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Imputation of numerical data
under linear edit restrictions

Wieger Coutinhd, Ton de Waal and Marco Remmerswaal

Abstract

A common problem faced by statistical offices is that data may be missing from collected data
sets. The typical way to overcome this problem is to impute the missing data. The problem
of imputing missing data is complicated by the fact that statistical data often have to satisfy
certain edit rules, which for numerical data usually take the form of linear restrictions. Standard
imputation methods generally do not take such edit restrictions into account. In the present article
we describe two general approaches for imputation of missing numerical data that do take the edit
restrictions into account. The first approach imputes the missing values by means of an imputation
method and afterwards adjusts the imputed values so they satisfy the edit restrictions. The second
approach sequentially imputes the missing data. It uses Fourier-Motzkin elimination to determine
appropriate intervals for each variable to be imputed. Both approaches are not based on a specific
imputation model, but allow one to specify an imputation model. To illustrate the two approaches
we assume that the data are approximately multivariately normally distributed. To assess the
performance of the imputation approaches an evaluation study is carried out.
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1. Introduction

National statistical institutes (NSIs) publish figures oany aspects of society. To this
end, these NSiIs collect data on persons, households, Bsés;public bodies, etc. A
major problem that has to be faced is that data may be missingthe collected data
sets. Some units that are selected for data collection ¢taeremntacted or may refuse to
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respond altogether. This is called unit non-response.ndmitresponse is not considered
in this article. For many records, i.e. the data of individeapondents, data on some of
the items may be missing. Persons may, for instance, refugevide information on
their income or on their sexual habits, while at the same tjiig answers to other,
less sensitive questions on the questionnaire. Entespnisg/ not provide answers to
certain questions, because they may consider it too coatpticor too time-consuming
to answer these specific questions. Missing items of otlserrgsponding units is called
item non-response. Whenever we refer to missing data iratticde we will mean item
non-response.

Missing data is a well-known problem that has to be faced Isychdly all institutes
that collect data on persons or enterprises. In the statiditerature ample attention
is hence paid to missing data. The most common solution tdlbanissing data in
data sets is imputation, where missing values are estinzatedilled in. An important
problem of imputation is to preserve the statistical disttion of the data set. This is
a complicated problem, especially for high-dimensionahd&or more on this aspect
of imputation and on imputation in general we refer to Kaltord Kasprzyk (1986),
Rubin (1987), Kovar and Whitridge (1995), Schafer (1997itle.and Rubin (2002),
and Longford (2005).

At NSIs the imputation problem is further complicated owiagthe existence of
constraints in the form of edit restrictions, or edits fooghthat have to be satisfied
by the data. Examples of such edits are that the profit anddbis of an enterprise
have to sum up to its turnover, and that the turnover of anrgrise should be at least
zero. Records that do not satisfy these edits are inconsisted are hence considered
incorrect. While imputing a record, we aim to take theseseiito account, and thus
ensure that the final, imputed record satisfies all edits.ifipaitation problem at NSIs
is hence given by: impute the missing data in the data setrumhsideration in such a
way that the statistical distribution of the data is presdras well as possible subject to
the condition that all edits are satisfied by the imputed.data

For academic statisticians the wish of NSlis to let the daiafgapecified edits may
be difficult to understand. Statistically speaking thermdeed hardly a reason to let a
data set satisfy edits. However, as Pannekoek and De Wazb)2@plain, NSIs have
the responsibility to supply data for many different, botla@emic and non-academic,
users in society. For the majority of these users, incomsistata are incomprehensible.
They may reject the data as being an invalid source or makestaignts themselves.
This hampers the unifying role of NSls in providing data the¢ undisputed by dif-
ferent parties such as policy makers in government, ogpastrade unions, employer
organizations, etc. As mentioned bgr&dal and Lundsfim (2005, p. 176): “Whatever
the imputation method used, the completed data should ecded to the usual checks
for internal consistency. All imputed values should unddtte editing checks normally
carried out for the survey”.

Simple sequential imputation of the missing data, wheré&seadvolving fields that
have to be imputed subsequently are not taken into accouit¢ whputing a field,
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may lead to inconsistencies. Consider, for example, a deatiere the values of two
variablesx andy, are missing. Assume these variables have to satisfy thlitesaying
thatx is at least 50y is at most 100, angl is greater than or equal to Now, if x is
imputed first without taking the edits involvinginto account, one might impute the
value 150 forx. The resulting set of edits fgr i.e.y is at most 100 anglis greater than
or equal to 150, cannot be satisfied. Conversely,isfimputed first without taking the
edits involvingx into account, one might impute the value 40 yoiT he resulting set of
edits forx, i.e.x is at least 50 and 40 is greater than or equal wannot be satisfied.

In this article we develop two general approaches for impartaof missing numeri-
cal data that ensure that edits are satisfied, while at the sama allowing one to specify
a statistical imputation model. Despite the fact that mwedearch on imputation tech-
niques has been carried out, imputation under edits isagtither neglected area. As far
as we are aware, apart from some research at NSls (see,epelfnan, 2007) hardly
any research on general approaches to imputation undeesttictions has been carried
out. An exception is imputation based on a truncated mulét@ normal model (see,
e.g., Geweke, 1991, and Tempelman, 2007). Imputation b@asadruncated multivari-
ate normal model can take the edit restrictions we consid#ris article into account.
Using this model has two drawbacks, however. First of a#, ttuncated multivariate
model is computationally very demanding and complex to @m@nt in a software pro-
gram. Second, itis obviously only suited for data that (agjpnately) follow a truncated
multivariate normal distribution, not for data that follmther distributions. Some soft-
ware packages developed by NSls, such as GEIS (Kovar anditlgeit 1990), SPEER
(Winkler and Draper, 1997), SLICE (De Waal, 2001) and BaB#ir{ff Support Team,
2008), also ensure that edits are satisfied after imputdtiowever, these packages only
apply relatively simple imputation models, whereas ourapphes allow more compli-
cated imputation models.

Both approaches we describe in this article allow one to regépadhe imputation
model from how the edits are handled. In other words, the py@aches described are
not based on a specific imputation model, but allow one toi§pac imputation model.
For both approaches a broad class of imputation models cappiied.

To illustrate the two approaches we will assume in this krtibat the data are
approximately multivariately normally distributed. Incfain our calculations we will
treat the unknown distribution of the data as being a multiwa normal distribution
exactly. For data that have to satisfy edits defined by limeequalities this is surely
incorrect, because at best the data could follow a truncatethal distribution but
never a regular normal distribution. Our simplification reakit relatively easy to
determine marginal and conditional distributions, whigke aeeded for one of the
two imputation approaches examined in this article. We ardg the (approximate)
multivariate normal model to illustrate how our general rm@ghes can actually be
applied in practice. We have selected the (approximatedivatiate normal model for
computational convenience. We certainly do not want to sagthat this model is the
most appropriate one for the data sets we have used in ouragial study. Another
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computationally convenient choice would have been to useleck imputation instead
of the (approximate) multivariate normal model.

In order to estimate the parameters of the multivariate abdistribution, we have
used the EM algorithm. As starting values for the EM alganitive have used the
observed means and covariance matrix of the complete dasesmplementation of
the EM algorithm is based on Schafer (1997).

The remainder of this article is organised as follows. $ecifirst discusses the kind
of linear edits on which we will focus in this article. Secti8 describes an adjustment
approach where imputed records are later adjusted so thisfyshe specified edits. A
second imputation approach is described in Section 5. Adoahtal role in this ap-
proach is played by Fourier-Motzkin elimination. We refeithis imputation approach
as the FM approach. The Fourier-Motzkin elimination teqghei itself is explained in
Section 4. Section 6 illustrates the FM approach by means ekample. An evaluation
study and its results for the (approximate) multivariatenmal model are described in
Section 7. In that section we compare the results of the ad@rg approach with the
FM approach for the multivariate normal imputation modahafly, Section 8 concludes
the article with a short discussion.

2. Linear edit restrictions

In this article we focus on linear edits for numerical datmear edits are either linear
equations or linear inequalities. We denote the numbermtiimoous variables by, and
the variables themselves ky(i = 1,...,n). We assume that edjt(j = 1,...,J) can be
written in either of the two following forms:

a1jX1—|—...+aann+bj:0, )
or
aijXy+...+anjXn+bj > 0. 2)

Here thea;; and theb; are certain constants, which define the edit.
Edits of type (1) are referred to as balance edits. An exawif@ech an edit is

T=P+C, 3)

whereT is the turnover of an enterpris@,its profit, andC its costs. Edit (3) expresses
that the profit and the costs of an enterprise should sum ufs toiinover. A record
not satisfying this edit is obviously incorrect. Edit (3)nclae written in the form (1) as
T-P-C=0.
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Edits of type (2) are referred to as inequality edits. An eplnis
T>0, (4)

expressing that the turnover of an enterprise should benegative. An inequality
edit such as (4), expressing that the value of a variablelghmnon-negative, is also
referred to as a non-negativity edit.

3. An adjustment approach

A straightforward approach to let imputed values satisfgci#fied edits is to use an
adjustment approach consisting of two steps. In the firgi #te missing data are
imputed without taking the edits (1) and (2) into accountedd missing data can, for
instance, be imputed by assuming that the data follow a vauisite normal distribution,
and use a standard imputation method for this situation ésge Little and Rubin, 2002,
and Schafer, 1997). As already mentioned, in this articldlastrate our approaches by
indeed assuming that the data follow a multivariate nornsdtidution, and impute the
missing data of a record by drawing values from the appraggatimated conditional
distribution for the missing data given the observed valWés refer to this as the first
imputation step.

We denote the values after the firstimputation step for tberceunder consideration
by xmsti (I = 1,...,n). In the second step, the adjustment step, the final values in
the record under consideratiotina,i (i = 1,...,n), are determined by minimising the
objective function

> Wadji [ Xirsti — Xfinal,il (5)
I

subject to the condition that the valugga; (i = 1,...,n) satisfy all edits (1) and (2) and
the condition that for all variables that were observextinai equals the corresponding
observed value. The latter condition means that only theegmputedin the first
imputation step may be modified. In (5) th@st; (i = 1,...,n) are known values and
the Xinai (i = 1,...,n) are the unknowns. Theg; (i = 1,...,n) are non-negative
adjustment weights, reflecting how serious one consideraage of a unit in variable
X; to be.

The adjustment weights,g;i (i = 1,...,n) can be calculated in many ways. In our
application we have seftiqg;i = 1/Xsrsti, Wherexgs:i iS the average value of theth
variable. In this way, the objective function (5) takes thkative deviation betweess
andxsinali rather than the absolute deviation into account. All thegvtswagji = 1/ Xfirst;
(i=1...,n) were indeed non-negative.

The problem of minimising the objective function (5) suljaxthe condition that
the valuessinaj (i =1,...,n) satisfy all edits (1) and (2) can be formulated as a linear
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programming problem by introducing additional variablesi = 1,...,n) and adding
the constraints

Ui > Xirsti — Xfinal, (6)
and

Ui > Xfinali — Xfirst,i- (7)
It is easy to see that the problem of minimising the objedtivetion

> Wagjilk (8)

subject to (6), (7), the condition that the valugsa;i (i = 1,...,n) satisfy all edits (1)
and (2) and the condition that for all variabbgsthat were observesina i equals the
corresponding observed value yields the same optimal ¥aluge objective function
(8) and the same optimal values fia,i (i = 1,...,n) as minimising (5) subject to
the condition that the valuesiny; (i = 1,...,n) satisfy all edits (1) and (2), and the
condition that for all variables; that were observeskina; equals the corresponding
observed value (see also Gtal, 1983).

In the problem of minimising (8) subject to (6), (7), the caimh that the values
Xinali (I =1,...,n) satisfy all edits (1) and (2), and the condition that for atiables
X; that were observeghna; equals the corresponding observed value xthg; andu;
(i=1,...,n) are the unknowns. This linear programming problem can, fetaince,
be solved by means of the well-known simplex algorithm, aarior-point algorithm
(see, e.g., Chatal, 1983, and Nemhauser and Wolsey, 1988) or a generabzeded
gradient method (see, e.g., Lasdon et al., 1978).

The adjustment approach is quite a general and logical apprdn the first step one
can apply the imputation method and imputation model thatast from a statistical
point of view for the data under consideration. In the secind the imputed values are
(hopefully only slightly) adjusted so they satisfy the dfied edits.

The main strength of the adjustment approach is its sintplione does not need to
implement complicated algorithms in a computer programuyr$pecial-purpose soft-
ware. Standard software, such as Excel, suffices to implethemadjustment approach.
In our application we have indeed used the solver offered>meE To be precise: we
have used the generalized reduced gradient method as implechin the GRG2 code
of the Excel solver (see Lasdon et al., 1978, and Fylstra8)199e have used the GRG2
code of Excel instead of the implementation of the simplgoathm in Excel as we
noted that the GRG2 method as implemented in Excel resuitedlarger number of
records not “lying on the boundary of the feasible regionrazfiby the edits”.

In our evaluation study we pay special attention to the nurnbescords “lying on
the boundary of the feasible region defined by the edits”hia article we define a
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record to “lie on the boundary of the feasible region defingthle edits” if at least one
of the inequality edits is satisfied with equality. We are eamat this is a ambiguous
definition, and also one that differs from the usual definitid “lying on the boundary”
as used in the theory of linear programming. Namely, our definof “lying on the
boundary of the feasible region defined by the edits” is ddpehon how the edits
are stated, rather than only on the shape of the feasiblerreBbr instance, an edit
given by X = y+ Z' can also be expressed as two inequality ediis<*y+ Z' and
“x>y+Z'. In the latter caseall records will lie on the boundary of the feasible region
defined by the edits after imputation according to our definitin our definition we
implicitly assume that edits are stated as balance editead<f (pairs of) inequality
edits whenever possible. In all practical situations odngrat statistical offices we have
encountered so far this was always the case.

The reason why we pay special attention to the number of dsaam the boundary
of the feasible region defined by the edits is that, when thasadent approach is
applied, a record that does not satisfy the edits after theifirputation step, will often
be adjusted in such a way that the final, adjusted, recordhethe boundary of the
feasible region defined by the edits.

In the next three sections we describe our second imputagppmoach, the FM
approach. We begin the description of the FM approach bya@xiplg Fourier-Motzkin
elimination.

4. Eliminating variables by means of Fourier-Motzkin elimination

Fourier-Motzkin elimination (see, e.g., Duffin, 1974, ane Waal and Coutinho, 2005)
is a technique to project a set of linear constraints invvn variables onto a set of
linear constraints involvingh— 1 variables. The original set of constraints involvimg
variables can be satisfied if and only if the correspondimgjegted set of constraints
involving m— 1 variables can be satisfied. The standard version of FeMibézkin
elimination handles only inequalities as constraints. We an extended version of
Fourier-Motzkin elimination that can also handle equatiom our application of
Fourier-Motzkin elimination the constraints are definedhsy edits.

In order to eliminate a variabbe from the set of current edits by means of Fourier-
Motzkin elimination, we start by copying all edits not inviig this variable from the
set of current edits to a new set of edits

If variable x; occurs in an equation, we expregsin terms of the other variables.
Say,x. occurs in edis of type (1), we then write; as

1
Xr:—a (bs'f‘;aisxi) 9
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Expression (9) is used to eliminatefrom the other edits involving,. These other
edits are hereby transformed into new edits, not involwngdhat are logically implied
by the old ones. These new edits are added to our new set af‘Bdillote that if
the original edits are consistent, i.e. can be satisfied lgicevaluesy; (i =1,...,m),
then the new edits are also consistent as they can be sabgfiedi = 1,...,m;i #r).
Conversely, note that if the new edits are consistent, sydan be satisfied by values
(i=1,...,mi=#r), then the original edits are also consistent as they cantisfiesd by
the valuesy; (i =1,...,m) wherey; is defined by fillingv; (i=1,...,m;i #r) into (9).

If x; does not occur in an equality but only in inequalities, wesider all pairs of
edits (2) involvingx,. Suppose we consider the pair consisting of s@ihd editt. We
first check whether the coefficients xfin those inequalities have opposite signs, i.e.
we check whethes,s x a;y < 0. If this is not the case, we do not consider this particular
combination(s,t) anymore. If the coefficients o§ do have opposite signs, one of the
edits, say edis, can be written as an upper boundxgni.e. as

1
X < —— (bs+;aisxi> ) (10)
s ot

and the other edit, edif as a lower bound or, i.e. as

1
nz—a<h+;%m>. (11)

Edits (10) and (11) can be combined into

— (b Yaoe ) <x <= [ b+ T as
an ;t ST as ; A

which yields an implied edit not involving given by

1 1
- + i | < —— | be+ iXi | . 12
an (bt i raitx|> = e ( S i raisx|> (12)

The implied edit (12) is added to our new set of editsAfter all possible pairs
of edits involvingx, have been considered and all implied edits given by (12) have
been generated and addedipwe delete the original edits involving that we started
with. In this way we obtain a new set of edisnot involving variablex,. This set of
edits¥ may be empty. This occurs, for instance, when all currertsede inequalities
involving %, and the coefficients of; in all those inequalities have the same sign. Note
that if the original edits are consistent, say they can bisfgad by certain values;
(i=1,...,m), then the new edits are also consistent as they can be shtsfig;
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(i=1,...,mi#r). This is by definition also true if the new set of edits is empty
Conversely, note that if the new edits are consistent, sey¢hn be satisfied by certain
valuesv; (i=1,...,m;i #r), then the minimum of the right-hand sides of (12) for the
vi (i=1,...,m;i#r)is larger than, or equal to, the maximum of the left-handsife
(12) for thev; (i =1,...,m;i #r). This implies that we can find a valwe such that

1 1 .
—— b+ )y avi | S <—— [ bs+ ) aVy for all pairss andt,
art & ars e

which in turn implies that the original edits are consistéfie have demonstrated the
main property of Fourier-Motzkin elimination: a set of exii¢ consistent if and only if
the set of edits after elimination of a variable is consistdlote that as one only has
to consider pairs of edits, the number of implied edits isiobsly finite. We illustrate
Fourier-Motzkin elimination by means of the example below.

Example: Suppose there are four variabld@s(turnover),P (profit), C (costs), andN
(number of employees), and that the edits are given by (B), (4

P <0.5T, (13)
—0.1T <P, (14)
T < 550N. (15)

If we eliminate variableP, we use equation (3) to expreBsin terms of T andC.
That is, we usd®> = T — C. After Fourier-Motzkin elimination, we obtain the edits) (4
(15),

T-C<0.5T, (equivalently: 05T <C) (16)
and
—0.1T <T-C (equivalentlyC < 1.1T). (a7)

The main property of Fourier-Motzkin elimination says ttfa original set of edits
(3), (4), and (13) to (15) fof, P, C andN can be satisfied if and only if the set of edits
(4), and (15) to (17) foil, C andN can be satisfied.

This was an example of Fourier-Motzkin elimination if theiable to be eliminated
is involved in an equation. We now use the resulting set alkegdi), and (15) to (17)
for variablesT, C andN to give an example of the elimination of a variable involved



48 Imputation of numerical data under linear edit restrictions

in inequalities only. If we eliminate variabf@ from edits (4), and (15) to (17), we first
copy the edits not involving, i.e. edits (4) and (15). Moreover, we can combine edits
(16) and (17) to obtain

0.5T < 1.1T, (18)

which is equivalent to (4). So, eliminatiri@from (4), and (15) to (17) leads to edits (4)
and (15). The main property of Fourier-Motzkin eliminatisays that the set of edits
(4), and (15) to (17) foil , C andN can be satisfied if and only if edits (4) and (15) for
T andN can be satisfied. Combining the two results we have found,omelade that
the original set of edits (3), (4), and (13) to (15) fiorP, C andN can be satisfied if and
only if edits (4) and (15) fo andN can be satisfied. O

5. An imputation approach based on Fourier-Motzkin elimination

The FM approach consists of the following steps:

0. Assume a statistical imputation model for the data, arfdnecessary for the
model — estimate the model parameters.

We order the variables to be imputed from the variable wighrttost missing values
to the variable with the least missing values. If two of moagiables have the same
number of missing values, we order them in an arbitrary way.dach record to be
imputed, we apply Steps 1 to 5 below. We repeat this proca#isalimecords have been
imputed.

1. Fill'in the values of the non-missing data into the editsisTeads to a set of edits
E(0) involving only the variables to be imputed for the record @ncbnsideration.

2. Use Fourier-Motzkin elimination to eliminate the vatebto be imputed for the

record under consideration from set of ed#f)) in the fixed order described
above until only one variable remains. The set of edits dffiei-th variable to be
imputed has been eliminated is denotedHyy). The final set of edits defines a
feasible interval for the remaining variable. &atqual to the number of variables
to be imputed for the record under consideration.

. Draw a value for thé&-th variable to be imputed.

4. Ifthe drawn value lies inside the feasible interizék — 1), accept it and go to Step
5. If it lies outside the feasible interval, reject it andurgtto Step 3.

5. If k=1, all variables have been imputed and we stop. Otherwisdilive the
drawn value for the selected varialiénto the edits inE(k — 2). This defines a
feasible interval for thel{— 1)-th eliminated variable. We updatéy k .=k —1,
and go to Step 3.

w
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Note that the theory developed in Section 4 implies thatefridcord to be imputed
can be imputed consistently, the feasible interval deteechiin Step 2 or 5 is never
empty.

In Step 0 one can either assume an implicitly defined steaisitinputation model,
for instance when one wants to apply hot-deck imputationarorexplicitly defined
imputation model, such as the multivariate normal mode like do in this article. In
both cases we suggest to draw a value for the variable to hgédfrom the conditional
distribution of the selected variable given all known valueither observed or already
imputed ones.

If the feasible interval determined in Step 2 has width Orehie only one feasible
value for the variable under consideration. In this caseribt necessary to draw a value
in Step 3. Instead we immediately impute the only feasiblaeidn some other cases
the width of the feasible interval determined in Step 2 maydiber small. In those
cases many values may need to be drawn before a value insideasible interval is
drawn. We therefore set a limNl ., 0N the number of times that a value for a particular
variable may be drawn. If this limit is reached, and no vahsede the feasible has been
drawn, the last value drawn is set to the nearest value oktlile interval. By means
of Ngraw One can indirectly control the number of imputed recordshentioundary of
the feasible region defined by the editsNiay is set to a low value, relatively many
imputed records will be on this boundary;Nfiaw is set to a high value, relatively few
imputed records will be on the boundary.

The variables are imputed in reverse order of eliminatiomcé&we have ordered the
variables to be imputed from the variable with the most migsialues to the variable
with the least missing values before applying Steps 1 to hefabove algorithm, the
variables are imputed in order of increasing number of mgsialues. That is, the
variable with the least missing values is imputed first arelwthriable with the most
missing values last.

As mentioned before, to illustrate our approaches we assuitings article that the
data are multivariately normally distributed, and we use EM algorithm to estimate
the model parameters.

It is well known that in the worst case Fourier-Motzkin elimation can be com-
putationally very expensive. However, the imputation peais arising in practice at
statistical offices only have a limited number of variablad adits. The largest prob-
lems we are aware of have a few hundreds of variables andlgligbre than 100 edits.
For realistic problems of this limited size, Fourier-Moizklimination is generally suf-
ficiently fast. In fact, it has been shown for the related —-dmmputationally much more
demanding — error localization problem of the same sizernmgeof variables and ed-
its that in practical cases arising at statistical officesdbmputational performance of
Fourier-Motzkin elimination is generally acceptable (BeeWaal and Coutinho, 2005,
and De Waal, 2005). In our application of Fourier-Motzkim@hation in this article
to small imputation problems, the computing time of FouNtzkin elimination was
negligible, i.e. close to 0 seconds, for all runs. Once thrarpaters of the multivariate
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normal distribution had been determined by means of the Ejdrithm, imputing the
missing values took only took a few seconds for the entira dats. Moreover, in the
imputation process, the bulk of the computing time for the &bdproach was spent on
drawing values from the multivariate normal distributi@ther than on Fourier-Motzkin
elimination

The main reason for developing the FM approach is the fattpmamising results
have been obtained by so-called sequential imputationadsttSequential imputation
methods are a well-known class of imputation methods, sge,\Man Buuren and Oud-
shoorn (1999 and 2000), Raghunatan et al. (2001) and Rub@8J2These imputation
methods sequentially impute the variables and allow a sgpanputation model to be
specified for each variable. By imputing all variables conitey missing data in turn and
iteratively repeating this process several times, théssitz! distribution of the imputed
data generally converges to an unspecified multivariatelgigion. The main strength
of sequential imputation is its flexibility: rather than mgione multivariate imputation
model for all variables simultaneously, which is generatiynputationally demanding
and complex to handle, one can specify a different imputatiodel for each variable.
Sequential imputation methods can be extended to ensurthélyssatisfy edits. In prin-
ciple, the FM approach can be implemented as a sequentiaitétipn approach that
allows such an extension, although in our illustration weuase a multivariate normal
distribution as imputation model rather than separate tatpn models for the variables
to be imputed (see Tempelman, 2007, and Pannekoek, Shliadnbeakaal, 2008, for
other extensions of sequential imputation to ensure thits ack satisfied).

Of course, the adjustment approach may also be used in ardegumputation
approach, namely one may first use a sequential imputatjmmoaph and later adjust the
imputed values so they satisfy the edits. A fundamentatdifice between this approach
and the FM approach is that in the adjustment approach thetédyalues are adjusted
simultaneously afterwards, whereas in the FM approach sephrate imputed value
is immediately adjusted in order to ensure that all editstwasatisfied. Immediately
adjusting each imputed value in order to ensure that alseddin be satisfied might
improve (or deteriorate) the statistical results as sulisetgmputed values may depend
on previously imputed values (see also Section 7.3).

6. lllustration of the FM approach

In this section we illustrate the FM approach by means of @mgte. In our example,
we assume that we are given a data set with some missing véhag¢shere are four
variables,T, P, C andN, and that the edits are given by (3), (4) and (13) to (15).

We focus on Steps 1 to 5 of the approach for a specific recorcadsleme that the
data follow a multivariate normal distribution, and assuimet the model parameters,
meangu and covariance matrix, estimated in Step 0 of our approach are given by
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p = (1000 200,500,4)

and

13500 3000 10500 6

3000 2500 500 10

10500 500 10000 50]°
60 10 50 1

2=

Here the first column/row corresponds To the second column/row tB, the third
column/row toC, and the fourth column/row ti.

Now, suppose that for a certain record in our data set we Naves, and that the
values forT, P andC are missing. We first fill in the observed value fbinto the edits
(3), (4) and (13) to (15) (Step 1 of our approach). We obtajn(@, (13), (14) and

T <2750 (19)

Now, we sequentially eliminate the variables for which théues are missing from
the edits. We start by eliminatirig from (3), (4), (13), (14) and (19). This leads to the
edits (4), (16), (17) and (19). Edits (4), (16), (17) and (1&e to be satisfied kyandT.

We next eliminate variabl€, and obtain edits (4), (18) and (19). Edit (18) is
equivalent to (4). The edits that have to be satisfiedlbgre hence given by (4) and
(19). The feasible interval for is therefore given by [0, 2750]. We have now completed
Step 2 of our approach.

To imputeT, we determine the distribution @f, conditional on the value for variable
N. The distribution ofT turns out to be N(1060, 9900), the normal distribution with
mean 1060 and variance 9900. We draw values from this digiito until we draw a
value inside the feasible interval (Steps 3 and 4 of the aguro Suppose we draw the
value 1200.

We fill in the imputed value foll' into the edits folC andT, i.e. edits (4), (16), (17)
and (19) (Step 5 of the approach). We obtain

1200> 0,
600< C,
C <1320

1200< 2750

The feasible interval fo€ is hence given by [600, 1320]. We determine the distribution
of C, conditional on the values for variabldsandT. This distribution turns out to be
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N(656.11, 18181.18). We draw values from this distributiotil we draw a value inside
the feasible interval (Steps 3 and 4 of the approach). Sappegdraw the value 700.

We fill in the imputed values fo€ andT into the edits that have to be satisfied®y
T andP, i.e. edits (3), (4), (13), (14) and (19) (Step 5 of the apphdaWe obtain

1200= P+ 700,
1200> 0,
P < 600
~120<P,
1200< 2750

There is only one feasible value fBr namely 500. The imputed record we obtain is
given byT = 1200,C = 700,P = 500, andN = 5.

7. Evaluation study

7.1. Evaluation data

For our evaluation study we have used three data sets: aetatétls actually observed
data from a business survey, data Rgt, the same data set but without balance edits,
data seRneq, and a data set with synthetic data, data%éthe data setRy andRineq
contain raising weights. These raising weights differ asrdifferent (strata of) records,
and are used in some of our evaluation measures. InSiataaising weights were set
to 1. The main characteristics of these data sets are pegsienitable 1.

Table 1: The characteristics of the evaluation data sets.

Data seRy Data seRineq Data setS

Total number of records 3,096 3,096 500
Number of records with missing values 544 469 490
Total number of variables 8 7 10

Total number of edits 14 12 16
Number of balance edits 1 0 3

Total number of inequality edits 13 12 13
Number of non-negativity edits 8 7 9

The actual values for data g&f, and hence also for data $&ieq, are all known. In
the completely observed data set values were deleted brydgptity, using a mechanism
unknown to us. Data s&neq Was constructed in order to examine the effects of balance
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edits on the results. In fact, we have “removed” the balardie feom data setRy

in two different ways. First of all, we have only “removed’etlbalance edit, i.e. did
not explicitly demand that after imputation the balance &dids true for all records,
but have left all involved variables in the data set. As a equagnce, the estimated
covariance matrix will be singular and the balance edit idlautomatically satisfied
by the imputed data, if the parameters of the normal disiobware estimated by means
of the EM algorithm using the complete cases to obtain a fgsimate for the model
parameters as we do in our application. We refer the intedestader to Chapter 4
in Tempelman (2007) for a proof. The evaluation results khbence be the same as
for the case where all edits are used, apart from some miffifl@relices due to the
stochastic nature of the approaches used. This is confirmemlbevaluation study
(results not reported in this article). Second, we have xemi@ne of the variablefy,
involved in the balance edit and its associated non-nagaédit from Ry. Rineq is the
resulting data set. This data set obviously does not havatigfisany balance edit. The
removed variablér, does not occur in any of the other edits apart from its astetia
non-negativity edit.

Data setSis indirectly based on an observed business survey andritsspmnding
edits. This observed data was used to estimate the paraneét@multivariate normal
model by means of the EM algorithm. Next, data Setvas generated by drawing
from the estimated multivariate normal model. If a drawnteedid not satisfy all
specified edits it was rejected, else it was accepted. Invilig 500 vectors were
generated. Missing values were generated by randomlyingl&ir each variable a
specified number of values. The number of values deletediwash) higher than in the
actually observed business survey in order to evaluatedtienmance of our imputation
approaches for a very complicated situation.

For all three data sets we have two versions available: #ovength missing values
and a version with complete records. The former version uiied. The resulting data
set is then compared to the version with complete recordghwie consider as a data
set with the true values.

The numbers of missing values and (unweighted) means of ,thesBectively 7,
variables of data seRy and data seRneq are given in Table 2 and those of the 10

Table2: The numbers of missing values and the means
of the variables of data sets;Rand Rneq.

Variable Number of missing values Mean
Ry 76 11,574.83
Ro 79 777.56
R3 130 8,978.70
Rq 147 1,034.07
Rs 68 10,012.77
Res 67 169.24
Ry 73 209.86
Rg 0 37.41
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Table 3: The numbers of missing values and the means
of the variables of data set S.

Variable Number of missing values Mean
Ry 120 97.77
S 180 175,018.30
S 240 731.03
Sy 120 175,749.33
S 180 154,286.53
S 180 7,522.34
S 180 8,519.65
S 180 1,277.04
S 120 171,605.57
Sio 120 4,143.76

variables of data se&$ in Table 3. The means are taken over all observations in the
complete versions of the data sets.

VariableRg in data set®y andRneq does not contain any missing values and is only
used as auxiliary variable.

7.2. Evaluation measures

To measure the performance of our imputation approachesseeeveral evaluation
measures, The first measure we use isckhemeasure proposed by Chambers (2003).
Thisd, 1 measure is the average distance between the imputed anélues defined as

4. — 3 kem Wi | Yk — Vil
L1 —
ZkeM W

)

wherey is the imputed value in recorkl of the variable under consideratioy, the
corresponding true valué] denotes the set afimp records with imputed values for
variabley andwy is the raising weight for recorkl

The second measure we use is themeasure, which has also been proposed by
Chambers (2003). This measure, which measures the praeargathe first moment
of the empirical distribution of the true values, is defined a

m = .

> Wik —Yi)/ D Wi

keM keM

Thatm; measures the preservation of the first moment of the empdisaibution of
the true values becomes clear if we rewriteas
W,
« (ZkeD k) 7
> kem Wk

ngWk(yk—Y&)/ngWk

m =
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whereD denotes the entire data set. The quanjiypWiYi/ 3 kep Wk IS an estimate
for the population mean. Saoy, is the deviation of the first moment of the empirical
distribution from the first moment of the true distributiamés the constant factor
zkeDWk/ZkeM W

The third measure is thelm (relative difference in means) measure. This measure
has been used in an evaluation study by Pannekoek and De X08&l)( and is defined
as
ZKEM yk - ZKEM y|*<

rdm= -
2 keM Yk

Smaller absolute values of the above three measures iadettier imputation perfor-
mance.

To remain consistent with the literature, in particularhwiihe previously published
papers by Chambers (2003) and Pannekoek and De Waal (208%5gwe not made an
attempt to make thd,; and them, measures comparable across variables.

The three evaluation measures described so far all medsudeviation of the im-
puted values from the true values. The next three evaluatiegsures measure statisti-
cal aspects, such as the preservation of the empiricaiistn and the preservation of
standard errors.

The first of these measures is the percent difference bettheestandard deviation
(STD) of the mean of the imputations to the standard deviatiche mean of the true
values:

(ST Dmp — ST Drue)
STDre

A smaller absolute value for the percent difference betwberstandard deviation of
the mean of the imputations to the standard deviation of teamof the true values
indicates better performance.

Another evaluation measure is a sign test using paired daia.sign test can be
carried out by creating a new variable that is defined as tfiereihce between the
original value and the imputed value. The test with the nyfidthesis that the median
of the difference is equal to zero is equivalent to the test e medians of the original
and imputed values are equal. The sign statistic is defined as

100

S=(nt—n")/2

wheren™ is the number of values greater than 0 andthe number of values less than
0. A small p-value means that we reject the null hypothesis of equal amsdiWe will
interpret this as: a larggr-value indicates better performance.

The next evaluation measure we use is the Kolmogorov-Sminmon-parametric test
statistic K-9). This statistic is used to compare the empirical distiduof the original
values to the empirical distribution of the imputed valugls@ proposed by Chambers,
2003). For unweighted data, the empirical distributionhef original values is defined
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as:Fy(t) = Siem | (Vi <t)/Nimp, Wherenim, is again the number of imputed values and
| the indicator functionFy(t) is defined similarly. Th&-Sis defined as:

K-S= mjax(IFy*(tj) —Fy(t))),

where the{t;} values are thery, jointly ordered original and imputed valuesyfA
smaller value foK-Sindicates better performance.

The final evaluation measure we consider is the number ofdsam the boundary
of the feasible region defined by the edits. Records lyincherbbundary of the feasible
region defined by the edits are outliers in some sense. Tog mattiers in this sense,
and any other sense, could make the imputed data less soitagbiftain statistical
analyses. The number of records on the boundary defined fditseshould preferably
be close to the actual number of records of the true data dndinedary of the feasible
region defined by the edits. This evaluation measure is aeb# important than the
others, which measure the statistical quality of the impwedues more directly.

We use the measures in a relative way, namely to compare jhst@ent approach
to the FM approach. The measures are neither necessarilgpagie nor sufficient to
measure the impact of imputation on the quality of surveynedes in general. For
an actual production process it depends on the intendedfube data which of the
evaluation measures is considered more important.

7.3. Evaluation results

Both imputation approaches described in this article ara stiochastic nature as they
depend on drawing vectors from a probability distributido.reduce the effects of the
stochastic nature of our approaches we have repeated ealciatean experiment 10
times, and have calculated the average of these 10 expéasinuniess stated otherwise
the value ofNgray for the FM approach (see Section 5) is set to 160 in our exparisn
The value of 160 folNgw is based on a limited explorative, trial-and-error search,
aiming to find an optimal trade-off between the quality of thgputations and the
required computing time. The results for data Rgt are presented in Table 4 for the
adjustment approach and Table 5 for the FM approach.

Table 4: Evaluation results for the adjustment approach on data ggt R

Variable di1 m rdm percent difference sign K-S
Ry 2069.21 1145.83 0.15 0.02 0.57 0.03
R, 226.91 108.27 0.17 0.22 0.90 0.00
R3 303.79 285.46 -0.21 -0.13 0.12 0.01
R4 283.05 263.84 1.79 3.71 0.00 0.01
Rs 16.11 13.21 -0.01 0.00 0.00 0.38
Rs 41.00 40.61 2.65 0.10 0.00 0.03
R; 86.37 75.14 1.42 1.87 0.07 0.00
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Table5: Evaluation results for the FM approach on data sgi R

57

Variable di1 my rdm percent difference sign K-S
Ry 3108.97 2633.30 0.34 -0.02 0.00 0.00
Ry 290.66 235.89 0.33 0.11 0.00 0.00
R3 169.68 130.85 —0.04 0.00 0.02 0.17
R4 183.83 152.04 0.40 0.16 0.00 0.02
Rs 68.29 61.31 0.01 0.00 0.13 0.74
Rs 27.37 26.87 1.83 —0.40 0.00 0.00
R; 95.44 92.48 2.17 0.87 0.00 0.00

Variable Rg does not have any missing values, so no evaluation resultRsfare

presented in Tables 4 and 5. The results for dat&sgtare presented in Table 6 for the

adjustment approach and Table 7 for the FM approach.

Table 6: Evaluation results for the adjustment approach on data $gR

Variable dia my rdm percent difference sign K-S
Ry 1868.22 256.14 —0.25 —0.36 0.01 0.10
Ry 205.16 34.67 -0.37 —0.42 0.00 0.00
R3 1490.74 145199 —0.99 —0.93 0.00 0.00
Rs 1227.87 541.04 —0.49 —0.44 0.00 0.00
Rs 2783.81 2783.81 592.50 58.43 0.00 0.00
Ry 14.40 12.03 —0.54 —0.47 0.00 0.36
Table7: Evaluation results for the FM approach on data sgfeR
Variable di1 my rdm percent difference sign K-S
Ry 3105.74 2719.82 0.33 -0.01 0.00 0.00
Ry 278.66 225.06 0.30 0.10 0.00 0.00
R3 359.48 277.00 —0.09 0.00 0.00 0.01
Rs 1844.58 1762.83 0.14 -0.01 0.00 0.00
Res 27.07 26.66 1.78 —0.39 0.00 0.00
Ry 85.50 82.26 1.80 0.60 0.00 0.00
Table 8: Evaluation results for the adjustment approach on data set S
Variable di1 my rdm percent difference sign K-S
Ry 13943.12 13916.90 142.57 863.15 0.20 0.00
S 17440.92 8066.39 0.05 0.17 0.10 0.06
S 9941.38 9767.14 13.14 68.89 0.00 0.00
S 32672.09 31633.86 0.19 0.37 0.00 0.11
S 11404.99 5274.79 —0.04 —0.02 0.00 0.35
S 2221.02 1430.56 0.18 0.37 0.00 0.00
S 3472.59 1405.63 0.16 0.51 0.00 0.01
53 5062.49 4818.50 3.63 11.52 0.00 0.00
S 5715.68 3569.85 0.02 0.00 0.87 0.95
Si0 28261.21 28064.01 7.22 20.89 0.00 0.00
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Table 9: Evaluation results for the FM approach on data set S.

Variable di1 my rdm percent difference sign K-S
Ry 62.39 50.19 0.51 5.81 0.01 0.00
S 6754.16 2204.84 —0.01 -0.01 0.00 0.11
S 3413.06 3268.38 4.40 28.46 0.00 0.00
S 4594.46 3229.51 0.02 0.00 0.13 0.66
S 35442.70 28136.41 —-0.19 0.01 0.56 0.00
S 3600.36 2597.57 -0.33 0.59 0.00 0.00
S 15202.73 10779.74 1.21 8.49 0.79 0.00
$ 21984.15 21247.71 16.01 81.38 0.13 0.00
S 3959.69 1940.22 0.01 0.00 0.87 0.95
Sio 2223.89 1289.30 0.33 3.76 0.20 0.05

The results for data s&are presented in Table 8 for the adjustment approach and
Table 9 for the FM approach.

It is hard to draw conclusions from Tables 4 to 9. For somealédess the adjustment
approach leads to better results than the FM approach. Rer wariables the opposite
happens. This is not very surprising as both approachesorelthe same statistical
model for drawing imputation values, which fails to captaikdistributional aspects
of the data. In order to draw some conclusions we examine Hten @ne approach
leads to better results than the other, where “better” imddfias “closer to zero” for
all evaluation measures considered in Tables 4 to 9 excephéosign test. For the
sign test “better” is defined in the opposite way, i.e. thgdarthep-value, the better
the performance. For data $&{;, the results for the adjustment approach in Table 4 are
in 19 cases better than those for the FM approach in Table & opposite happens in
16 cases. For data sBheq, the results for the adjustment approach in Table 6 are in
13 cases better than those for the FM approach in Table 7. pjpesde happens in 15
cases. For data s&f the results for the adjustment approach in Table 8 are ire26<
better than those for the FM approach in Table 9. The oppbsippens in 31 cases.
From this we conclude that for data s&g andRineq the results for the six evaluation
measures of the adjustment approach are comparable tathisier the FM approach.
The inclusion or exclusion of the balance editRg);, respectivelyRi,eq does not seem
to affect the results much. For the more complicated dat& #et FM approach leads
to slightly better results than the adjustment approacis iBhprobably caused by the
fact that in the FM approach the values imputed cannot beaiolvdm their true values
as each separately imputed value is at worst on the boundaty feasible interval.
This imputed value is later used as predictor in order to immiher missing values.

In the adjustment approach the values imputed in the firpt i@y be far from their
true values. For the complicated data Sgethis is apparently not, or in any case to an
insufficient extent, corrected in the adjustment step.

In Table 10 the average number of records on the boundarg éé#sible region over
10 evaluation experiments for the adjustment approach ladM approach on data
setsRai, Rineq, andSare presented. For the FM approach we show the results e thr
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different values oNgray, Namely the values 1, 160 and 1000. The valudlgf,, used

is mentioned between brackets. The results for the six atialumeasures considered
before forNgraw= 1 andNgaw = 1000 (not presented here) are comparable to the results
presented in Tables 5, 7, and 9, whé&g,w = 160. In Table 10 we also present the
number of records on the boundary of the feasible regionhfiercomplete versions of
the three mentioned data sets. In almost all cases recoltiesd data sets lie on the
boundary of the feasible region because a variable thatchaatisfy a non-negativity
edit attains the value zero.

Table 10: (Average) number of records on the boundary of the feaség®n defined by the edits.

Average number Average number Average number Average number Actual number
for FM for FM for FM for the for complete
approach approach approach adjustment data
Q) (160) (1000) approach
Data seRy) 499.4 468.2 468.0 499.8 495
Data SeRineq 4358 397.4 397.0 394.1 424
Data seS 200.5 186.6 186.8 185.5 2

Table 10 shows that the result for data Bgtq for the FM approach is closer to the
actual number of records on the boundary of the feasibleredgfined by the edits for
the complete data than the adjustment approach for any dfitee values olNgan. FOr
data seRy it depends of the value dy4, Which approach leads to a result that is the
closest to the actual number of records on the boundary éocaémplete data. For data
setSthe results of the adjustment approach are slightly claséneg actual number of
records on the boundary for the complete data than the FMbapprfor any of the three
values ofNgraw. The difference between the results for the adjustmentogmprand the
FM approach folNgraw = 160 are, however, negligible.

Table 10 also shows the effect of the paramBlgy,, of the FM approach: the higher
Ngraws the less records will generally lie on the boundary of tleesiiele region. By means
of Ngraw One can indirectly control the number of records on the baundf the feasible
region.

If one wants, for the FM approach, the number of imputed dxon the boundary of
the feasible region defined by the edits to be close to the@blatumber of records on the
boundary for the complete data, one should chdggg, between 1 and 160 for data sets
Rai andRineq. Data seSappears to be too complicated for both the adjustment and the
FM approach. The number of imputed records on the boundahedeasible region is
too high for both approaches. By increasing the valuds§, the number of records on
the boundary decreases only slowly for the FM approachelsing the value dfly aw
also leads to an increase of the computing time, howeveal®wmugh one can influence
the number of records on the boundary of the feasible regyorhlanging the value of
Naraw, the effect of changing the value bl is limited, in any case for complicated
data sets such & The drawback of the adjustment approach noted in Sectitrat3 t
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the number of records on the boundary of the feasible regiothfs approach is for a
substantial part determined by the first imputation stepsdus appear to be a major
disadvantage in comparison to the FM approach —at leasbnouf evaluation data—
as the results of the adjustment approach are not clearlgembian those of the FM
approach in this respect.

8. Discussion

In this article we have described two imputation approat¢hatlead to imputed data
that satisfy specified edits. The main aim of the article wedescribe the two general
frameworks, which are basically independent of the impamamethod or imputation
model actually applied. To illustrate how these approast@k in practice we have
used a multivariate normal imputation model.

For the data sets in our evaluation study we conclude thatyéamultivariate normal
imputation model, for 2 of the 3 data sef,( and Rieq) the FM approach leads to
comparable evaluation results as the adjustment appréactihe other data set (data
setS) the FM approach leads to (slightly) better than the adjestrapproach (see Tables
8 and 9). The FM approach seems to have a built-in mechanigrotect itself from
imputing very wrong values. Such a mechanism seems to bimtatbkm the adjustment
approach. Our study is, however, very limited and more rebea necessary before we
can draw any definite conclusions.

In our application of the adjustment approach we have useidearl objective
function. The main reason for using a linear objective fiorcis that this is easy to
implement in a software program. The results of the adjustrapproach may possibly
be improved by using a quadratic objective function instefidur linear one. In any
case, for statisticians, minimising a quadratic objecfivection is more natural and
often more logical than minimising a linear objective fuont

The FM approach has the advantage that one can, indirectiyrat the number of
records on the boundary of the feasible region defined bydiis. & he price that has
to be paid for this is that the algorithm is more complicatednt for the adjustment
approach. Moreover, the effect of this indirect controlrate number of records on the
boundary of the feasible region seems limited. From a pymedgtical point of view, the
adjustment approach may therefore be a better choice in naEss.

For data se§, far too many records lie on the boundary of the feasibleorefpr both
the adjustment approach and the FM approach. For aimostcatds on the boundary
one or more non-negativity edit is satisfied with equality, the value of the involved
variable equals zero. The fact that far too many non-neigatdits are satisfied with
equality strongly indicates that the assumed imputatiodehavhich in our application
is assumed to follow a multivariate normal distributioninsorrect. In order to improve
the statistical results of the two imputation approachesemted in this article, the
underlying statistical model should be improved. Furtlesearch is required to develop
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such better statistical models as well as computationedigtable methods to handle
such models.

When imputing a missing value in a record in our implemeantatof the FM
approach, we use the previously imputed values in this deasrauxiliary information.
In this way we try to preserve the correlation structure leetvthe imputed values
as much as possible. Using previously imputed values inrdalémpute a missing
value has an obvious drawback: if the stochastic imputgpimtess leads to a bad
imputed value, this affects all subsequently imputed \&loehis record. It remains to
be examined if the results of the FM approach improve, orraetde, if we do not use
the previously imputed values as auxiliary informationibstead use only the observed
data as auxiliary information.

The imputation approaches we have developed in this artiate be applied to
general linear edit restrictions. If only non-negativitglits are specified, one could
possibly also use tobit and logit models instead of our apghies. Such models
automatically ensure that each variable to be imputednat@inon-negative value. The
use of tobit or logit models for imputation subject to norgagvity edits remains to be
examined.
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