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Abstract

We discuss minimum mean squared error and Bayesian estimation of the variance and its
common transformations in the setting of normality and homoscedasticity with small samples, for
which asymptotics do not apply. We show that permitting some bias can be rewarded by greatly
reduced mean squared error. We apply borderline and equilibrium priors. The purpose of these
priors is to reduce the onus on the expert or client to specify a single prior distribution that would
capture the information available prior to data inspection. Instead, the (parametric) class of all
priors considered is partitioned to subsets that result in the preference for different actions. With
the family of conjugate inverse gamma priors, this Bayesian approach can be formulated in the
frequentist paradigm, describing the prior as being equivalent to additional observations.
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1. Introduction

We consider the problem in which a small random sample from a normal distribution,
N (μ,σ2), is observed and we would like to estimate the variance σ2 or its transfor-
mation, such as σ, 1/σ2 or 1/σ, or to know whether σ2 exceeds (or falls short of) a
specified threshold σ2

R . We study two approaches: minimum mean squared error (MSE)
estimation, to which we refer as efficient estimation, and application of (Bayesian) pri-
ors. We use only the conjugate family of priors, both for computational simplicity and

*N. T. Longford, SNTL and Departament d’Economia i Empresa, Universitat Pompeu Fabra, Ramon Trias Fargas
25–27, 08005 Barcelona, Spain; email: NTL@sntl.co.uk.
Received: July 2009
Accepted: February 2010



4 Small-sample inference about variance and its transformations

because their representation in terms of additional observations can greatly aid the
process of eliciting prior information from an expert. We find a frequentist interpretation
of the (Bayesian) posterior distribution which makes the Bayesian approach accessible
to frequentist analysis. In the motivating problem, two alternative actions, A and B, are
contemplated; A is appropriate when σ2 < σ2

R and B when σ2 > σ2
R . There is some

prior information, but the analyst’s client is either not available or elicitation of a single
prior from him or her is unlikely to be constructive.

We are concerned only with analysis of small samples. In large samples, asymptotics
apply and maximum likelihood (ML) estimation is satisfactory. The prior information
has a diminishing impact and a nonlinear transformation of a parameter is estimated
by the same transformation of the ML estimator of the parameter. In small samples,
the prior has a non-trivial impact, and efficiency is not maintained by nonlinear trans-
formations. Therefore, efficient (frequentist) estimation of σ2, σ, 1/σ2 and 1/σ are, in
principle, distinct problems, and the prior for a Bayesian analysis has to be selected with
integrity and care.

The next section deals with efficient estimation. Section 3.1. introduces borderline
priors and Section 3.2. equilibrium priors and the related solutions. Equilibrium priors
incorporate the losses due to making an incorrect decision (choosing A when σ2 > σ2

R
or B when σ2 <σ2

R ). The perspective of Section 2. is entirely frequentist, while Section
3. might appear at first as entirely Bayesian, exploiting prior information. However, the
Bayesian analysis has a frequentist interpretation, with the prior regarded as additional
observations. The concluding section summarises the proposed methods.

2. Efficient small-sample estimation

Suppose y1 , . . . ,yn is a random sample from a normal distribution N (μ,σ2). The
variance σ2 is commonly estimated by the corrected mean squares,

σ̂2 =
1

n−1

n

∑
i=1

(yi − μ̂)2 , (1)

where μ̂ = (y1 + · · ·+ yn)/n is the sample mean. The estimator σ̂2 has a scaled χ2

distribution with n−1 degrees of freedom:

(n−1)
σ̂2

σ2
∼ χ2

n−1 .

The χ2
k distribution has the density function

f (x) =
1

Γ
(

k
2

) (1
2

) k
2

x
k
2−1 exp

(
− x

2

)
.
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Figure 1: The densities of the estimators σ̂2 and σ̃2 for n = 5 and n = 10. Both panels are based on
the setting σ2 = 1.

The correction for the degree of freedom lost, by using the divisor n− 1 in (1), is
generally regarded as important because the estimator σ̂2 is unbiased. However, if we do
not insist on unbiasedness we obtain a more efficient estimator as σ̃2 = c∗σ̂2, with c∗ =
(n−1)/(n+1), that is, with divisor n+1 in (1); see Markowitz (1968) and Stuart (1969).
The MSE reduction from 2σ4/(n−1) to 2σ4/(n+1), by 100(1−c∗)%= 200/(n+1)%,
converges to zero as n → +∞, but for small n it is far from trivial. The densities of
σ̂2 and σ̃2, based on samples of sizes n = 5 and 10, are drawn in Figure 1 for target
σ2 = 1. From the diagram it is difficult to judge that σ̂2 (dashes) is less efficient than σ̃2

(solid line) because their densities are distinctly asymmetric and have different shapes.
However, the distribution of σ̂2 has a thicker right-hand tail than σ̃2, which corresponds
to greater probability of large positive estimation errors σ̂2 −σ2.

Estimates of variances are used in a variety of roles, and are often involved in
nonlinear functions. For example, variance ratios ν2/σ2 are estimated when comparing
two variances using their (independent) estimators and the standardised value in meta-
analysis (Sutton et al., 2000; Longford, 2010) is defined as μ/σ, where μ is the (average)
treatment effect andσ the standard deviation of the study-specific treatment effects. The
efficiency of σ̃2 is eroded by a nonlinear transformation, so σ̃2 should not be substituted
for σ2 in a nonlinear expression, unless the sampling variation of σ̃2 is very small. For
example, neither 1/σ̂2 nor 1/σ̃2 is an efficient or unbiased estimator of the precision
1/σ2. The respective expectation and variance of 1/σ̂2 are (n− 1)/(n− 3)/σ2 when
n > 3 and 2(n− 1)2/{(n− 3)2(n− 5)σ4} when n > 5. These expressions are obtained
by relating the relevant integrand to another χ2 distribution or by differentiating the
moment generating function; see Stuart (1969) and Stuart and Ord (1994, Chapter 16).
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Substituting σ̂2 or σ̃2 for σ2 when it is (a factor) in a denominator is ill-advised when
n < 6 because the resulting statistic has infinite variance.

We consider first estimators c/σ̂2 of 1/σ2. For n > 5, their MSEs are

1
σ4

[
2c2(n−1)2

(n−3)2(n−5)
+

{
c(n−1)
n−3

−1

}2
]

=
1
σ4

{
c2 (n−1)2

(n−3)(n−5)
−2c

n−1
n−3

+1

}
,

so their minimum is attained for c∗ = (n − 5)/(n − 1). The minimum attained is
2/{(n− 3)σ4}, smaller than the MSE of the naive estimator 1/σ̂2, equal to 2(n+
3)/{(n− 3)(n− 5)σ4}, or the MSE of the unbiased estimator (n− 3)/{(n− 1)σ̂2},
equal to 2/{(n−5)σ4}, so long as n > 5.

Although c∗/σ̂2 is much more efficient than 1/σ̂2 for n = 6, . . . ,10, it does not ad-
dress the problem of infinite variance for n ≤ 5. This problem is resolved by the estima-
tor 1/(d + σ̂2) for a positive constant d, but the optimal value of d cannot be derived
analytically. (A closed form expression for the MSE of this estimator involves incom-
plete gamma functions.) We explore this estimator by simulations in the next section.

The variance is often used in a linear function of σ or 1/σ. Efficient estimators of
these quantities in the respective classes of estimators cσ̂ and c/σ̂ are derived similarly
to the efficient estimators of σ̂2 and 1/σ̂2. Let

Un =

√
2√

n−1

Γ
(

n
2

)
Γ
(

n−1
2

) .
Then E(σ̂) = σUn and var(σ̂) = σ2

(
1−U2

n

)
, so the MSE of cσ̂ is

σ2
{
(1− cUn)

2 + c2
(
1−U2

n

)}
= σ2

(
1−2cUn+ c2

)
.

This function of c attains its minimum for c∗ = Un , and the minimum attained is
σ2(1−U2

n ).
For estimating 1/σ we introduce the constants

Vn =

√
n−1√

2

Γ
(

n−2
2
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Γ
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.
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Hence the MSE of c/σ̂ is

1
σ2

{
c2 n−1

n−3
−2cVn+1

}
,

and so the estimator of 1/σ efficient in the class of estimators c/σ̂ is σ̂−1Vn(n−3)/(n−
1), so long as n> 3. The corresponding MSE is {1−V 2

n (n−3)/(n−1)}/σ2. Estimators
of the form c/(d+ σ̂), with a positive offset d, may be more efficient; they have finite
variances for any sample size n.

2.1. Estimating a reciprocal with an offset

We explore next estimating the reciprocal 1/σ by 1/(d+ σ̂). We do this by simulations
because we have no convenient expression for the moments of 1/(d + σ̂). Figure 2
displays the empirical biases and root-MSEs of the estimators 1/(d+ σ̂) for d ∈ (0,0.5)
and σ2 = 0.1,0.25,0.5 and 1.0, based on a sample of size n = 4. The values of d for
which the estimator is unbiased and for which it attains minimum MSE are marked by
vertical ticks at the bottom of the respective panels.

Unbiasedness and minimum MSE are attained for different values of d. The mini-
mum MSE is attained for d∗ = 0.13,0.21,0.29 and 0.41 when σ2 = 0.1,0.25,0.5 and
1.0, respectively. Although d∗ varies substantially withσ2, the root-MSEs become more
and more flat as σ2 increases. Therefore, the choice of d is less critical for large σ2, and
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Figure 2: The bias and root-MSE of the estimator 1/(d+ σ̂) of 1/σ as functions of the offset d, with n= 4
(3 degrees of freedom). The variances σ2 are indicated at the right-hand margins. The ticks at the bottom
of each panel indicate the value of d for which the estimator is unbiased (left-hand panel) and for which it

attains minimum MSE (right-hand panel). Based on 100 000 replications.
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Figure 3: The bias and root-MSE of the estimator 1/(d + σ̂2) of 1/σ2 as functions of the offset d, with
n = 4 (3 degrees of freedom). Based on 100 000 replications. The same layout is used as in Figure 2.

should be informed principally by the smallest plausible value of σ2. This is a better
strategy than using the value d̂∗ = d∗(σ̂2) that would be optimal if our estimate were
exact. If we can rule out small values of σ2, a value d > d∗ is a safe choice because the
root-MSE increases very slowly for d > d∗.

Figure 3 presents the biases and root-MSEs of the estimator 1/(d+ σ̂2) of 1/σ2. It
highlights how excessive bias and MSE are avoided by choosing a positive offset d. We
arrive at the same general conclusion that if small values of σ2 can be ruled out, then
it is safe to choose a value d that is sufficiently large, because the root-MSEs are flat
functions of d for d greater than the optimum offset.

Figures 4 and 5 display the biases and root-MSEs of the respective estimators
1/(d + σ̂) and 1/(d + σ̂2) of 1/σ and 1/σ2 for sample sizes n = 6,11 and 21. They
confirm that the root-MSE is a flat function of d for large σ2. The precise choice of d
is less important for greater variances σ2, but the estimator 1/(d+ σ̂) is very inefficient
when too large a value of d is selected, especially when the varianceσ2 is small. Table 1
summarises the results for σ2 = 1. The results for different values of σ2 are obtained
by replacing d with d/σ and applying the appropriate rescaling to the bias and MSE.
The naive estimator of 1/σ is perceptibly inefficient even for n = 21, and the unbiased
estimator is even more inefficient. The difference between the root MSEs of the two
estimators that are efficient in the respective classes c/σ̂ and 1/(d+ σ̂) is about 8% for
n = 21, and much more for smaller n.

One drawback of the estimator 1/(d∗+ σ̂) is that the ideal offset d∗ depends on σ2.
Therefore, the estimators with an offset can be compared more equitably with c∗/σ̂
by finding the range of values d for which 1/(d + σ̂) is more efficient than c∗/σ̂.



N. T. Longford 9

0.0 0.2 0.4

−
2

−
1

0
1

2
n = 6

Offset (d)

B
ia

s

0.1

0.25

0.5
1

0.0 0.2 0.4

0
1

2

Offset (d)

R
oo

t−
M

S
E

0.1

0.25

0.5

1

var

0.0 0.2 0.4

−
2

−
1

0
1

2

n = 11

Offset (d)

B
ia

s

0.1

0.25

0.5
1

0.0 0.2 0.4

0
1

2

Offset (d)

R
oo

t−
M

S
E

0.1

0.25

0.5

1

var

0.0 0.2 0.4

−
2

−
1

0
1

2

n = 21

Offset (d)

B
ia

s

0.1

0.25

0.5
1

0.0 0.2 0.4

0
1

2

Offset (d)

R
oo

t−
M

S
E

0.1

0.25

0.5

1

var

Figure 4: The bias and root-MSE of the estimator 1/(d + σ̂) of 1/σ as functions of the offset d, with
n = 6,11 and 21 (n−1 degrees of freedom). Based on 50 000 replications.
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Figure 5: The bias and root-MSE of the estimator 1/(d + σ̂2) of 1/σ2 as functions of the offset d, with
n = 6,11 and 21. Based on 50 000 replications.
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Table 1: Properties of the alternative estimators of the reciprocal standard deviation 1/σ for sample sizes
n = 6,11 and 21; σ2 = 1.

Bias root-MSE

Sample size Sample size

Estimator 6 11 21 6 11 21

Naive
1
σ̂

0.189 0.084 0.040 0.537 0.287 0.179

Unbiased
1

Vnσ̂
0.000 0.000 0.000 0.633 0.392 0.262

Efficient in
c
σ̂

Vn

σ̂

n−3
n−1

−0.151 −0.060 −0.027 0.389 0.246 0.165

Efficient in
1

d+ σ̂
1

d∗+ σ̂
−0.124 −0.072 −0.052 0.280 0.208 0.153

When σ2 = 1.0, these ranges are 0.084 – 0.690, 0.045 – 0.312 and 0.025 – 0.151 for the
respective sample sizes n = 6,11 and 21. When n = 21, the optimal offset for σ2 = 0.1
is d∗ = 0.030. Therefore, when σ2 is in fact equal to 1.0, but we base the value of d∗

erroneously on σ2 = 0.1, we still obtain an estimator that is more efficient than c∗/σ̂.
Estimators of the precision 1/σ2 can be assessed similarly. The offset estimator

1/(d∗+ σ̂2) is more efficient than c∗/σ̂2 even when n = 21 (root-MSEs 0.270 versus
0.333), but the largest error that we can afford in estimating or guessing the value of d∗

is much smaller than for estimating 1/σ. For example, the estimators 1/(d + σ̂2) are
more efficient than c∗/σ̂2 for 0.064 < d < 0.490. The ideal offset when σ2 = 0.25 is
d† = 0.057, outside this range, so 1/(d† + σ̂2) is less efficient than c∗/σ̂2. In contrast,
for σ2 = 0.30 we have d† = 0.072, so the offset estimator is more efficient than c∗/σ̂2.
The gains in efficiency by using offset d in 1/(d+ σ̂2) to estimate 1/σ2 are in general
not as great as by using 1/(d+ σ̂) for estimating 1/σ.

We explored estimators 1/(d + σ̂)2, but found them uniformly less efficient than
1/(d+ σ̂2). Estimators in the class 1/(d+cσ̂2) would be more efficient if the constants
c and d were set optimally. However, having to set (or estimate) two constants is likely
to be too difficult a task in most settings.

3. Decision about σ2σ2σ2 with prior information

To estimate σ2 better than by σ̂2, we draw on the prior information in a Bayesian
approach. We want to cater for the setting in which no party could be called upon to
declare a single prior distribution for σ2. An expert (client) may not be available at all,
the process of elicitation may reach an impasse, or the expert might feel uncomfortable
with the declaration of any single prior because some similar priors might equally well
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be declared, and yet they would lead to appreciably different posterior distributions.
See Garthwaite, Kadane and O’Hagan (2005) for a review of methods of elicitation and
related issues, such as the uncertainty about the prior. Given the strong impact of a prior
on the posterior distribution, and the substantial uncertainty about the prior, drawing any
conclusions from the details of any particular posterior distribution is poorly justified.
We therefore focus on the tails of the posterior in the context of the problem with a
discrete choice. Suppose we have two options, actions A and B; A is preferred when
σ2 <σ2

R and B is preferred otherwise. The reference variance σ2
R is given. If there is no

obvious value of σ2
R , the method described below can be applied to a small number of

distinct values of σ2
R .

We consider only the inverse gamma distributions as possible priors for σ2; their
densities are

f (s) =
1

Γ(r)
θ rs−r−1 exp

(
−θ

s

)
, (2)

where θ > 0 and r > 0 are parameters, called the shape and inverse scale, respectively.
We regard this class of distributions as sufficiently rich for representing the prior
information. Convenience is an important factor in this choice; inverse gamma is
the conjugate distribution for (scaled) χ2, the distribution of the estimator σ̂2. The
expectation of the inverse gamma is θ/(r− 1), so long as r > 1, and its variance is
θ 2/{(r−1)2(r−2)}, so long as r > 2.

We prefer the parametrisation in terms of the precision τ = 1/σ2, the double-shape
q = 2r and the scale λ = 2θ/q, because it facilitates an easier interpretation and helps
the client make the relevant choices regarding the prior distribution. The prior density
for τ that corresponds to (2) is the gamma

f (τ) =
1

Γ
( q

2

) (qλ
2

) 1
2 q

τ
1
2 q−1 exp

(
−qλτ

2

)
.

The posterior density of τ is

f (t | σ̂2 = y) = C(k,q,λ) t
1
2 (k+q)−1 exp

{
− t

2
(ky+qλ)

}
,

where C is the normalising constant. The corresponding distribution is scaled χ2 with
k+ q degrees of freedom and the scaling ky+ qλ. In the standard Bayesian approach,
all inferential statements about σ2 are based on this distribution. For example, its
expectation (ky+ qλ)/(k + q) may be quoted as an estimate, and its variance as a
measure of uncertainty about σ2, akin to the (frequentist) sampling variance.

In the frequentist perspective, the impact of the prior on the posterior is equivalent
to adding q degrees of freedom (random draws from N (μ,σ2) or elementary observa-
tions) with a contribution of λ per degree of freedom to the corrected sum of squares,
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increasing it from kσ̂2 to kσ̂2+qλ. (Of course, we have to overlook that q may be frac-
tional.) We can regard σ̂2 and λ as two independent (elementary) estimators ofσ2. Then
the posterior expectation is a composite estimator ofσ2; it combines the two elementary
estimators with weights proportional to the associated degrees of freedom.

3.1. Borderline priors

Without being able or willing to commit ourselves to a single prior when the prior would
have a strong impact on the posterior distribution, it is not feasible or meaningful to
study the entire posterior. Instead, we focus on the tails of the posterior, addressing the
concern that the variance σ2 may be greater (or smaller) than an a priori set reference
value σ2

R . We can motivate this by adopting the following decision rule. If σ2
R lies in the

100α% right-hand tail of the posterior distribution for σ2, that is,

P
(
σ2 > σ2

R | σ̂2
)
< α ,

for a given probability α, we take action A; otherwise we take action B. This is similar
to a Bayesian version of hypothesis testing, although we treat the two actions symmet-
rically and consider both very small and very large values of α (e.g., 0.05 and 0.95).

We want to cater for settings in which the process of elicitation has not been
concluded with a single prior (or has not taken place at all), but a set of plausible priors
has been agreed (or was declared by the analyst). Such a set may be a rectangle given
by the ranges λ ∈ (λL ,λH) and q ∈ (qL ,qH), or, more generally, a convex set in the
parameter space for (λ,q). Since there is no single (prior) distribution that faithfully
reflects the prior information, we invert the standard Bayesian solution and seek priors
that would yield the so-called borderline posteriors. These are posteriors for which
the 100(1− α) percentile is equal to σ2

R . The corresponding priors are also called
borderline.

For a given value of the (prior) parameter q, the borderline value of λ, for which
(q,λ) defines a borderline prior, is given by the equation

σ2
R
(k+q)2

kσ̂2 +qλ
= F−1

k+q(1−α) ,

in which Fh is the distribution function (and F−1
h the quantile function) of the χ2

distribution with h degrees of freedom. The solution,

λB(q) =
1
q

{
(k+q)2σ2

R

F−1
k+q(1−α)

− kσ̂2

}
,

is unique, although λB may be negative for some values of q. For given α and k, λB(q)
is positive for small q > 0 when σ̂2 < kσ2

R/F
−1
k (1−α).
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Figure 6: Borderline priors for the setting with k = 3 degrees of freedom, the reference variance σ2
R = 1

and α= 0.05. The threshold borderline function, for σ̂2 = 0.383 is drawn by dashes. The values of σ2 are
indicated at the right-hand margin.

A set of borderline functions λB(q) is drawn in Figure 6 for k = 3, σ2
R = 1, α= 0.05

and values of σ̂2 indicated at the right-hand margin. The functions are positive for all
q> 0 when σ̂2 ≤ 0.383; this threshold value of σ̂2 is found by a unidimensional search.
All the functions converge to 1.0 as q→+∞, but the convergence, of the order O(1/

√
q),

is very slow. When σ̂2 < 0.383, λB(q) attains very large values for small q, so that
qλB(q) would make a nontrivial contribution to the posterior expectation kσ̂2+qλB(q).
When σ̂2 < 0.383, very small q is associated with large λB(q) because the prior contains
very little information in relation to the data-based estimator σ̂2.

The borderline functions for the complemetary setting, with α = 0.95, k = 3 and
σ2

R = 1, are displayed in Figure 7. For σ̂2 ∈ (7.27,8.53), λB(0) is positive and yet
λB(q) < 0 for some positive values of q. For instance, when σ̂2 = 8.0, λB(q) < 0 for
q ∈ (0.36,5.60). By way of an example, suppose σ̂2 = 6 with k = 3, the prior parameter
q is in the range (3,5) and the prior value of λ does not exceed 0.8 (the shaded box in
Figure 7). Then the entire set of plausible prior parameter vectors (q,λ) lies under the
borderline function λB(q), and therefore action A is preferred for every plausible prior;
we do not have to hone in on the prior.

If σ̂2 = 8, any prior with q∈ (3,5) is located above the borderline function, so action
B is preferred. Note that it is not sufficient for both the prior λ and the estimate σ̂2 to be
smaller than the reference σ2

R to conclude with preference for small σ2, because both
sources of information are associated with a lot of uncertainty.
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Figure 7: Borderline priors for the setting with k = 3 degrees of freedom, the reference variance σ2
R = 1

and α= 0.95. The shaded box represents a set of plausible priors.

The borderline function divides the space of the prior parameters (q,λ) into the
subsets that correspond to the priors which lead to the two decisions. A prior represented
by a point under the curve corresponds to preference for values of σ2 smaller than the
reference, and (q,λ) above the curve to preference for values of σ2 greater than σ2

R .
After being presented the borderline curve, an expert (client) has to decide whether any
of the borderline priors are plausible. If none are, and the plausible prior parameter
vectors (q,λ) are all above (or all below) the curve, we have an unequivocal decision.
The advantage of this approach is that we do not have to force the elicitation process
to yield a single prior. It suffices to specify a set of plausible priors. Such a set would
be non-convex only in some esoteric settings, and it is hard to envisage even a setting
in which it would not be a rectangle in (q,λ) or in a different parametrisation. If the
borderline curve intersects this plausible set, we cannot choose between the two actions,
because for some plausible priors action A, and for others action B, is preferred. There
is, therefore, an incentive to reduce the set of plausible priors as much as possible, but
not necessarily to a single point, as is required in the standard Bayesian setup.

A single prior has to originate from an expert. This is a serious stumbling block in
any secondary analysis when the expert is not available for the necessary dialogue. Also,
the expert may not be willing to commit him- or herself to a single prior. The analyst
should proceed with the elicitation only as far as it is constructive. While the declaration
of a single prior by an analyst on behalf of the client may be rather presumptious, the
declaration of a plausible set of priors maintains the integrity of the analysis if this



16 Small-sample inference about variance and its transformations

set reflects the analyst’s view of what a (real or hypothetical) client’s prior may be. In
essence, a solution is sought for every prior that the analyst believes the (absent) expert
might choose. We do not want to integrate the posteriors over the plausible priors to
obtain a single posterior distribution (Gelman et al. 2003), because that corresponds to
using a (single) prior when some other priors are also plausible.

The dialogue with the expert is simplified by using a parametrisation for the priors
that is easy to interpret. Thus, first we settle on the range of plausible prior degrees of
freedom q (the strength or extent of prior information), and then on λ (the range of prior
magnitudes of σ2). This leads to a rectangle of plausible priors that may be reviewed
further. The reference varianceσ2

R is set to reflect the client’s priorities; when there is no
clear candidate value, the problem may be solved for several references. The tail prob-
abilities are usually set by convention, motivated by the practice of hypothesis testing.

3.2. Equilibrium priors

A drawback of the analysis with the borderline priors is that the consequences of the
errors of the two kinds, choosing one action when the other would be appropriate, are
ignored. To adapt the analysis, we have to specify the losses associated with such errors.
Suppose the gain when we correctly conclude that σ2 > σ2

R (take the right action B)
is greater than correctly concluding that σ2 < σ2

R by |σ2 −σ2
R |, and the loss when we

incorrectly conclude that σ2 > σ2
R (action B instead of A) is greater than incorrectly

concluding that σ2 < σ2
R by ρ |σ2

R −σ2 |. The positive constant ρ is called the penalty
ratio. Denote the posterior mean σ̂2

post = (kσ̂2 + qλ)/(k+ q). The posterior density of
σ2 is fk+q{(k+ q)z/σ̂2

post}(k+ q)/σ̂2
post , where fh is the density of the χ2 distribution

with h degrees of freedom.
Our objective is to find the sign of the expected gain

∫ σ2
R

0
fk+q

{
(k+q)z

σ̂2
post

}
k+q

σ̂2
post

(
σ2

R − z
)
dz

−ρ
∫ +∞

σ2
R

fk+q

{
(k+q)z

σ̂2
post

}
k+q

σ̂2
post

(
z−σ2

R

)
dz

= (1−ρ)σ2
RFk+q

{
(k+q)σ2

R

σ̂2
post

}
− (1−ρ)σ̂2

postFk+q+1

{
(k+q)σ2

R

σ̂2
post

}

+ρ
(
σ2

R − σ̂2
post

)
, (3)

derived using the identity u fh(u) = h fh+1(u) for any positive h and u.
An expression similar to (3) can be derived for the loss functions that are piecewise

linear in τ. That is, suppose the claim that σ2 > σ2
R (= 1/τR), when it is correct, is
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associated with the gain τR−τ, and when it is incorrect, with the loss ρ(τ−τR). Then
the expected gain is

(ρ−1)τRFk+q

(
k+q

σ̂2
postτR

)
− k+q

k+q−1
ρ−1
σ̂2

post
Fk+q−1

(
k+q

σ̂2
postτR

)

+ρ

(
τ− k+q

k+q−1
1
σ̂2

post

)
, (4)

so long as k+q > 1.
A prior or posterior is called equilibrium if the corresponding expected gain is equal

to zero. In parallel with the borderline priors, we can represent the equilibrium priors as a
functionλ(0)(q), and discuss whether any of these priors are plausible. If all the plausible
priors lie beneath this function, then action A, appropriate when σ2 < σ2

R , is associated
with a positive expected gain; if all the plausible priors are above the function, then
action B (σ2 > σ2

R) is associated with positive expected gain for every plausible prior.
For a given q we find the corresponding equilibrium value of λ(0)(q) by the Newton

method. Since λ is involved in (3) and (4) only via σ̂2
post , we can find the ‘equilibrium’

value of σ̂2
post , denoted by σ̂2

equi , and then evaluate λ(0)(q) as {(k+q)σ̂2
equi− kσ̂2}/q =

σ̂2
equi+ k(σ̂2

equi− σ̂2)/q.

Figure 8 displays the equilibrium function λ(0) for the setting with k = 3, σ̂2 = 0.25,
ρ = 20 (solid line) and ρ = 5 (dashes), and the expected gain given by (3). The shaded
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Figure 8:Equilibrium priors for the setting with k = 3 degrees of freedom, the reference varianceσ2
R = 1 and

penalty ratios ρ = 20 (solid line) and ρ = 5 (dashes). The shaded box represents a set of plausible priors.
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box represents a set of plausible priors (3 < q < 5 and 0 < λ < 0.8). Since it lies
entirely beneath the equilibrium function, it yields an unequivocal conclusion, to take
action A, because the expected gain is positive irrespective of which (plausible) prior
is a faithful reflection of the prior information. The equilibrium functions in Figure 8
are decreasing in the range q ∈ (0,10), and they converge to the reference probability
σ2

R = 1 as q →+∞. However, they are not monotone in (0,+∞); their values dip under
σ2

R = 1. For example, with ρ = 10, λ(0)(q) attains its minimum of 0.95 at q
.
= 40, and

with ρ = 50 it attains its minimum of 0.78 at q
.
= 170.

An aplication of borderline and equilibrium priors in a different small-sample setting
is presented in Longford (2009).

4. Conclusion

We explored several alternatives to the established (unbiased) estimator σ̂2 of the
variance σ2 in the standard setting of a random sample of small size from N (μ,σ2).
We demonstrated that estimators of the form cσ̂2, and their transformations g(cσ̂2),
are superior to g(σ̂2) for functions g equal to the identity and square root, and their
reciprocals. The optimal constants c∗ are specific to the transformations, but do not
depend on σ2. For the reciprocals, an offset can be applied, as in 1/(d+ σ̂2) for d > 0.
The optimal value of d depends on σ2, but a modicum of error in the value of σ2 used
for the offset d = d(σ2) is tolerated without a substantial loss of efficiency or loss of the
superiority over the optimal estimator c∗/σ̂ or c∗/σ̂2.

We introduced the (Bayes) borderline and equilibrium priors for the variance σ2.
Although they require additional specification, a reference variance (σ2

R) and a tail
probability (α) or a loss function (penalty ratio), they choose among the two actions
optimally with respect to these specifications. Instead of the standard setting in which
a single prior is required, it suffices to specify a (convex) set of (plausible) priors. The
analysis avoids an impasse and can maintain its integrity when the process of elicitation
fails to conclude with a single prior, or when it does not take place at all. However,
specifying a smaller set of plausible priors is advantageous because it is less likely to
straddle the borderline or equilibrium curve, when the solution (the decision) is not
unequivocal. An outstanding challenge is to combine the advantages of the offset and
prior information.

Although a suitable (near-optimal) offset d is found by simulations and the border-
line or equilibrium curves are found by iterations, only a modest amount of computing
is involved (a few minutes of CPU time for all the simulations). The software developed
in R is available from the author on request.
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