative increase in computing time is
more or less stable for different maximum numbers of errors. Finally, for data set E the
relative increase in computing time grows rapidly with increasing maximum numbers
of errors.

Determining several solutions instead of one leads to a limited increase in computing
time. In Tables 4 and 5 we have given the computing times of SLICE 1.5, with the
maximum number of errors set to 10, for the maximum number of determined solutions
set to 10 and for the maximum number of determined solutions set to 1. In Table 5
the largest relative increase in computing time when determining at most 10 solutions
instead of only one is for data set A. The computing time increases from 1,089 seconds
to 1,152 seconds, an increase of approximately 6%. The largest relative increase in
computing time owing to determining at most 10 solutions instead of only one is slightly
higher in Table 4, namely approximately 8% for data sets B and D.

In Table 6 below we give the total number of erroneous fields according to the
heuristic procedure of SLICE 1.5 and the exact algorithm implemented by means of
CPLEX for the records that could be solved, possibly in a suboptimal manner, by means
of the heuristic procedure.

The number of fields that are unnecessarily identified as being erroneous by the
heuristic procedure was very small in our evaluation study. In other words, for the data
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Table 6: Total number of erroneous fields in solved records according to the heuristic
procedure and the exact algorithm

Data set A Data set B Data set C Data set D Data set E

Exact algorithm for integer data (CPLEX) 378 3,424 3,526 2,362 2,919

Heuristic procedure (SLICE 1.5) 381 3,482 3,526 2,362 2,919

sets used in our evaluation study, the quality of the solutions determined by the heuristic
procedure in terms of the total number of fields identified as erroneous is very good.
In the worst case, data set B, the surplus of fields identified as being erroneous by the
heuristic procedure in comparison to the number of fields identified as being erroneous
by the exact algorithm implemented by means of CPLEX is less than 2% of the latter
number of fields.

Finally, we examine the quality of the heuristic procedure in terms of the number
of optimal solutions determined. We set both the maximum number of errors and the
maximum number of solutions per record to 10. The reason for selecting the latter
number is that for records with more than 10 optimal solutions to the error localisation
problem, it is very hard to later select the correct solution, i.e. correctly identify the
erroneous fields, anyway. For the records for which the heuristic procedure succeeded
in determining an optimal solution, we compare the number of optimal solutions
determined by the heuristic procedure to the number of optimal solutions determined
by the exact algorithm implemented by means of CPLEX. The results are given in Table
7.

Table 7: Number of optimal solutions of the heuristic procedure and the exact
algorithm (between brackets the number of optimal solutions determined by the
heuristic procedure in per cents of the number of optimal solutions determined by the
exact algorithm)

Data set A Data set B Data set C Data set D Data set E

Exact algorithm for integer data (CPLEX) 701 6,609 11,404 474 6,207

Heuristic procedure (SLICE 1.5) 701(100%) 6,477(98%) 11,404 (100%) 474(100%) 4,828(78%)

For data sets A, C and D the heuristic procedure determined the same number of
optimal solutions as the exact algorithm. Data sets B and E, the data sets for which
the coefficients of the variables involved in the corresponding inequality edits often
are unequal to -1 or +1, the number of optimal solutions determined by the heuristic
procedure is less than the number of optimal solutions determined by the exact algorithm
implemented by means of CPLEX. In particular, this is the case for data set E, where
the number of optimal solutions determined by the heuristic procedure is only 78%
of the number of optimal solutions determined by the exact algorithm. Data set E is
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the only data set for which the number of inequality edits with coefficients unequal to
-1 or +1 for the involved variables clearly outnumbers the number of balance edits,
which probably explains our result. Note that despite the fact that the number of optimal
solutions determined by the heuristic procedure for data set E is clearly less than the
actual number of optimal solutions, the heuristic procedure does succeed in solving all
records to optimality, except for two records for which it could not find a solution at all.

10 Discussion

In this article we have developed an exact algorithm for solving the error localisation
problem for a mix of categorical, continuous and integer data. This algorithm is quite
complex to implement and maintain in a software system, especially in a software
system that is meant to be used routinely in practice. Based on this exact algorithm
we have therefore also developed a much simpler heuristic procedure. This heuristic
procedure has been implemented in our production software, SLICE 1.5. In this article
we have also examined the performance of the heuristic procedure.

The exact algorithm and the heuristic procedure described in this article have a
number of theoretical drawbacks. Both the exact algorithm and the heuristic procedure
are extensions to an exact algorithm for continuous and categorical data (see Section
5). The computing time of this latter exact algorithm can, theoretically, be exponential
in its input parameters, such as the number of variables, the number of edits and the
maximum number of errors. For some data sets in our evaluation study, namely data
sets B and D, this exponential increase in the computing time owing to an increase of
the maximum number of errors is, unfortunately, also observed in practice. For some
practical instances of the error localisation problem, this exponential increase in the
computing time may be a problem. For such instances, one has to resort to other heuristic
approaches, such as setting fields that are likely to be erroneous to “missing” in a pre-
processing step (the exact algorithm for continuous and categorical data is generally
faster for records with many missing values than for records with many erroneous
values), or to an alternative algorithm altogether (see Section 1 and De Waal and
Coutinho, 2005, for references to some papers on alternative approaches).

The computing time of the integrality test of the exact algorithm can, theoretically,
also be exponential in the number of variables, the number of edits, and the maximum
number of errors. In our evaluation study on the heuristic procedure, the increase in
computing time owing to the integrality test is limited for most evaluation data sets.
However, for data E the increase in computing time owing to the integrality test grows
rapidly when increasing the maximum number of errors. Again, for some practical
instances of the error localisation problem, this rapid increase in the computing time
may be a problem, and one may have to resort to other approaches.

In principle, the number of erroneous fields identified by the heuristic procedure may
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be (much) higher than the number of erroneous fields identified by an exact algorithm.
In our evaluation study this has, however, not occurred. The number of fields identified
as being erroneous by the heuristic procedure is for all evaluation data sets almost equal,
and often even precisely equal, to the number of fields identified as being erroneous by
an exact algorithm implemented by means of CPLEX.

Another potential drawback of the heuristic procedure is that the number of optimal
solutions determined by this procedure can be (much) less than for an exact algorithm. In
our evaluation study this has also not occurred. For most evaluation data sets, the number
of optimal solutions determined by the heuristic procedure is equal or almost equal to the
number of optimal solutions determined by an exact algorithm implemented by means
of CPLEX. The only exception is data set E, where the number of optimal solutions
determined by the heuristic procedure drops to about 78% of the number of optimal
solutions determined by an exact algorithm implemented by means of CPLEX. Whereas
the actual average number of optimal solutions is 5.4 (=6,207/1,039, see Tables 3 and 7)
per optimally solved record if the maximum number of optimal solutions determined is
set to 10, the heuristic procedure determines only 4.2 optimal solutions on the average.
Fortunately, for our purposes at Statistics Netherlands this is an acceptable result.

As mentioned before, at Statistics Netherlands we aimed to implement an algorithm
for a mix of categorical, continuous and integer data. Given the fact we had already
implemented the algorithm for continuous and categorical data described in Section
5 in our production software, our main choice to be made was whether we would
implement the exact algorithm described in Section 7 or the heuristic procedure of
Section 8 in that production software. Considering the complexity of implementing
and maintaining the exact algorithm in production software, we decided to implement
the heuristic procedure instead the exact algorithm. Our, admittedly limited, experience
with the heuristic procedure so far suggests that we have made a good choice here.
For Statistics Netherlands, the benefits of using the heuristic procedure, in particular a
considerable simplification in developing and maintaining the software in comparison
to the exact algorithm of Section 7, outweigh the disadvantages, possibly worse and less
solutions, of using the heuristic procedure instead of the exact algorithm. Despite the
earlier mentioned theoretical drawbacks of the heuristic procedure, its computing speed
and the quality of its solutions thus far appear to be fully acceptable for application in
practice at Statistics Netherlands.
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