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Abstract

The construction of multivariate distributions is an active field of research in theoretical and applied
statistics. In this paper some recent developments in this field are reviewed. Specifically, we study
and review the following set of methods: (a) Construction of multivariate distributions based on order
statistics, (b) Methods based on mixtures, (c) Conditionally specified distributions, (d) Multivariate skew
distributions, (e) Distributions based on the method of the variables in common and (f) Other methods,
which include multivariate weighted distributions, vines and multivariate Zipf distributions.
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1 Introduction

The construction, study and applications of multivariate distributions is one of the
classical fields of research in statistics, and it continuesto be an active field of research.

In recent years several books containing theory about multivariate nonnormal
distributions have been published: Hutchinson and Lai (1990), Joe (1997), Arnold,
Castillo and Sarabia (1999), Kotz, Balakrishnan and Johnson (2000), Kotz and
Nadarajah (2004), Nelsen (2006). In the discrete case specifically, we cannot ignore the
books of Kocherlakota and Kocherlakota (1992) and Johnson,Kotz and Balakrishnan
(1997) and the review papers by Balakrishnan (2004, 2005).
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4 Construction of multivariate distributions: a review of some recent results

In this paper some recent methods for constructing multivariate distributions are
reviewed. Reviews on constructions of discrete and continuous bivariate distributions
are given by Lai (2004 and 2006). One of the problems of this work is the impossibility
of producing a standard set of criteria that can always be applied to produce a unique
distribution which could unequivocally be called the multivariate version (Kemp and
Papageorgiou, 1982). In this sense, there is no satisfactory unified scheme of classifying
these methods. In the bivariate continuous case Lai (2004 and 2006) has considered the
following clusters of methods,

• Marginal transformation method
• Methods of construction of copulas
• Mixing and compounding
• Variables in common and trivariate reduction techniques
• Conditionally specified distributions
• Marginal replacement
• Geometric approach
• Constructions of extreme-value models
• Limits of discrete distributions
• Some classical methods
• Distributions with a given variance-covariance matrix
• Transformations

Some of these methods have merited considerable attention in the recent literature
and they will not be revised here. For instance, a detailed study on the construction of
copulas is provided by Nelsen (2006) and also in the review paper by Mikosch (2006).

The choice of the methods revised in this paper responds to a general interest and
our own research experience. Therefore, and as is obvious, this revision cannot be
considered as exhaustive regarding multivariate distributions.

The contents of this paper are as follows. In Section 2 we study multivariate
distributions based on order statistics. Section 3 reviewsmethods based on mixtures.
Conditionally specified distributions are studied in Section 4. Section 5 reviews
multivariate skew distributions. Some recent distributions based on the method of the
variables in common are studied in Section 6. Finally, othermethods of construction
(multivariate weighted distributions, vines and multivariate Zipf distributions.) are
briefly commented in Section 7.

2 Multivariate Distributions based on Order Statistics

Order statistics and related topics (especially extreme value theory) have received a lot
of attention recently, see Arnoldet al.(1992), Castilloet al.(2005), David and Nagaraja
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(2003) and Ahsanullah and Nevzorov (2005). In this section we review multivariate
distributions beginning with the idea of order statistics.

2.1 An extension of the multivariate distribution of subsets o f order statistics

Let X1, . . . ,Xn be a sample of sizen drawn from a common probability density function
(pdf) f (x) and cumulative distribution function (cdf)F(x), and letX1:n ≤ · · · ≤ Xn:n

denote the corresponding order statistics. Now, letXn1:n, . . . ,Xnp:n be a subset ofp order
statistics, where 1≤ n1 < · · · < np ≤ n, p = 1,2, . . . ,n. The joint pdf ofXn1:n, . . . ,Xnp:n is

n!
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j=1 (nj − nj−1 − 1)!
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, (1)

for x1 ≤ · · · ≤ xp, wherex0 = −∞, xp+1 = +∞, n0 = 0 andnp+1 = n+ 1.
Beginning with the idea of fractional order statistics (Stigler (1977) and Papadatos

(1995)) Jones and Larsen (2004) proposed generalizing (1) by considering real numbers
a1, . . . ,ap+1 > 0 instead of integersn1, . . . ,np+1, to obtain the joint pdf,

gF(x1, . . . , xp) =
Γ(a1 + · · · + ap+1)
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on−∞ = x0 ≤ x1 ≤ · · · ≤ xp ≤ xp+1 = ∞. Two particular cases merit our attention. If
F ∼ U[0,1] is a uniform distribution on [0,1], (2) becomes

gU(u1, . . . ,up) =
Γ(a1 + · · · + ap+1)

∏p+1
j=1 Γ(aj)

p+1
∏

j=1

(uj − uj−1)
a j−1, (3)

defined on 0= u0 ≤ u1 ≤ · · · ≤ up ≤ up+1 = 1, which is the generalization of
uniform order statistics. If{U j}, j = 1,2, . . . , p is distributed as (3), then{Xj = F−1(U j)},
j = 1,2, . . . , p is distributed as (1). Another important relation is obtained from the
Dirichlet distribution. Let (V1, . . . ,Vk) a Dirichlet distribution with joint pdf

Γ(a1 + · · · + ap+1)
∏p+1

j=1 Γ(aj)
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, (4)

defined on the simplexvj ≥ 0, j = 1,2, . . . , p, v1 + · · · + vp ≤ 1. In this case
Ui = V1 + · · · + Vi, i = 1,2, . . . , p andXi = F−1(V1 + · · · + Vi), i = 1,2, . . . , p.
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In the univariate case, family (2) becomes

gF(x) =
Γ(a1 + a2)
Γ(a1)Γ(a2)

f (x)Fa1−1(x)[1 − F(x)]a2−1, (5)

which was also proposed by Jones (2004) and it is a generalization of the r-order
statistics. The idea of this author is to begin with a symmetric distribution f (a1 = a2 = 1
in (5)) and enlarge this family with parametersa1 anda2, controlling skewness and tail
weight. If B ∼ Be(a1,a2) is a beta distribution with parametersa1 anda2, family (5) can
be obtained by the simple transformationX = F−1(B).

As a last comment in this section, we mention the concept of generalized order
statistics introduced by Kamps (1995), as a unified model forordered random variables,
which includes among others the usual order statistics, record values andk-record values
as special cases.

2.1.1 An example with the normal distribution

In this section we include an example with the normal distribution. If p = 2, F = Φ,
f = φ, whereΦ andφ are the cdf and the pdf of the standard normal distribution,
respectively, general expression (2) becomes

gΦ(x, y; a) =
Γ(a1 + a2 + a3)
Γ(a1)Γ(a2)Γ(a3)

φ(x)φ(y)[Φ(x)]a1−1[Φ(y) − Φ(x)]a2−1[1 − Φ(y)]a3−1, (6)

on x < y, anda1,a2,a3 > 0. Both marginals distributionsX andY are like (5) with
parameters (a1,a2 + a3) and (a1 + a2,a3), respectively. The local dependence function is
given by

γ(x, y) =
∂2 loggΦ(x, y,a)

∂x∂y
=

(a2 − 1)φ(x)φ(y)
[Φ(y) − Φ(x)]2

,

if x < y.
Figure 1 shows two examples of the bivariate distribution (6).

2.2 Multivariate distribution involving the Rosenblatt cons truction

As a multivariate version of Jones’ (2004) univariate construction defined in equation
(5), Arnold, Castillo and Sarabia (2006) have proposed multivariate distributions
based on an enriching process using a representation of ap-dimensional random
vector with a given distribution due to Rosenblatt (1952). Consider an initial family
of p-dimensional joint distribution functionsF(x1, . . . , xp). We assume that these
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Figure 1: Joint pdf and contour plots of bivariate ordered normal distribution (6) with a1 = 2, a2 = 3 and
a3 = 4 (above) and a1 = 0.2, a2 = 3 and a3 = 2 (below).

distributions are absolutely continuous with respect to Lebesgue measure onRp and
we will be denoted byf (x1, . . . , xp), the corresponding joint density function. We next
introduce the notation

F1(x1) = Pr(X1 ≤ x1),

F2(x2|x1) = Pr(X2 ≤ x2|X1 = x1),
...

Fp(xp|x1, . . . , xp−1) = Pr(Xp ≤ xp|X1 = x1, . . . ,Xp−1 = xp−1),
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and associated conditional densities

f1(x1), f2(x2|x1), . . . , fp(xp|x1, . . . , xp−1). (7)

In the spirit of the Rosenblatt transformation, these authors proposed the multivariate
distribution ofX = (X1, . . . ,Xp) defined by

X1 = F−1
1 (V1),

X2 = F−1
2 (V1|X1),

...

Xp = F−1
p (Vp|X1, . . . ,Xp−1),

whereV1, . . . ,Vp represent independent beta distributionsVi ∼ Be(ai ,bi). The resulting
joint density forX is that given by

g(x1, . . . , xp; a,b) = f (x1, . . . , xp)
p

∏

i=1

fBe(ai ,bi )(Fi(xi |x1, . . . , xi−1)), (8)

wherefBe(ai ,bi ), i = 1, . . . , p denotes the density of a beta random variable with parameters
(ai ,bi). It is clear from (8) that the initial joint densityf (x1, . . . , xp) is included in (8) as
a special case settingai = bi = 1, i = 1, . . . , p. All the conditional densities (7) are
of the form (5). The proposed method is quite general, and several newp-dimensional
parametric families have been proposed, including: Frank-beta distribution, the Farlie-
Gumbel-Morgenstern-beta family, the normal-beta family,the Dirichlet-beta family and
the Pareto-beta family. The families of distributions obtained in this way are very flexible
and easy to estimate. Details can be found in Arnold, Castillo and Sarabia (2006).

3 Methods Based on Mixtures

The use of mixtures to obtain flexible families of densitieshas a long history, especially
in the univariate case. The advantages of the mixtures mechanism are diverse. The
new classes of distributions obtained by mixing are more flexible than the original,
overdispersed with tails larger than the original distribution and often providing better fits.

The extension of a mixture to the multivariate case is usually simple, and the
marginal distributions belong to the same family. On the other hand, simulation
and Bayesian estimation of mixtures are quite direct. Sincethe introduction of
simulation-based methods for inference (particularly theGibbs sampler in a Bayesian
framework), complicated densities such as those having mixture representation have
been satisfactorily handled.
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3.1 Common mixture models

In this model we assume conditional independence among components and a common
parameter shared by all components. The joint cdf is given by

FX(x) =
∫ ∞
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or in terms of joint densities,

fX(x) =
∫ ∞
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dFΘ(θ), x = (x1, . . . , xp). (10)

In these modelsθ acts as a frailty parameter. In the joint cdf (9), if each component
Fk(xk|θ) is stochastically increasing inθ, thenX1, . . . ,Xp are associated and

cov(u(X1, . . . ,Xp), v(X1, . . . ,Xp)) ≥ 0, (11)

for all increasing functionsu, v for which the covariance exists.

3.2 A more general model

In this situation we have the general models,

FX(x) =
∫

Rp
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∫
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dFΘ(θ), x = (x1, . . . , xp), (13)

whereθ = (θ1, . . . , θp).
In the following sections we include some recent multivariate distributions proposed

in the literature obtained by using previous formulations.

3.3 Multivariate discrete distributions

The study of the variability of multivariate counts arises in many practical situations. In
ecology the counts may be the different species of animals in different geographical
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areas whilst in insurance, the number of claims of different policyholders in the
portfolio.

3.3.1 Multivariate Poisson-lognormal distribution

The multivariate Poisson-lognormal distribution (Aitchison and Ho, 1989) is one of
the most relevant models. This distribution is the mixture of conditional independent
Poisson distributions, where the mean vectorθ = (θ1, . . . , θp) follows a p-dimensional
lognormal distribution with probability density function,

g(θ; µ,Σ) = (2π)−p/2(θ1 · · · θp)
−1|Σ|−1/2 exp

[

−1
2

(logθ − µ)⊤Σ−1(logθ − µ)

]

.

The probability mass function is given by (formula (13)):

Pr(X1 = x1, . . . ,Xp = xp) =
∫

R
p
+

p
∏

i=1

f (xi |θi)g(θ; µ,Σ)dθ,

x1, . . . , xp = 0,1, . . . , (14)

whereRp
+ denotes the positive orthant ofp-dimensional real spaceRp. Although it is

not possible to obtain a closed expression for the probability mass function in (14), its
moments can be easily obtained by conditioning

E(Xi) = exp

(

µi +
1
2
σii

)

= αi , (15)

Var(Xi) = αi + α
2
i

[

exp(σii ) − 1
]

, (16)

cov(Xi ,Xj) = αiα j

[

exp(σii ) − 1
]

, i, j = 1, . . . , p, i , j. (17)

From (15) and (16) it is obvious than the marginal distributions are overdispersed and
from (17) the model admits both negative and positive correlations. Other versions of
this model can be viewed in Tonda (2005).

3.3.2 Multivariate Poisson-generalized inverse Gaussian distribution

Departing from the Sichel distribution (Poisson-generalized inverse Gaussian
distribution) in Sichel (1971) investigated bivariate extensions of that distribution. In
Stein et al. (1987) one of them is studied in order to obtain the estimation of the
parameters via the likelihood method.

Conditionally givenλ, the Xi are independently distributed as Poisson random
variables with parameterλξi, whereξi is a scale factor (i = 1, . . . , p) and the parameter
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λ follows a generalized inverse Gaussian distribution with parameters 1, w > 0 and
γ ∈ R. The multivariate mixture is:

Pr(X1 = x1, . . . ,Xp = xp) =
K∑

xi+y

(

w1/2(w+
∑

ξi)1/2)

Kγ(w)

×
(

w
w+ 2

∑

ξi

)(
∑

xi+y)/2 p
∏

i=1

ξxi

i

xi!
,

x1, . . . , xp = 0,1, . . . , α,

ξ1, . . . ξp > 0,−∞ < γ < ∞,

whereKν(z) denotes the modified Bessel function of the second kind of order ν and
argumentz. The basic moments and the correlation matrix are

E(Xi) = ξiRγ(w),

Var(Xi) = ξ2
i Kγ+2(w)/Kγ(w) + E(Xi) [1 − E(Xi)] ,

corr(Xi ,Xj) =
[

(1+ 1/ξig(w, γ))
(

(1+ 1/ξ jg(w, γ)
)]−1/2

,

i, j = 1, . . . , p, i , j,

whereRν(z) = Kν+1(z)/Kν(z) andg(w, γ) = Rγ+1(w) − Rγ(w). The correlations between
marginals are positive.

3.3.3 Multivariate negative binomial-inverse Gaussian distribution

Gómez-D́eniz et al. (2008) have considered a new distribution by mixing a negative
binomial distribution with an inverse Gaussian distribution, where the parameterization
p̂ = exp(−λ) was considered. This new formulation provides a tractablemodel with
attractive properties, which makes it suitable for application in disciplines where
overdispersion is observed.

The multivariate negative binomial-inverse Gaussian distribution can be considered
as the mixture of independentNB(r i , p̂ = e−λ), i = 1,2, . . . , p combined with an inverse
Gaussian distribution forλ. The joint probability mass function is given by (formula
(10)),

Pr(X1 = x1,X2 = x2, . . . ,Xp = xp)

=

p
∏

i=1

(

r i + xi − 1
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) x̃
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j
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wherex1, x2, . . . , xp = 0,1,2, . . . ; µ, ψ, r1, . . . , rp > 0 andr = r1+· · ·+rp, x̃ = x1+· · ·+xp

and the moments,
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E(Xi) = r i [Mλ(1)− 1] , i = 1,2, . . . , r

Var(Xi) = (r i + r2
i )Mλ(2)− r i Mλ(1)− r2

i M2
λ(1), i = 1,2, . . . , p

cov(Xi ,Xj) = r ir j

[

Mλ(2)− M2
λ(1)

]

, i, j = 1, . . . , p, i , j.

where Mλ(t) is the moment generating function of the inverse Gaussian distribution.
SinceMλ(2)− M2

λ(1) = Var(eλ), the correlation is always positive. Applications of this
model in insurance can be found in Gómez-D́enizet al. (2008).

3.3.4 Multivariate Poisson-beta distribution

Sarabia and Ǵomez-D́eniz (2008) have proposed multivariate versions of the beta
mixture of Poisson distribution considered by Gurland (1957) and Katti (1966). The
new class of distributions can be used for modelling multivariate dependent count
data when marginal overdispersion is also observed. The basic multivariate distribution
Poisson-Beta (X1, . . . ,Xp)⊤ is defined throughp independent Poisson distributions with
parametersφiθ, φi > 0, i = 1,2, . . . , p, whereθ ∼ Be(a,b) with a,b > 0. The
probability mass function is given by:

Pr(X1 = x1, . . . ,Xp = xp)

=

p
∏

i=1

φxi

i

xi!
·
Γ(a+ b)Γ(a+

∑p
i=1 xi)

Γ(a)Γ(a+ b+
∑p

i=1 xi)
1F1




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





a+
p

∑

i=1

xi; a+ b+
p

∑

i=1

xi;−
p

∑

i=1

φi















,

where1F1(a; c; x) represents the confluent hypergeometric function. The previous model
has the advantage of its simplicity but presents two shortcomings. On the one hand,
the parameters in the marginal distributions are not free, in the sense that all marginal
distributions share parametersa and b. On the other hand, the model is not valid
for representing multivariate count data with negative correlation between pairs of
variables. This can be overcome by defining a multivariate Poisson-Beta distribution
by the stochastic representation

Xi |θi ∼ Po(φiθi), i = 1,2, . . . , p independent,

(θ1, . . . , θp) ∼ f (θ1, . . . , θp),

θi ∼ Be(ai ,bi), i = 1,2, . . . , p,

where f (·) represents a multivariate distribution with beta marginals Be(ai ,bi) and
φi > 0, i = 1,2, . . . , p. Although there is not a closed form for the joint probability mass
function, the means, variances and covariance vector are computed straightforwardly
by conditioning. By choosing the Sarmanov-Lee distribution described in Sarmanov
(1966), Lee (1996) and Kotzet al. (2000) and which has been used by Sarabia and
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Castillo (2006), Sarabia and Gómez-D́eniz (2008) built a bivariate distribution that
admits non-limited correlations of any sign.

3.4 Continuous distributions

Walker and Stephens (1999) have observed a simple representation of the Weibull
distribution as a mixture in such a way that,

X|θ ∼ f (x|θ) = axa−1

θ
I (0 < xa < θ),

θ ∼ G(2, c),

whereI (·) is the indicator function andG represents the gamma distribution. However, a
Weibull distribution has only two parameters and the skewness is defined once the mean
and variance are defined. The idea of these authors is to replace the gamma mixing with
a two-parameter lognormal distribution

X|θ ∼ f (x|θ) = axa−1

eaθ
I (0 < x < eθ) (18)

θ ∼ N(µ, σ2), (19)

which we will represent asX ∼ PLN(a, µ, σ). If we use formula (10) we obtain the
joint density,

f (x1, . . . , xp) =
p

∏

i=1

ai x
ai−1
i exp(−ãµ + ã2σ2/2)

{

1− Φ(log z̃+ ãσ)
}

, (20)

where logz̃= (log(max{xi}) − µ)/σ andã = a1 + · · · + ap.
The multivariate version of Walker and Stephens (1999) based on (18)-(19) and

general models (12)-(13) is quite direct. The jointp-dimensional density function can
be written as

f (x1, . . . , xp|θ1, . . . , θp) =
p

∏

k=1

akx
ak−1
k

eakθk
I (0 < xk < eθk)

(θ1, . . . , θp) ∼ Np(µ,Σ).

Marginally Xj ∼ PLN(aj , µ j , σ j), j = 1, . . . , p and

cov(Xj ,Xk) =
ajak[exp(σ jk) − 1]

(1+ aj)(1+ ak)
exp[µ j + µk + (σ2

j + σ
2
k)/2], j , k,

where both positive and negative correlations are possible.
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3.4.1 The multivariate normal-inverse Gaussian distribution

A multivariate version of the normal inverse Gaussian distribution introduced by
Barndorff-Nielsen (1997) has been developed by Protassov (2004) and Øigard and
Hanssen (2002). The model is a mean-variance mixture of ap-dimensional normal
random variable with a univariate inverse Gaussian distribution. The probability density
function is

f (x;α, β, µ, δ,Γ) =
δ

2
p−1
2

[

α

q(x)

]
p+1
2

exp
[

p(x)
]

K p+1
2

[

αq(x)
]

, (21)

where

p(x) = δ
√

α2 − β⊤Γβ + β⊤(x− µ),

q(x) =
√

δ2 +
[

(x− µ)⊤Γ−1(x− µ)
]

,

Kν(z) denotes the modified Bessel function of the second kind of orderν and argument
z, α > 0, β ∈ Rp, δ > 0, µ ∈ Rp andΓ is a p× p matrix. The distribution is symmetric if
and only ifΓ = I andβ = 0. This multivariate distribution has been shown to be useful
in risk theory and the framework of physics.

4 Conditionally Specified Distributions

A bivariate random variable can be written as the product of amarginal distribution and
the corresponding conditional distribution,

fX,Y(x, y) = fX(x) fY|X(y|x).

This is a simple method for generating bivariate distributions, and has been used in the
practical literature as a common approach for obtaining dependent models, especially
whenY can be thought of as caused byX.

Now, the conditional distribution ofX given Y together with the other conditional
distributionY givenX = x0 determines the joint pdf from

fX,Y(x, y) ∝ fX|Y(x|y) fY|X(y|x0)
fX|Y(x0|y)

,

uniquely for eachx0. If we consider all possible values ofx0, we obviously obtain a
richer model. In this sense, a bivariate random variable canbe specified through its
conditional distributions. If we assume that both conditional distributions belong to
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certain parametric classes of distributions, it is possible to obtain the joint distribution
using the methodology proposed in Arnold, Castillo and Sarabia (1992, 1999) (see also
Arnold, Castillo and Sarabia (2001)). To obtain the joint pdf it is necessary to solve
certain functional equations. This methodology provides highly flexible multiparametric
distributions, with some “unexpected” and interesting properties.

4.1 Compatible conditional densities

The existence of a bivariate distribution with given conditional distributions is a previous
question. Let (X,Y) be a random vector with joint density with respect to some product
measureµ1 × µ2 on S(X) × S(Y), whereS(X) denotes the set of possible values ofX
andS(Y) the set of possible values ofY (note that one variable could be discrete and
the other absolutely continuous with respect to the Lebesgue measure). The marginal,
conditional and joint densities are denoted byfX(x), fY(y), fX|Y(x|y), fY|X(y|x), fX,Y(x, y)
and the sets of possible valuesS(X) andS(Y) can be finite, countable or uncountable.
Consider two possible families of conditional densitiesa(x, y) andb(x, y). We ask when
it is true that there will exist a joint density for (X,Y) such that

fX|Y(x|y) = a(x, y), x ∈ S(X), y ∈ S(Y)
and

fY|X(y|x) = b(x, y), x ∈ S(X), y ∈ S(Y).

If such a density exists we will say thata andb are compatible families of conditional
densities. We define

Na = {(x, y) : a(x, y) > 0}
and

Nb = {(x, y) : b(x, y) > 0}.

The following compatibility theorem was stated by Arnold and Press (1989).

Theorem 1 (Compatible conditionals)A joint density f(x, y), with a(x, y) and b(x, y)
as its conditional densities, will exist iff

(i) Na = Nb = N, say
(ii) there exist functions u(x) and v(y) such that for every(x, y) ∈ N we have

a(x, y)
b(x, y)

= u(x)v(y) (22)

in which u(x) is integrable, i.e.
∫

S(X)
u(x)dµ1(x) < ∞.
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4.2 Results in exponential families

One of the most important results in conditional specification is a Theorem provided
by Arnold and Strauss (1991), dealing with bivariate distributions with conditionals in
prescribed exponential families. Then, we consider two different exponential families of
densities{ f1(x; θ) : θ ∈ Θ ⊂ Rℓ1} and{ f2(y; τ) : τ ∈ T ⊂ Rℓ2} where:

f1(x; θ) = r1(x)β2(θ) exp















ℓ1
∑

i=1

θiq1i(x)















(23)

and

f2(y; τ) = r2(y)β2(τ) exp

















ℓ2
∑

j=1

τ jq2 j(y)

















. (24)

We are interested in the identification of the class of bivariate densitiesf (x, y) with
respect toµ1× µ2 onSx×Sy for which conditional densities are well defined and satisfy
the following:

• for everyy for which f (x|y) is defined, this conditional density belongs to family
(23) for someθ which may depend ony and
• for everyx for which f (y|x) is defined, this conditional density belongs to family

(24) for someτ which may depend onx.

The class of all bivariate pdff (x, y) with conditionals in these prescribed exponential
families, can be obtained as follows.

Theorem 2 Let f(x, y) be a bivariate density whose conditional densities satisfy:

f (x|y) = f1(x; θ(y))
and

f (y|x) = f2(y; τ(x))

for every x and y for some functionsθ(y) andτ(x) where f1 and f2 are as defined in (23)
and (24). It follows that f(x, y) is of the form:

f (x, y) = r1(x)r2(y) exp
{

q(1)(x)⊤Mq(2)(y)
}

(25)

in which

q(1)(x) = (1,q11(x), . . . ,q1ℓ1
(x))⊤
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and

q(2)(y) = (1,q21(y), . . . ,q2ℓ2
(y))⊤

and M is a matrix of parameters of dimension(ℓ1+1)×(ℓ2+1) subject to the requirement
that:

∫

Sx

∫

Sy

f (x, y)dµ1(x)dµ2(y) = 1. (26)

The term em00 is the normalizing constant that is a function of the other mi j ’s determined
by the constraint (26).

Note that the class of densities with conditionals in the prescribed family is itself an
exponential family with (ℓ1 + 1)× (ℓ2 + 1)− 1 parameters. Upon partitioning the matrix
M in (25) in the following manner:

M =











































m00 | m01 · · · m0ℓ2

−− + −− −− −−
m10 |
· · · | M̃
mℓ10 |











































, (27)

it can be verified that independent marginals will be encountered iff the matrixM̃ ≡ 0.
The elements ofM̃ determine the dependence structure inf (x, y).

4.3 Two examples

In this section we include two examples (discrete and continuous) of bivariate
distributions with conditional specifications.

Using Theorem 2, and after a convenient parameterization, the most general bivariate
distribution with Poisson conditionals has the following joint probability mass function,

Pr(X = x,Y = y) = k(λ1, λ2, λ3)
λx

1

x!

λ
y
2

y!
λ

xy
3 , x, y = 0,1,2, . . . (28)

with λ1, λ2 > 0 and 0< λ3 ≤ 1 and wherek is the normalizing constant. The conditional
distribution of X given y is Po(λ1λ

y
3) andY given x is Po(λ2λ

x
3). If λ3 = 1, X andY

are independent and if 0< λ3 < 1, X andY are negatively correlated with correlation
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coefficient rangeρ(X,Y) ∈ (−1,0). The marginal distributions of (28) are

Pr(X = x) = k
λx

1

x!
exp(λ2λ

x
3), x = 0,1,2, . . .

Pr(Y = y) = k
λ

y
2

y!
exp(λ1λ

y
3), y = 0,1,2, . . . ,

which are not Poisson except in the independence case. Wesolowski (1996) has
characterized this distribution using a conditional distribution and the other conditional
expectation.

The second example corresponds to the normal case. Again, using Theorem 2, the
most general bivariate distribution with normal conditionals is given by

fX,Y(x, y; m) = exp























(1, x, x2)





















m00 m01 m02

m10 m11 m12

m20 m21 m22









































1
y
y2











































. (29)

Distributions with densities of form (29) are called normalconditional distributions.
Note that (29) is an eight parameter family of densities, andm00 is the normalizing
constant. The conditional expectations and variances are:

E(Y|X = x) = − m01 +m11x+m21x2

2(m02 +m12x+m22x2)
, (30)

Var(Y|X = x) = − 1
2(m02 +m12x+m22x2)

, (31)

E(X|Y = y) = − m10 +m11y+m12y2

2(m20 +m21y+m22y2)
, (32)

Var(X|Y = y) = − 1
2(m20 +m21y+m22y2)

. (33)

The normal conditional distributions give rise to models where themi j constants satisfy
one of the two sets of conditions

(a) m22 = m12 = m21 = 0; m20 < 0; m02 < 0; m2
11 < 4m02m20.

(b) m22 < 0; 4m22m02 > m2
12; 4m20m22 > m2

21.

Models satisfying conditions (a) are the classical bivariate normal models with
normal marginals and conditionals, linear regressions andconstant conditional
variances. More interesting are the models satisfying conditions (b). These models have
normal conditional distributions, non-normal marginals,and the regression functions
are either constant or non-linear given by (30) and (32). Each regression function is
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Figure 2: Joint pdf and contour plots of two bivariate distributions with normal conditionals.

bounded (in contrast with the bivariate normal model) and the conditional variance
functions are also bounded and non constant. They are given by (31) and (33). Another
unexpected property of (29) is the multimodality, where one, two and three modes
are possible (see Arnoldet al., 2000). Figure 2 presents two models of kind (b), one
unimodal and the other one bimodal.

4.4 Multivariate extensions

Previous results can be extended to higher dimensions. Technical details appear in
Arnold, Castillo and Sarabia (1999 and 2001). As an important model, we consider
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the case in which the families of conditional densitiesXi |X(i) = x(i), i = 1, . . . , p
are exponential families, whereX(i) denotes thep-dimensional vectorX with the ith
coordinate deleted. In this situation, the most general joint density with exponential
conditionals must be of the form

fX(x) =















p
∏

i=1

r i(xi)















exp



















ℓ1
∑

i1=0

ℓ2
∑

i2=0

· · ·
ℓp

∑

ip=0

mi1,i2,...,ip















p
∏

i=1

qii j
(xj)

































.

For example, thep-dimensional distribution with normal conditionals is of the form

fX(x) = exp



















∑

i∈Tp

mi















p
∏

i=1

xi j
i

































, (34)

whereTp is the set of all vectors of 0’s, 1’s and 2’s of dimensionp. Densities of the form
(34) have normal conditional densities forXi givenX(i) = x(i) for everyx(i), i = 1, . . . , p.
The classicalp-variate normal density is a special case of (34).

4.5 Applications of the conditionally specified models

Applications of these conditional models are contained in the book by Arnold,
Castillo and Sarabia (1999). These applications include modelling of bivariate extremes,
conditional survival models, multivariate binary response models with covariates (Joe
and Liu, 1996) and Bayesian analysis using conditionally specified models. The use of
this kind of distribution in risk analysis and economics in general is quite recent. Some
applications have been provided by Sarabia, Gómez and V́azquez (2004) and Sarabiaet
al. (2005). The class of bivariate income distribution with lognormal conditionals has
been studied by Sarabiaet al. (2007). In the risk theory context, Sarabia and Guillén
(2008) have proposed flexible bivariate joint distributions for modelling the couple
(S,N), whereN is a count variable andS = X1 + · · · + XN is the total claim amount.

5 Multivariate Skew Distributions

The skew-normal (SN) distribution, its different variants and their corresponding
multivariate versions, have received considerable attention over the last few years. Two
recent reviews of these classes appear in the book edited by Genton (2004) and the paper
by Azzalini (2005). To introduce the multivariate version it is necessary to know the
univariate case and its properties, which the multivariateversion is based on. A random
variableX is said to have a skew-normal distribution with parameterλ, if the probability
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density function is given by

f (x; λ) = 2φ(x)Φ(λx), −∞ < x < ∞. (35)

A random variable with pdf (35) will be denoted asX ∼ SN(λ). Parameterλ controls
the skewness of the distribution and varies in (−∞,∞). The linearly skewed version of
this distribution is given by,

f (x; λ0, λ1) ∝ φ(x)Φ(λ0 + λ1x), −∞ < x < ∞, (36)

andλ0, λ1 ∈ R, which we will denote byX ∼ SN(λ0, λ1).
The next two properties hold for distribution (35) and allowus to understand

multivariate extensions:

• Hidden truncation mechanism. Let (X0,X1) be a bivariate normal distribution with
standardized marginals and correlation coefficientδ. Then, the variable,

{X1|X0 > 0} (37)

is distributed as aSN(λ(δ)) distribution, whereλ(δ) = δ√
1−δ2

.

• Convolution representation. IfX0 and X1 are independentN(0,1) random
variables, and−1 < δ < 1, then

Z = δ|X0| + (1− δ2)1/2X1 (38)

is aSN(λ(δ)).

A general treatment of the hidden truncation mechanism (37)is found in Arnold and
Beaver (2002).

A multivariate version of the basic model (35) has been considered by Azzalini and
Dalla Valle (1996) and Azzalini and Capitanio (1999). This multivariate version of the
SN distribution is defined as

f (x) = 2φp(x− µ;Σ)Φ(α⊤w−1(x− µ)), (39)

whereφp(x− µ;Σ) is the joint pdf of a multivariate normal distributionNp(µ,Σ), µ ∈ Rp

is a location parameter,Σ is a positive definite covariance matrix,α ∈ Rp is a parameter
which controls skewness andw is a diagonal matrix composed by the standard deviations
of Σ. If we setα = 0 in (39), we obtain a classicalNp(µ,Σ) distribution. Similar to
the univariate case, we can obtain (39) using a hidden truncation mechanism (37) and
convolution representation (38).
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Let X0 andX1 be random variables of dimensions 1 andp such that

(

X0

X1

)

∼ N1+p(0,Σ
∗), Σ∗ =

(

1 δ⊤

δ Σ̃

)

,

whereΣ̃ is a correlation matrix and

δ = (1+ α⊤Σ̃α)−1/2Σ̃α.

Then, thep-dimensional random variable

Z = {X1|X0 > 0},

has the joint pdf

f (z) = 2φp(z; Σ̃)Φ(α⊤z), (40)

which is an affine transformation of (39).
For the convolution representation letX0 ∼ N(0,1) and X1 ∼ Np(0,R) be

independent random variables, whereR is a correlation matrix. Let∆ = diag{δ1, . . . , δp},
−1 < δ j < 1, j = 1,2, . . . , p and Ip the identity matrix of orderp and 1p the p-
dimensional vector of all 1s. Then,

Z = ∆1p|X0| + (Ip − ∆2)1/2X1,

is distributed in the form (40). The relationship between (R,∆) and (̃Σ, α) can be found
in Azzalini and Capitanio (1999).

5.1 An alternative multivariate skew normal distribution

An alternative class of multivariate-normal distributions was considered by Gupta,
Gonźalez-Faŕıas and Doḿınguez-Molina (2004). Previous multivariate versions (40)
were obtained by conditioning that one random sample be positive; these authors
condition that the same number of random variables be positive and then, in the
univariate case both families are the same. A random vector of dimensionp is said
to have a multivariate skew normal distribution (accordingto Guptaet al., 2004) if its
pdf is given by

fp(x; µ,Σ,D) =
φp(x; µ,Σ)Φp(D(x− µ); 0, I )

Φp(0; 0, I + DΣD⊤)
, (41)
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whereµ ∈ Rp, Σ > 0, D(p× p), andφp(·; ξ,Ω) andΦp(·; ξ,Ω) denote the pdf and the cdf,
respectively of aNp(ξ,Ω) distribution.

As an extension to (41), González-Faŕıaset al. (2003, 2004) introduced the closed
skew-normal family of distributions. This family is closedunder conditioning, linear
transformations and convolutions. It is defined as

fp(x; µ,Σ,D, ν,∆) =
φp(x; µ,Σ)Φq(D(x− µ); ν,∆)

Φq(0q; ν;∆ + DΣD⊤)
, (42)

wherex, µ, ν ∈ Rp, Σ ∈ Rp × Rp, D ∈ Rq × Rp, ∆ ∈ Rq × Rq andΣ and∆ are positive
definite matrices and 0q = (0, . . . ,0) ∈ Rq.

The closed skew-normal distributions can be generated by conditioning the first
components of a normal random vector in the event that the remaining components
are greater than certain given values.

5.2 Conditional specification

Arnold, Castillo and Sarabia (2002) have discussed the problem of identifying p-
dimensional densities with skew-normal conditionals. They address the question of
identifying joint densities for ap-dimensional random vectorX that has the property
that for eachx(i) ∈ Rp−1 we have

Xi |X(i) = x(i) ∼ SN(λ(i)
0 (x(i)), λ

(i)
1 (x(i))), i = 1,2, . . . , p. (43)

An important parametric family of densities takes the form

f (x1, . . . , xp; λ) ∝
p

∏

i=1

φ(xi)Φ




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∑

s∈Sp

λs

p
∏

i=1

xsi

i

















, (44)

whereSp denotes the set of all vectors of 0’s and 1’s of dimensionp. In the bivariate case,
we obtain the following bivariate distribution with linearly skewed-normal conditionals,

f (x, y; λ) ∝ φ(x)φ(y)Φ(λ00 + λ10x+ λ01y+ λ11xy). (45)

Note (45) does not belong to class (39) except whenλ00 = λ11 = 0. The normalizing
constant is complicated in general, except whenλ00 = λ10 = λ10 = 0, in which is equals
2 and the density is explicitly given by

f (x, y; λ) = 2φ(x)φ(y)Φ(λxy). (46)

This model has normal marginals and skew-normal conditionals of type (35), and
bimodality is possible.



24 Construction of multivariate distributions: a review of some recent results

Model (44) can be viewed as a generalized hidden truncation model, defining
X̃ = (X0,X1, . . . ,Xp), with Xi ’s i.i.d.N(0,1), in which we retain only thosẽX for which

X0 ≤
∑

s∈Sk

λs

p
∏

i=1

Xsi

i ,

and the resulting conditional density of (X1, . . . ,Xp) will then be given by (44). More
about skew conditionals models can be found in Sarabia (2002) and Arnold, Castillo
and Sarabia (2007a, 2007b).

5.3 Balakrishnan skew-normal distribution

Balakrishnan (2002) as a discussant of Arnold and Beaver (2002) generalized the SN
distribution as

fn(x; λ) =
φ(x)[Φ(λx)]n

cn(λ)
, x ∈ R, (47)

wheren is an integer andcn(λ) =
∫ ∞

−∞ φ(x)[Φ(λx)]ndx. This distribution is known as
Balakrishnan skew-normal distribution. If we setn = 0 andn = 1 in (47) the above
density reduces to theN(0,1) distribution and the SN distribution, respectively. Gupta
and Gupta (2004) have studied some properties of (47).

Several multivariate versions are possible. If we think of an extension by
conditionals, in the simpler bivariate case, we obtain the joint pdf,

fn(x, y; λ) = c̃n(λ)φ(x)φ(y)[Φ(λxy)]n, (x, y) ∈ R2. (48)

For this distribution, both conditionals are like (47), butthe marginal distributions are
not.

Yadegariet al. (2008) have considered the extension of (47) given by

fn,m(x; λ) =
1

cn,m(λ)
[Φ(λx)]n[1 − Φ(λx)]mφ(x), x ∈ R, (49)

wherecn,m(λ) =
∑m

i=0

(

m
i

)

(−1)icn+i(λ). A natural extension of (49) to the multivariate case
is

fn,m(x; λ) =
1

cn,m(λ)
[Φ(λ⊤x)]n[1 − Φ(λ⊤x)]mφp(x), x ∈ Rp. (50)

Form= 0 andn = 1 this distribution reduces to the multivariate SN distribution.
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5.4 Extensions and applications

The initial formulation (35) gives rise to an important number of extensions and variants.
One of these variants appears replacing the normality assumption with alternative
symmetric distribution. An interesting class of skewed densities is provided by the
following elementary, but useful, result (Azzalini, 2005).

Lemma 1 If f0 is a p-dimensional pdf such that f0(x) = f0(−x) for x ∈ Rp, G is a one-
dimensional differentiable cdf such that G′ is a density symmetric about zero, and w is
real-valued function such that w(−x) = −w(x) for all x ∈ Rp, then

f (x) = 2 f0(x)G{w(x)}, x ∈ Rp, (51)

is a genuine pdf onRp.

Different choices forf0, G and w in (51) give rise to a huge number of variants of
skewed densities. In a more general setting, Wanget al. (2004) have shown that any
p-dimensional multivariate pdfg(x) admits for any fixed location parameterλ ∈ Rp a
unique skew-symmetric representation

g(x) = 2 f (x− λ)π(x− λ), x ∈ Rp, (52)

where f : Rp → R+ is a symmetric pdf (in the sense of previous lemma) andπ : Rp →
[0,1] is a skewing function such thatπ(−x) = π(x). Conversely, any functiong of the
kind (52) is a valid pdf. Multivariate distribution such as skew-Cauchy (Arnold and
Beaver, 2000), skew-t (Branco and Dey, 2001; Azzalini and Capitanio, 2003) and other
skew-elliptical distributions can be represented using previous formulations (51)-(52).

Finally, we mention some applications of the distribution described in this section:
compositional data, financial market and insurance (Vernic, 2005), selective sampling,
stochastic frontier models and modelling of environmentaldata.

6 The Variables in Common Method

This method, also known as “trivariate reduction”, is a popular and old technique used
for building dependent variables, both in continuous and discrete cases. Our attention
focuses on the bivariate case.

The method consists of building a pair of dependent random variables starting
from three (or more) random variables. These initial randomvariables are usually
independent. The functions that connect initial variablesare generally elementary
functions, or are given by the structure of the variables that we want to generate. A
broad definition can be
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{

X = υ1(eX, cXY),
Y = υ2(eY, c̃XY),

whereeX, eY represent two sets containing the specific variables ofX andY respectively,
andcXY, c̃XY sets containing the common or latent variables.

According to Marshall and Olkin (2007), many of the couples (X,Y) here presented
are associated (formula (11)), and then only positive correlations are possible.

Over the last few years, several new dependent distributions using this method have
been proposed. All the models presented in this section can be extended to higher
dimensions. We present some relevant models.

6.1 Bivariate generalized Poisson distribution

Let Xi, i = 1,2,3 be mutually independent random variables. An usual trivariate
reduction scheme is defined as

X = X1 + X3,

Y = X2 + X3.

A disadvantage of this model is that only positive correlations are possible. If theXi ’s
are discrete, the joint pgf is

gX,Y(u, v) = gX1
(u)gX2

(v)gX3
(uv).

If the Xi are Poisson random variables, we obtain the classical bivariate Poisson
distribution, which is often used for obtaining compound bivariate Poisson distributions.
If we consider for theXi ’s random variables a generalized Poisson distribution, weobtain
the model considered by Vernic (1997, 2000).

6.2 Bivariate beta distribution

In a Bayesian context, when we work with independent or correlated binomial
distributions, a density defined over{0 ≤ xi ≤ 1; i = 1, . . . , p} on the unit cube is needed.
Olkin and Liu (2003) proposed the following method for constructing this distribution.
Let Xi ∼ G(ai ,1), i = 1,2,3 be independent gamma variables with unit scale parameters,
and define

X =
X1

X1 + X3

,

Y =
X2

X2 + X3

.
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Now, we have correlated beta distributionsBe(a1,a3) andBe(a2,a3) over 0≤ x, y ≤ 1
with joint pdf,

f (x, y; a1,a2,a3) =
xa1−1ya2−1(1− x)a2+a3−1(1− y)a1+a3−1

B(a1,a2,a3)(1− xy)a1+a2+a3
, (53)

where B(a1,a2,a3) =
∏3

i=1 Γ(ai)/Γ(
∑3

i=1 ai). The bivariate density (53) is positively
likelihood ratio dependent and hence positive quadrant dependent. Sarabia and Castillo
(2006) have considered a generalization of (53) under a conditional specification.
With this specification, they obtain a broad class of distributions, where an important
submodel is

f (x, y; a1,a2,b1,m) =
xa1−1(1− x)b1−1ya2−1(1− y)a1+b1−a2−1

n(a1,a2,b1,m)(1−mxy)a1+b1
, (54)

wherea1,b1,a1 + b1 − a2 > 0, m ≤ 1 and where 1/n is the normalizing constant. This
model contains the Olkin and Liu (2003) proposal form = 1 andX is stochastically
increasing or decreasing withY, so, consequently

signρ(X,Y) = sign(m).

Then, if 0< m≤ 1 we have positive correlation and ifm< 0, negative correlations. The
marginal distributions are of the Gauss hypergeometric type.

6.3 Bivariate t distribution

The usual bivariate spherically symmetric distribution onn1 degrees of freedom is
defined as (Fanget al., 1990)

X = X1/
√

X3/n1,

Y = X2/
√

X3/n1,

whereX1,X2,X3 are mutually independent random variables with distributionsX1,X2 ∼
N(0,1) standard normal andX3 ∼ χ2

n1
chi-squared distribution onn1 degrees of freedom.

Note that the marginal distributions are both (dependent) Studentt distributions onn1

degrees of freedom. If we need a bivariate distribution withStudentt marginals with
different degrees of freedomν1 andν2, one possibility is defined,

X = X1/
√

X3/ν1,

Y = X2/
√

(X3 + X4)/ν2,
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whereν1 = n1, ν2 = n1 + n2 andX4 ∼ χ2
n2

is a new independent chi-squared distribution
onn2 degrees of freedom. This model has been proposed by Jones (2002). Note that last
model includes the previous one by takingn4 = 0 degrees of freedom.

An alternative bivariatet distribution (including the independence case) has been
proposed by Shaw and Lee (2008).

6.4 Bivariate Marshall-Olkin type distributions

Let X1,X2 andX3 be mutually independent random variables with cdfGi(·), i = 1,2,3.
Define the random variable (X,Y) as

X = min{X1,X3},
Y = min{X2,X3}.

With this scheme,X andY are dependent, through the common random latent variable
X3. The joint survival function is

Pr(X > x,Y > y) = Ḡ1(x)Ḡ2(y)Ḡ3(z), (55)

wherez = max{x, y} and Ḡ = 1 − G. Note that (55) has a singular component. If
the components correspond to exponential distribution, weobtain the Marshall-Olkin
distribution (Marshall and Olkin, 1967). Other survival models have been considered
by Sarhan and Balakrishnan (2007) with the exponentiated exponential distribution, as
well as a mixture of the proposed bivariate distribution. Arnold and Brockett (1983)
have obtained a bivariate Gompertz-Makeham distribution using a similar construction.

6.5 Bivariate F distribution

Now, let X1,X2 and X3 be mutually independent chi-squared random variables with
degrees of freedomni > 0, i = 1,2,3. The classical bivariateF distribution is defined as
(Kotz, Balakrishnan and Johnson, 2000)

X =
X1/n1

X3/n3

, Y =
X2/n2

X3/n3

.

We haveX ∼ Fn1,n3
and Y ∼ Fn2,n3

, which share the degrees of freedom on the
denominator. In order to obtain a bivariateF distribution with arbitrary degrees of
freedom, El-Bassiouny and Jones (2007) have proposed the model
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X =
X1/n1

X3/n3
, Y =

X2/n2

(X3 + X4)/(n3 + n4)
,

whereX4 ∼ χ2
n4

is a new independent chi-squared distribution and nowX ∼ Fn1,n3
and

Y ∼ Fn2,n3+n4
, which includes the previous model. The joint pdf can be expressed as a

function of the Gauss hypergeometric function and positivecorrelation still arises.

7 Other Methods

In this last section multivariate weighted distributions,graphical models based on vines
and multivariate Zipf distributions are briefly commented upon.

7.1 Multivariate weighted distributions

The usual weighted distributions can be introduced in the following way. Let F be a
distribution function of a random variableX andw a positive function. The univariate
weighted distribution associated withF andw is defined as (Rao, 1965)

dFw(x) =
w(x)

E[w(X)]
dF(x),

if E[w(X)] < ∞. If F is absolutely continuous, the densityf w associated toF is
called the weighted density, and the corresponding random variable is denoted by
Xw. Weighted random variables are used to model sampling procedures with unequal
sampling probabilities proportional to a weighted function w, that is, when we want
to studyX with a sample fromXw. In a multivariate setting, letF be an absolutely
continuous distribution of ap-dimensional random vector with densityf andw : Rp →
R a positive function. The multivariate weighted or biased distribution associated with
F andw is defined by thep-dimensional probability density function

f w(x1, . . . , xp) =
w(x1, . . . , xp)

E[w(X1, . . . ,Xp)]
f (x1, . . . , xp), (56)

if E[w(X1, . . . ,Xp)] < ∞. In the particular casew(x1, . . . , xp) = x1 · · · xp, it is called the
multivariate size biased distribution, with density

f sb(x1, . . . , xp) =
x1 · · · xp

E(X1 · · ·Xp)]
f (x1, . . . , xp). (57)

Classes of distributions (56) and (57) have been compiled and studied by Navarro
et al. (2006), paying special attention to reliability aspects, ordering and equilibrium
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distributions in renewal processes. The multivariate distribution (57) represents
sampling methods where a vectorX = (X1, . . . ,Xp) has a sampling probability
proportional toxi, i = 1, . . . , p. In the event thatX represents the life lengths of items in
a system, then the sampling probability for a system is proportional to the life lengths of
its units. Additional applications included aerial sampling methods and tourism studies
(see Navarroet al., 2006).

Many of the multivariate distributions introduced in the previous sections respond to
general scheme (56), for example, distributions (39), (40)and (44).

7.2 Graphical models: vines

In the context of graphical dependency models, a new methodology called vines has
been introduced recently by Berdford and Cooke (2002) and Kurowicka and Cooke
(2006) to build complex multivariate highly dependent models satisfying conditional
dependence specifications. This methodology can be considered as an alternative of
the simple Markov trees to belief networks and influence diagrams. The definition
of conditional independence is weakened to allow for several kinds of conditional
dependence.

Copulae construction is the usual way to build a model with dependence structure.
However, in high dimensional distributions, this methodology is complicated, since it
requires a large number of possible pair-copulae constructions. Vines let us organize
this large amount of information through the regular vine orother particular cases of
regular vines, the canonical vine and the D-vine. This new methodology has proved
useful, for example, in the analysis of financial data sets (Aaset al., 2008). A connection
between vines and other types of related works has been obtained in the specification of
a multivariate normal distribution using partial correlations, from a generalization of a
problem dealt with by Joe (1996).

7.3 Multivariate Zipf distributions

The multivariate Zipf distributions correspond to the discrete version of the multivariate
Pareto distributions, introduced by Arnold (1983). In the univariate case, the Zipf
distribution is the discrete version of the usual Pareto distribution. A discrete random
variableX is said to have a Zipf(IV) distribution with positive parametersk0, σ, γ andα
if its survival function is

Pr(X ≥ k) =













1+

(

k− k0

σ

)1/γ










−α

, k = k0, k0 + 1, . . . (58)
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Table 1: Multivariate Zipf distributions

Multivariate Zipf Survival function,F̄X(k) = Pr
(

X ≥ k
)

Type (I)

X ∼ M(p)Zipf(I)(σ, α)

[

1+
∑p

i=1 (ki/σi)
]−α

, ki ∈ {0, 1, . . . },
1 ≤ i ≤ p,

α > 0, σ > 0

Type (II)

X ∼ M(p)Zipf(II)( µ, σ, α)

[

1+
∑p

i=1 ((ki − µi)/σi)
]−α

, ki ≥ µi ,

1 ≤ i ≤ p,

α > 0, σ > 0;ki , µi integers

Type (III)

X ∼ M(p)Zipf(III)( µ, σ, γ)

[

1+
∑p

i=1 ((ki − µi)/σi)
1/γi

]−1
, ki ≥ µi ,

1 ≤ i ≤ p,

σ > 0, γi > 0;ki , µi integers

Type (IV)

X ∼ M(p)Zipf(IV)( µ, σ, γ, α)

[

1+
∑p

i=1 ((ki − µi)/σi)
1/γi

]−α
, ki ≥ µi ,

1 ≤ i ≤ p,

α > 0, σ > 0;ki , µi integers

Yeh (2002) introduces six different multivariate Zipf distributions in terms of the joint
survival functions ofX = (X1, . . . ,Xp) having Zipf marginals as (58). Four of them are
presented in Table 1.

The four distributions in Table 1 are analogous to the continuous multivariate Pareto
distributions in Arnold (1983), also studied and extended in Yeh (2004, 2007). The
standard multivariate Zipf distribution, Zipf(IV) (0,1,1,1) arises as a unifom or beta
mixture of conditional independent geometric distributions according to mixture (10).

The order statistics of discrete random variables are difficult to work with except for
the extremes. However, in the case of families in Table 1 several results can be obtained
(Yeh, 2002). Note that Zipf(I), II and III are special cases of the multivariate Zipf(IV)
family as follows:

M(p) Zipf(I) (σ, α) = M(p) Zipf(IV) (0 , σ,1, α),

M(p) Zipf(II) ( µ, σ, α) = M(p) Zipf(IV) ( µ, σ,1, α),

M(p) Zipf(III) ( µ, σ, γ) = M(p) Zipf(IV) ( µ, σ, γ,1).
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I congratulate the authors on this excellent review. In thisreview paper they present
a nice overview on construction of multivariate distributions. Due to it being such an
active field of research, new models are constantly being discovered. However, they
have been able to present some of the most recent methods in a very clear manner, and
many of those omitted can be found in the references mentioned. It is my pleasure to
comment on this article.

I agree with professors Sarabia and Gómez-D́eniz that is not possible to mention all
the methods for constructing distributions that exist. However, owed perhaps to my own
field of research, I miss theMaximum Entropy Principleused to construct probability
distributions. Therefore, my discussion focuses on presenting the practical usefulness of
this method.

Let (X, βX, P) be the statistical space associated with the random variable X, where
βX is theσ-field of Borel subsetsA ⊂ X and{P} is a family of probability distributions
defined on the measurable space(X, βX) .We assume that the probability distributionsP
are absolutely continuous with respect toσ-finite measureµ on (X, βX) . The Shannon
entropy is defined by

H = −
∫

X
f (x) log f (x)dµ (x) (1)

where f (x) = dP
dµ

(x).
The Maximum Entropy Principle states that, maximizing entropy subject to a set

of constraints can be regarded as deriving a distribution that is consistent with the
information specified in the constraints while making minimal assumptions about
the form of the distribution other than those embodied in theconstraints. Numerous
distributions have been obtained in this manner (Kapur, 1994; Ebrahimi, 2000, Asadiet
al., 2004). For example, the normal distribution may be obtained as the distribution on
the real line that has maximum entropy subject to having specified mean and variance;
see Rao (1965, p. 132). An earlier result by Goldman (1955) characterizedN (

0, σ2)

as the MED with specified value ofE
[

Z2] being Z a continuous random variable
with support(−∞,∞); the MED with specified value ofE

[

(Z − a)2
]

was shown to
beN (

a, σ2) by Lisman and van Zuylen (1972). More generally, if a set of moments
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E [Xr ] , r = 1, . . . ,R, is specified, the distribution on the real line that has the maximum
entropy subject to these constraints has probability density

f (x) ∝ exp















R
∑

i=1

αr x
r















for suitable constantsαr , r = 1, . . ., R. Hosking (2007) derived the distribution
that has maximum entropy conditional on having specified values of its first r L-
moments. Note that L-moments are now widely used in the environmental sciences to
summarize data and fit frequency distributions. This maximum entropy distribution has
a polynomial density-quantile distribution (PDQ distribution). Some special cases of
the PDQ distribution are: On a finite interval, the MED is the uniform distribution; on
a semi-infinite interval, the MED with the first L-moments specified is the exponential
distribution and on an infinite interval, the MED with the first two L-moments specified
is the logistic distribution. Maximum entropy distributions conditional on specified L-
moments of orders{1,2,3} and{1,2,4} generate families of distributions that generalize
the logistic distribution and may be useful for modelling data.

There is a lot of work devoted to the maximum entropy characterization of the
most well-known univariate probability distributions. Although available literature
is significantly less for the multivariate distributions, the book of Kapur (1989)
considers several usual multivariate distributions and Zografos (1999) considered
the cases of Pearson’s types II and VII multivariate distributions (t-distribution and
generalized Cauchy distribution are obtained from an application of Pearson’s types VII
distribution). Aulogiaris and Zografos (2004) consideredsymmetric Kotz type and Burr
multivariate distributions. Later Bhattacharya (2006) derived appropriate constraints
which establish the maximum entropy characterization of the Liouville distributions
among all multivariate distributions.

Amongst discrete distributions, the geometric distribution with support 1,2, ... is the
MED given a specified arithmetic mean. The Riemann zeta distribution, also called the
discrete Pareto distribution, is the MED for a specific geometric mean. In linguistics, it is
called the Zipf distribution. It has also been used to model numbers of insurance policies,
the distribution of surnames and scientific productivity. The Good type-I distribution is
the MED when the arithmetic and geometric means are both specified. If x = 1,2, . . . ,n
and there is no restriction on the probabilities, then the MED is a discrete rectangular
distribution. Given finite support and specified arithmeticor geometric means, or both
arithmetic and geometric mean, the MEDs are the right-truncated geometric, right-
truncated Rienmann zeta, and right-truncated Good type-I distribution, respectively.
Kemp (1997) obtained a discrete analogue of the normal distribution as the distribution
that is characterized by maximum entropy, specified mean andvariance, and integer
support on(−∞,∞) . Binomial and Poisson distributions are also MEDs of suitable
defined sets (Harremoës, 2001).
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The Maximum Entropy Principle has applications in many domains, but was
originally motivated by statistical physics (Jaynes, 1957), which attempts to relate
macroscopic measurable properties of physical systems to adescription at an atomic
or molecular level. Applications in econometrics can be seen in several works of Theil
(see for example, Theil and Fiebig, 1984). A popular method for estimation of spectral
densities was given by Burg (1975) based on Maximum Entropy method. Many works
and books following this idea have appeared, see for instance Golanet al. (1996).
In Finance, this principle is applied to infer a probabilitydensity from option prices.
Buchen and Kelly (1996) showed that, with a set of well-spread simulated exact-option
prices, the MED approximates a risk-neutral distribution to a high degree of accuracy.
Guo (2001), motivated by the characteristic that a call price is a convex function of the
option’s strike price, suggests a simple convex-spline procedure to reduce the impact of
noise on observed option prices before inferring the MED.

Apart from density estimation, many statistical problems have been studied on the
basis of the Maximum Entropy Principle. Using sample quantiles, Meńendezet al.
(1997) proposed a point estimation procedure as well as a goodness-of-fit test statistic
based on the he Maximum Entropy Principle. But there are manyimportant different
entropy measures (see Chapter 2 of Pardo, 2006), and in a similar manner the Maximum
Entropy Principle associated with these others entropies can be defined. Meńendezet al.
(1997) generalized the previous work using a general familyof entropies that contains
(1).
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The construction of Multivariate Distributions which can be fitted to multivariate data
sets is a very relevant topic of research in probability and statistics. First of all I
would like to warmly congratulate Professors Sarabia and Gómez-D́eniz for an excellent
and stimulating review of some recent results on this topic.The different methods
presented can be classified in two groups: (i) multivariate distributions arising out
from univariate distributions, and (ii ) multivariate distributions obtained from other
multivariate distributions. In the first group we can include the techniques based on
(a) order statistics, (b) mixtures, (c) conditional specification and (e) the method of the
variables in common, while, in the second group, we can include the methods of (d)
skew distributions and (f ) weighted distributions.

The distribution of order statistics (OS) or other generalizations such as the
Generalized Order Statistics (GOS) only depends on the univariate parent distribution
from which the sample of IID (independent and identically distributed) random variables
is obtained. Two possible extensions can be considered here. If we consider (or we have)
a sampleX1, X2, . . . ,Xn of INID (independent non-necessarily identically distributed)
random variables, then the joint distribution only depend on the univariate distributions
Fi(x) = Pr(Xi ≤ x) i = 1,2, . . . ,n. In this case, the joint distribution of the OS and
the joint distribution of a subset of OS can be represented interms of permanents
(see Balakrishnan (2007)). The second option is to considerthe OS obtained from a
random vector (X1,X2, . . . ,Xn), where the possible dependence between the random
variables is modelled through their joint distribution. This case has special interest when
(X1,X2, . . . ,Xn) represent the lifetimes of some components in a system. This case will
be included in the second group (ii ) since we obtain multivariate distributions (that
of subsets of OS) from a parent multivariate distribution. In the three cases, it is of
special interest to study the distribution of thek first OS (X1:n,X2:n, . . . ,Xk:n) (for k < n)
since in many practical situations, when we put-on-test some devices (with lifetimes
Xi, i = 1,2, . . . ,n), at the end of the test period we only have information aboutthe
‘early failures’ (see,e.g., Balakrishnan, Ng and Panchapakesan (2006)). In other cases
we only have information about the series system (X1:n) or the parallel system (Xn:n). It
these cases, it is interesting to note how multivariate models can also be used to obtain
new relevant univariate models (see Navarro, Ruiz and Sandoval (2006)).

With respect to the methods based on mixtures, first we must note that they are
not the usual mixtures used to represent heterogeneous populations obtained by mixing
some groups with different characteristics (e.g. a mixture of two multivariate normal
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distributions). This case will be included in group (ii ). Actually, the multivariate
distributions obtained by (9) or (12) Sarabia and Gómez-D́eniz’ paper are the joint
distributions of IID random variables that share one (or more) parameter with a known
distribution. The dependence is due to this common parameter. These models have
special interest in reliability and survival studies when (X1,X2, . . . ,Xn) represent the
lifetimes of some components in a system. Usually, the components are independent
but they share the same environment and hence their distributions depends on some
common parameters which induce a dependence between them.

It is not easy to add more on conditional specification since Sarabia (jointly with
Arnold and Castillo) is one of the fathers of this technique.I would only like to say
that, in my opinion, this is a very reasonable technique to obtain multivariate models
from univariate models when the conditional distributionsare known. In practice, this is
quite common in reliability or survival studies where, for example, we can suppose
that if (X,Y) are the lifetimes of two units in a parallel system, when a unit have
failed at aget, the distribution of the other component has a known distribution (e.g.
exponential) with some parameters depending ont. It is also important to note other
possible situations (also studied in the book by Arnold, Castillo and Sarabia (1999)) as,
for example, when we know the conditional distributions of (X|Y ≤ y) or (X|Y ≥ y). The
distributions obtained by this method can be included in thedistributions obtained from
characterization methods, that is, we look for all the multivariate models which satisfy
a certain property (in this case to have some specified conditional distributions). This
is a classical method to obtain multivariate distributions. I would like to note here that
another (related) option is to obtain probability models bycharacterizations based on
‘ageing measures’ such as the hazard rate or the mean residual life functions and their
corresponding multivariate generalizations. For example, Ruiz, Maŕın and Zoroa (1993)
gave a general way to obtain multivariate models fromm(x) = E(X|X ≥ x), where
X = (X1,X2, . . . ,Xn) andx = (x1, x2, . . . , xn). Some recent results are given in Navarro
and Ruiz (2004), Kotz, Navarro and Ruiz (2007), Navarro, Ruiz and Sandoval (2007)
and Navarro (2008). For example, in Navarro and Ruiz (2004),the multivariate normal
distribution with mean vectorµ and variances-covariances matrixV is characterized
by m(x) = µ + Vh(x), whereh(x) is the hazard gradient (the multivariate version of
the hazard rate function which contains the hazard rate functions of the conditional
distributions (Xi |Xj ≥ xj , j , i)). A general method is given in Kotz, Navarro and
Ruiz (2007) where, for example, Arnold and Strauss bivariate exponential distribution
is obtained fromm(x1, x2) = (k1, k2)′ + Vh(x1, x2) for x1, x2 ≥ 0 where

V =

(

0 c
c 0

)

.

I also would like to mention here the interesting univariateand multivariate models
obtained from maximum entropy characterization techniques.
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The last method in this first group (i) is the method based on variables in common
which has some similarities with the method of mixtures (or parameters in common). I
would like to remark here the relationships of this method with censoring in sampling
procedures where, for example, some independent random variables X1,X2, . . . ,Xn

are observable if, and only if, they occur before an independent random variableY
representing the testing period. Hence the observationsZi = min(Xi ,Y), i = 1,2, . . . ,n,
are dependent due to the common variableY. They are also related with shock or step-
stress models where the independent component lifetimesXi in a system are observable
if, and only if, they pass a common stress level due to the shared environment. It is
important to note here that some of these models have a singular part due to the fact that
several components can fail at the same time. These ‘natural’ nonabsolutely continuous
models as, for example, the Marshall and Olkin bivariate exponential stress (or shock)
model, are very important in practice.

There are few techniques included in the second group (ii ) since we must start from a
multivariate model and there are few multivariate models commonly accepted as unique
extensions of univariate models. Actually, we can say that the only one might be the
multivariate normal distribution. In a practical situation, the main disadvantage of the
normal distribution is the symmetry (with respect to the mean). Thus, it is is natural to
consider in the multivariate set-up the skew techniques (d) used in the univariate case to
obtain asymmetric models. I would like to note here that the normal skew distribution
can also be obtained as the distribution of the OS from a random vector (X,Y) having
a bivariate Normal distribution (see Loperfido, 2002). Also, we must note here how
the univariate skew distribution can be generalized by considering the minimum (the
maximum or, in general, the OS) from a random vector having a multivariate normal
distribution (see Loperfidoet al. (2007)).

Another option is to consider weighted models due to a biasedrandom sampling
procedure where a sample valuex from a random vectorX is observed with a probability
proportional tow(x), where w is a positive (weight) function. For example, if we
survey tourists randomly at the hotels, the more the length of stay, the higher sampling
probability. Hence, the variable ‘length-of-stay’ is biased and so are other related
variables. Therefore some new techniques should be developed to correct this sampling
bias (see,e.g., Cristobal, Ojeda and Alcalá, 2004). This method can also be included
in the first group when we consider independent random variables and a dependence
factor due only to the common sampling procedure, that is, wehave a sample from the
multivariate density function

f w(x1, x2, . . . , xn) = cw(x1, x2, . . . , xn) f1(x1) f2(x2) . . . fn(xn),

where fi are the (given) density functions of the random variablesXi, i = 1,2, . . . ,n, and
c = 1/E(w(X1,X2, . . . ,Xn)).

To finish I would like to mention that as well as obtaining new multivariate models
that can represent data sets, it is also very important to develop fit techniques to measure
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the accuracy of these models to data in several practical situations. In my opinion, both
aspects will be relevant research fields in the future in probability and statistics studies.
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Rejoinder

We are extremely grateful to the two discussants of the paperfor their positive and
thoughtful comments and remarks.

Professor Navarro begins with an interesting classification in two groups of the
methods for construction of multivariate distributions. Prof. Navarro points out the
construction of order statistics obtained from a random vector, where the possible
dependence between the components is modelled by their joint distribution. In this
sense, Balakrishnan (2007) has obtained several results inthe independent and non-
identically distributed case and Arellano-Valle and Genton (2008) have obtained
the exact distribution of the maximum of absolutely continuous dependent random
variables.

Other strategies of construction of multivariate distribution based on conditional
specification are commented by Prof. Navarro. In reliability contexts, other modelling
approaches are used. For example, a dynamic construction prescribes the joint
distribution of (X,Y) by specifying the conditional distribution ofY given min{X,Y} =
X = t and the conditional distribution ofX given min{X,Y} = Y = t.

Professor Pardo focuses her comments on the maximum entropyprinciple and
characterization problems. This principle and its different variants is an alternative
method for generating multivariate distributions.

In the context of conditional specification, Gokhale (1999)has shown that if the
conditional densities of a bivariate random variable have maximum entropies, subject
to certain constraints, then the bivariate density also maximizes entropy, subject to
appropriate constraints. An important example of this situation is given by distribution
(29). This result provides an interesting insight in the structure of joint maximum
entropy distributions when conditional maximum entropy distributions are specified.
An application of this kind of distribution in hydrology hasbeen provided by Agrawal,
Singh and Kumar (2005).

Minimum cross-entropy methods are also used to recover a joint density function
from information about the joint and marginal moments and the marginal density
function (see Miller and Liu, 2002).

Finally, both Professors Navarro and Pardo have commented the importance of
characterization problems in the construction of multivariate distributions. This topic
is presently receiving a lot of attention in the statistics and probabilistic research. In
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this sense, there is a considerable work dealing with the problem of characterizing
distributions by means of conditional moments (see Wesolowski, 1995, and Arnold,
Castillo and Sarabia, 1999, Chapter 7). For example, we might be interested in
identifying all distributions with linear regression and constant conditional variances.
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