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Abstract

A common problem faced by statistical offices is that data may be missing from collected data
sets. The typical way to overcome this problem is to impute the missing data. The problem
of imputing missing data is complicated by the fact that statistical data often have to satisfy
certain edit rules, which for numerical data usually take the form of linear restrictions. Standard
imputation methods generally do not take such edit restrictions into account. In the present article
we describe two general approaches for imputation of missing numerical data that do take the edit
restrictions into account. The first approach imputes the missing values by means of an imputation
method and afterwards adjusts the imputed values so they satisfy the edit restrictions. The second
approach sequentially imputes the missing data. It uses Fourier-Motzkin elimination to determine
appropriate intervals for each variable to be imputed. Both approaches are not based on a specific
imputation model, but allow one to specify an imputation model. To illustrate the two approaches
we assume that the data are approximately multivariately normally distributed. To assess the
performance of the imputation approaches an evaluation study is carried out.
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1. Introduction

National statistical institutes (NSIs) publish figures on many aspects of society. To this
end, these NSIs collect data on persons, households, enterprises, public bodies, etc. A
major problem that has to be faced is that data may be missing from the collected data
sets. Some units that are selected for data collection cannot be contacted or may refuse to
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respond altogether. This is called unit non-response. Unitnon-response is not considered
in this article. For many records, i.e. the data of individual respondents, data on some of
the items may be missing. Persons may, for instance, refuse to provide information on
their income or on their sexual habits, while at the same timegiving answers to other,
less sensitive questions on the questionnaire. Enterprises may not provide answers to
certain questions, because they may consider it too complicated or too time-consuming
to answer these specific questions. Missing items of otherwise responding units is called
item non-response. Whenever we refer to missing data in thisarticle we will mean item
non-response.

Missing data is a well-known problem that has to be faced by basically all institutes
that collect data on persons or enterprises. In the statistical literature ample attention
is hence paid to missing data. The most common solution to handle missing data in
data sets is imputation, where missing values are estimatedand filled in. An important
problem of imputation is to preserve the statistical distribution of the data set. This is
a complicated problem, especially for high-dimensional data. For more on this aspect
of imputation and on imputation in general we refer to Kaltonand Kasprzyk (1986),
Rubin (1987), Kovar and Whitridge (1995), Schafer (1997), Little and Rubin (2002),
and Longford (2005).

At NSIs the imputation problem is further complicated owingto the existence of
constraints in the form of edit restrictions, or edits for short, that have to be satisfied
by the data. Examples of such edits are that the profit and the costs of an enterprise
have to sum up to its turnover, and that the turnover of an enterprise should be at least
zero. Records that do not satisfy these edits are inconsistent, and are hence considered
incorrect. While imputing a record, we aim to take these edits into account, and thus
ensure that the final, imputed record satisfies all edits. Theimputation problem at NSIs
is hence given by: impute the missing data in the data set under consideration in such a
way that the statistical distribution of the data is preserved as well as possible subject to
the condition that all edits are satisfied by the imputed data.

For academic statisticians the wish of NSIs to let the data satisfy specified edits may
be difficult to understand. Statistically speaking there isindeed hardly a reason to let a
data set satisfy edits. However, as Pannekoek and De Waal (2005) explain, NSIs have
the responsibility to supply data for many different, both academic and non-academic,
users in society. For the majority of these users, inconsistent data are incomprehensible.
They may reject the data as being an invalid source or make adjustments themselves.
This hampers the unifying role of NSIs in providing data thatare undisputed by dif-
ferent parties such as policy makers in government, opposition, trade unions, employer
organizations, etc. As mentioned by Särndal and Lundström (2005, p. 176): “Whatever
the imputation method used, the completed data should be subjected to the usual checks
for internal consistency. All imputed values should undergo the editing checks normally
carried out for the survey”.

Simple sequential imputation of the missing data, where edits involving fields that
have to be imputed subsequently are not taken into account while imputing a field,
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may lead to inconsistencies. Consider, for example, a record where the values of two
variables,x andy, are missing. Assume these variables have to satisfy three edits saying
that x is at least 50,y is at most 100, andy is greater than or equal tox. Now, if x is
imputed first without taking the edits involvingy into account, one might impute the
value 150 forx. The resulting set of edits fory, i.e.y is at most 100 andy is greater than
or equal to 150, cannot be satisfied. Conversely, ify is imputed first without taking the
edits involvingx into account, one might impute the value 40 fory. The resulting set of
edits forx, i.e.x is at least 50 and 40 is greater than or equal tox, cannot be satisfied.

In this article we develop two general approaches for imputation of missing numeri-
cal data that ensure that edits are satisfied, while at the same time allowing one to specify
a statistical imputation model. Despite the fact that much research on imputation tech-
niques has been carried out, imputation under edits is stilla rather neglected area. As far
as we are aware, apart from some research at NSIs (see, e.g., Tempelman, 2007) hardly
any research on general approaches to imputation under editrestrictions has been carried
out. An exception is imputation based on a truncated multivariate normal model (see,
e.g., Geweke, 1991, and Tempelman, 2007). Imputation basedon a truncated multivari-
ate normal model can take the edit restrictions we consider in this article into account.
Using this model has two drawbacks, however. First of all, the truncated multivariate
model is computationally very demanding and complex to implement in a software pro-
gram. Second, it is obviously only suited for data that (approximately) follow a truncated
multivariate normal distribution, not for data that followother distributions. Some soft-
ware packages developed by NSIs, such as GEIS (Kovar and Whitridge, 1990), SPEER
(Winkler and Draper, 1997), SLICE (De Waal, 2001) and Banff (Banff Support Team,
2008), also ensure that edits are satisfied after imputation. However, these packages only
apply relatively simple imputation models, whereas our approaches allow more compli-
cated imputation models.

Both approaches we describe in this article allow one to separate the imputation
model from how the edits are handled. In other words, the two approaches described are
not based on a specific imputation model, but allow one to specify an imputation model.
For both approaches a broad class of imputation models can beapplied.

To illustrate the two approaches we will assume in this article that the data are
approximately multivariately normally distributed. In fact, in our calculations we will
treat the unknown distribution of the data as being a multivariate normal distribution
exactly. For data that have to satisfy edits defined by linearinequalities this is surely
incorrect, because at best the data could follow a truncatednormal distribution but
never a regular normal distribution. Our simplification makes it relatively easy to
determine marginal and conditional distributions, which are needed for one of the
two imputation approaches examined in this article. We onlyuse the (approximate)
multivariate normal model to illustrate how our general approaches can actually be
applied in practice. We have selected the (approximate) multivariate normal model for
computational convenience. We certainly do not want to suggest that this model is the
most appropriate one for the data sets we have used in our evaluation study. Another
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computationally convenient choice would have been to use hot-deck imputation instead
of the (approximate) multivariate normal model.

In order to estimate the parameters of the multivariate normal distribution, we have
used the EM algorithm. As starting values for the EM algorithm we have used the
observed means and covariance matrix of the complete cases.Our implementation of
the EM algorithm is based on Schafer (1997).

The remainder of this article is organised as follows. Section 2 first discusses the kind
of linear edits on which we will focus in this article. Section 3 describes an adjustment
approach where imputed records are later adjusted so they satisfy the specified edits. A
second imputation approach is described in Section 5. A fundamental role in this ap-
proach is played by Fourier-Motzkin elimination. We refer to this imputation approach
as the FM approach. The Fourier-Motzkin elimination technique itself is explained in
Section 4. Section 6 illustrates the FM approach by means of an example. An evaluation
study and its results for the (approximate) multivariate normal model are described in
Section 7. In that section we compare the results of the adjustment approach with the
FM approach for the multivariate normal imputation model. Finally, Section 8 concludes
the article with a short discussion.

2. Linear edit restrictions

In this article we focus on linear edits for numerical data. Linear edits are either linear
equations or linear inequalities. We denote the number of continuous variables byn, and
the variables themselves byxi (i = 1, . . . ,n). We assume that editj ( j = 1, . . . ,J) can be
written in either of the two following forms:

a1 jx1+ . . .+an jxn+b j = 0, (1)

or

a1 jx1+ . . .+an jxn+b j ≥ 0. (2)

Here theai j and theb j are certain constants, which define the edit.
Edits of type (1) are referred to as balance edits. An exampleof such an edit is

T = P+C, (3)

whereT is the turnover of an enterprise,P its profit, andC its costs. Edit (3) expresses
that the profit and the costs of an enterprise should sum up to its turnover. A record
not satisfying this edit is obviously incorrect. Edit (3) can be written in the form (1) as
T −P−C= 0.
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Edits of type (2) are referred to as inequality edits. An example is

T ≥ 0, (4)

expressing that the turnover of an enterprise should be non-negative. An inequality
edit such as (4), expressing that the value of a variable should be non-negative, is also
referred to as a non-negativity edit.

3. An adjustment approach

A straightforward approach to let imputed values satisfy specified edits is to use an
adjustment approach consisting of two steps. In the first step the missing data are
imputed without taking the edits (1) and (2) into account. These missing data can, for
instance, be imputed by assuming that the data follow a multivariate normal distribution,
and use a standard imputation method for this situation (see, e.g., Little and Rubin, 2002,
and Schafer, 1997). As already mentioned, in this article weillustrate our approaches by
indeed assuming that the data follow a multivariate normal distribution, and impute the
missing data of a record by drawing values from the appropriate estimated conditional
distribution for the missing data given the observed values. We refer to this as the first
imputation step.

We denote the values after the first imputation step for the record under consideration
by xfirst,i (i = 1, . . . ,n). In the second step, the adjustment step, the final values in
the record under consideration,xfinal,i (i = 1, . . . ,n), are determined by minimising the
objective function

∑
i

wadj,i |xfirst,i −xfinal,i | (5)

subject to the condition that the valuesxfinal,i (i = 1, . . . ,n) satisfy all edits (1) and (2) and
the condition that for all variablesxi that were observedxfinal,i equals the corresponding
observed value. The latter condition means that only the values imputed in the first
imputation step may be modified. In (5) thexfirst,i (i = 1, . . . ,n) are known values and
the xfinal,i (i = 1, . . . ,n) are the unknowns. Thewadj,i (i = 1, . . . ,n) are non-negative
adjustment weights, reflecting how serious one considers a change of a unit in variable
xi to be.

The adjustment weightswadj,i (i = 1, . . . ,n) can be calculated in many ways. In our
application we have setwadj,i = 1/x̄first,i , where ¯xfirst,i is the average value of thei-th
variable. In this way, the objective function (5) takes the relative deviation betweenxfirst,i

andxfinal,i rather than the absolute deviation into account. All the weightswadj,i = 1/x̄first,i

(i = 1. . . ,n) were indeed non-negative.
The problem of minimising the objective function (5) subject to the condition that

the valuesxfinal,i (i = 1, . . . ,n) satisfy all edits (1) and (2) can be formulated as a linear
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programming problem by introducing additional variablesui (i = 1, . . . ,n) and adding
the constraints

ui ≥ xfirst,i −xfinal,i (6)

and

ui ≥ xfinal,i −xfirst,i . (7)

It is easy to see that the problem of minimising the objectivefunction

∑
i

wadj,iui (8)

subject to (6), (7), the condition that the valuesxfinal,i (i = 1, . . . ,n) satisfy all edits (1)
and (2) and the condition that for all variablesxi that were observedxfinal,i equals the
corresponding observed value yields the same optimal valuefor the objective function
(8) and the same optimal values forxfinal,i (i = 1, . . . ,n) as minimising (5) subject to
the condition that the valuesxfinal,i (i = 1, . . . ,n) satisfy all edits (1) and (2), and the
condition that for all variablesxi that were observedxfinal,i equals the corresponding
observed value (see also Chvátal, 1983).

In the problem of minimising (8) subject to (6), (7), the condition that the values
xfinal,i (i = 1, . . . ,n) satisfy all edits (1) and (2), and the condition that for all variables
xi that were observedxfinal,i equals the corresponding observed value, thexfinal,i andui

(i = 1, . . . ,n) are the unknowns. This linear programming problem can, for instance,
be solved by means of the well-known simplex algorithm, an interior-point algorithm
(see, e.g., Chv́atal, 1983, and Nemhauser and Wolsey, 1988) or a generalizedreduced
gradient method (see, e.g., Lasdon et al., 1978).

The adjustment approach is quite a general and logical approach. In the first step one
can apply the imputation method and imputation model that are best from a statistical
point of view for the data under consideration. In the secondstep the imputed values are
(hopefully only slightly) adjusted so they satisfy the specified edits.

The main strength of the adjustment approach is its simplicity: one does not need to
implement complicated algorithms in a computer program or buy special-purpose soft-
ware. Standard software, such as Excel, suffices to implement the adjustment approach.
In our application we have indeed used the solver offered by Excel. To be precise: we
have used the generalized reduced gradient method as implemented in the GRG2 code
of the Excel solver (see Lasdon et al., 1978, and Fylstra, 1998). We have used the GRG2
code of Excel instead of the implementation of the simplex algorithm in Excel as we
noted that the GRG2 method as implemented in Excel resulted in a larger number of
records not “lying on the boundary of the feasible region defined by the edits”.

In our evaluation study we pay special attention to the number of records “lying on
the boundary of the feasible region defined by the edits”. In this article we define a
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record to “lie on the boundary of the feasible region defined by the edits” if at least one
of the inequality edits is satisfied with equality. We are aware that this is a ambiguous
definition, and also one that differs from the usual definition of “lying on the boundary”
as used in the theory of linear programming. Namely, our definition of “lying on the
boundary of the feasible region defined by the edits” is dependent on how the edits
are stated, rather than only on the shape of the feasible region. For instance, an edit
given by “x = y+ z” can also be expressed as two inequality edits: “x ≤ y+ z” and
“x≥ y+z”. In the latter case,all records will lie on the boundary of the feasible region
defined by the edits after imputation according to our definition. In our definition we
implicitly assume that edits are stated as balance edits instead of (pairs of) inequality
edits whenever possible. In all practical situations occurring at statistical offices we have
encountered so far this was always the case.

The reason why we pay special attention to the number of records on the boundary
of the feasible region defined by the edits is that, when the adjustment approach is
applied, a record that does not satisfy the edits after the first imputation step, will often
be adjusted in such a way that the final, adjusted, record lieson the boundary of the
feasible region defined by the edits.

In the next three sections we describe our second imputationapproach, the FM
approach. We begin the description of the FM approach by explaining Fourier-Motzkin
elimination.

4. Eliminating variables by means of Fourier-Motzkin elimination

Fourier-Motzkin elimination (see, e.g., Duffin, 1974, and De Waal and Coutinho, 2005)
is a technique to project a set of linear constraints involving m variables onto a set of
linear constraints involvingm−1 variables. The original set of constraints involvingm
variables can be satisfied if and only if the corresponding, projected set of constraints
involving m− 1 variables can be satisfied. The standard version of Fourier-Motzkin
elimination handles only inequalities as constraints. We use an extended version of
Fourier-Motzkin elimination that can also handle equations. In our application of
Fourier-Motzkin elimination the constraints are defined bythe edits.

In order to eliminate a variablexr from the set of current edits by means of Fourier-
Motzkin elimination, we start by copying all edits not involving this variable from the
set of current edits to a new set of editsΨ.

If variable xr occurs in an equation, we expressxr in terms of the other variables.
Say,xr occurs in editsof type (1), we then writexr as

xr =−
1

ars

(

bs+∑
i 6=r

aisxi

)

(9)
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Expression (9) is used to eliminatexr from the other edits involvingxr . These other
edits are hereby transformed into new edits, not involvingxr , that are logically implied
by the old ones. These new edits are added to our new set of edits Ψ. Note that if
the original edits are consistent, i.e. can be satisfied by certain valuesui (i = 1, . . . ,m),
then the new edits are also consistent as they can be satisfiedby ui (i = 1, . . . ,m; i 6= r).
Conversely, note that if the new edits are consistent, say they can be satisfied by valuesvi

(i = 1, . . . ,m; i 6= r), then the original edits are also consistent as they can be satisfied by
the valuesvi (i = 1, . . . ,m) wherevr is defined by fillingvi (i = 1, . . . ,m; i 6= r) into (9).

If xr does not occur in an equality but only in inequalities, we consider all pairs of
edits (2) involvingxr . Suppose we consider the pair consisting of edits and editt. We
first check whether the coefficients ofxr in those inequalities have opposite signs, i.e.
we check whetherars×art < 0. If this is not the case, we do not consider this particular
combination(s, t) anymore. If the coefficients ofxr do have opposite signs, one of the
edits, say edits, can be written as an upper bound onxr , i.e. as

xr ≤−
1

ars

(

bs+∑
i 6=r

aisxi

)

, (10)

and the other edit, editt, as a lower bound onxr , i.e. as

xr ≥−
1

art

(

bt +∑
i 6=r

ait xi

)

. (11)

Edits (10) and (11) can be combined into

−
1

art

(

bt +∑
i 6=r

ait xi

)

≤ xr ≤−
1

ars

(

bs+∑
i 6=r

aisxi

)

,

which yields an implied edit not involvingxr given by

−
1

art

(

bt +∑
i 6=r

ait xi

)

≤−
1

ars

(

bs+∑
i 6=r

aisxi

)

. (12)

The implied edit (12) is added to our new set of editsΨ. After all possible pairs
of edits involvingxr have been considered and all implied edits given by (12) have
been generated and added toΨ, we delete the original edits involvingxr that we started
with. In this way we obtain a new set of editsΨ not involving variablexr . This set of
editsΨ may be empty. This occurs, for instance, when all current edits are inequalities
involving xr and the coefficients ofxr in all those inequalities have the same sign. Note
that if the original edits are consistent, say they can be satisfied by certain valuesui

(i = 1, . . . ,m), then the new edits are also consistent as they can be satisfied by ui



Wieger Coutinho, Ton de Waal and Marco Remmerswaal 47

(i = 1, . . . ,m; i 6= r). This is by definition also true if the new set of edits is empty.
Conversely, note that if the new edits are consistent, say they can be satisfied by certain
valuesvi (i = 1, . . . ,m; i 6= r), then the minimum of the right-hand sides of (12) for the
vi (i = 1, . . . ,m; i 6= r) is larger than, or equal to, the maximum of the left-hand sides of
(12) for thevi (i = 1, . . . ,m; i 6= r). This implies that we can find a valuevr such that

−
1

art

(

bt +∑
i 6=r

ait vi

)

≤ vr ≤−
1

ars

(

bs+∑
i 6=r

aisvi

)

for all pairssandt,

which in turn implies that the original edits are consistent. We have demonstrated the
main property of Fourier-Motzkin elimination: a set of edits is consistent if and only if
the set of edits after elimination of a variable is consistent. Note that as one only has
to consider pairs of edits, the number of implied edits is obviously finite. We illustrate
Fourier-Motzkin elimination by means of the example below.

Example: Suppose there are four variables,T (turnover),P (profit), C (costs), andN
(number of employees), and that the edits are given by (3), (4),

P≤ 0.5T, (13)

−0.1T ≤ P, (14)

T ≤ 550N. (15)

If we eliminate variableP, we use equation (3) to expressP in terms ofT andC.
That is, we useP= T −C. After Fourier-Motzkin elimination, we obtain the edits (4),
(15),

T −C≤ 0.5T, (equivalently: 0.5T ≤C) (16)

and

−0.1T ≤ T −C (equivalently:C≤ 1.1T). (17)

The main property of Fourier-Motzkin elimination says thatthe original set of edits
(3), (4), and (13) to (15) forT, P, C andN can be satisfied if and only if the set of edits
(4), and (15) to (17) forT, C andN can be satisfied.

This was an example of Fourier-Motzkin elimination if the variable to be eliminated
is involved in an equation. We now use the resulting set of edits (4), and (15) to (17)
for variablesT, C andN to give an example of the elimination of a variable involved
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in inequalities only. If we eliminate variableC from edits (4), and (15) to (17), we first
copy the edits not involvingC, i.e. edits (4) and (15). Moreover, we can combine edits
(16) and (17) to obtain

0.5T ≤ 1.1T, (18)

which is equivalent to (4). So, eliminatingC from (4), and (15) to (17) leads to edits (4)
and (15). The main property of Fourier-Motzkin eliminationsays that the set of edits
(4), and (15) to (17) forT, C andN can be satisfied if and only if edits (4) and (15) for
T andN can be satisfied. Combining the two results we have found, we conclude that
the original set of edits (3), (4), and (13) to (15) forT, P, C andN can be satisfied if and
only if edits (4) and (15) forT andN can be satisfied. �

5. An imputation approach based on Fourier-Motzkin elimination

The FM approach consists of the following steps:

0. Assume a statistical imputation model for the data, and – if necessary for the
model – estimate the model parameters.

We order the variables to be imputed from the variable with the most missing values
to the variable with the least missing values. If two of more variables have the same
number of missing values, we order them in an arbitrary way. For each record to be
imputed, we apply Steps 1 to 5 below. We repeat this process until all records have been
imputed.

1. Fill in the values of the non-missing data into the edits. This leads to a set of edits
E(0) involving only the variables to be imputed for the record under consideration.

2. Use Fourier-Motzkin elimination to eliminate the variables to be imputed for the
record under consideration from set of editsE(0) in the fixed order described
above until only one variable remains. The set of edits afterthe i-th variable to be
imputed has been eliminated is denoted byE(i). The final set of edits defines a
feasible interval for the remaining variable. Setk equal to the number of variables
to be imputed for the record under consideration.

3. Draw a value for thek-th variable to be imputed.
4. If the drawn value lies inside the feasible intervalE(k−1), accept it and go to Step

5. If it lies outside the feasible interval, reject it and return to Step 3.
5. If k = 1, all variables have been imputed and we stop. Otherwise, wefill in the

drawn value for the selected variablek into the edits inE(k−2). This defines a
feasible interval for the (k−1)-th eliminated variable. We updatek by k := k−1,
and go to Step 3.
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Note that the theory developed in Section 4 implies that if the record to be imputed
can be imputed consistently, the feasible interval determined in Step 2 or 5 is never
empty.

In Step 0 one can either assume an implicitly defined statistical imputation model,
for instance when one wants to apply hot-deck imputation, oran explicitly defined
imputation model, such as the multivariate normal model like we do in this article. In
both cases we suggest to draw a value for the variable to be imputed from the conditional
distribution of the selected variable given all known values, either observed or already
imputed ones.

If the feasible interval determined in Step 2 has width 0, there is only one feasible
value for the variable under consideration. In this case it is not necessary to draw a value
in Step 3. Instead we immediately impute the only feasible value. In some other cases
the width of the feasible interval determined in Step 2 may berather small. In those
cases many values may need to be drawn before a value inside the feasible interval is
drawn. We therefore set a limit,Ndraw, on the number of times that a value for a particular
variable may be drawn. If this limit is reached, and no value inside the feasible has been
drawn, the last value drawn is set to the nearest value of the feasible interval. By means
of Ndraw one can indirectly control the number of imputed records on the boundary of
the feasible region defined by the edits. IfNdraw is set to a low value, relatively many
imputed records will be on this boundary; ifNdraw is set to a high value, relatively few
imputed records will be on the boundary.

The variables are imputed in reverse order of elimination. Since we have ordered the
variables to be imputed from the variable with the most missing values to the variable
with the least missing values before applying Steps 1 to 5 of the above algorithm, the
variables are imputed in order of increasing number of missing values. That is, the
variable with the least missing values is imputed first and the variable with the most
missing values last.

As mentioned before, to illustrate our approaches we assumein this article that the
data are multivariately normally distributed, and we use the EM algorithm to estimate
the model parameters.

It is well known that in the worst case Fourier-Motzkin elimination can be com-
putationally very expensive. However, the imputation problems arising in practice at
statistical offices only have a limited number of variables and edits. The largest prob-
lems we are aware of have a few hundreds of variables and slightly more than 100 edits.
For realistic problems of this limited size, Fourier-Motzkin elimination is generally suf-
ficiently fast. In fact, it has been shown for the related – butcomputationally much more
demanding – error localization problem of the same size in terms of variables and ed-
its that in practical cases arising at statistical offices the computational performance of
Fourier-Motzkin elimination is generally acceptable (seeDe Waal and Coutinho, 2005,
and De Waal, 2005). In our application of Fourier-Motzkin elimination in this article
to small imputation problems, the computing time of Fourier-Motzkin elimination was
negligible, i.e. close to 0 seconds, for all runs. Once the parameters of the multivariate
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normal distribution had been determined by means of the EM algorithm, imputing the
missing values took only took a few seconds for the entire data sets. Moreover, in the
imputation process, the bulk of the computing time for the FMapproach was spent on
drawing values from the multivariate normal distribution rather than on Fourier-Motzkin
elimination

The main reason for developing the FM approach is the fact that promising results
have been obtained by so-called sequential imputation methods. Sequential imputation
methods are a well-known class of imputation methods, see, e.g., Van Buuren and Oud-
shoorn (1999 and 2000), Raghunatan et al. (2001) and Rubin (2003). These imputation
methods sequentially impute the variables and allow a separate imputation model to be
specified for each variable. By imputing all variables containing missing data in turn and
iteratively repeating this process several times, the statistical distribution of the imputed
data generally converges to an unspecified multivariate distribution. The main strength
of sequential imputation is its flexibility: rather than using one multivariate imputation
model for all variables simultaneously, which is generallycomputationally demanding
and complex to handle, one can specify a different imputation model for each variable.
Sequential imputation methods can be extended to ensure that they satisfy edits. In prin-
ciple, the FM approach can be implemented as a sequential imputation approach that
allows such an extension, although in our illustration we assume a multivariate normal
distribution as imputation model rather than separate imputation models for the variables
to be imputed (see Tempelman, 2007, and Pannekoek, Shlomo and De Waal, 2008, for
other extensions of sequential imputation to ensure that edits are satisfied).

Of course, the adjustment approach may also be used in a sequential imputation
approach, namely one may first use a sequential imputation approach and later adjust the
imputed values so they satisfy the edits. A fundamental difference between this approach
and the FM approach is that in the adjustment approach the imputed values are adjusted
simultaneously afterwards, whereas in the FM approach eachseparate imputed value
is immediately adjusted in order to ensure that all edits canbe satisfied. Immediately
adjusting each imputed value in order to ensure that all edits can be satisfied might
improve (or deteriorate) the statistical results as subsequent imputed values may depend
on previously imputed values (see also Section 7.3).

6. Illustration of the FM approach

In this section we illustrate the FM approach by means of an example. In our example,
we assume that we are given a data set with some missing values, that there are four
variables,T, P, C andN, and that the edits are given by (3), (4) and (13) to (15).

We focus on Steps 1 to 5 of the approach for a specific record. Weassume that the
data follow a multivariate normal distribution, and assumethat the model parameters,
meansµµµ and covariance matrixΣΣΣ, estimated in Step 0 of our approach are given by
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µµµ= (1000,200,500,4)

and

ΣΣΣ =









13500 3000 10500 60
3000 2500 500 10
10500 500 10000 50

60 10 50 1









.

Here the first column/row corresponds toT, the second column/row toP, the third
column/row toC, and the fourth column/row toN.

Now, suppose that for a certain record in our data set we haveN = 5, and that the
values forT, P andC are missing. We first fill in the observed value forN into the edits
(3), (4) and (13) to (15) (Step 1 of our approach). We obtain (3), (4), (13), (14) and

T ≤ 2750, (19)

Now, we sequentially eliminate the variables for which the values are missing from
the edits. We start by eliminatingP from (3), (4), (13), (14) and (19). This leads to the
edits (4), (16), (17) and (19). Edits (4), (16), (17) and (19)have to be satisfied byC andT.

We next eliminate variableC, and obtain edits (4), (18) and (19). Edit (18) is
equivalent to (4). The edits that have to be satisfied byT are hence given by (4) and
(19). The feasible interval forT is therefore given by [0, 2750]. We have now completed
Step 2 of our approach.

To imputeT, we determine the distribution ofT, conditional on the value for variable
N. The distribution ofT turns out to be N(1060, 9900), the normal distribution with
mean 1060 and variance 9900. We draw values from this distribution until we draw a
value inside the feasible interval (Steps 3 and 4 of the approach). Suppose we draw the
value 1200.

We fill in the imputed value forT into the edits forC andT, i.e. edits (4), (16), (17)
and (19) (Step 5 of the approach). We obtain

1200≥ 0,

600≤C,

C≤ 1320,

1200≤ 2750.

The feasible interval forC is hence given by [600, 1320]. We determine the distribution
of C, conditional on the values for variablesN andT. This distribution turns out to be
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N(656.11, 18181.18). We draw values from this distributionuntil we draw a value inside
the feasible interval (Steps 3 and 4 of the approach). Suppose we draw the value 700.

We fill in the imputed values forC andT into the edits that have to be satisfied byC,
T andP, i.e. edits (3), (4), (13), (14) and (19) (Step 5 of the approach). We obtain

1200= P+700,

1200≥ 0,

P≤ 600,

−120≤ P,

1200≤ 2750.

There is only one feasible value forP, namely 500. The imputed record we obtain is
given byT = 1200,C= 700,P= 500, andN = 5.

7. Evaluation study

7.1. Evaluation data

For our evaluation study we have used three data sets: a data set with actually observed
data from a business survey, data setRall, the same data set but without balance edits,
data setRineq, and a data set with synthetic data, data setS. The data setsRall andRineq

contain raising weights. These raising weights differ across different (strata of) records,
and are used in some of our evaluation measures. In dataSall raising weights were set
to 1. The main characteristics of these data sets are presented in Table 1.

Table 1: The characteristics of the evaluation data sets.

Data setRall Data setRineq Data setS

Total number of records 3,096 3,096 500
Number of records with missing values 544 469 490
Total number of variables 8 7 10
Total number of edits 14 12 16
Number of balance edits 1 0 3
Total number of inequality edits 13 12 13
Number of non-negativity edits 8 7 9

The actual values for data setRall, and hence also for data setRineq, are all known. In
the completely observed data set values were deleted by a third party, using a mechanism
unknown to us. Data setRineq was constructed in order to examine the effects of balance
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edits on the results. In fact, we have “removed” the balance edit from data setRall

in two different ways. First of all, we have only “removed” the balance edit, i.e. did
not explicitly demand that after imputation the balance edit holds true for all records,
but have left all involved variables in the data set. As a consequence, the estimated
covariance matrix will be singular and the balance edit willbe automatically satisfied
by the imputed data, if the parameters of the normal distribution are estimated by means
of the EM algorithm using the complete cases to obtain a first estimate for the model
parameters as we do in our application. We refer the interested reader to Chapter 4
in Tempelman (2007) for a proof. The evaluation results should hence be the same as
for the case where all edits are used, apart from some minor differences due to the
stochastic nature of the approaches used. This is confirmed by our evaluation study
(results not reported in this article). Second, we have removed one of the variables,R4,
involved in the balance edit and its associated non-negativity edit from Rall. Rineq is the
resulting data set. This data set obviously does not have to satisfy any balance edit. The
removed variableR4 does not occur in any of the other edits apart from its associated
non-negativity edit.

Data setS is indirectly based on an observed business survey and its corresponding
edits. This observed data was used to estimate the parameters of a multivariate normal
model by means of the EM algorithm. Next, data setS was generated by drawing
from the estimated multivariate normal model. If a drawn vector did not satisfy all
specified edits it was rejected, else it was accepted. In thisway 500 vectors were
generated. Missing values were generated by randomly deleting for each variable a
specified number of values. The number of values deleted was (much) higher than in the
actually observed business survey in order to evaluate the performance of our imputation
approaches for a very complicated situation.

For all three data sets we have two versions available: a version with missing values
and a version with complete records. The former version is imputed. The resulting data
set is then compared to the version with complete records, which we consider as a data
set with the true values.

The numbers of missing values and (unweighted) means of the 8, respectively 7,
variables of data setRall and data setRineq are given in Table 2 and those of the 10

Table 2: The numbers of missing values and the means
of the variables of data sets Rall and Rineq.

Variable Number of missing values Mean

R1 76 11,574.83
R2 79 777.56
R3 130 8,978.70
R4 147 1,034.07
R5 68 10,012.77
R6 67 169.24
R7 73 209.86
R8 0 37.41
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Table 3: The numbers of missing values and the means
of the variables of data set S.

Variable Number of missing values Mean

R1 120 97.77
S2 180 175,018.30
S3 240 731.03
S4 120 175,749.33
S5 180 154,286.53
S6 180 7,522.34
S7 180 8,519.65
S8 180 1,277.04
S9 120 171,605.57
S10 120 4,143.76

variables of data setS in Table 3. The means are taken over all observations in the
complete versions of the data sets.

VariableR8 in data setsRall andRineq does not contain any missing values and is only
used as auxiliary variable.

7.2. Evaluation measures

To measure the performance of our imputation approaches we use several evaluation
measures, The first measure we use is thedL1 measure proposed by Chambers (2003).
ThisdL1 measure is the average distance between the imputed and truevalues defined as

dL1 =
∑k∈M wk |ŷk−y∗k|

∑k∈M wk
,

whereŷk is the imputed value in recordk of the variable under consideration,y∗k the
corresponding true value,M denotes the set ofnimp records with imputed values for
variabley andwk is the raising weight for recordk.

The second measure we use is them1 measure, which has also been proposed by
Chambers (2003). This measure, which measures the preservation of the first moment
of the empirical distribution of the true values, is defined as

m1 =

∣

∣

∣

∣

∣

∑
k∈M

wk(ŷk−y∗k)/ ∑
k∈M

wk

∣

∣

∣

∣

∣

.

Thatm1 measures the preservation of the first moment of the empirical distribution of
the true values becomes clear if we rewritem1 as

m1 =

∣

∣

∣

∣

∣

∑
k∈D

wk(ŷk−y∗k)/ ∑
k∈D

wk

∣

∣

∣

∣

∣

×

(

∑k∈D wk

∑k∈M wk

)

,
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whereD denotes the entire data set. The quantity∑k∈D wky∗k/∑k∈D wk is an estimate
for the population mean. So,m1 is the deviation of the first moment of the empirical
distribution from the first moment of the true distribution times the constant factor
∑k∈D wk

/

∑k∈M wk.
The third measure is therdm (relative difference in means) measure. This measure

has been used in an evaluation study by Pannekoek and De Waal (2005), and is defined
as

rdm=
∑k∈M ŷk−∑k∈M y∗k

∑k∈M y∗k
.

Smaller absolute values of the above three measures indicate better imputation perfor-
mance.

To remain consistent with the literature, in particular with the previously published
papers by Chambers (2003) and Pannekoek and De Waal (2005), we have not made an
attempt to make thedL1 and them1 measures comparable across variables.

The three evaluation measures described so far all measure the deviation of the im-
puted values from the true values. The next three evaluationmeasures measure statisti-
cal aspects, such as the preservation of the empirical distribution and the preservation of
standard errors.

The first of these measures is the percent difference betweenthe standard deviation
(STD) of the mean of the imputations to the standard deviation of the mean of the true
values:

100
(STDimp−STDtrue)

STDtrue

A smaller absolute value for the percent difference betweenthe standard deviation of
the mean of the imputations to the standard deviation of the mean of the true values
indicates better performance.

Another evaluation measure is a sign test using paired data.This sign test can be
carried out by creating a new variable that is defined as the difference between the
original value and the imputed value. The test with the null hypothesis that the median
of the difference is equal to zero is equivalent to the test that the medians of the original
and imputed values are equal. The sign statistic is defined as

S= (n+−n−)/2

wheren+ is the number of values greater than 0 andn− the number of values less than
0. A small p-value means that we reject the null hypothesis of equal medians. We will
interpret this as: a largerp-value indicates better performance.

The next evaluation measure we use is the Kolmogorov-Smirnov non-parametric test
statistic (K-S). This statistic is used to compare the empirical distribution of the original
values to the empirical distribution of the imputed values (also proposed by Chambers,
2003). For unweighted data, the empirical distribution of the original values is defined
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as:Fy∗(t) = ∑i∈M I(y∗i ≤ t)/nimp, wherenimp is again the number of imputed values and
I the indicator function.Fŷ(t) is defined similarly. TheK-S is defined as:

K-S= max
j
(|Fy∗(t j)−Fŷ(t j)|),

where the{t j} values are the 2nimp jointly ordered original and imputed values ofy. A
smaller value forK-S indicates better performance.

The final evaluation measure we consider is the number of records on the boundary
of the feasible region defined by the edits. Records lying on the boundary of the feasible
region defined by the edits are outliers in some sense. Too many outliers in this sense,
and any other sense, could make the imputed data less suited for certain statistical
analyses. The number of records on the boundary defined by theedits should preferably
be close to the actual number of records of the true data on theboundary of the feasible
region defined by the edits. This evaluation measure is a bit less important than the
others, which measure the statistical quality of the imputed values more directly.

We use the measures in a relative way, namely to compare the adjustment approach
to the FM approach. The measures are neither necessarily appropriate nor sufficient to
measure the impact of imputation on the quality of survey estimates in general. For
an actual production process it depends on the intended use of the data which of the
evaluation measures is considered more important.

7.3. Evaluation results

Both imputation approaches described in this article are ofa stochastic nature as they
depend on drawing vectors from a probability distribution.To reduce the effects of the
stochastic nature of our approaches we have repeated each evaluation experiment 10
times, and have calculated the average of these 10 experiments. Unless stated otherwise
the value ofNdraw for the FM approach (see Section 5) is set to 160 in our experiments.
The value of 160 forNdraw is based on a limited explorative, trial-and-error search,
aiming to find an optimal trade-off between the quality of theimputations and the
required computing time. The results for data setRall are presented in Table 4 for the
adjustment approach and Table 5 for the FM approach.

Table 4: Evaluation results for the adjustment approach on data set Rall.

Variable dL1 m1 rdm percent difference sign K-S

R1 2069.21 1145.83 0.15 0.02 0.57 0.03
R2 226.91 108.27 0.17 0.22 0.90 0.00
R3 303.79 285.46 −0.21 −0.13 0.12 0.01
R4 283.05 263.84 1.79 3.71 0.00 0.01
R5 16.11 13.21 −0.01 0.00 0.00 0.38
R6 41.00 40.61 2.65 0.10 0.00 0.03
R7 86.37 75.14 1.42 1.87 0.07 0.00
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Table 5: Evaluation results for the FM approach on data set Rall.

Variable dL1 m1 rdm percent difference sign K-S

R1 3108.97 2633.30 0.34 −0.02 0.00 0.00
R2 290.66 235.89 0.33 0.11 0.00 0.00
R3 169.68 130.85 −0.04 0.00 0.02 0.17
R4 183.83 152.04 0.40 0.16 0.00 0.02
R5 68.29 61.31 0.01 0.00 0.13 0.74
R6 27.37 26.87 1.83 −0.40 0.00 0.00
R7 95.44 92.48 2.17 0.87 0.00 0.00

Variable R8 does not have any missing values, so no evaluation results for R8 are
presented in Tables 4 and 5. The results for data setRineq are presented in Table 6 for the
adjustment approach and Table 7 for the FM approach.

Table 6: Evaluation results for the adjustment approach on data set Rineq

Variable dL1 m1 rdm percent difference sign K-S

R1 1868.22 256.14 −0.25 −0.36 0.01 0.10
R2 205.16 34.67 −0.37 −0.42 0.00 0.00
R3 1490.74 1451.99 −0.99 −0.93 0.00 0.00
R5 1227.87 541.04 −0.49 −0.44 0.00 0.00
R6 2783.81 2783.81 592.50 58.43 0.00 0.00
R7 14.40 12.03 −0.54 −0.47 0.00 0.36

Table 7: Evaluation results for the FM approach on data set Rineq

Variable dL1 m1 rdm percent difference sign K-S

R1 3105.74 2719.82 0.33 −0.01 0.00 0.00
R2 278.66 225.06 0.30 0.10 0.00 0.00
R3 359.48 277.00 −0.09 0.00 0.00 0.01
R5 1844.58 1762.83 0.14 −0.01 0.00 0.00
R6 27.07 26.66 1.78 −0.39 0.00 0.00
R7 85.50 82.26 1.80 0.60 0.00 0.00

Table 8: Evaluation results for the adjustment approach on data set S

Variable dL1 m1 rdm percent difference sign K-S

R1 13943.12 13916.90 142.57 863.15 0.20 0.00
S2 17440.92 8066.39 0.05 0.17 0.10 0.06
S3 9941.38 9767.14 13.14 68.89 0.00 0.00
S4 32672.09 31633.86 0.19 0.37 0.00 0.11
S5 11404.99 5274.79 −0.04 −0.02 0.00 0.35
S6 2221.02 1430.56 0.18 0.37 0.00 0.00
S7 3472.59 1405.63 0.16 0.51 0.00 0.01
S8 5062.49 4818.50 3.63 11.52 0.00 0.00
S9 5715.68 3569.85 0.02 0.00 0.87 0.95
S10 28261.21 28064.01 7.22 20.89 0.00 0.00
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Table 9: Evaluation results for the FM approach on data set S.

Variable dL1 m1 rdm percent difference sign K-S

R1 62.39 50.19 0.51 5.81 0.01 0.00
S2 6754.16 2204.84 −0.01 −0.01 0.00 0.11
S3 3413.06 3268.38 4.40 28.46 0.00 0.00
S4 4594.46 3229.51 0.02 0.00 0.13 0.66
S5 35442.70 28136.41 −0.19 0.01 0.56 0.00
S6 3600.36 2597.57 −0.33 0.59 0.00 0.00
S7 15202.73 10779.74 1.21 8.49 0.79 0.00
S8 21984.15 21247.71 16.01 81.38 0.13 0.00
S9 3959.69 1940.22 0.01 0.00 0.87 0.95
S10 2223.89 1289.30 0.33 3.76 0.20 0.05

The results for data setS are presented in Table 8 for the adjustment approach and
Table 9 for the FM approach.

It is hard to draw conclusions from Tables 4 to 9. For some variables the adjustment
approach leads to better results than the FM approach. For other variables the opposite
happens. This is not very surprising as both approaches relyon the same statistical
model for drawing imputation values, which fails to captureall distributional aspects
of the data. In order to draw some conclusions we examine how often one approach
leads to better results than the other, where “better” is defined as “closer to zero” for
all evaluation measures considered in Tables 4 to 9 except for the sign test. For the
sign test “better” is defined in the opposite way, i.e. the larger thep-value, the better
the performance. For data setRall, the results for the adjustment approach in Table 4 are
in 19 cases better than those for the FM approach in Table 5. The opposite happens in
16 cases. For data setRineq, the results for the adjustment approach in Table 6 are in
13 cases better than those for the FM approach in Table 7. The opposite happens in 15
cases. For data setS, the results for the adjustment approach in Table 8 are in 20 cases
better than those for the FM approach in Table 9. The oppositehappens in 31 cases.
From this we conclude that for data setsRall andRineq the results for the six evaluation
measures of the adjustment approach are comparable to the results for the FM approach.
The inclusion or exclusion of the balance edit inRall, respectivelyRineq does not seem
to affect the results much. For the more complicated data setS the FM approach leads
to slightly better results than the adjustment approach. This is probably caused by the
fact that in the FM approach the values imputed cannot be too far from their true values
as each separately imputed value is at worst on the boundary of its feasible interval.
This imputed value is later used as predictor in order to impute other missing values.
In the adjustment approach the values imputed in the first step may be far from their
true values. For the complicated data setS, this is apparently not, or in any case to an
insufficient extent, corrected in the adjustment step.

In Table 10 the average number of records on the boundary of the feasible region over
10 evaluation experiments for the adjustment approach and the FM approach on data
setsRall, Rineq, andSare presented. For the FM approach we show the results for three
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different values ofNdraw, namely the values 1, 160 and 1000. The value ofNdraw used
is mentioned between brackets. The results for the six evaluation measures considered
before forNdraw= 1 andNdraw= 1000 (not presented here) are comparable to the results
presented in Tables 5, 7, and 9, whereNdraw = 160. In Table 10 we also present the
number of records on the boundary of the feasible region for the complete versions of
the three mentioned data sets. In almost all cases records ofthese data sets lie on the
boundary of the feasible region because a variable that has to satisfy a non-negativity
edit attains the value zero.

Table 10: (Average) number of records on the boundary of the feasible region defined by the edits.

Average number
for FM

approach
(1)

Average number
for FM

approach
(160)

Average number
for FM

approach
(1000)

Average number
for the

adjustment
approach

Actual number
for complete

data

Data setRall 499.4 468.2 468.0 499.8 495
Data setRineq 435.8 397.4 397.0 394.1 424

Data setS 200.5 186.6 186.8 185.5 002

Table 10 shows that the result for data setRineq for the FM approach is closer to the
actual number of records on the boundary of the feasible region defined by the edits for
the complete data than the adjustment approach for any of thethree values ofNdraw. For
data setRall it depends of the value ofNdraw which approach leads to a result that is the
closest to the actual number of records on the boundary for the complete data. For data
setS the results of the adjustment approach are slightly closer to the actual number of
records on the boundary for the complete data than the FM approach for any of the three
values ofNdraw. The difference between the results for the adjustment approach and the
FM approach forNdraw= 160 are, however, negligible.

Table 10 also shows the effect of the parameterNdraw of the FM approach: the higher
Ndraw, the less records will generally lie on the boundary of the feasible region. By means
of Ndraw one can indirectly control the number of records on the boundary of the feasible
region.

If one wants, for the FM approach, the number of imputed records on the boundary of
the feasible region defined by the edits to be close to the actual number of records on the
boundary for the complete data, one should chooseNdraw between 1 and 160 for data sets
Rall andRineq. Data setSappears to be too complicated for both the adjustment and the
FM approach. The number of imputed records on the boundary ofthe feasible region is
too high for both approaches. By increasing the value ofNdraw the number of records on
the boundary decreases only slowly for the FM approach. Increasing the value ofNdraw

also leads to an increase of the computing time, however. So,although one can influence
the number of records on the boundary of the feasible region by changing the value of
Ndraw, the effect of changing the value ofNdraw is limited, in any case for complicated
data sets such asS. The drawback of the adjustment approach noted in Section 3 that
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the number of records on the boundary of the feasible region for this approach is for a
substantial part determined by the first imputation step does not appear to be a major
disadvantage in comparison to the FM approach – at least not for our evaluation data –
as the results of the adjustment approach are not clearly worse than those of the FM
approach in this respect.

8. Discussion

In this article we have described two imputation approachesthat lead to imputed data
that satisfy specified edits. The main aim of the article was to describe the two general
frameworks, which are basically independent of the imputation method or imputation
model actually applied. To illustrate how these approacheswork in practice we have
used a multivariate normal imputation model.

For the data sets in our evaluation study we conclude that, for the multivariate normal
imputation model, for 2 of the 3 data sets (Rall and Rineq) the FM approach leads to
comparable evaluation results as the adjustment approach.For the other data set (data
setS) the FM approach leads to (slightly) better than the adjustment approach (see Tables
8 and 9). The FM approach seems to have a built-in mechanism toprotect itself from
imputing very wrong values. Such a mechanism seems to be lacking from the adjustment
approach. Our study is, however, very limited and more research is necessary before we
can draw any definite conclusions.

In our application of the adjustment approach we have used a linear objective
function. The main reason for using a linear objective function is that this is easy to
implement in a software program. The results of the adjustment approach may possibly
be improved by using a quadratic objective function insteadof our linear one. In any
case, for statisticians, minimising a quadratic objectivefunction is more natural and
often more logical than minimising a linear objective function.

The FM approach has the advantage that one can, indirectly, control the number of
records on the boundary of the feasible region defined by the edits. The price that has
to be paid for this is that the algorithm is more complicated than for the adjustment
approach. Moreover, the effect of this indirect control over the number of records on the
boundary of the feasible region seems limited. From a purelypractical point of view, the
adjustment approach may therefore be a better choice in manycases.

For data setS, far too many records lie on the boundary of the feasible region for both
the adjustment approach and the FM approach. For almost all records on the boundary
one or more non-negativity edit is satisfied with equality, i.e. the value of the involved
variable equals zero. The fact that far too many non-negativity edits are satisfied with
equality strongly indicates that the assumed imputation model, which in our application
is assumed to follow a multivariate normal distribution, isincorrect. In order to improve
the statistical results of the two imputation approaches presented in this article, the
underlying statistical model should be improved. Further research is required to develop
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such better statistical models as well as computationally tractable methods to handle
such models.

When imputing a missing value in a record in our implementation of the FM
approach, we use the previously imputed values in this record as auxiliary information.
In this way we try to preserve the correlation structure between the imputed values
as much as possible. Using previously imputed values in order to impute a missing
value has an obvious drawback: if the stochastic imputationprocess leads to a bad
imputed value, this affects all subsequently imputed values in this record. It remains to
be examined if the results of the FM approach improve, or deteriorate, if we do not use
the previously imputed values as auxiliary information butinstead use only the observed
data as auxiliary information.

The imputation approaches we have developed in this articlecan be applied to
general linear edit restrictions. If only non-negativity edits are specified, one could
possibly also use tobit and logit models instead of our approaches. Such models
automatically ensure that each variable to be imputed attains a non-negative value. The
use of tobit or logit models for imputation subject to non-negativity edits remains to be
examined.
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