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non-additive tabular data with
negative protection levels
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Abstract

Minimum distance controlled tabular adjustment (CTA) is a recent perturbative methodology for
the protection of tabular data. An implementation of CTA was recently used by Eurostat for the
protection of European Union level structural business and animal production statistics. The real-
world instances to be solved forced the classical CTA model to be extended with two features:
first, to deal with non-additive tables; second, and most important, to consider negative protection
levels. The latter extension means a significant modification of the classical CTA mixed integer
linear model. We present and compare new models for these extensions. Computational results
are reported using a set of real-world instances, and two state-of-the-art commercial solvers
(CPLEX and Xpress).
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1. Introduction

Tabular data protection is one of the two disciplines of tia¢istical disclosure control

field (microdata protection being the second one). Theésted reader is addressed to

the recent research monographs Willenborg and de Waal J2D@dningo-Ferrer and
Franconi (2006); Domingo-Ferrer and Franconi (2008) forogearview of this field.
Controlled tabular adjustment (CTA) and other minimumalise related variants were
suggested in Dandekar and Cox (2002) and Castro (2006) gdeceeent to other
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Table 1: (a) Sizes of optimization problems associated to cell ggion (CSP), controlled rounding
(CRP) and CTA. (b) Figures for a particular table of 4000 selL000 sensitive cells, and 2500 linear
relations.

Problem constraints continuous binary
CSP/CRP  Pm+2n)s 2ns n
CTA m-+4s 2n S

@

Problem constraints continuous  binary
CSP/CRP 21,000,000 8,000,000 4,000
CTA 6,500 8,000 1,000

(b)

computationally more expensive approaches for tabulaa geditection. CTA can be
seen as a method for generating a safe synthetic table, Wi close as possible
to the original table. This is obtained by solving the follog optimization problem:
given a non-safe table, with a set of sensitive cells to béepted, find the closest safe
table to the original one (according to some distance) bynaditie minimum amount
of perturbations. Some of the good properties of CTA are:

e |t can be applied to any table or set of linked tables. Evercfonplex and large
tables a solution can be obtained in reasonable time (li&ehoptimal, but with
an acceptable optimality gap).

e From a computational point of view, the size of the resultpgmization problem
is by far lower than for other well-known protection methpdach as the cell
suppression problem (CSP) (Castro (2007a)) and the ctednaunding problem
(CRP) (Salazar-Gorétez (2006)). For a table afcells,s of them being sensitive,
andm table linear relations, Tablgd) shows the dimensions of the optimization
problem formulated by CSP, CRP and CTA (number of conssaarid number
of continuous and binary variables). For example, the par figures for a table
of 4000 cells, 1000 sensitive cells, and 2500 linear retatiare provided in Table
1(b), clearly showing the different order of magnitude betwew®a dptimization
problems.

e State-of-the-art solvers, such as CPLEX (IBM ILOG CPLEX{Q)) or Xpress
(FICO Dash Xpress (2008)), can be applied to the solution T (at least for
medium size instances). Other approaches like CSP or CRIreespecialized
solution methods, either optimal or heuristic, even for lfinatances. For very
large-scale instances, it is possible to develop speeilizopefully more efficient,
procedures for CTA. Some preliminary work has already bésmesl (Castro and
Baena (2008), Goratez and Castro (2009)), but they are beyond the scope of this
work.
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e EitherL,, L. or EuclideanL, distances can be used in the objective function of
CTA. L, distances provide mixed integer quadratic problems, whiehmore
difficult to be solved, but reduce the largest deviatiohs.provides simpler
optimization problems, and it is currently mostly used bytiblzal Statistical
Institutes. All the models in this paper use

e The particular model of CTA with the; distance does not guarantee integrality of
the perturbations (i.e., they can be fractional values)emwith other distances
(L2 or L) neither guarantee integrality. Indeed, it is possible ibbam tables
where the perturbations are fractional (e.g., three-dgioeral tables are modeled
as a multicommodity flow problem (Castro (2005, 2007b)),alkhis known not
to provide integral flows). However, in most tables testethwhe L, distance,
the solution provided was integer without imposing intdiggraof perturbations
(however, we do not claim the matrices were totally unimadwi’hich is sufficient
for guaranteeing integrality). Even if perturbations waod integer, they would
still be valid for magnitude tables.

e Previous empirical testing (Castro and Giessing (2006))vsld the quality of the
solution (measured as number of cells with large significawiations) provided by
CTA was comparable, even higher, than that obtained with Offer quality criteria
(Cox, Kelly and Patil (2004)) can also be easily added to thié @rmulation.

A package implementing CTA (Castro, Gé@hez and Baena (2009)) has recently
been incorporated within a wider scheme for the protectfatractural business statis-
tics disseminated by Eurostat (project coordinated byisHitzg Netherlands, with the
participation of Destatis and Universitat Pétinica de Catalunya) (Giessing, Hunde-
pool and Castro (2009)). When applying the same scheme fortitection of animal
production statistics of the European Union two unforedeatures of CTA were re-
quired: it should deal with non-additive tables, and it ddazope with negative pro-
tection levels. While the former is a simple extension, titéet significantly changes
the optimization model; even worse, the solution space efrtiodels with negative
protection levels increases (as shown in Section 4), anéyt make harder finding an
optimal or good solution. Non-additivity may result wheratileg with externally ob-
tained tables, with empty or approximate cells. Negativ@eamtion levels can be used
to deal with correlated tables. More details will be proda@e the beginning of sections
3 and 4. In this paper we discuss several models for the ge@@&raproblem with ei-
ther positive and negative protection levels, and eithelitae or non-additive tables.
The computational results show which is the most effectasgawit to be used in prac-
tice for real-world instances. The most efficient model égrout to be as efficient as
the standard CTA model, being much more general: it can dithleither additive or
non-additive tables, and with positive and negative ptaadevels.

The structure of the paper is as follows. Section 2 outlirres gtandard CTA
formulation, which is the basis for the extensions of subset|sections. Sections 3
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and 4 show the new models to deal with non-additive tablesregative protection
levels. Section 5 reports the computational results obthimith the several resulting
models in the solution of a set of real-world instances.

2. The standard CTA model

Any CTA instance, either with one table or a number of tabdas, be represented by
the following parameters:

e Asetof cellsa,i € 4 ={1,...,n}, that satisfy some linear relatiodsa= b (a
being the vector o&’s), and a vectow € R" of positive weights for the deviations
of cell values.

e A lower and upper bound for each celt .#", respectivelyl,, andu,,, which are
considered to be known by any attacker. If no previous kndgées assumed for
celli, thenly, =0 (Ix, = —o if a> 0 is not required) and,, = +o can be used.

o Aset” ={i1,iy,...,is} C .4 of indices of confidential or sensitive cells.

e A lower and upper protection level for each confidential cell.”, respectively
Ipli andupl;, such that the released values satisfy either a + upl, or x <

a —Ipl;.

CTA attempts to find the closest safe valugs € .47, according to some distance
L, that makes the released table safe. This involves theicolof the following
optimization problem:

mxin [IXx—al|L
subjectto Ax=Db 1)
Iy < X< Uy

Xi<a—Ipliorx, >a+upl iec.”.

Problem (1) can also be formulated in terms of deviationsfte current cell values.
Definingz=x—a,1;=1x—a<0, andu, = uy—a> 0, we obtain

min |||,
subjectto  Az=0 )
l;<z<u,

z <-—lpljorz >upli ie.~.

Using thel; distance weighted by, and introducing variableg™,z~ € R" so that
z=z"—z and|z =z" 4z, and binary variableg € {0, 1}* the final MILP model for
CTAis:
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min (z"+zZ 3a
min ;W (7 +7) (3a)
subjectto  A(z" -z )=0 (3b)
0<z <u,, 0<z <l ieN\7 (3c)
ye{0,1}° (3d)

uply; <z < ay. :
= I (L ¢e

Constraints (3b) impose feasibility of the published pdrtd table. Constraints (3c)
guarantee perturbations are within allowed bounds. Caimssr(3d)—(3e) force the new
table to be safe. Whey = 1 the constraints mearpl; < z" < u, andz =0, thus the
protection sense is “upper”; when= 0 we getz" = 0 andlpl; <z < —I;, thus the
protection sense is “lower”.

3. Non-additive tables

In some instances the original cell values do not sat&fy= b. This is mainly
due to missing or approximate cell values of externally mted tables, which may
require the application of cell imputation techniques.sTiBispecially relevant for data
managed by Eurostat, where the sources are different d¢esiofrthe European Union.
In particular, this requirement was necessary for the ptie of animal production
statistics (i.e., milk production) at the European Uniod atate members levels. Tables
already protected (i.e., they contained missing inforomgtfor each member state were
received. The protection of this set of tables, togetheh wie European Union totals,
can be accomplished by first estimating values for the nds&iformation, although
they result in non-additive tables, and using RCTA to maker#sulting tables both
safe and additive. Some details about the overall procechmebe found in Giessing,
Hundepool and Castro (2009).

If the table is non-additive, i.eAa # b, then the constraints (3b) of the CTA model
have to be replaced by

Azt -z )=b-Aa (4)
Indeed, note that a deviation satisfying (4) makes the tieguiable feasible:
Ala+z" -z )=Aa+A(Z" -z )=Aa+(b—Aa) =h.
If the original table is already additive, thén- Aa= 0, and therefore (3b) and (4) are

equivalent. Since (4) is more general, it should be preferrany CTA model. Note the
complexity of (3) is the same either considering (3b) or (4).
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4. Negative protection levels

Negative protection levels may be required when protectorgelated tables. Protection
levelslpl; andupl; for cell g preclude values of the intervid, — I pl;, a + upl] for this
cell in the released table. Let us refer to this interval @s‘giotection interval”. If the
protection levels are positive thene [a — I pli, a + upk], which is the usual situation.
However, if this table is correlated with another that hasrbgreviously protected and
released, we may need a protection interval that does nhid@g; (for instance, to
avoid that the ratios between both released tables aretdtiseir real values). Of course
if & is notin the protection interval, it may be released with hargye, and then it could
be (wrongly) assumed it is no longer a confidential cell, amat it does not require
protection levels. However, because of the deviationsiugrotells and the preservation
of the constraints (4), a positive deviationgfmay be required in a solution, in which
case the protection interval has to be considered. Thig isfwunegative protection
levels is directly related with the non-additivity of theeprous section. In particular,
for the real case of the European Union animal productiotissitzs project (i.e., milk
production), the presence of non-additive tables (whoseesawere estimated) may
mean that the protection intervals have to be shifted, whigly result formally in
negative protection levels. Additional details can be bumGiessing, Hundepool and
Castro (2009).

According to the signs of the lower and upper protection lkevihere are four
possible combinations that should be addressed by the néwnt@tel. Note that the
MILP model (3) used, for instance, in Castro (2006) and D&adand Cox (2002)
is only valid for one case, when protection levels are noatieg. On the other hand,
the generic formulation (2) is valid for the four cases, lusinot in the form of a
mathematical programming problem. For instance, for age# 10 with lower and
upper protection levelpl; andupl;, the four cases according to signs imposed by the
constraints of (2) are:

e If Ipl; =3 andupl, =2, thenz < -3 orz > 2, i.e., the protection interval [3,12].

e If Ipli = 3 andupl; = —2, thenz < —3 orz > —2, i.e., the protection interval is
[7,8].

e If Ipli = —2 andupl, = 3, thenz < 2 orz > 3, i.e., the protection interval is
[12,13.

e If Iplj = —2 andupl; = —3, thenz < 2 orz > —3, i.e., any value can be released

for this cell (there is no protection interval).

If the constraints (3e) were applied when protection leaetsnegative, then some
components of" or z~ would be negative, and the objective function (3a) would no
longer represent the absolute value. This happens beca(&s) ivariableg™ andz™ are
associated to upper and lower protection deviations,aalsbé being auxiliary variables
to model thd_; distance.
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upl;

“Uz —upl

-uy,
©0) o, - (0,0) z”

upl;

() (b)

Figure 1: In grey, feasible se®' for y; = 1, when either upl< 0 (figure (a)) or upi > 0 (figure (b)).

Let us consider the model (2), and let us introdatg € R" such that = z" —z~
and|zl = z" +z . Then, considering the table may be non-additive, (2) cawtitéen

as

min le, rARS A

7tz
subject to z)=b-Aa )
I §z+—z < uy,
z"—z <-lpliorz" —z >upl e
(zf,z7)>0

Introducing binary variablege {0,1}5, (5) can be recast as the following MILP model:

ztzmy
subjectto  (z7,z,y) € Q= QN (Nic, Q%) N (Njc.»QY),

whereQ?, Q% andQ' are defined as
Q*={(z",z):Az" -~z ) =b—Aa}, (7)
QOI_{(Z|+7 ) Z|§Zi+_zi_§uzia(zi+azi_)20} iG:/V, (8)

Z
z):|
Q= {(z|+,z| Yi) 1z =7 > uphyi+lz(1-yi),
7 <L) + Uy, (37,7) 20 € (01} ies )
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=Ipl;

Ipt; ©.0) Tol, S
0,0 =lz. z

=lpl;

(@) (b)

Figure 2: In grey, feasible se®' for y; = 0, when either Ipl < 0 (figure (a)) or Ip| > 0 (figure (b)).

If yi =1, Q' reduces to
{(z,7):uph <z -7z <u;,(z",7) >0} (10)

i.e., the protection sense is “upper”yif= 0, Q' is made up of points

{(#".2):1; <z -7 <-Ipli,(z",77) >0}, (11)

i.e., the protection sense is “lower”. (10) and (11) defirefdasible sets on thg", z")
space for the deviations of sensitive cells, depending ew #re, respectively, upper
or lower protected. The feasible set (10) is shown in Figyhsidering two different
cases: eithanpl; < 0 —Figure 1a)—orupl > 0 —Figure 1b). Similarly, Figure 2 shows
the feasible set (11) for the two casges < 0 —Figure Za)— andlpl; > 0 — Figure Zb).
Note that wherpl; = 0 andupl, = 0 both figurega) and(b) of Figures 1 and 2 coincide.
From the objective function of (6), sinee > 0, we have that in an optimal solution
eitherzi+ >0orz >0, but not both. Therefore, the optimal sets of Figures 1 aack2
restricted to the thick segments on the axes. Wipgnandupl; are nonnegative, once
y; is fixed, the optimal sets are convex and we know which compowél be zero in
the optimal solutionz = 0 if y; = 1 (Figure Ib)), andz" = 0 if y; = O (Figure Zb)).
Therefore we may write an alternative formulation @rwhenl pl; > 0 andupl; > O:

1 ={(Z .7 .y) upky <77 < ugy,
Ipli(1-yi) <z < —l;(1-y),yi€{0,1}} i€.7. (12)
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Note that constraints i@} are equal to constraints (3e) of the standard CTA model.
Next Proposition 1 shows that formulation (12) is strongpent(9). Moreover, denoting
by LR(Q) the linear relaxation of the s (i.e., the set obtained by replacing conditions
yi € {0,1} in Q by 0<y; <1 in LR(Q)), the proposition also shows that the linear
relaxation of (12) is included in that of (9), and therefony &ranch-and-bound based
procedure is in theory more efficient with formulatie.

Proposition 1 Given the two sets defined in (9) and (12), if jpl0 and up] > 0, then
() Q) cQ, forallic.7;
(i) LR(Q}) C LR(Q'), foralli € .7.

Proof
(i) The proof is immediate just looking at Figured)land Zb).

(i) We first show that R(Q}) C LR(Q'). From (12), any pointz',z,y;) in LR(Q})
satisfies

uplyi < z"  <uyyi,
lz(1-y) < -z < -lpli(1-V).

Adding the two previous inequalities we obtaiply; +1,(1—yi) <z -z <
uzyi — Ipli(1—yi), and thus, from (9)(z",z ,yi) € LR(Q'). Finally we show that
LR(Q}) # LR(Q') by noting that, for instance, whep = 0 points inLR(Q}) are
of the form(0,z,0) (i.e., the thick line of Figure @)), while points inLR(Q')
are of the form(z",z,0) (i.e., the shadowed region of Figuréb}). O

Similarly, the thick lines of Figure 3 show the subset®¥ in an optimal solution.
Such a subset is nonconvex, and it can be improved by addiaoghew groups of
constraints:

(0,0)

Figure 3: Strengthened formulations f6X°, represented by the shadowed region. Additional congsain
are shown by the dashed and dotted lines.
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e First, we may add upper bounds frandz . These are represented by the dashed
line of Figure 3. The new set

QY ={(#.2):0<7 <u;,0<7 <z} (12)

is bounded, and there is no need to include the now redundastraintsl, <
Z" —z <u,, i € 4. Note that (13) only imposes bounds on variables, but no
constraint; this can significantly improve the performaata solver.

e Second, looking at Figure 3 it is clear that the convex hupahts in the optimal
set is the triangle of verticg9,0), (—I,0), (0,u). The convex hull is formulated
by the new set

' U-.
QS‘z{(z—*,a‘):z*suwfa‘,(a*,a‘)20-} (14)

The new constraing” < u, + %;‘ corresponds to the dotted line of Figure 3.
Although it reduces the feasible region, it complicatesfarenulation by adding
an extra constraint for each cele .4/, which could significantly increase the
computational time.

The following proposition 2 states the previous relatioasieen set€Y, Qi’i and
QY.

Proposition 2 Given the set®%, Q(l)‘ anngi respectively defined in (8), (13)and (14),
thenQy c Qf ¢ QU

Proof The proof is immediate from Figure 3. O

4.1. Models considered

Combining the alternative formulations f& andQ®% of previous section, (i.e., either
Q' or Qi, and eithe®, Q% or QY) in (6), it is possible to obtain different optimization
models. We note that the alternative formulat@pfor Q' can only be used ifpl; > 0
andupl > 0, whereas the alternative formulatio@% anngi for Q% are always valid.

We have considered eight different models, which are testeéde computational
results of Section 5. The objective function is the same far ¢ight models, and
corresponds to that of (6); the models only differ in the espntation of the feasible set.
The first group of four models considers the formulatrior anyi € .7, independently
of the sign oflpl; andupl; (i.e., even wherpl; > 0 andupl, > 0 formulationQ' is
used). These four models will be denoted asrteemodels, and their feasible sets are
respectively formulated as:



Jordi Castro 13

Qnewy = QN (Niesr Q)N (Niesr @), (15)
Qe = QN (N (@F NQY)) N (Nier @), (16)
Qnewy = QN (Nier () NQF) N (N1crQ), (17)
Qnewy, = Q m(miew(QimQ‘{ing)m(mieyQi). (18)

The second group of four models ug@'sfor sensitive cells € .7 with eitherupl, < 0

or Iplj < 0, and Qi1 whenupl > 0 andlpl; > 0. They are thus a hybrid between
the standard CTA model of (3) and the general model for negatrotection levels
of (6). They will be referred as thibybrid models. Making a partition of the set of
sensitives cells = .~ U.", where.~ = {i € ./ : Ipl; < O orupl < 0} and
ST ={ie.”:1pli > 0andupl, > 0}, the feasible sets of the four hybrid models are:

Qnyt, = QAN (Nier Q)N (Nicsr+ Q) N (Nier- Q) (19)
Qnyp, = QN <m|eA/Q ﬂQO‘)) N (Niesr+ Q1) N (Nier-Q), (20)
Quyo, = QN (M (@F N0 ) N (i QN (M @), (21)
Quy, = QN (e (@2 NQTNQY) N(Niesr QDN (Nicr Q). (22)

5. Computational results

The eight optimization models resulting from the feasildts slefined by (15)—(22) and
the objective function of (6) have been implemented usiegdWPL modelling system
(Fourer, Gay and Kernighan (2002)). A set of real-worldanses have been solved with
the eight models, using both the MILP solvers of CPLEX 12.d Apress Optimizer
19.00.00. The particular values of in these real-world instances were specifically
computed (i.e., they were neither 1, nor the cell value)tt#diruns have been performed
on a Linux Dell Precision T5400 workstation with 16GB of memand four Intel
Xeon E5440 2.83 GHz processors, without exploitation oajalism capabilities (to
fairly compare CPLEX and Xpress solution times, since ouLEX version allows
multithreading whereas the Xpress version do not). A MILBroglity gap of 0 was set
for all the executions. The MILP optimality gap is defined as

_ |best—Ib|

. 0,
1+ pesi 0% (23)

best being the best current solution, amiol the best current lower bound. A zero
optimality gap is impractical with real-world instancesths ones considered in this



14 Extending controlled tabular adjustment for non-additive tabular data with negative protection levels

work, since it provides prohibitively large executions.vitver, it was used to test the
strength of each formulation.

Feasibility and integrality tolerances were also reduagdbth solvers; they were
set, respectively, to 1§ and 0 for CPLEX and to 1€ and 108 for Xpress (since
it does not allow integrality tolerances smaller than thesfiility tolerance). Such a
reduction is required to avoid solutions with underpratdatells. Indeed, (9) and (12)
impose, among other constraints,

zZr—z <—lpli(1-y)+uzyi, Z" <uz Vi

In practical tabless, andl; may be very large, e.gu; = |, = M. If, because of the
feasibility and integrality tolerance, we get a solutign- € instead ofy; = 0, then the
above constraints would be

z'—z < -lIpli(l—€e)+Me #—Ipli, 7 <Me#0.

Therefore, sensitive celllwould result underprotected. Decreasing the feasibidikgrt
ance, we make the abovevalue smaller, but the problem becomes much harder and
the probability of the problem being reported as infeasiblehen it is feasible — is in-
creased. A better option is to avoid bifyvalues for cell deviations, but this means the
real cell bounds (lower and upper bounds) should be smatisnvork we set a bound
M = 10° for cell deviations (i.e., if the real bound is greater ttnthen it is replaced
by M; otherwise the real bound is used). However, even with susbuad on the de-
viations and with the above small feasibility and intedyalolerances, some solutions
reported unprotected cells, as shown in below tables.

Table 2 shows the dimensions of the real-world instancesidered, which were
generated in Statistics Germany from data provided by EatroSolumns, s, mand
“N.coef” report, respectively, the number of cells, saumsitells, linear relations of the
table, and nonzero coefficients of matAxThe nine instances can be grouped in small
instances (the first three), medium size instances (theleniicee), and large instances
(the last three). The medium and large instances can bedawadi difficult since they

Table 2: Dimensions of the test instances.

Instance n S m N.coef
APS-Jan 87 5 35 177
APS-Feb 87 5 35 177
APS-Mar 87 5 35 177
sbhs-E 1430 382 991 4680
sbhs-C 4212 1135 2580 13806
dposrel 9568 1492 3956 22698
sbhs-Qy 28288 7142 13360 87022
shs-0 28288 7131 13360 87022

balofpay-eus-pl 39060 2483 37818 175965
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Table 3: Results for each model and solver (three smaller instances)

Instance CPLEX Xpress
model CPU f* B&B n.u. CPU f* B&B n.u.
APS-Jan
newg 0.004 7.12 0 0 0 7.12 1 0
new 0.004 7.12 0 0 0 7.12 1 0
news 0.004 7.12 0 0 0 7.12 1 0
new; 0 7.12 0 0 0 7.12 1 0
hyby 0 7.12 0 0 0 7.12 1 0
hyby 0.004 7.12 0 0 0 7.12 1 0
hybs 0.004 7.12 0 0 0 7.12 1 0
hyhy 0.004 7.12 0 0 0 7.12 1 0
APS-Feb
newg 0.008 66.85 6 0 0 66.85 15 0
new 0.008 66.85 6 0 0 66.85 15 0
news 0.004 66.85 11 0 0 66.85 15 0
new; 0.004 66.85 11 0 0 66.85 15 0
hyby 0.008 66.85 6 0 0 66.85 3 0
hyb, 0.004 66.85 6 0 0 66.85 3 0
hybs 0.004 66.85 7 0 0 66.85 3 0
hyhy 0.004 66.85 7 0 0 66.85 3 0
APS-Mar
newg 0.008 11.90 1 0 0 11.90 1 0
newp 0.004 11.90 1 0 0 11.90 1 0
news 0.004 11.90 3 0 0 11.90 1 0
new; 0.004 11.90 3 0 0 11.90 1 0
hyby 0.004 11.90 0 0 0 11.90 1 0
hyb, 0.004 11.90 0 0 0 11.90 1 0
hybs 0.004 11.90 0 0 0 11.90 1 0
hyhy 0 11.90 0 0 0 11.90 1 0

have a complex structure, and a significant number of calissttaints and sensitive
cells. These nine instances are related to data from stalttusiness statistics, balance
of payment, and animal production statistics of the Euroggsaion.

The results for each model and solver, for each group of timgances, i.e., small,
medium size and large, are respectively reported in Tablés Golumns “CPU",f*,
“B&B” and “n.u.” provide, respectively, the CPU solutionrte, best objective function
reached, number of branch-and-bound nodes explored, anterwf underprotected
cellsin the solution. A time limit of 7200 seconds was setllithe executions. When this
time limit is reached, the CPU time column shows the optitpalap (23) of the solution
obtained within the time limit. We provide results with bdfPLEX and Xpress since
they are the two solvers mainly used in the statistical d|ale control community.
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Table 4: Results for each model and solver (three medium size instanc

Instance CPLEX Xpress

model CPU £ B&B n.u. CPU f* B&B n.u.
sbs-E

new 42.86 107442.27 7406 0 @

news 6y )

newg 364.71 107720.37 107090 O @

new 167.49 107439.65 37401 0 @

hyby 14.26 107442.27 1056 0 @

hyby 12.73 107439.65 1086 0 @

hyhs 10.36 107853.98 770 0 ((105%) 121084.67 3014871 0
hyhy 9.48 107853.26 885 0 @

sbs-C

new  @(0.07%) 313562.69 305971 O @

newp (0 07%) 313655.95 213097 O @

news 2 (46%) 314547.38 161825 O @

new, 2(1.3%) 313742.96 192901 O &

hyby 58.70 331425.16 525 0 @

hyby 52.69 315160.90 518 0 @

hybs 904.37 324572.49 103510 0 @

hyhy  @(0.004% 314001.24 1301687 O @

dposrel

new; 10.2  7807.98 1533 62 8  7808.28 %61 0
new 9.9  7807.98 1422 62 10  7808.28 915 0
news 180  7807.98 1723 62 8  7813.72 517 0
new 18.8  7807.99 1943 63 8  7813.72 517 0
hyby 8.9  7808.28 1231 1 6  7808.28 299 0
hyhy 8.5  7808.28 1238 1 5  7808.29 361 0
hyhs 13.6  7808.28 1939 1 6  7813.72 311 1
hyhy 13.7  7808.28 2047 1 6  7813.72 311 1

() No feasible solution found, problem reported as infeasible
() Time limit reached

However, our purpose is not to compare the two differentessivbut the models and to
show the difficulties found by the optimization solvers. iardables 3-5 the following
observations can be made:

e Both CPLEX and Xpress, with the eight different models, ssstully solved the
very small instances of Table 3 in less than 1 second, exgaery few branch-
and-bound nodes.

e The medium size and large instances of Tables 4-5 are diffmustate-of-the-
art solvers. For some instances and models, CPLEX and Xprssnot able to
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find either an optimal solution (executions marked wit®an Tables 4-5), or a
feasible solution within the 7200 seconds time limit (ex@ms marked with &
in Table 5). In some CPLEX executions the optimization pssceven failed by
numerical errors of the solver (runs marked witf¥dn Table 5).

e For some combinations instance—model the optimizatioblpros are reported
as infeasible (when they are feasible) due to the smalllfdigitolerances used.
These executions are marked withtain Tables 4-5. However, if the feasibility

Table 5: Results for each model and solver (three larger instances).

Instance CPLEX Xpress

model CPU f* B&Bnodes n.u. CPU f* B&Bnodes n.u.
sbhs-
new; 2 (20%) 414666.45 26096 0
new @ (229%) 417332.53 20699 0
news 3
new (2(33%) 417841.08 22207 0O
hyby @
hyb @
hybs “
hyhy *
sbs-0y
new; (2)(229%) 408432.48 29318 0
new ) (56%) 767929.98 16906 0
news @(31%) 416436.74 19107 0
new, )
hyby 4
hyb, (€8]
@
@

)
)
)
)

hybs
hyby
balofpay-eus-p1
newg
news
news
new,
hyby
hyb,
hybs
hyh,
(1) No feasible solution found, problem reported as infeasible
@ Time limit reached
(
(

)
3) Unrecoverable failure: singular basis
4)

2)(88%) 5366.63 6407
(88%) 5366.63 6507
(88%) 7300.04 5351
(88%) 7300.04 5281
(54%) 4708.11 5727
(56%) 4554.76 9690
(

2(55%)  5303.8 1672
€y

O O O o o o o

Time limit reached with no integer solution
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tolerance is increased, then we obtain bad solutions, wilymrificant number
of underprotected cells. This undesirable effect due weldeasibility tolerances
even happens for small instances; for instance, four otiteofive sensitive cells of
Table 3 would have been underprotected in the optimal swlitia feasibility tol-
erance of 10° had been used. Even with the tight feasibility tolerancesictered,
we see that executions of instance “dposrel” of Table 4 pleti63 underprotected
cells for thenewmodels; this value was reduced to one underprotected celhwh
thehybrid model was used.

e The additional constraints (14) in modelews, new,, hyb; andhyh, may signif-
icantly increase the solution time. For instance, mouei; of instance “shs-E”
with CPLEX takes 42.86 seconds, while modetss andnew, take 364.71 and
167.49 seconds; similarly, for CPLEX and instance “dpdsrabdelsnew; and
new,;, andhyb; andhyhy, require a 100% and a 50% more time than models;
andnew, andhyb, andhyh,, respectively. However, as suggested by Proposition
2 the number of branch-and-bound nodes may be reduceds thissérved imew
models of instance “dposrel” with Xpress, amgbrid models of instance “sbs-E”
with CPLEX, both of Table 4. Therefore, constraints (14)lddae of help in some
situations.

e In general, thehybrid model is preferred, since it is more efficient. This is
consistent with Proposition 1. For instance, in Table 4 &ys*E” and CPLEX,
the four executions with thlybrid models are much faster than with thew
variants. This is also observed in instance “balofpay&lisand Xpress, where
the hybrid models provided better solutions than tiewvmodels within the time
limit. However, in some cases, when thygbrid models have difficulties, theew
ones can be an alternative, as shown for instance glas¥®CPLEX in Table 5.

6. Conclusions

From the computational and theoretical results with thessdmodels tested, it can be
concluded that thlaybrid approach is in general more efficient than tieevmodels for
the solution of CTA instances with either positive or negatprotection levels. It has
also been shown that both types of models might have diffemathen exposed to real-
world and complex CTA instances, even using the best todagnigation solvers. This
motivates further development on optimization methodsdifficult CTA instances.
Some steps have been done along these lines using, e.gngaoitine or Benders
decomposition approaches (Castro and Baena (2008)), anstieblock coordinate
decompositions (Gomez and Castro (2009)). However, there is not yet a defanitiv
approach for any CTA instance. This is part of the furtherkwvtar be done in the
statistical disclosure control field.
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