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Eliminating small cells from census counts tables:
empirical vs. design transition probabilities
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Abstract

The software SAFE has been developed at the State Statistical Institute Berlin-Brandenburg
and has been in regular use there for several years now. It involves an algorithm that yields a
controlled cell frequency perturbation. When a microdata set has been protected by this method,
any table which can be computed on the basis of this microdata set will not contain any small cells,
e.g. cells with frequency counts 1 or 2. We compare empirically observed transition probabilities
resulting from this pre-tabular method to transition matrices in the context of variants of microdata
key based post-tabular random perturbation methods suggested in the literature, e.g. Shlomo, N.,
Young, C. (2008) and Fraser, B.,Wooton, J. (2006).
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1. Introduction

In preparation for the German census 2011 we have startednpacative study of
several perturbation methods for census frequency colihes.German Census will
partly be register based, and partly be the outcome of a gasypl/ey. This leads of
course to limitations in the amount of detail of tables that sensibly be released, as
compared to a full census. Nevertheless, a huge amountatatutput is going to be
published. Publication of tables will to a major extent be-pfanned, but there will also
be some flexible, user demand driven release of tabular data.
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Given the size of the publication, and other complexitide (hon-nested hierarchies
that are foreseen for some classification variables like™agon-perturbative methods
like cell suppression do not seem to be a good choice: oneeoistues to be raised
here is that with cell suppression, there would be a corsierdisclosure risk due to
incomplete coordination of cell suppression patternssctables. Perturbation methods
also have the advantage that they introduce ambiguity ingaero cells which helps to
avoid attribute disclosure when (nearly) all members of putation group score on
only one (sensitive) category of a variable.

In this paper, we investigate into basically three alteveainethods. The software
SAFE (c.f. Hbhne, J. (2003a), hne, J. (2003b)) is in regular use at the State Statistical
Institute Berlin-Brandenburg. SAFE is an implementatidran algorithm that yields
a controlled cell frequency perturbation. When a microdatiahas been protected by
this method, any table which can be computed on the basisofititrodata set will
not contain any small cells, e.g. cells with frequency cewrte or two. These small
frequencies are the main concern for disclosure risk in Gem®unts tables, since
they give information on the unigqueness or rareness of ioeat#ributes or attribute
combinations of individuals. Because SAFE is a pre-tabukethod, all tables computed
from the perturbed microdata set protected by SAFE are édhsistent and additive.

In comparison to SAFE, we study two post-tabular pertudmatnethods which
both are based on the use of microdata keys. This techniguesrcsure full, or at
least approximate, consistency of perturbations acrd$sreint tables. Across table
consistency has two aspects: On one hand, inconsistenaigdenirritating to users.
More severe from the disclosure control point of view is thabnsistency may lead to
disclosure risk. For example, an average taken over ev@nineonsistently perturbed
values of logically identical cells (taken from differeables) should not be an unbiased
estimate of the original cell value.

Each of the two post-tabular methods involves two steps.fifsiestep yields fully
or approximately consistently perturbed, but non-additables. Non-additivity is a
potential nuisance for users, and may also be a source dbslise risk. Therefore,
in a second step, table additivity should be restored. Tdasbe achieved by statistical
methods such as the iterative proportional fitting algaomithn this paper we discuss
using linear optimization techniques for this step.

In order to avoid a perception of disclosure risk, and to mewa “visible” kind of
protection, we require both methods to provide, like SARE{yrbed data without small
cells (i.e. without counts of one and two). Note that we imagdi rather rize use of the
data here, keeping in mind that for researchers there widitber options of accessing
the data.

This paper reports on findings of the first phase of the studgrwimplementing
the methodologies. It is organized in eight sections: IntiSec2, we outline the
methodological approach of SAFE. Technical issues of coashg suitable probability
transition matrices for random perturbation methods aseudised in Sections 3 and
4. In Section 5, we suggest an optimization technique toredable-additivity, e.g.
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the CTA method of Castro, J., Ganez, J.A. (2009). Some test results are presented
in Section 6, and a measure of information loss on the cedll lBr SAFE results is
proposed in Section 7. We conclude the paper with a brief sany®ection 7.

2. Methodological background of SAFE

In this section we briefly describe the methodological apphoof SAFE, as far as it
is relevant for an application to protect tabulations of ylagon Census counts data.
Starting point for the method is a microdata file where allakales are recoded to give
the highest degree of detail foreseen for any publicatioradine a variable like age,
where perhaps data are collected so that for each persomalgkebe deduced down to
the level of age in months, but publications should offemdstmost by age in years.
Then the variable would be recoded to the level of age in y&$esalso assume here
that the data set consists of categorical variables only.

The basic idea of the method is to turn this data set (with, Nayariables at;
(i=1,...,N) categories) into a data set, in which either none of the d=;ar at least
three records score on each of the n, - - - kny theoretical combinations of categories.

With respect to data quality, the method aims to preservarasfpossible cell counts
in a pre-defined set of ‘controlled’ tables. For those tatiless method yields results that
are in some sense ‘optimal’. If any other table is derivediftbe perturbed data set, it
will be safe (i.e. it will not contain any ones or twos), buffeliences between original
counts and those computed on basis of the perturbed datarséecmuch larger than
they arise for the controlled tables. The experience istttetmethod is usually able to
achieve a maximum deviation between 4 and 8 for a sensiblpetbBet of controlled
tables.

2.1. The SAFE mathematical model

The algorithm computes a heuristic solution for the probt#mminimizing the maxi-
mum absolute deviation between true and perturbed celégatuthe controlled tables.
Instances are defined by the following parameters:

e A set of linear relationg\y = a defining the table cells of the controlled tables as
sums of cells of an elementary table consisting of all comtiams of categories
of all variables in the microdata set.

e \ectora,a= (&, i € |) denote the original frequencies presented in the controlle
tables, and vector,y = (yj, j = 1,...,N) the entries (e.g. frequencies of category
combinations) of the cells of the elementary table. In advablution, vectoly
does not contain any entries of 1 or 2.
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e Vectorw of weights associated to perturbations of the table celte@tontrolled
tables. For example, we may want to allow larger perturinatior larger cells, or
avoid them for cells that are rated “highly important”.

The objective of the model is to minimize the maximum entryectord = (d;, i € 1),
d; € Z, denoting the deviations of original and perturbed cellnteun the controlled
tables. With these definitions, broadly, the model is a®vad!:

Solve the problem

miny  maxe (|dif +w)
subjectto Ay=a-+d 1)
y;€{0,345,...} j=1...,N

This statement of the problem resembles a huge non-linéegen optimization
problem which is computationally intractableTherefore, an efficient heuristic algo-
rithm has been developed that gives near optimal solutibmeasonable expense of
computer resources.

Beginning with the (infeasible) initial solution given loy= 0, i.e. where cell values
are kept at their original value, a first feasible solutioroigained. This solution is
optimized later on.

A first feasible solution
In addition to the above parameters, we define now

e Vectorb = (by,i € 1), bj € B of bounds for maximum allowed deviations. In
practice,B consists of two values only, one stating the maximum deiatd be
allowed for cells defined by only one variable, the other dagrgy the maximum
allowed deviation for the other cells, e.g. cells defined @sscombination of
categories of two or more variables,

e Vectorx= (xj, j=1,...,N), xj € {0,1} is 1, if elementary table cellis “unsafe”,
e.g. ify; € {1,2} and 0 otherwise.

The problem to be solved is

miny Z Xj
i=17N

subjectto |Ay—al <w+b )
y; €{0,1,2,3,...}
x;=1;ify; € {1,2} x;=0;ify;¢{1,2}

1. Note, in our test setting which is still substantially $lerathan the real setting will be, the size of vecyor
(and thus the number of columns of matéixis approximatelN = (2% 47+ 8% 111x 10000 ~ 5x 1CP,
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A feasible solution is obtained when the objective funci®rero.

Minimizing the number of “unsafe” frequencies, using a lisia, the algorithm step
by step changes critical frequencies of 1 and 2 into unetifrequencies 0,3 ,4,. .. Ifthe
process stagnates, the statement of the problem is modifiechatically by increasing
the vector of boundb, e.g.b =b+ 1.

Optimizing the solution

Once a feasible solution has been obtained, the methodegl ® improve the solution
by reducing the maximum allowed perturbation, dagand eventuallyv. Usually, the
number of cells where the deviation is identical or neanial to the respective bound
is relatively small. In the optimization step, after charg{decreasing) or w, some of
the constraints in model (2) will be violated. Accordinglye define now

e Vectorz= (z,i €1), z € {0,1} is 1, if for controlled tables celi the bound
constraint of model (2) is violated and 0 otherwise.

The algorithm derives a heuristic solution to

min, 3 2

icl
subjectto |Ay—a| — (W+b) <z 3)
yj €{0,3,4...}

If a solution is obtained wherg z = 0, the constraints will be tightened further (e.g.
i€l
decreasd or w), and model (3) will be solved again. This step is repeate eititer
an expected level of optimality (in the bounds) is reachedudher attempts seem to

be rather unpromising.

3. Generating random noise for frequency tables

The Australian Bureau of Statistics Fraser, B., Wootor2d06), Leaver, V. (2009) has
developed a concept for a cell perturbation method. Theggse that the random noise
should have zero-mean and a fixed variance. An alternatiypex¢urbation method re-
ferred to as “Invariant Post-tabular SDL” method was sutgges Shlomo, N., Young,
C. (2008). In the following two subsections we briefly outlithe two alternative con-
cepts and discuss the technical construction of suitalbatility transition matrices
for a random perturbation eliminating all small frequenoyiats.
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3.1. How to create zero-mean/fixed variance cell perturbati  ons?

Fraser, B., Wooton, J. (2006) propose to generate for edicbwéh non-zero cell count
ic an independent integer value perturbatirsatisfying the following two criteria:

(&) mean of zero

(b) fixed variance&/ for all cellsc and all frequency counis

A third criterion, in order to meet the requirement that payéed cells do not have a
count of one or two, would be

(©) ic+de ¢ {1, 2} f.a.ic, de

This means we look for & x L transition matrixP? containing conditional proba-
bilities: pi; = p (perturbed cell value ig | original cell value isi) with the following
properties:

(1) pivi=0

2) pi(vi)?=V

(3) pij =0for jin{1,2}
(4) %pij =1

(5) pj=0;if j<i—Dorj>i+D,
(6) poo=1andpg; =0 for j >0, and of course
(7) 0<p;j <1

where p; denote theth row-vector of matrixP andv; a column vector of the noise
which is added, if an original value @fis turned into a value of. l.e. the j™ entry
of v; is (j —i). For examplev; = (—1,0,1,2,3,...,L — 2). (1) is equivalent to (a) and
expresses the requirement that the expected value of the sloould be zero. Similarly,
(2) is equivalent to (b), expressing the requirement of astamt variance, and (3)
relates to (c). (4) and (7) are of course necessary for anysitran matrix, (5) states
a maximum allowed absolute perturbation of some pre-definadtanD and (6) states
that zero frequencies must not change. Note for all rows edteD + 2, condition (3) is
always satisfied, when (5) holds. Hence we can facilitatéable of computing suitable
transition probabilities by adding a symmetry requirenfensll rows after ronD + 2:

8) piik=pijkfork=1...D,ifi >D+2

2. Asindexj may take a value of zero (when a cell value is changed to zerok iimtlowing we start counting
matrix and vector indices at 0, enumerating rows and columnsedf k L matrix by Q1,2,...,L — 1.
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With (8), condition (1) is always satisfied because the negaind positive devia-
tions balance each other. (2) simplifies into

(2&) 2_ z pijj2:V.
j=1,....D
For simplicity, in the following we therefore assurhe- 1 = D + 3, applying the
perturbation probabilities given by rod + 3) of matrix P to all cell counts> D + 3.
For every row (or cell couni)(i = 1,...,D+2) conditions (1) to (5) can be rewritten
as system of three linear equations

(9) Apx=b,

whereAjp is a(3 x (min(i,D) + 1+ D —k)) 3 coefficient matrix andb = (1,0,V)". The
elements ofx correspond to the entries of romin P which are not zero anyway by
definition (because of (3) or (5)). The first rowAf corresponds to condition (4), the
second row to (1) (e.g. unbiasedness) and the third row t@i¥@d variance/).
111
Consider for exampléd;3 =< —1 2 3 ;. In this simple case, the coefficient
149
matrix is invertible. The last row of the inverse(is1/2, —1/4, 1/4). Hence, in order
for pi3 to be positive,(—1/2,—-1/4,1/4) -b = (—-1/2+V /4) must be positive, and
henceV must be at least 2. In this case (9) has a unique solution,ndégg on the
choice ofV only. If V is exactly 2,p13is zero.

In general Aip has more columns than rows. So usually, there is no uniquéicol
for (9). But we can use (9) to derive feasibility intervals xge.qg. for thep;; ). A practical
approach is to fi¥ to 2+ ¢ with a small positive value far (increasing: and hence the
variance of the perturbation leads to an unnecessary lasfoofation). The system (9)
can be further strengthened by additional constraintseample to express desirable
monotony properties likg;; > p; j+1 for j > i, or to improve symmetry by bounding
the difference betweep, ;1 andp; i 1.

We have experimented with = 3, 4 and 5. One of the findings was that for small
D andi, the linear programming problem derived from (9) (everyuagether with the
additional constraints) gives quite small intervalsxoFor largerD andi the intervals
for x are wider. In those cases we first fixed a value (like 70 %) ferdéntre of the
distribution, p;. Afterwards we fitted each tail of the distributigy), j > iandp;j, j <i
to the tails of a normal distribution using a simple heucisgpproach:

At first, provisionally fix one (say, the left-hand) tail ofetistribution. This gives
a target total probability and target total variance for tight-hand tail (through
subtracting the corresponding left hand tail values froffeckncing one\{, resp.)).

3. kis the number of elements {1,2} N[i — D; i +DJ.
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Then approximatep;; (j > i) by Fosti — Feosyi, Where e denote the Normal
distribution with zero expectation and suitable Variaoéatx, andk denote the starting
point of the distribution tail. The starting poiltshould be selected as to achieve that
the approximatey;, D ,; is about zero. See Gielding, S.0the, J., (2010) (Appendix),
for further details, and how to obtain a suitable varianaaeter.

The corrected approximatg ;; distribution can then be used to derive the target
values for a corrected total probability and variance ofléfehand tail. Carry out the
procedure described for the right hand tail for the left hildnow. Finally, feed back
the corrected approximafg; into the system (9) and (by minimizing or maximizing
one of the variables) obtain a final distribution which mekésrequirements of (9) with
sufficient precision.

Table 1 in the appendix shows the final probability matricast = 3, 4 and 5,
e.g. the design transition probabilities and compares tioetime transition probabilities
observed empirically for the cells of the set of controllablés after protecting the data
by SAFE. Obviously, the SAFE method results in much smaltebabilities that cell
values change by less than three.

3.2. Combination of invariance and a “no-small-cells” requ irement?

The idea of the “Invariant Post-tabular SDL" method Shloig,Young, C. (2008) is to

preserve the frequency distribution of the cell counts. iBudur setting we require the
frequency of perturbed small counts (ones and twos) to e Serfor the small counts
these are aims that clearly exclude each other. A possibtewiawvould be to relax the

goal of invariance. E.g. only seek to preserve the frequeligyibution of cell counts

above three and the total frequency of all cell counts belmuy. fThis can be achieved
as follows:

As shown in Shlomo, N., Young, C. (2008), an invariant maRixs obtained by
multiplying some pre-defined initial transition matiix(for an example see Shlomo,
N., Young, C. (2008)) with a suitable mat@ Q is obtained by transposing matii
multiplying each columnj by the relative frequency of countand then normalizing
its rows so that the sum of each row equals one. Finally thgodial elements of this
matrix are increased by the following transformati®h = aR+ (1— a)l, wherel is
the identity matrix of the appropriate size.

Giel3ing, S., Whne, J., (2010) explain how to adapt this procedure to tbestnall-
cells” requirement. In a first stage, an invariant maixis computed such that the first
row gives the joint transition probabilities of all countsder four, and the first column
gives the probabilities for changing a given count into ant@amaller than four. The
procedure to obtaiR* is the same as in Shlomo, N., Young, C. (2008), except that her
we use a vector of relative frequencies, where the entrieegoonding to the ones,
twos and threes are added up to one joint eriry. We also replace the first row of
the initial transition matrix by a column vector where altriégs except for the first two
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are zero. See Giel3ing, S.phhe, J., (2010) for details of how to compute the first two
entries of this vector, and on how to compute separate trangrobabilities for counts
under four. Finally, we replace the first lineef by the separate transition probabilities
for counts under four (and attach three columns of zerosdmther lines). This way
we get a transition matriR**, which is almost invariant, except that for counts under
four only their total frequency is preserved. For illuswat in the following we present
an example using real data of a table of the last West Gernresusef 1987.

Example 1:

For a census table with frequencieg,(\>, Vs, Vs, Vs,...) = (96, 32, 20, 16, 15,...)
observed for counts (1,2,3,4,5,...), we computed an Initiariant matrixR* (with
D = 2). Table 2 shows the first four rows and six columns of the matfiexpected
frequencies obtained fromv{_3, Vi, V5, V6, V7,...) - R*

Table 2: Expected frequencies pof counts of i perturbed into counts of j.

0-3 4 5 6 7 8
0-3 144.62403 2.9690406 0.4069246 0 0 0
4 2.9690406 11.81552 1.0893785 0.1260606 0 0
5 0.4069246 1.0893785 12.211631 1.196397 0.0956693
6 0 0.1260606 1.196397 10.676843 0.9239783 0.0767213

Table 3 below shows the first six rows and six columns of theiimaft expected
frequencies computed a¥( Vs, V3, V4, Vs, ...) - R**. The sum of the first two column
totals in Table 3 (regarding = 0.3) is 148, e.g. the total observed frequency of the
counts under 4= 96+ 32+ 20) is exactly preserved.

Table 3: Expected frequencies pof counts of i perturbed into counts of j for example 1.

0 3 4 5 6
1 60.531974 35.468026
2 9.510658 22.489342
3 4.6240348 12 2.9690406 0.4069246 0
4 2.9690406 11.81552 1.0893785 0.1260606
5 0.4069246 1.0893785 12.211631 1.196397
6 0 0.1260606 1.196397 10.676843

Note that apart from this introductive example, we did netycaut further testing of
this method. The concept of preserving frequencies for eatitidual cell count is not
too convincing when the expected use of the data is a ratfiee naé. An exception
would be a situation where the frequencies for individudll ceunts are a statistic of
interest for the user. Such an application is outlined iniSed .

4. Note that there will be options for researchers to access thiearitpta via research data centres.
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4. Selection of random noise

The random mechanism proposed in Fraser, B., Wooton, D6j2@n be implemented
very easily: For our experiments, we used the SAS random euménerator which
produces pseudo random numbers distributed uniformly f@f! — 1]. We assign

such a random key to each record in the microdata file. Wherpating the tables,
also the random keys are aggregated. The result is therfidrarexd back into a random
number on this interval by applying the modulo function,. er@d,s:_,. If the same

group of respondents is aggregated into a cell, the reguiéindom key will always be
the same. Cells which are logically identical thus have tidahrandom keys.

Then we simply use a transition matrix computed to give zaean / fixed variance
noise (as explained in 3.1), compute cumulated probadsl{fior each row) and multiply
the resulting matrix by  — 1. Denoting the entries of this matrix ;; we change a
cell count ofi of some celkinto j, if the random key of celt is betweerM; j_; andM;.
This will guarantee that the expected values of the pertudoents are identical to the
original counts (unbiasedness) and lead to consistenttynbed data. However, for a
given table, the mean perturbation of cells of a given fregyeount is not necessarily
zero. This mean will depend on the actual distribution ofdbeesponding record keys.
For the data of example 1 above the observed difference bata¢rue cell count and
the mean of the corresponding perturbed counts varies batw@ 82 and 078.

See Section 4.1 of Giel3ing, S.phhe, J., (2010) for some special issues regarding
an appropriate selection procedure in the context of theriamt post tabular method.

5. How to restore table-additivity?

Non-additivity is a potential nuisance for users, and mago dbe source of some
disclosure risk. As simple example, assume random noiseawitaximum perturbation
of two has been applied. Assume two cells with original coumg¢ are perturbed to
count three, and the original total of two is perturbed t@mzérsers are informed on the
maximum perturbation. Hence they know that both inner eelist have original count
one at least. But if any of them were greater then one, thénadigptal would be at least
three and could not have turned into a perturbed value of zero

This kind of disclosure risk typically arises, when all inreells are all perturbed
in the same direction, each with the maximum possible peation, and the total cell
is perturbed in the other direction, also with the maximunssilnle deviation. With
perturbations based on transition matrices like the onssudsed in Section 3 with
usually small probabilities on the tails these events vélrélatively rare. However, we
should also bear in mind, that this is only the simplest kifcttack. A systematic
analysis based on linear optimization technigues and gakito account the aggregate
structure of a perturbed non-additive multidimensionblgavith a published maximum
perturbation might eventually break other perturbatiottguas as well.
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Restoring table additivity, as suggested in Fraser, B.,tdfgal. (2006) and Shlomo,
N., Young, C., (2008) is considered there an integral parthef method. Leaver,
V. (2009) and Shlomo, N., Young, C., (2008) point out thatoesg additivity can
be achieved by iterative methods. As an alternative, we esiggp consider a linear
programming based method like Controlled Tabular Adjustenn{see f.i. Dandekar,
R.H., Cox, L. (2002), Castro, J. (2006)).

For a first experiment, we use the CTA implementation of @astr Gonalez, J.A.
(2009¥. The algorithm restores additivity to a table, minimizing@verall distance to
the table provided as input. The distance function impleeebis a weighted sum of
absolute per-cell-distances. Weights are provided by siee of the software. The user
can define for each cell upper and lower bounds on the den&gtand can define a set
of cells labeled assensitive cells Sensitive cells are forced to change their values. For
each sensitive cell, the user definepmtection interval The adjusted cell value is not
allowed to take a value within the protection interval.

Computational complexity of the problem depends stronglyte number of sen-
sitive cells. In a first experiment, we therefore use a twgestpproach: in a first CTA
run, we only restore additivity to the table. Although ingistep we assign cell weights
which will avoid to some extent that the algorithm adjusté ceunts of zer§ or three,
we will usually get an adjusted table with some small cellidsife.g. ones and twos). In
a refinement run, we define these ones and twos as sensitivdefine the correspond-
ing protection interval as the interval (0;3). At the sanmadj for all cells with counts
greater or equal to three we defined a lower bound of at lees thror all cells with
zero count, the upper bound is zero. This way, however, wa zartain risk of defining
an infeasible problem, especially if we define at the same tather narrow bounds for
the non-sensitive cells. See Section 6 for a test result.

Because the adjustment cannot simultaneously take intwuatall tables ever to
be released it introduces inconsistencies in the perturbation. laahtcells, even if
they received the same perturbation by the random processbecome adjusted to
different values. This fact leads to some risk that someupestions might be undone,
if intruders run an LP-based analysis taking into accouatattgregate structure across
several tables. But this is not such an easy task, on one haddyn the other hand, it
may not be very successful, because it may happen that dgiparfrequencies can be
broken that do not cause disclosure risk.

Of course one might consider using the adjustment methggloAathout previous
random perturbation, only to ‘remove’ cells with small ctaifntom the table. But as long
as this does not —unlike the SAFE method - yield a fully cdastsdata base, there is
then a risk that by averaging cell values over a number oétahluser can recover the

5. See Castro (2011) for an extension of the methodology.
6. Note that we do not allow original zero cell counts to be adjiis

7. (This would be a problem similar to the on solved by SAFE, c(inZarticular in size) and too huge for
today computational resources).
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original data. With a previous random perturbation, suchproach will only recover
the underlying perturbed table, as pointed out in Leavel(2@09).

6. Some test results

Table 1 in the appendix shows the probability matrices we mded for the zero
mean/fixed variance noise approach when the maximum allaleettions areD =
3, 4 and 5 respectively, and compares them to the transitiobapilities observed
empirically for the cells of the set of controlled tableseafprotecting the data by
SAFE. Obviously, the SAFE method results in much smallebabdities that cell
values change by less than three.

For all counts afteD + 3, in our implementation of the stochastic noise, transitio
probabilities are defined identical to those obtaineddoer 3. Figure 1a below shows
the empirical SAFE probabilities for counisto change byd for counts between 9
and 16 in the set of controlled tables, compared to the tiansprobabilities of the
stochastic noise obtained f@ = 5. Figure 1b shows those probabilities for counts
grouped into count size classes observed for cells thataie the controlled tables. For
our experiment we defined as control tables only tables ditfigeross-combination of
at most 3 variables. The results presented in Figure 1b oattiex hand relate to cells
defined by cross-combination of 4 variables.

As can be seen in Figure 1a, the SAFE probabilities becomerippately normal
when the cell count increases. It is also very clear that &kieESperturbation is stronger
than that of our stochastic noise implementation: Comparéhie probability of no
change (i.e. atl = 0) which is about 70 % for the stochastic noise, but betwee#13
and 26 % for SAFE. However, the difference matters mainlyttiersmall perturbations,
and hence will matter more for smaller counts.

80
70 /\ ——9
60 /\ —a—10
g %0 —s— 11
o
*:40 / \ —<—12
= 30 —*—13
10 = ——15
0* = - . T T T T T T T T T ——16
7654321012345 6 7 |——noiseD=5

d

Figure la: SAFE vs. stochastic noise transition probabilities.
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Figure 1b: SAFE, transition probabilities for banded counts in nomol tables. probabilities.

Figure 1b shows that also for cells that are not containethéncontrolled tables,
the deviations resulting from SAFE are still normally distited, but the tails of the
distribution are longer. While we got a maximum deviatiotwsen true and perturbed
count of 7 for controlled tables cells, deviations of up tod&@urred in the set of 4-
dimensional cells, as can be seen in table 4 presenting tkienma observed deviations
for the cell count size classes of Figure 1b.

Table4: SAFE, maximum observed deviations D for non-control taplegtl count size class.
Counts 20-49 50-99 100-299 300-499 500-999 1000-4999 > 5000
D 16 19 25 21 30 24 26

Considering that table additivity is a very important isstimakes sense to compare
SAFE transition probabilities not only to the design tréiosi probabilities of stochastic
noise, but also to the noisy tables after restoring adtjtiWe have applied the approach
of Section 5 for restoring table additivity using CTA to a Breénsional test table.
The table has been perturbed using the design transitidoapiidgies displayed in
Table 1 (appendix). For this instance we obtained adjustelds where the maximum
perturbation of cell counts is identical before and afterdldjustment. This is certainly
encouraging, but it seems unlikely that it is a general te$able 5 compares the noisy

Table5: Distribution of 22670 non-zero test table cells by absotigeiations to true cell values.
Abs.Dev. SAFE noiseD3adj. noiseD3 noiseD4 adj. noiseD4 seD5adj. noiseD5

0 12.88 23.17 29.44 29.44 38.99 30.62 40.18
1 44.62 44.05 40.23 39.87 34.08 40.05 34.63
2 27.68 23.31 22.31 21.01 19.20 20.41 18.48
3 11.09 9.47 8.01 5.86 4.31 5.07 3.33
4
5
6

3.16 3.82 3.42 2.38 1.92
0.48 1.47 1.46
0.10
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tables before and after restoring additivity to those caegwith SAFE protected data.
It presents the frequency distribution of the 22670 nom-zmlls of the example by
absolute deviations between true and perturbed values.

For this example, we observed a mean-deviation betweeratrd@erturbed values
of 1.49 for SAFE. For stochastic noise @t= 3, 4 and 5 we got mean deviations of
1.09, 0.99 and 0.97, resp., and after restoring additiviy@ 1D = 3), 1.15 D = 4)
and 1.13 D = 5). Obviously, in this example, even after restoring asliditi stochastic
noise outperforms SAFE. On the other hand, the experimentsilows that —at least
when we use the methodology of Section 5 not allowing that seall cells appear
in the adjusted tables— restoring additivity tends to iaseedeviations (for example
the mean deviation faD = 5-noise from 0.97 to 1.18) It has to be expected that this
effect increases with increasing size of the tables whedgiaity has to be restored.
The computationally expensive second CTA Stegquired between about 6 and 24
minutes. As it is intended that table generation for the @engsults should be an
OnLine process, this is certainly too long. Even, if thisusgould be solved, before
such an approach could be putinto practice, a lot of experiatien would be necessary,
for example to determine “sustainable” parameters forrti@l random perturbation in
the sense that the adjustment process can preserve to stenetbr properties of the
random perturbation (like f.i. the maximum perturbation).

7. Data utility —a cell level measure of information loss

Probably, many users of census counts data do not use theoorgplex statistical
analyses, but are merely interested in learning simpls flikeé ‘how many people with
properties X live in area Y?'. When those counts are pertyrthesy should be informed
how reliable each individual cell is. This is especially iongant, if a perturbation method
may produce fairly large perturbations, although only foreay small portion of the
cells, which can f.i. be the case for SAFE for cells which do Im@long to the set of
controlled tables.

A simple information loss measure on the cell level could ey by publishing
along with the perturbed counts the absolute value of theugstion. However, this
may be too much information, leading to disclosure risktdad, one might publish the
absolute value of a perturbed version of the perturbation.

Usually, to inform about data utility, one publishes infation on the perturbation
on the table level, like the frequency distribution of theseo(c.f. Table 5). Therefore,
when perturbing the perturbations, it makes sense seekipigserve these frequencies.
E.g. use an invariant matrix of transition probabilities peerturbing the perturbations

8. Note that these findings may not apply to all additivity hoets.
9. The first step which only restores additivity to the table $gkst a few seconds for this instance.
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of the original counts in a table. Generating such a trarsitatrix is a straightforward
application of Shlomo, N., Young, C. (2008). The only difece is that, unlike the
original counts which are positive numbers, the pertudvetitake values between
—D and D. Table 6 shows the results of an application to table Regionge A
Country.of_Birth'°. The observed frequencies of the perturbed SAFE-deviaiin)
match the frequencies of the unperturbed SAFE-deviatioy)snearly exactly.

Table 6: Number of cells of a test table by deviation of the SAFE ptetkesults: true frequencidsy)
vs. frequencies after invariant perturbation of observedidtions(ng).

Cells with negative deviationd Cells with positive deviationd

d Ng ng* ng —Ng* d Ng ng* ng —Ng*
—-13 1 0 1 13 0 0 0
-12 5 5 0 12 7 6 1
-11 30 31 -1 11 44 45 -1
-10 110 110 0 10 108 108 0

-9 310 309 1 9 372 370 2
-8 836 837 -1 8 878 879 -1
-7 1872 1871 1 7 2141 2141 0
—6 8203 8204 -1 6 9230 9231 -1
-5 34859 34859 0 5 37674 37675 -1
-4 162116 162115 1 4 170659 170657 2
-3 369234 369234 0 3 393652 393654 -2
-2 622462 622464 -2 2 778735 778735 0
-1 1226831 1226831 0 1 783760 783758 2

0 739905 739905 0 0 739905 739905 0

8. Summary and final remarks

In preparation for a comparative study of several pertiwbaimethods for census
tabular frequency data, in this paper we have raised soneigakissues regarding the
implementation of two alternative approaches explaindderature. In particular, this
paper has discussed in some detail how to construct zeroffixea variance transition
matrices required to implement the methodology of Frasef\Boton, J. (2006). We
also discuss an extension of an idea of an invariant transithatrix suggested in
Shlomo, N., Young, C. (2008) to a situation where the pestioim procedure should
eliminate small cells.
As pointed out in Fraser, B., Wooton, J. (2006) and ShlomgYhlung, C. (2008),

additivity is not preserved by the post-tabular randomupbgtion method, but can be
restored afterwards —however, at the expense of betwedss tabnsistency. We have

10. Note that variable Countrgf_Birth has been defined here to involve one category which defimextaa-
subtotal not contained in the set of cells defined by the sebofrolled tables. Therefore, SAFE perturbs some
cells of this table by more than the control-tables maximum of 7.
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outlined and tested on a small instance an approach basédean dptimization, e.g.
CTA methodology.

Leaving a larger scale empirical comparison of the postisabmethods discussed
in the paper with the pre-tabular perturbation method SAE#ired in Section 2 for
the future, the paper provides evidence that the postdalméthods as implemented
here tend to result in smaller changes to the data than SAREh®other hand, as a
pre-tabular method, SAFE preserves additivity and coeistyt is easier to implement
in a flexible OnLine table generation environment, and ie abbkeep the maximum de-
viations in a set of pre-specified tables acceptably smh#s€ are important properties
and may be worth “less optimal” performance regarding daity to some degree.
While the perturbation caused by SAFE tends to be strongar those caused by a
non-additive post-tabular approach, the paper shows hlegttend to be normally dis-
tributed, e.g. large deviations are relatively unlikelggcefor cells that are not contained
in the set of pre-specified, controlled tables.
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Appendix

Table1l: Zero mean, Variancg+ ¢ probability transition matrices for maximum

perturbations D of 3, 4 and 5 vs. empirically observed tréiosiprobabilities for SAFE.

75

0 3 4 5 6 7 8 9 10 11 12

13

Random Noise,D =3

1 '0.667 0.332 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000000 0.000

2 0.334 0666 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000000

3 0.125 0.687 0.063 0.063 0.063 0.000 0.000 0.000 0.000 0.000 0.000000

4 0.000 0.601 0.099 0.100 0.100 0.100 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.167 0.167 0.416 0.083 0.083 0.083 0.000 0.000 0.000 0.000 0.000

6 0.000 0.072 0.072 0.0720.571 0.072 0.072 0.072 0.000 0.000 0.000 0.000

7 0.000 0.000 0.072 0.072 0.0720.5712 0.072 0.072 0.072 0.000 0.000 0.000

8 0.000 0.000 0.000 0.072 0.072 0.070.571 0.072 0.072 0.072 0.000 0.000
Random NoiseD =4

1 0667 0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000000 0.000

2 0.334 0666 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000000

3 0.120 0.700 0.082 0.045 0.027 0.026 0.000 0.000 0.000 0.000 0.000000

4 0.064 0.076 0.700 0.068 0.037 0.029 0.026 0.000 0.000 0.000 0.000 0.000

5 0.000 0.143 0.143 0.542 0.043 0.043 0.043 0.043 0.000 0.000 0.000 o0.000

6 0.000 0.063 0.063 0.0630.662 0.038 0.038 0.038 0.038 0.000 0.000 0.000

7 0.000 0.032 0.033 0.034 0.0500.700 0.050 0.034 0.033 0.032 0.000 0.000

8 0.000 0.000 0.032 0.033 0.034 0.05(0.700 0.050 0.034 0.033 0.032 0.000
Random NoiseD =5

1 0667 0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000000 0.000

2 0.334 0666 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000000

3 0.119 0.700 0.082 0.050 0.028 0.014 0.007 0.000 0.000 0.000 0.000000

4 0.062 0.076 0.704 0.075 0.037 0.020 0.014 0.012 0.000 0.000 0.000 0.000

5 0.025 0.068 0.068 0.700 0.059 0.027 0.019 0.018 0.017 0.000 0.000 0.000

6 0.000 0.057 0.057 0.0570.700 0.041 0.023 0.021 0.021 0.021 0.000 0.000

7 0.000 0.025 0.035 0.035 0.0620.700 0.060 0.028 0.020 0.018 0.018 0.000

8 0.000 0.015 0.016 0.019 0.032 0.060.700 0.068 0.032 0.019 0.016 0.015

SAFE

O~NOO O WN R

0.680 0.288 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000000 0.000
0.408 0.472 0.073 0.006 0.040 0.001 0.000 0.000 0.000 0.000 0.000000
0.208 0.514 0.101 0.015 0.153 0.008 0.000 0.001 0.000 0.000 0.000000
0.077 0.440 0.122 0.026 0.262 0.058 0.002 0.013 0.000 0.000 0.000 0.000
0.022 0.294 0.112 0.046 0.337 0.111 0.023 0.053 0.002 0.000 0.000 0.000
0.004 0.157 0.085 0.0510.347 0.154 0.052 0.136 0.010 0.000 0.002 0.000
0.000 0.037 0.070 0.044 0.2940.182 0.087 0.198 0.071 0.004 0.013 0.000
0.000 0.009 0.015 0.035 0.203 0.160.119 0.244 0.123 0.044 0.042 0.002







