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Construction of multivariate distributions: a review
of some recent results

Jo® Maiia Sarabidand Emilio ®mez-CeniZ

Abstract

The construction of multivariate distributions is an active field of research in theoretical and applied
statistics. In this paper some recent developments in this field are reviewed. Specifically, we study
and review the following set of methods: (a) Construction of multivariate distributions based on order
statistics, (b) Methods based on mixtures, (c) Conditionally specified distributions, (d) Multivariate skew
distributions, (e) Distributions based on the method of the variables in common and (f) Other methods,
which include multivariate weighted distributions, vines and multivariate Zipf distributions.
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tributions, skew distributions, variables in common, multivariate weighted distributions, vines, mul-
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1 Introduction

The construction, study and applications of multivariaistrdbutions is one of the
classical fields of research in statistics, and it contiriadx an active field of research.

In recent years several books containing theory about vauitite nonnormal
distributions have been published: Hutchinson and Lai 1990e (1997), Arnold,
Castillo and Sarabia (1999), Kotz, Balakrishnan and Jahn&@®900), Kotz and
Nadarajah (2004), Nelsen (2006). In the discrete casefggalyi, we cannot ignore the
books of Kocherlakota and Kocherlakota (1992) and Johnsotr, and Balakrishnan
(1997) and the review papers by Balakrishnan (2004, 2005).
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In this paper some recent methods for constructing muisitardistributions are
reviewed. Reviews on constructions of discrete and coatiaibivariate distributions
are given by Lai (2004 and 2006). One of the problems of thidusthe impossibility
of producing a standard set of criteria that can always bdiexpm produce a unique
distribution which could unequivocally be called the mudtiate version (Kemp and
Papageorgiou, 1982). In this sense, there is no satisyagnified scheme of classifying
these methods. In the bivariate continuous case Lai (2002@06) has considered the
following clusters of methods,

Marginal transformation method

Methods of construction of copulas

Mixing and compounding

Variables in common and trivariate reduction techniques
Conditionally specified distributions

Marginal replacement

Geometric approach

Constructions of extreme-value models

Limits of discrete distributions

Some classical methods

Distributions with a given variance-covariance matrix
Transformations

Some of these methods have merited considerable attentithe irecent literature
and they will not be revised here. For instance, a detailedysbn the construction of
copulas is provided by Nelsen (2006) and also in the revigrephy Mikosch (2006).

The choice of the methods revised in this paper responds &nergl interest and
our own research experience. Therefore, and as is obvibissrdvision cannot be
considered as exhaustive regarding multivariate digiohs.

The contents of this paper are as follows. In Section 2 weystuadltivariate
distributions based on order statistics. Section 3 revimgthods based on mixtures.
Conditionally specified distributions are studied in Sewti4. Section 5 reviews
multivariate skew distributions. Some recent distribagidoased on the method of the
variables in common are studied in Section 6. Finally, othethods of construction
(multivariate weighted distributions, vines and multiedée Zipf distributions.) are
briefly commented in Section 7.

2 Multivariate Distributions based on Order Statistics

Order statistics and related topics (especially extrenhgevilneory) have received a lot
of attention recently, see Arnott al. (1992), Castillcet al. (2005), David and Nagaraja
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(2003) and Ahsanullah and Nevzorov (2005). In this sectienreview multivariate
distributions beginning with the idea of order statistics.

2.1 An extension of the multivariate distribution of subsets o f order statistics

Let Xy, ..., X, be a sample of sizedrawn from a common probability density function
(pdf) f(x) and cumulative distribution function (cdf(x), and letX;, < -+ < Xyn
denote the corresponding order statistics. Nowxlgt, . . ., X, .. be a subset gp order
statistics, where k n; <---<n, <n,p=12,...,n The joint pdf ofX .., ..., Xy IS

p+l

n! - nj—nj_1-1
p_+ll N —n - 1) {l_[ f(Xi)} l—[ {F(X) = F(X-1)} ) (1)

= =1 =1

for x; < --- < X, Wherexy = —oo0, X5,1 = +00, N = 0 andn,,; = n+ 1.

Beginning with the idea of fractional order statistics ¢&tr (1977) and Papadatos
(1995)) Jones and Larsen (2004) proposed generalizingy (@9tsidering real numbers
ay,...,ap1 > 0instead of integers,, ..., n,.,, to obtain the joint pdf,

B T+ +ap) [ _ = N C ya-l
O (X, ..., Xp) = H?;rll (@) {]J__l[ f(XJ)} l]:[ {F(x) = F(x-)}" (2)

oN—00 = X < X < --- < X, < X1 = 00. TWO particular cases merit our attention. If
F ~ U[O, 1] is a uniform distribution on [(1], (2) becomes

p+1

I(ag + -+ ap1) N
Up,...,Uy) = Ui — Ui_4)%7, 3
gu (U 0) H?:llr(aj) lj__l[( j i-1) (3)

defined on 0= Uy < u; < --- < U, < Uy1 = 1, which is the generalization of
uniform order statistics. fU;}, j = 1.2,..., pis distributed as (3), thefX; = F*(U;)},

j = 1,2,...,pis distributed as (1). Another important relation is obgairfrom the
Dirichlet distribution. Let ¥4, ..., V) a Dirichlet distribution with joint pdf

1-1

[(a + -+ ap) 1 P

e N (SO I @
[T T@E) o =1

defined on the simplex; > 0, ] = 1L2,...,p, i + --- + vV, < 1. In this case
U=Vi+--+V,i=12...,pandX =F*V,;+---+ V), i=12,...,p.
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In the univariate case, family (2) becomes

I'(ay + &)

m f(X)Fal—l(X)[l — F(X)]az‘l, (5)

gr(X) =
which was also proposed by Jones (2004) and it is a gendratizaf the r-order
statistics. The idea of this author is to begin with a symioelistributionf (a; =a, = 1
in (5)) and enlarge this family with parametersanda,, controlling skewness and tail
weight. If B ~ Be(as, a,) is a beta distribution with parameteasanda,, family (5) can
be obtained by the simple transformatién= F(B).

As a last comment in this section, we mention the concept akgdized order
statistics introduced by Kamps (1995), as a unified modedifdered random variables,
which includes among others the usual order statisticerde@lues an#-record values
as special cases.

2.1.1 An example with the normal distribution

In this section we include an example with the normal distign. If p = 2, F = @,
f = ¢, where® and ¢ are the cdf and the pdf of the standard normal distribution,
respectively, general expression (2) becomes

_ F(al + a, + ag)

= FanT@)(ay PO TR0) — @I L - O™ (6)

%o(X.y; @)
on X < Yy, andag, &,a; > 0. Both marginals distributionX andY are like (5) with
parametersd, a, + a;) and @, + a,, az), respectively. The local dependence function is
given by

(xy) = ?10990(%.Y:8) (3 — 1)p(X)(y)
YY) = axdy —[Oy) - DX

if Xx<y.
Figure 1 shows two examples of the bivariate distribution (6

2.2 Multivariate distribution involving the Rosenblatt cons truction

As a multivariate version of Jones’ (2004) univariate cangion defined in equation
(5), Arnold, Castillo and Sarabia (2006) have proposed iwaulate distributions
based on an enriching process using a representation pflimensional random
vector with a given distribution due to Rosenblatt (1952pn€ider an initial family
of p-dimensional joint distribution function&(xi,...,x,). We assume that these
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Figure 1. Joint pdf and contour plots of bivariate ordered normal dhastion (6) with g = 2, a, = 3and
a3 = 4 (above) and a= 0.2, a, = 3and & = 2 (below).

distributions are absolutely continuous with respect tbdsgue measure dg® and
we will be denoted byf(x, ..., Xp), the corresponding joint density function. We next
introduce the notation

Fi(x)
F2(XalX1)

PriX; < xp),
PriX; < XolX; = Xy),

Fp(Xple, ey Xp—l) = Pr(Xp < Xple = X]_, ey Xp_]_ = Xp_l),



8 Construction of multivariate distributions: a review of some recent results

and associated conditional densities

f1(X1), f2(XalX1), - - - s Fo(XplXa, - - . s Xp-1). )

In the spirit of the Rosenblatt transformation, these atippoposed the multivariate
distribution ofX = (X, ..., X;) defined by

Xl = FIl(Vl),
Xo = F3H(ValXy),
X, = F;l(Vplxl, oo Xpo1),

whereVy, ..., V, represent independent beta distributidhs- Be(a;, b). The resulting
joint density forX is that given by

p
904 X2 0) = £ %) [ ] Fatamn (FiOIX0 -, X0)), (8)
i=1

wherefgq, ), | = 1,..., pdenotes the density of a beta random variable with parameter
(&, by). Itis clear from (8) that the initial joint densitf(x,, . .., X,) is included in (8) as

a special case settirg = b, = 1,i = 1,..., p. All the conditional densities (7) are
of the form (5). The proposed method is quite general, andraémewp-dimensional
parametric families have been proposed, including: Fizetk distribution, the Farlie-
Gumbel-Morgenstern-beta family, the normal-beta fantlig, Dirichlet-beta family and
the Pareto-beta family. The families of distributions afea in this way are very flexible
and easy to estimate. Details can be found in Arnold, Castild Sarabia (2006).

3 Methods Based on Mixtures

The use of mixtures to obtain flexible families of densities a long history, especially
in the univariate case. The advantages of the mixtures miehaare diverse. The
new classes of distributions obtained by mixing are morgile than the original,
overdispersed with tails larger than the original distiitiuand often providing better fits.

The extension of a mixture to the multivariate case is ugusiinple, and the
marginal distributions belong to the same family. On theeothand, simulation
and Bayesian estimation of mixtures are quite direct. Sitiee introduction of
simulation-based methods for inference (particularly @lebs sampler in a Bayesian
framework), complicated densities such as those havingungxepresentation have
been satisfactorily handled.
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3.1 Common mixture models

In this model we assume conditional independence among@oemps and a common
parameter shared by all components. The joint cdf is given by

00 P
Fx(¥) = f {]—[ Fk<xk|e)}dF@(e), X= (K %), 9)
or in terms of joint densities,
0o P
fx(X) = I {l—[ fk(xk|9)}d|:®(6)’ X= (X, ...\ Xp). (10)

In these model® acts as a frailty parameter. In the joint cdf (9), if each comgmt
F«(x0) is stochastically increasing # thenX,, ..., X, are associated and

COVU(Xy, . .., Xp), (X, - .., Xp)) = O, (11)

for all increasing functions, v for which the covariance exists.

3.2 A more general model

In this situation we have the general models,

Fx(X) = fR D {]_[ Fk(kuHk)} dFe(0), X=(Xi,..., %), (12)

or in terms of joint densities,

fx(X) = f {l_[ fk(Xk|9k)} dFe(@), X=(X1,....Xp), (13)

whered = (64,...,6,).
In the following sections we include some recent multiiaridistributions proposed
in the literature obtained by using previous formulations.

3.3 Multivariate discrete distributions

The study of the variability of multivariate counts arisesiany practical situations. In
ecology the counts may be theffdirent species of animals infiérent geographical
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areas whilst in insurance, the number of claims dfedent policyholders in the
portfolio.

3.3.1 Multivariate Poisson-lognormal distribution

The multivariate Poisson-lognormal distribution (Aitsbh and Ho, 1989) is one of
the most relevant models. This distribution is the mixtufea@nditional independent
Poisson distributions, where the mean veéet (6,,...,6,) follows a p-dimensional
lognormal distribution with probability density functipn

00 1. 5) = (2) P2(6, - 0,) M= exp[—%(logg )= (logd - )|

The probability mass function is given by (formula (13)):

p
IO =xee X =) = [ [ ] Fxia)ole: u D
R fiog B

X, ..., % =01,..., (14)

whereR?" denotes the positive orthant pfdimensional real spadePf. Although it is
not possible to obtain a closed expression for the protliass function in (14), its
moments can be easily obtained by conditioning

E(X) = exp(ui + %g) —a, (15)
Var(X) = a +af[expe) - 1], (16)
COV()(;, XJ) = a/iozj [eXp(O'”) - l] . i, J = 1, ey p, | * J (17)

From (15) and (16) it is obvious than the marginal distribog are overdispersed and
from (17) the model admits both negative and positive cati@hs. Other versions of
this model can be viewed in Tonda (2005).

3.3.2 Multivariate Poisson-generalized inverse Gaussian distribution

Departing from the Sichel distribution (Poisson-genesdi inverse Gaussian
distribution) in Sichel (1971) investigated bivariate engions of that distribution. In
Stein et al. (1987) one of them is studied in order to obtain the estimatb the
parameters via the likelihood method.

Conditionally given2, the X; are independently distributed as Poisson random
variables with paramete¥;, whereé; is a scale factori(= 1,..., p) and the parameter
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A follows a generalized inverse Gaussian distribution wighameters 1w > 0 and
v € R. The multivariate mixture is:

K oy WH2W + 3 6)22)
Pr(X]_:X]_,...,Xp:Xp) kel

KV(W)
W Exez o e
(W+ ZZfi) Dg’
X,....%=0,1..., a,

whereK,(2) denotes the modified Bessel function of the second kind déror and
argumentz. The basic moments and the correlation matrix are

E(X) = &R/(w),
Var(X) = £2K,.o(wW)/K,w) + E(X%) [1 - E(X)],
corr(X, X;) = [(1+ 1/&0(w, ) (1 + 1/&0(w, )] ™2,

Lji=1...,p, i # ]

whereR,(2) = K,;1(2)/K,(2) andg(w,y) = R,..(w) — R(w). The correlations between
marginals are positive.

3.3.3 Multivariate negative binomial-inverse Gaussian distribution

Gomez-CEniz et al. (2008) have considered a new distribution by mixing a negati
binomial distribution with an inverse Gaussian distribatiwhere the parameterization
P = exp(A) was considered. This new formulation provides a tractatdelel with
attractive properties, which makes it suitable for appitca in disciplines where
overdispersion is observed.

The multivariate negative binomial-inverse Gaussiarrithistion can be considered
as the mixture of independeMB(r;, p = e),i = 1,2,..., pcombined with an inverse
Gaussian distribution for. The joint probability mass function is given by (formula

PriXo = X1, Xo = Xo, ..., Xp = Xp)

(10)),
(1Sl 25

wherex;, Xo, ..., X, =0, 1,2, .. .5, 0, I, ..., rp>0andr =ry+-- 41, X=X +---+X%,
and the moments,

i=1
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E(X) = r[M2)-1],i=12....r
var(X) = (1 +r)dMy(2) - M (1) -r’M¥1), i=1,2,....p
cov(X.X) = rr[M(2)-MXD)|, i.j=1....p i#]

where M,(t) is the moment generating function of the inverse Gaussistnilalition.
SinceM,(2) — M?(1) = Var(e'), the correlation is always positive. Applications of this
model in insurance can be found irb@ez-Cenizet al. (2008).

3.3.4 Multivariate Poisson-beta distribution

Sarabia and @Gmez-Ceniz (2008) have proposed multivariate versions of the beta
mixture of Poisson distribution considered by Gurland {@)9&nd Katti (1966). The
new class of distributions can be used for modelling multaita dependent count
data when marginal overdispersion is also observed. Thie fastivariate distribution
Poisson-BetaX;, ..., X;)" is defined througlp independent Poisson distributions with
parametershd, ¢ > 0, i = 1,2,...,p, whered ~ Be(a,b) with a,b > 0. The
probability mass function is given by:

PI’(X1=X1,...,Xp= Xp)

P X; p p o )
_ ¢ T@+br@+y’, x) _ _
) Dﬂ'r(a)r(a+b+zﬁl>q)l':l a*g*’“mgm,—;}@ :

where, F,(a; ¢; X) represents the confluent hypergeometric function. Thaque model
has the advantage of its simplicity but presents two shoriiegs. On the one hand,
the parameters in the marginal distributions are not fie¢he sense that all marginal
distributions share parameteasand b. On the other hand, the model is not valid
for representing multivariate count data with negativerglation between pairs of
variables. This can be overcome by defining a multivariatsden-Beta distribution
by the stochastic representation

X6, ~ Po(¢6), i=12...,p independent
(0r,....6,) ~ T(61,....,6p),
Hi ~ Be(a,bi), i=1,2,...,p,

where f(-) represents a multivariate distribution with beta martsinge(a;, b) and

¢ >0,i=12,...,p. Although there is not a closed form for the joint probabititass
function, the means, variances and covariance vector anpuied straightforwardly
by conditioning. By choosing the Sarmanov-Lee distributaéescribed in Sarmanov
(1966), Lee (1996) and Kotet al. (2000) and which has been used by Sarabia and
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Castillo (2006), Sarabia andd®&ez-CEniz (2008) built a bivariate distribution that
admits non-limited correlations of any sign.

3.4 Continuous distributions

Walker and Stephens (1999) have observed a simple repatisendf the Weibull
distribution as a mixture in such a way that,

ax?

Xio ~ f(xe) = =

6 ~ G20,

[(0< x*<6),

wherel () is the indicator function ang represents the gamma distribution. However, a
Weibull distribution has only two parameters and the skesgrnigedefined once the mean
and variance are defined. The idea of these authors is taeethla gamma mixing with

a two-parameter lognormal distribution

Xl ~ f(x0) = aiﬁll(o <x<d) (18)

6 ~ N(u,o?), (19)

which we will represent aX ~ PLN(a, u, o). If we use formula (10) we obtain the
joint density,

F(x %) = [ [@X ™ expau + &0?/2){1 - d(logZ+ &)} (20)

i=1

where logZ'= (log(maxx}) — p)/o andad=a; + - -- + a,.

The multivariate version of Walker and Stephens (1999) damse (18)-(19) and
general models (12)-(13) is quite direct. The jomjtimensional density function can
be written as

p -1
a
f(Xty ooy XplO,y ..., 0p) = ||%I(O<xk<e"k)
k=1

On....0) ~ Ny

¢

Marginally X; ~ PLN(a;, i, 0), j=1,...,pand

aexpoy) — 1]

COVEX %) = ey + &y

exply; +puc+ (05 + 0)/2], [ #K

where both positive and negative correlations are possible
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3.4.1 The multivariate normal-inverse Gaussian distribution

A multivariate version of the normal inverse Gaussian iation introduced by
Barndoff-Nielsen (1997) has been developed by Protassov (2004) &yatddand
Hanssen (2002). The model is a mean-variance mixture pfdamensional normal
random variable with a univariate inverse Gaussian digidn. The probability density
function is

0 a £
fs o ndn) = || explp9] s o] @)
where
P = 6.Jaz-BTTB+AT(x—p).

o+ [T )

K,(2) denotes the modified Bessel function of the second kind @érorand argument
Za>0,BeRP,§>0,ucRPandl is apx p matrix. The distribution is symmetric if
and only ifl" = | andg = 0. This multivariate distribution has been shown to be useful
in risk theory and the framework of physics.

ax)

4 Conditionally Specified Distributions

A bivariate random variable can be written as the productrofgginal distribution and
the corresponding conditional distribution,

fxy(Xy) = fx(X) fyx(Y1X).

This is a simple method for generating bivariate distrimsi, and has been used in the
practical literature as a common approach for obtainingeddpnt models, especially
whenY can be thought of as caused Ky

Now, the conditional distribution oX givenY together with the other conditional
distributionY given X = x, determines the joint pdf from

fxv (X1Y) fyix (Y1%o)
fxv(Xoly)

fiv(X,y) o )
uniquely for eachx,. If we consider all possible values @, we obviously obtain a
richer model. In this sense, a bivariate random variable lEaspecified through its
conditional distributions. If we assume that both condigibdistributions belong to
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certain parametric classes of distributions, it is possiblobtain the joint distribution
using the methodology proposed in Arnold, Castillo and Biarfl992, 1999) (see also
Arnold, Castillo and Sarabia (2001)). To obtain the joinf fids necessary to solve
certain functional equations. This methodology providgbly flexible multiparametric
distributions, with some “unexpected” and interestinggendies.

4.1 Compatible conditional densities

The existence of a bivariate distribution with given coiaditil distributions is a previous
question. LetX, Y) be a random vector with joint density with respect to sonuslpct
measureu; X u, on S(X) x S(Y), whereS(X) denotes the set of possible valuesXof
and S(Y) the set of possible values &f(note that one variable could be discrete and
the other absolutely continuous with respect to the Lebesgeasure). The marginal,
conditional and joint densities are denoted yx), fv(y), fxv(Xly), fvx(VIX), fxy(X. )
and the sets of possible valugéX) andS(Y) can be finite, countable or uncountable.
Consider two possible families of conditional densités, y) andb(x, y). We ask when

it is true that there will exist a joint density foK(Y) such that

fuv(Xly) = a(x,y), xe S(X), y e S(Y)
and

fux(YIX) = b(x,y), x e S(X), ye S(Y).

If such a density exists we will say thatandb are compatible families of conditional
densities. We define

Na = {(x,y) r a(x,y) > 0}
and

The following compatibility theorem was stated by ArnoldidPress (1989).

Theorem 1 (Compatible conditionals) A joint density {x,y), with ax,y) and H(x,y)
as its conditional densities, will exigfi

() Na= Ny, =N, say

(i) there exist functions (x) and \(y) such that for everyx,y) € N we have

a(x.y)
b(x,y)

in which UX) is integrable, i.e.fs(x) u(X)dpy (X) < oo.

= u(v(y) (22)
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4.2 Results in exponential families

One of the most important results in conditional specifarais a Theorem provided
by Arnold and Strauss (1991), dealing with bivariate digttions with conditionals in
prescribed exponential families. Then, we consider tvfi@cknt exponential families of
densitieg fi(x;0) : 0 € ® c R“} and{f,(y;7) : 7 € T c R} where:

f1(X; 0) = ri(X)B.(6) eXpli quli(x)} (23)
and
fa(y; 7) = ra(y)Ba(z) exp Z TiCj (y)] : (24)

We are interested in the identification of the class of bataridensitiesf(x,y) with
respect tQy x u, on Sy x S, for which conditional densities are well defined and satisfy
the following:

o for everyy for which f(xy) is defined, this conditional density belongs to family
(23) for som& which may depend oypand

o for everyx for which f(y|x) is defined, this conditional density belongs to family
(24) for somer which may depend or.

The class of all bivariate pdf(x, y) with conditionals in these prescribed exponential
families, can be obtained as follows.

Theorem 2 Let f(x,y) be a bivariate density whose conditional densities satisfy

f(xly) = f.(x 6(y))
and

f(YX) = fa(y; 7(x))

for every x and y for some functiof§/) andz(x) where f and £ are as defined in (23)
and (24). It follows that €x, y) is of the form:

f(xy) = (9ra(y) exp{g®(x) Mg (y)} (25)
in which

V() = (L, qu(®), - -, G, ()"
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and

9(2)()’) = (L Gaa(y)s - - G, (V)"

and M is a matrix of parameters of dimensi@n+ 1)x (£, + 1) subject to the requirement
that:

fs L (% y)dus () hia(y) = 1. (26)

The term & is the normalizing constant that is a function of the othgtsndetermined
by the constraint (26).

Note that the class of densities with conditionals in thespri@ed family is itself an
exponential family with {; + 1) x (¢, + 1) — 1 parameters. Upon partitioning the matrix
M in (25) in the following manner:

Mo | Moy -+ My,
—_— + —_— —_— —_—
|
|
|

M = mlO > (27)

<

Mo

it can be verified that independent marginals will be encenet if the matrixM = 0.
The elements oM determine the dependence structuré (R y).

4.3 Two examples

In this section we include two examples (discrete and cantis) of bivariate
distributions with conditional specifications.

Using Theorem 2, and after a convenient parameterizatiermbst general bivariate
distribution with Poisson conditionals has the followiogt probability mass function,

PLPI
PriX = x, Y = y) = k(Ay, Ay, Ag);'ly—f/lgy, xy=0,12,... (28)
with 41, 1, > 0 and O< 13 < 1 and where is the normalizing constant. The conditional
distribution of X giveny is Po(1;43) andY given x is Po(1,45). If 13 = 1, X andY
are independent and if @ 1; < 1, X andY are negatively correlated with correlation
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codficient rangep(X, Y) € (-1, 0). The marginal distributions of (28) are

/'lX
Pr(X = x) k;'l expi1y), x=0,12,...

/ly
ky_!2 expidy), y=0,12,...,

Pr(Y =)

which are not Poisson except in the independence case. Wesdal (1996) has
characterized this distribution using a conditional disttion and the other conditional
expectation.

The second example corresponds to the normal case. Agaig, Tiseorem 2, the
most general bivariate distribution with normal conditimis given by

My Moy Moz 1
fuy (% Y; M) = expd (L X, %) | my my my, y |t. (29)
My My NMpy y2

Distributions with densities of form (29) are called norneanditional distributions.
Note that (29) is an eight parameter family of densities, agglis the normalizing
constant. The conditional expectations and variances are:

Moy + Mg X + My X2

E(Y|X = -
(¥1X =) 2(Moz + MyoX + MpX?)” (30)
1
var(YIX = X) = - 1
ar(viX =) 2(Moz + MyoX + MpX?)’ D)
_  Mig+ My + Moy’

EXIY=) 2(Myo + Myry + Mpzy?)’ (32)

Var(X|Y =y) = ! (33)

- 2(Mpo + MyrY + Mypy?)

The normal conditional distributions give rise to modelsenthem; constants satisfy
one of the two sets of conditions

(@) My =My =My =0; My<0; My <0; ME; < 4moMy.
(b) My < 0; 4mpmy, > ME,; Ampemy, > M2,

Models satisfying conditions (a) are the classical biwarimormal models with
normal marginals and conditionals, linear regressions aaodstant conditional
variances. More interesting are the models satisfying itiond (b). These models have
normal conditional distributions, non-normal marginasad the regression functions
are either constant or non-linear given by (30) and (32) hEagression function is
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Figure2: Joint pdf and contour plots of two bivariate distributionglwnormal conditionals.

bounded (in contrast with the bivariate normal model) arel ¢bnditional variance
functions are also bounded and non constant. They are gwé3ilh and (33). Another
unexpected property of (29) is the multimodality, where ,omeo and three modes
are possible (see Arnolelt al., 2000). Figure 2 presents two models of kind (b), one
unimodal and the other one bimodal.

4.4 Multivariate extensions

Previous results can be extended to higher dimensions.niathdetails appear in
Arnold, Castillo and Sarabia (1999 and 2001). As an importaodel, we consider
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the case in which the families of conditional densitbeg(i) = X i =1...,p
are exponential families, whepg; denotes the-dimensional vectoX with the ith
coordinate deleted. In this situation, the most generait jdensity with exponential
conditionals must be of the form

[1 [2 fp p
exp{z Z ce m1,i2 ..... ip [n q”,(Xl)
0 i=1
For example, thg-dimensional distribution with normal conditionals is bétform

fy(X) = exp{z m [ﬁ >g”” (34)

i€Ty i=1

fx(®) = lﬁ ri (%)

whereT, is the set of all vectors of 0’s, 1's and 2’s of dimensjmrDensities of the form
(34) have normal conditional densities frgiven X, = X for everyx,, i=1...,p.
The classicap-variate normal density is a special case of (34).

4.5 Applications of the conditionally specified models

Applications of these conditional models are contained hie book by Arnold,
Castillo and Sarabia (1999). These applications includeettiog of bivariate extremes,
conditional survival models, multivariate binary respemsodels with covariates (Joe
and Liu, 1996) and Bayesian analysis using conditionalbc#jed models. The use of
this kind of distribution in risk analysis and economics angral is quite recent. Some
applications have been provided by Sarabiam@z and \zquez (2004) and Saralda
al. (2005). The class of bivariate income distribution withhogmal conditionals has
been studied by Sarab& al. (2007). In the risk theory context, Sarabia and il
(2008) have proposed flexible bivariate joint distributidior modelling the couple
(S, N), whereN is a count variable anfl = X; + - - - + Xy is the total claim amount.

5 Multivariate Skew Distributions

The skew-normal (SN) distribution, its fiiirent variants and their corresponding
multivariate versions, have received considerable attemiver the last few years. Two
recent reviews of these classes appear in the book editeéip®(2004) and the paper
by Azzalini (2005). To introduce the multivariate versidris necessary to know the
univariate case and its properties, which the multivarnratsion is based on. A random
variableX is said to have a skew-normal distribution with paramgtdfrthe probability
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density function is given by
f(X; ) = 2¢(X)D(AX), —c0 < X < o0, (35)

A random variable with pdf (35) will be denoted As~ SN(1). Parameten controls
the skewness of the distribution and varies-ad, ). The linearly skewed version of
this distribution is given by,

f(X; Ao, A1) o p(X)DP(Ay + A1X), —00 < X < 00, (36)

andAo, 4; € R, which we will denote byX ~ SN (A, 11).
The next two properties hold for distribution (35) and allms to understand
multivariate extensions:

e Hidden truncation mechanism. Le{{ X;) be a bivariate normal distribution with
standardized marginals and correlationfGognts. Then, the variable,

{XalXo > O} (37)

is distributed as &N (A(5)) distribution, wherel(s) = \/1%

e Convolution representation. X, and X, are independentV(0,1) random
variables, and-1 < § < 1, then

Z = 51Xl + (1= 6%)"*Xs (38)
is aSN(A(5)).

A general treatment of the hidden truncation mechanismig¥éund in Arnold and
Beaver (2002).

A multivariate version of the basic model (35) has been aersid by Azzalini and
Dalla Valle (1996) and Azzalini and Capitanio (1999). Thisltivariate version of the
SN distribution is defined as

F(X) = 20p(x — 1; D)W (x - ), (39)

whereg,(x — y; X) is the joint pdf of a multivariate normal distributio¥,(«, ), u € RP

is a location parameteX, is a positive definite covariance matrixe RP is a parameter
which controls skewness amds a diagonal matrix composed by the standard deviations
of . If we seta = 0 in (39), we obtain a classicaV,(u, X) distribution. Similar to

the univariate case, we can obtain (39) using a hidden ttiomcenechanism (37) and
convolution representation (38).



22 Construction of multivariate distributions: a review of some recent results

Let X, andX; be random variables of dimensions 1 gnduch that

Xo W oye_ (107
(Xl)~N1+p(O’Z)’ ) _(6 i ),

wheres is a correlation matrix and
§=1+a Sa) V5.
Then, thep-dimensional random variable
Z = {XiX, > 0},
has the joint pdf
f(2) = 2¢,(z £)0(a"2), (40)

which is an #ine transformation of (39).

For the convolution representation l& ~ AN(0,1) and X; ~ N,(O,R) be
independent random variables, wh&is a correlation matrix. Let = diag{d, ..., d,},
-1 <46, <1,j =12...,pandl, the identity matrix of ordemp and 1, the p-
dimensional vector of all 1s. Then,

Z = AL Xl + (1, — A%)?X,

is distributed in the form (40). The relationship betweBnA) and &, @) can be found
in Azzalini and Capitanio (1999).

5.1 An alternative multivariate skew normal distribution

An alternative class of multivariate-normal distributiomwas considered by Gupta,
Gonalez-Faras and Doringuez-Molina (2004). Previous multivariate versions)(40
were obtained by conditioning that one random sample betip®sithese authors
condition that the same number of random variables be pesiénd then, in the
univariate case both families are the same. A random vedtdinoensionp is said
to have a multivariate skew normal distribution (accordiogsuptaet al., 2004) if its
pdf is given by

B (X p, Z)D(D(X = 1); 0, 1)

fp(X; Hs Z, D) = ch(O, 0’ | + DZDT) 5

(41)
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whereu € RP, X > 0, D(px p), andg,(-; £, Q) andd,(; £, Q) denote the pdf and the cdf,
respectively of aV,(¢, Q) distribution.

As an extension to (41), Goalez-Faraset al. (2003, 2004) introduced the closed
skew-normal family of distributions. This family is closeshder conditioning, linear
transformations and convolutions. It is defined as

¢p(X; M, z“)(I)CI(D(X - :u)! v, A)

fo(X 1, 2, D, v, A) = )
(X2, D.v.4) ®y(05;v; A + DED")

(42)

wherex,u,v € RP, X € RPxRP, D € R"X RP, A € R¥x R9andX andA are positive
definite matrices and,0= (0,...,0) € R".

The closed skew-normal distributions can be generated bgitoning the first
components of a normal random vector in the event that theireny components
are greater than certain given values.

5.2 Conditional specification

Arnold, Castillo and Sarabia (2002) have discussed thel@gmof identifying p-
dimensional densities with skew-normal conditionals. yTlaeldress the question of
identifying joint densities for g-dimensional random vectof that has the property
that for eachx; € RP* we have

XX = X ~ SN(@AF (%), V(%)) 1 =1,2,...,p. (43)
An important parametric family of densities takes the form
P P
f(xl,...,xp;g)oc1‘[¢(m)®[24ﬂ x] (44)
i=1 =S, i=1

whereS, denotes the set of all vectors of 0's and 1's of dimengidn the bivariate case,
we obtain the following bivariate distribution with lindaiskewed-normal conditionals,

f(X,y; D) o< ¢(X)p(Y)D(Aoo + A10X + Aory + A11XY). (45)

Note (45) does not belong to class (39) except whgn= 1,; = 0. The normalizing
constant is complicated in general, except wAgn= 1,0 = 250 = 0, in which is equals
2 and the density is explicitly given by

F(%.y; 2) = 2¢(X)(y)D(Axy). (46)

This model has normal marginals and skew-normal conditsooé type (35), and
bimodality is possible.
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Model (44) can be viewed as a generalized hidden truncatiodein defining
X = (Xo, X1, . ..., Xp), with X’s i.i.d. (0, 1), in which we retain only thos¥ for which

Xo < Z/lsﬁxf,

S, =l

and the resulting conditional density ofy(. .., X;) will then be given by (44). More
about skew conditionals models can be found in Sarabia (280& Arnold, Castillo
and Sarabia (2007a, 2007b).

5.3 Balakrishnan skew-normal distribution

Balakrishnan (2002) as a discussant of Arnold and Beavéi22@eneralized the SN
distribution as

([P (1)]"

W) = — W

X € R, 47)

wheren is an integer ana,(1) = f; d(X)[D(AxX)]"dx. This distribution is known as
Balakrishnan skew-normal distribution. If we set= 0 andn = 1 in (47) the above
density reduces to th&/(0, 1) distribution and the SN distribution, respectively. Gup
and Gupta (2004) have studied some properties of (47).

Several multivariate versions are possible. If we think of extension by
conditionals, in the simpler bivariate case, we obtain tet jpdf,

fa(x,y; 2) = E()P(ISMPXY]", (x.y) € B2 (48)

For this distribution, both conditionals are like (47), lbé marginal distributions are
not.
Yadegariet al. (2008) have considered the extension of (47) given by

fn,m(X; /l) =

Cnm(/l) [Q)(/lx)]n[l - q)(/lX)] m¢(x)’ X € R, (49)

wherec, (1) = X7, (ri“)(—l)icmi (1). A natural extension of (49) to the multivariate case
is

fam(X; ) =

Com(A) [@(A™X)]"L - (D(/lTx)]m(pp(X), X € RP. (50)

Form = 0 andn = 1 this distribution reduces to the multivariate SN disttibn.
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5.4 Extensions and applications

The initial formulation (35) gives rise to an important nuenbf extensions and variants.
One of these variants appears replacing the normality gssumwith alternative
symmetric distribution. An interesting class of skewed siges is provided by the
following elementary, but useful, result (Azzalini, 2005)

Lemma 1 If fyis a p-dimensional pdf such thaj(X) = f,(—x) for x € RP, G is a one-
dimensional dferentiable cdf such that'Gs a density symmetric about zero, and w is
real-valued function such that(wx) = —w(x) for all x € RP, then

f(X) = 2f(X)G{w(X)}, X € RP, (51)

is a genuine pdf oikP.

Different choices forfy, G andw in (51) give rise to a huge number of variants of
skewed densities. In a more general setting, Waingl. (2004) have shown that any
p-dimensional multivariate pdfi(x) admits for any fixed location parametére RP a
unique skew-symmetric representation

g(x) = 2f(x — Dr(x— 1), xXeRP, (52)

wheref : RP — R* is a symmetric pdf (in the sense of previous lemma) an®k® —
[0, 1] is a skewing function such tha{—x) = n(x). Conversely, any functiog of the
kind (52) is a valid pdf. Multivariate distribution such akes/-Cauchy (Arnold and
Beaver, 2000), skew-t (Branco and Dey, 2001; Azzalini angi@aio, 2003) and other
skew-elliptical distributions can be represented usireyjous formulations (51)-(52).

Finally, we mention some applications of the distributi@scribed in this section:
compositional data, financial market and insurance (Ve2005), selective sampling,
stochastic frontier models and modelling of environmedégdé.

6 The Variables in Common Method

This method, also known as “trivariate reduction”, is a pdapand old technique used
for building dependent variables, both in continuous arsgrdite cases. Our attention
focuses on the bivariate case.

The method consists of building a pair of dependent randoriablas starting
from three (or more) random variables. These initial randariables are usually
independent. The functions that connect initial varialkdes generally elementary
functions, or are given by the structure of the variables W& want to generate. A
broad definition can be
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X = vy(&x, Cxy),
Y = vy(ey, Cxy),

whereey, e, represent two sets containing the specific variablesafdY respectively,
andcyy, Cxy Sets containing the common or latent variables.

According to Marshall and Olkin (2007), many of the coupl¥sY) here presented
are associated (formula (11)), and then only positive ¢aticns are possible.

Over the last few years, several new dependent distribgitismg this method have
been proposed. All the models presented in this section eaextended to higher
dimensions. We present some relevant models.

6.1 Bivariate generalized Poisson distribution

Let X, i = 1,2, 3 be mutually independent random variables. An usual tatar
reduction scheme is defined as

X = Xl + X3,

Y = X2 + X3.

A disadvantage of this model is that only positive correlasi are possible. If thi;'s
are discrete, the joint pgf is

Oxv(U, V) = Ox, (U)Ox, (V)Gx, (uv).

If the X; are Poisson random variables, we obtain the classical ibieaPoisson
distribution, which is often used for obtaining compounehbiate Poisson distributions.
If we consider for theX;’s random variables a generalized Poisson distributiorglytain
the model considered by Vernic (1997, 2000).

6.2 Bivariate beta distribution

In a Bayesian context, when we work with independent or ¢ated binomial
distributions, a density defined ovér< x; < 1;i = 1,..., p} on the unit cube is needed.
Olkin and Liu (2003) proposed the following method for ceunsting this distribution.
LetX; ~ G(a;, 1),i = 1,2, 3 be independent gamma variables with unit scale parameters
and define

X4
X= ——
X1+ X3~

X

Y = 2

Xo 4+ X3
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Now, we have correlated beta distributiaBe(a,, a;) and Be(a,, a;) over 0< x,y < 1
with joint pdf,

Xal—lyaz—l(l _ X)az+a3—1(1 _ y)a1+a3—1

f(x,y;a;,a,,a3) =
( el y l 2 3) B(al, az’ a3)(l _ Xy a1+a2+a3

: (53)

where B(ay, &, ;) = [13,1(a)/T(Z>,a). The bivariate density (53) is positively
likelihood ratio dependent and hence positive quadran¢dggnt. Sarabia and Castillo
(2006) have considered a generalization of (53) under aitondl specification.
With this specification, they obtain a broad class of distitms, where an important
submodel is

Xal—l(l _ X)bl—lyaz—l(l _ y)a1+b1—a2—l

FXy: -
(Xa y; ala a2’ b17 m) n(al, a2, bla m)(l _ mx»a1+b1

: (54)

wherea;, by, 8, + by —a, > 0, m < 1 and where In is the normalizing constant. This
model contains the Olkin and Liu (2003) proposal for= 1 andX is stochastically
increasing or decreasing with so, consequently

signe(X,Y) = sign{m).

Then, if 0< m < 1 we have positive correlation andnf < 0, negative correlations. The
marginal distributions are of the Gauss hypergeometrie.typ

6.3 Bivariate t distribution

The usual bivariate spherically symmetric distribution mndegrees of freedom is
defined as (Fangt al., 1990)

X = X/ X3/,

Y = Xof X5/,
whereX,, X,, X; are mutually independent random variables with distrimgix,, X, ~
N(0,1) standard normal and; ~ x2 chi-squared distribution om degrees of freedom.
Note that the marginal distributions are both (dependenléhtt distributions onn,

degrees of freedom. If we need a bivariate distribution Vtadentt marginals with
different degrees of freedom andv,, one possibility is defined,

X =X/ VX3/V1,
Y = Xof V(&g + Xa)/v2,
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wherev; = n;, v, = N+ N, andX, ~ Xﬁz is a new independent chi-squared distribution
onn, degrees of freedom. This model has been proposed by Jor?) (Rbte that last
model includes the previous one by takimg= 0 degrees of freedom.

An alternative bivariaté distribution (including the independence case) has been
proposed by Shaw and Lee (2008).

6.4 Bivariate Marshall-Olkin type distributions

Let X;, X, andX; be mutually independent random variables with &), i = 1,2, 3.
Define the random variabl&X(Y) as

X = min{Xy, X},
Y = min{Xz, Xg}

With this schemeX andY are dependent, through the common random latent variable
Xs. The joint survival function is

PriX > x, Y > y) = G3(X)Gy(y)Gs(2), (55)

wherez = maxx,y} andG = 1 - G. Note that (55) has a singular component. If
the components correspond to exponential distributionpitain the Marshall-Olkin
distribution (Marshall and Olkin, 1967). Other survival deds have been considered
by Sarhan and Balakrishnan (2007) with the exponentiatpdrential distribution, as
well as a mixture of the proposed bivariate distributionnéld and Brockett (1983)
have obtained a bivariate Gompertz-Makeham distributgingia similar construction.

6.5 Bivariate F distribution

Now, let X;, X, and X; be mutually independent chi-squared random variables with
degrees of freedom > 0,i = 1,2, 3. The classical bivariate distribution is defined as
(Kotz, Balakrishnan and Johnson, 2000)

X /m Y = Xa/ My

X = s = .
Xs/Ng Xs/Ng

We haveX ~ F,n., andY ~ %, ., which share the degrees of freedom on the
denominator. In order to obtain a bivariake distribution with arbitrary degrees of
freedom, El-Bassiouny and Jones (2007) have proposed tdelmo
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_ Xi/m Y = Xo/n,
Xs/ng’ (X5 + Xg)/(Ng + 1)’

whereX, ~ xZ is a new independent chi-squared distribution and Xow 7, ,, and
Y ~ Frnsn Which includes the previous model. The joint pdf can be esped as a
function of the Gauss hypergeometric function and posttoreelation still arises.

7 Other Methods

In this last section multivariate weighted distributiogsaphical models based on vines
and multivariate Zipf distributions are briefly commentgzbo.

7.1 Multivariate weighted distributions

The usual weighted distributions can be introduced in thieviang way. LetF be a
distribution function of a random variabk andw a positive function. The univariate
weighted distribution associated wikthandw is defined as (Rao, 1965)

w(X)
E[w(X)]

dF"(x) = dF(x),

if E[w(X)] < oo. If F is absolutely continuous, the densify associated td- is
called the weighted density, and the corresponding randariahle is denoted by
X", Weighted random variables are used to model sampling guves with unequal
sampling probabilities proportional to a weighted funitie, that is, when we want
to study X with a sample fromX". In a multivariate setting, leE be an absolutely
continuous distribution of @-dimensional random vector with densityandw : R? —
R a positive function. The multivariate weighted or biasestribution associated with
F andw is defined by thg-dimensional probability density function

W(Xq, . .., Xp)

R CO A EMW(Xy,. ... X,)]

F(Xes o2y X)), (56)

if E[W(Xy,...,Xp)] < co. Inthe particular cas@(x,, ..., X,) = X;--- X,, it is called the
multivariate size biased distribution, with density

X1 Xp

0. %) = Fot

f(Xes ..oy Xp)- (57)

Classes of distributions (56) and (57) have been compilet sindied by Navarro
et al. (2006), paying special attention to reliability aspectslesing and equilibrium
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distributions in renewal processes. The multivariate rithstion (57) represents
sampling methods where a vectdf = (X,...,X,) has a sampling probability
proportional tox;, i = 1,..., p. In the event thaK represents the life lengths of items in
a system, then the sampling probability for a system is pitagoaal to the life lengths of
its units. Additional applications included aerial sampglimethods and tourism studies
(see Navarret al.,, 2006).

Many of the multivariate distributions introduced in theyious sections respond to
general scheme (56), for example, distributions (39), &) (44).

7.2 Graphical models: vines

In the context of graphical dependency models, a new metbgyaalled vines has
been introduced recently by Berdford and Cooke (2002) anabuficka and Cooke
(2006) to build complex multivariate highly dependent medsatisfying conditional
dependence specifications. This methodology can be caoadides an alternative of
the simple Markov trees to belief networks and influence @diaggs. The definition
of conditional independence is weakened to allow for sévdrals of conditional
dependence.

Copulae construction is the usual way to build a model withethelence structure.
However, in high dimensional distributions, this methadpl is complicated, since it
requires a large number of possible pair-copulae congngtVines let us organize
this large amount of information through the regular vineotirer particular cases of
regular vines, the canonical vine and the D-vine. This newhodplogy has proved
useful, for example, in the analysis of financial data se&sgAal., 2008). A connection
between vines and other types of related works has beemeltad the specification of
a multivariate normal distribution using partial corréats, from a generalization of a
problem dealt with by Joe (1996).

7.3 Multivariate Zipf distributions

The multivariate Zipf distributions correspond to the déte version of the multivariate
Pareto distributions, introduced by Arnold (1983). In theivariate case, the Zipf
distribution is the discrete version of the usual Parettridigtion. A discrete random
variableX is said to have a Zipf(IV) distribution with positive parateesk,, o, y anda

if its survival function is

Yy1™®
Pr(X > k) = 1+(k;k°) ] ,k=koko+1,... (58)
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Table 1: Multivariate Zipf distributions

Multivariate Zipf Survival function Fx(k) = Pr(X > k)

Type (1) [1+ P (ki/o'i)]_a, ke€{0,1,...},

X ~ MO Zipf(1)(o. ) l=i<p,
a>0,0>0

Type (1) [1+ 5P, ( —m)/o)] . Kz,
X ~ MOZipf(l)(u, o, @) 1<i<p
- a >0, o> 0;k, y integers
Type (Il1) [1+ PN (X —,Lti)/O'i)l/”]il, k> i,
X ~ M®Zipf(I)( 1, o, ) 1<i<p,
- o >0, yi > 0;k, y integers
Type (IV) [1+ o ((k _ﬂi)/o'i)lm]ﬂ’ ki > i,
X~ M(p)Zipf(|V)(,L_1, 7.y, @) 1<i<p,

a >0, o> 0;k, y integers

Yeh (2002) introduces six fierent multivariate Zipf distributions in terms of the joint
survival functions ofX = (Xi,. .., X,) having Zipf marginals as (58). Four of them are
presented in Table 1.

The four distributions in Table 1 are analogous to the caimtirs multivariate Pareto
distributions in Arnold (1983), also studied and extendedréh (2004, 2007). The
standard multivariate Zipf distribution, Zipf(IV) (@, 1,1) arises as a unifom or beta
mixture of conditional independent geometric distribn§@ccording to mixture (10).

The order statistics of discrete random variables dfedit to work with except for
the extremes. However, in the case of families in Table 1raévesults can be obtained
(Yeh, 2002). Note that Zipf(l), Il and Il are special casdéghe multivariate Zipf(1V)
family as follows:

M® Zipf() (e, ) = M® Zipf(V) (0, ¢, 1, ),
M® Zipf(l) (1., @) = M® Zipf(V) (g, 1, ),
M® Zipf(ll1) (E,g,z) = M® Zipf(IV) (,L_t,g,z, 1).
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| congratulate the authors on this excellent review. In thidgew paper they present
a nice overview on construction of multivariate distrilous. Due to it being such an
active field of research, new models are constantly beingodered. However, they
have been able to present some of the most recent method®ig elear manner, and
many of those omitted can be found in the references memtidhés my pleasure to
comment on this article.

| agree with professors Sarabia an@r@ez-Ceniz that is not possible to mention all
the methods for constructing distributions that exist. ldear, owed perhaps to my own
field of research, | miss thelaximum Entropy Principle@ised to construct probability
distributions. Therefore, my discussion focuses on pitasgthe practical usefulness of
this method.

Let (X,Bx, P) be the statistical space associated with the random varighlhere
By is theo-field of Borel subset& c X and{P} is a family of probability distributions
defined on the measurable sp&&eBy) . We assume that the probability distributidhs
are absolutely continuous with respecttdinite measure: on (X, Bx) . The Shannon
entropy is defined by

H=- fX f(x) log f (X)du (x) (1)

wheref(x) = §(x).

The Maximum Entropy Principle states that, maximizing epyr subject to a set
of constraints can be regarded as deriving a distributi@t i consistent with the
information specified in the constraints while making mialnassumptions about
the form of the distribution other than those embodied in dbastraints. Numerous
distributions have been obtained in this manner (Kapur41lB®&rahimi, 2000, Asadkt
al., 2004). For example, the normal distribution may be obthiaethe distribution on
the real line that has maximum entropy subject to havingiipdanean and variance;
see Rao (1965, p. 132). An earlier result by Goldman (1958)atterizedV (0, o?)
as the MED with specified value dE[Z?] being Z a continuous random variable
with support(-co, c0); the MED with specified value oE[(Z - a)’| was shown to
be N (a,o?) by Lisman and van Zuylen (1972). More generally, if a set ofhmeats
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E[XT],r =1,...,R is specified, the distribution on the real line that has th&imam
entropy subject to these constraints has probability tkensi

f(X) « exp(i arxr]

i=1

for suitable constants,,r = 1,..., R. Hosking (2007) derived the distribution
that has maximum entropy conditional on having specifiediaslof its first r L-
moments. Note that L-moments are now widely used in the eniental sciences to
summarize data and fit frequency distributions. This maxmemtropy distribution has
a polynomial density-quantile distribution (PDQ disttilmmn). Some special cases of
the PDQ distribution are: On a finite interval, the MED is thefarm distribution; on
a semi-infinite interval, the MED with the first L-moments sified is the exponential
distribution and on an infinite interval, the MED with the fitgo L-moments specified
is the logistic distribution. Maximum entropy distributi® conditional on specified L-
moments of ordergl, 2, 3} and{1, 2, 4} generate families of distributions that generalize
the logistic distribution and may be useful for modellingada

There is a lot of work devoted to the maximum entropy charaagon of the
most well-known univariate probability distributions. tAbugh available literature
is significantly less for the multivariate distributiond)et book of Kapur (1989)
considers several usual multivariate distributions andyrZfos (1999) considered
the cases of Pearson’s types Il and VII multivariate distitns (t-distribution and
generalized Cauchy distribution are obtained from an appbn of Pearson’s types VII
distribution). Aulogiaris and Zografos (2004) considesgthmetric Kotz type and Burr
multivariate distributions. Later Bhattacharya (2006)ivkxl appropriate constraints
which establish the maximum entropy characterization ef ltfouville distributions
among all multivariate distributions.

Amongst discrete distributions, the geometric distribativith support 12, ... is the
MED given a specified arithmetic mean. The Riemann zetaildigion, also called the
discrete Pareto distribution, is the MED for a specific gemimenean. In linguistics, it is
called the Zipf distribution. It has also been used to modetners of insurance policies,
the distribution of surnames and scientific productivityeTGood type-I distribution is
the MED when the arithmetic and geometric means are bothfigabdf x = 1,2,...,n
and there is no restriction on the probabilities, then theDM& a discrete rectangular
distribution. Given finite support and specified arithmetiggeometric means, or both
arithmetic and geometric mean, the MEDs are the right-tatett geometric, right-
truncated Rienmann zeta, and right-truncated Good typsttilslition, respectively.
Kemp (1997) obtained a discrete analogue of the normallaligiion as the distribution
that is characterized by maximum entropy, specified meanvandnce, and integer
support on(—oo, o). Binomial and Poisson distributions are also MEDs of sudabl
defined sets (Harrengs, 2001).
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The Maximum Entropy Principle has applications in many dmsabut was
originally motivated by statistical physics (Jaynes, 195¥hich attempts to relate
macroscopic measurable properties of physical systemsd&seription at an atomic
or molecular level. Applications in econometrics can benseeseveral works of Theil
(see for example, Theil and Fiebig, 1984). A popular metlwdeEtimation of spectral
densities was given by Burg (1975) based on Maximum Entropthod. Many works
and books following this idea have appeared, see for inst@alanet al. (1996).
In Finance, this principle is applied to infer a probabilignsity from option prices.
Buchen and Kelly (1996) showed that, with a set of well-sgr&ienulated exact-option
prices, the MED approximates a risk-neutral distributiorathigh degree of accuracy.
Guo (2001), motivated by the characteristic that a callgisca convex function of the
option’s strike price, suggests a simple convex-spline@dare to reduce the impact of
noise on observed option prices before inferring the MED.

Apart from density estimation, many statistical problerasenbeen studied on the
basis of the Maximum Entropy Principle. Using sample questiMerendezet al.
(1997) proposed a point estimation procedure as well as drggss-of-fit test statistic
based on the he Maximum Entropy Principle. But there are nimpprtant diferent
entropy measures (see Chapter 2 of Pardo, 2006), and inlarsingnner the Maximum
Entropy Principle associated with these others entrogirde defined. Meémndezt al.
(1997) generalized the previous work using a general fagfigntropies that contains

(1).
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The construction of Multivariate Distributions which caa fitted to multivariate data
sets is a very relevant topic of research in probability atadistics. First of all |
would like to warmly congratulate Professors Sarabia abih€z-Ceniz for an excellent
and stimulating review of some recent results on this toplee diferent methods
presented can be classified in two groug$:nfultivariate distributions arising out
from univariate distributions, andi) multivariate distributions obtained from other
multivariate distributions. In the first group we can inatuthe techniques based on
(a) order statistics,l{) mixtures, €) conditional specification ana) the method of the
variables in common, while, in the second group, we can gelihe methods ofdj
skew distributions andf() weighted distributions.

The distribution of order statistics (OS) or other genesdlons such as the
Generalized Order Statistics (GOS) only depends on theatiate parent distribution
from which the sample of 11D (independent and identicallstdbuted) random variables
is obtained. Two possible extensions can be consideredlhesmeconsider (or we have)
a samplexy, X,, ..., X, of INID (independent non-necessarily identically disttidd)
random variables, then the joint distribution only dependtee univariate distributions
Fi(x) = PrX < x)i = 1,2,...,n. In this case, the joint distribution of the OS and
the joint distribution of a subset of OS can be representettrims of permanents
(see Balakrishnan (2007)). The second option is to cons$iieOS obtained from a
random vector Xy, X, ..., X,), where the possible dependence between the random
variables is modelled through their joint distribution.iF base has special interest when
(X, X, ..., X,) represent the lifetimes of some components in a systens. cdse will
be included in the second grouj)(since we obtain multivariate distributions (that
of subsets of OS) from a parent multivariate distributianthe three cases, it is of
special interest to study the distribution of théirst OS Xy, Xon, - . ., Xien) (fOr k < n)
since in many practical situations, when we put-on-testesdevices (with lifetimes
Xi,i = 1,2,...,n), at the end of the test period we only have information ahbet
‘early failures’ (seege.g., Balakrishnan, Ng and Panchapakesan (2006)). In othes case
we only have information about the series syste, ) or the parallel systemX.,). It
these cases, it is interesting to note how multivariate rnsockn also be used to obtain
new relevant univariate models (see Navarro, Ruiz and Sah{@006)).

With respect to the methods based on mixtures, first we must that they are
not the usual mixtures used to represent heterogeneouatiops obtained by mixing
some groups with dierent characteristice.f. a mixture of two multivariate normal
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distributions). This case will be included in group). Actually, the multivariate

distributions obtained by (9) or (12) Sarabia andn@&z-CEniz’ paper are the joint

distributions of IID random variables that share one (orej@arameter with a known
distribution. The dependence is due to this common paramEtese models have
special interest in reliability and survival studies whef, ., ..., X,) represent the

lifetimes of some components in a system. Usually, the corapts are independent
but they share the same environment and hence their disbmsudepends on some
common parameters which induce a dependence between them.

It is not easy to add more on conditional specification sinaeal§ia (jointly with
Arnold and Castillo) is one of the fathers of this technigueiould only like to say
that, in my opinion, this is a very reasonable technique taiobmultivariate models
from univariate models when the conditional distributians known. In practice, this is
quite common in reliability or survival studies where, fotaenple, we can suppose
that if (X,Y) are the lifetimes of two units in a parallel system, when & tave
failed at agd, the distribution of the other component has a known distidin (e.g.
exponential) with some parameters depending.dhis also important to note other
possible situations (also studied in the book by Arnold tiasnd Sarabia (1999)) as,
for example, when we know the conditional distributionsXiv( < y) or (X|Y > y). The
distributions obtained by this method can be included irdik&ibutions obtained from
characterization methods, that is, we look for all the meatiete models which satisfy
a certain property (in this case to have some specified donditdistributions). This
is a classical method to obtain multivariate distributidnsould like to note here that
another (related) option is to obtain probability modelschyracterizations based on
‘ageing measures’ such as the hazard rate or the mean ridielfianctions and their
corresponding multivariate generalizations. For exanfpleéz, Main and Zoroa (1993)
gave a general way to obtain multivariate models frmix) = E(X|X > x), where
X = (Xg, X, ..., X)) andx = (Xq, %o, ..., X,). Some recent results are given in Navarro
and Ruiz (2004), Kotz, Navarro and Ruiz (2007), Navarro,zRarid Sandoval (2007)
and Navarro (2008). For example, in Navarro and Ruiz (20®4) multivariate normal
distribution with mean vector and variances-covariances matkixis characterized
by m(x) = u + Vh(x), whereh(x) is the hazard gradient (the multivariate version of
the hazard rate function which contains the hazard ratetime of the conditional
distributions &[X; > x;,j # i)). A general method is given in Kotz, Navarro and
Ruiz (2007) where, for example, Arnold and Strauss bivaredponential distribution
is obtained fromm(Xy, ;) = (ki k2)” + Vh(Xy, X2) for X3, X, > 0 where

v;(‘c’g).

| also would like to mention here the interesting univariatel multivariate models
obtained from maximum entropy characterization techréque
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The last method in this first group) (s the method based on variables in common
which has some similarities with the method of mixtures (@rgmeters in common). |
would like to remark here the relationships of this methothwiensoring in sampling
procedures where, for example, some independent randoiables X, X,, ..., X,
are observable if, and only if, they occur before an indepahdandom variabléy
representing the testing period. Hence the observadpasmin(X,Y),i = 1,2,...,n,
are dependent due to the common variahl@hey are also related with shock or step-
stress models where the independent component lifetkniesa system are observable
if, and only if, they pass a common stress level due to theeshanvironment. It is
important to note here that some of these models have a amgautt due to the fact that
several components can fail at the same time. These ‘nanarbsolutely continuous
models as, for example, the Marshall and Olkin bivariateoeemtial stress (or shock)
model, are very important in practice.

There are few techniques included in the second griougifce we must start from a
multivariate model and there are few multivariate modetsigmnly accepted as unique
extensions of univariate models. Actually, we can say thatdnly one might be the
multivariate normal distribution. In a practical situatiche main disadvantage of the
normal distribution is the symmetry (with respect to the medhus, it is is natural to
consider in the multivariate set-up the skew techniqdigsiged in the univariate case to
obtain asymmetric models. | would like to note here that thiemal skew distribution
can also be obtained as the distribution of the OS from a mangector X, Y) having
a bivariate Normal distribution (see Loperfido, 2002). Alse must note here how
the univariate skew distribution can be generalized by iceni®g the minimum (the
maximum or, in general, the OS) from a random vector havinguHivariate normal
distribution (see Loperfidet al. (2007)).

Another option is to consider weighted models due to a bisaadom sampling
procedure where a sample vabuigom a random vectoX is observed with a probability
proportional tow(x), wherew is a positive (weight) function. For example, if we
survey tourists randomly at the hotels, the more the lenfhay, the higher sampling
probability. Hence, the variable ‘length-of-stay’ is easand so are other related
variables. Therefore some new techniques should be deattopcorrect this sampling
bias (seee.g., Cristobal, Ojeda and Alcal 2004). This method can also be included
in the first group when we consider independent random Vesadnd a dependence
factor due only to the common sampling procedure, that ishawe a sample from the
multivariate density function

(X1, o5+ vy Xa) = CW(Xg, Xo, -« 5 Xn) Fr(X1) T2(X0) . . . (%),

wheref; are the (given) density functions of the random variables=1,2,...,n, and
c=1/E(wW(X., X, ..., Xy)).

To finish | would like to mention that as well as obtaining newltivariate models
that can represent data sets, it is also very important teldpyit techniques to measure
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the accuracy of these models to data in several practicaltgins. In my opinion, both
aspects will be relevant research fields in the future in @ity and statistics studies.
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Rejoinder

We are extremely grateful to the two discussants of the papetheir positive and
thoughtful comments and remarks.

Professor Navarro begins with an interesting classificaiio two groups of the
methods for construction of multivariate distributiongof Navarro points out the
construction of order statistics obtained from a randomtoreavhere the possible
dependence between the components is modelled by thetrdatribution. In this
sense, Balakrishnan (2007) has obtained several resulte imdependent and non-
identically distributed case and Arellano-Valle and Gen{@008) have obtained
the exact distribution of the maximum of absolutely continsl dependent random
variables.

Other strategies of construction of multivariate disttibn based on conditional
specification are commented by Prof. Navarro. In religbiibntexts, other modelling
approaches are used. For example, a dynamic constructiescriizes the joint
distribution of (X, Y) by specifying the conditional distribution of given mir{X, Y} =
X =t and the conditional distribution of given min{X,Y} =Y =1t.

Professor Pardo focuses her comments on the maximum engrapgiple and
characterization problems. This principle and itffafient variants is an alternative
method for generating multivariate distributions.

In the context of conditional specification, Gokhale (19885 shown that if the
conditional densities of a bivariate random variable haaximum entropies, subject
to certain constraints, then the bivariate density alsoimiaes entropy, subject to
appropriate constraints. An important example of thisagitun is given by distribution
(29). This result provides an interesting insight in theusture of joint maximum
entropy distributions when conditional maximum entropgtalbutions are specified.
An application of this kind of distribution in hydrology hagen provided by Agrawal,
Singh and Kumar (2005).

Minimum cross-entropy methods are also used to recovema gl@nsity function
from information about the joint and marginal moments ane tharginal density
function (see Miller and Liu, 2002).

Finally, both Professors Navarro and Pardo have commeimiedniportance of
characterization problems in the construction of mulia&r distributions. This topic
is presently receiving a lot of attention in the statistiosl grobabilistic research. In
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this sense, there is a considerable work dealing with théleno of characterizing
distributions by means of conditional moments (see Wesshgwi995, and Arnold,
Castillo and Sarabia, 1999, Chapter 7). For example, we tmighinterested in
identifying all distributions with linear regression anohstant conditional variances.
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