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Abstract

The software SAFE has been developed at the State Statistical Institute Berlin-Brandenburg
and has been in regular use there for several years now. It involves an algorithm that yields a
controlled cell frequency perturbation. When a microdata set has been protected by this method,
any table which can be computed on the basis of this microdata set will not contain any small cells,
e.g. cells with frequency counts 1 or 2. We compare empirically observed transition probabilities
resulting from this pre-tabular method to transition matrices in the context of variants of microdata
key based post-tabular random perturbation methods suggested in the literature, e.g. Shlomo, N.,
Young, C. (2008) and Fraser, B.,Wooton, J. (2006).

MSC: 62Q05 ”Statistical tables”

Keywords: Tabular data protection, Census Frequency Tables, SAFE, Post-tabular protection
methods.

1. Introduction

In preparation for the German census 2011 we have started a comparative study of
several perturbation methods for census frequency counts.The German Census will
partly be register based, and partly be the outcome of a sample survey. This leads of
course to limitations in the amount of detail of tables that can sensibly be released, as
compared to a full census. Nevertheless, a huge amount of tabular output is going to be
published. Publication of tables will to a major extent be pre-planned, but there will also
be some flexible, user demand driven release of tabular data.
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Given the size of the publication, and other complexities (like non-nested hierarchies
that are foreseen for some classification variables like “age”) non-perturbative methods
like cell suppression do not seem to be a good choice: one of the issues to be raised
here is that with cell suppression, there would be a considerable disclosure risk due to
incomplete coordination of cell suppression patterns across tables. Perturbation methods
also have the advantage that they introduce ambiguity into the zero cells which helps to
avoid attribute disclosure when (nearly) all members of a population group score on
only one (sensitive) category of a variable.

In this paper, we investigate into basically three alternative methods. The software
SAFE (c.f. Ḧohne, J. (2003a), Ḧohne, J. (2003b)) is in regular use at the State Statistical
Institute Berlin-Brandenburg. SAFE is an implementation of an algorithm that yields
a controlled cell frequency perturbation. When a microdataset has been protected by
this method, any table which can be computed on the basis of this microdata set will
not contain any small cells, e.g. cells with frequency counts one or two. These small
frequencies are the main concern for disclosure risk in Census counts tables, since
they give information on the uniqueness or rareness of certain attributes or attribute
combinations of individuals. Because SAFE is a pre-tabularmethod, all tables computed
from the perturbed microdata set protected by SAFE are fullyconsistent and additive.

In comparison to SAFE, we study two post-tabular perturbation methods which
both are based on the use of microdata keys. This technique can ensure full, or at
least approximate, consistency of perturbations across different tables. Across table
consistency has two aspects: On one hand, inconsistencies may be irritating to users.
More severe from the disclosure control point of view is thatinconsistency may lead to
disclosure risk. For example, an average taken over eventually inconsistently perturbed
values of logically identical cells (taken from different tables) should not be an unbiased
estimate of the original cell value.

Each of the two post-tabular methods involves two steps. Thefirst step yields fully
or approximately consistently perturbed, but non-additive tables. Non-additivity is a
potential nuisance for users, and may also be a source of disclosure risk. Therefore,
in a second step, table additivity should be restored. This can be achieved by statistical
methods such as the iterative proportional fitting algorithm. In this paper we discuss
using linear optimization techniques for this step.

In order to avoid a perception of disclosure risk, and to provide a “visible” kind of
protection, we require both methods to provide, like SAFE, perturbed data without small
cells (i.e. without counts of one and two). Note that we imagine a rather näıve use of the
data here, keeping in mind that for researchers there will beother options of accessing
the data.

This paper reports on findings of the first phase of the study when implementing
the methodologies. It is organized in eight sections: In Section 2, we outline the
methodological approach of SAFE. Technical issues of constructing suitable probability
transition matrices for random perturbation methods are discussed in Sections 3 and
4. In Section 5, we suggest an optimization technique to restore table-additivity, e.g.
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the CTA method of Castro, J., González, J.A. (2009). Some test results are presented
in Section 6, and a measure of information loss on the cell level for SAFE results is
proposed in Section 7. We conclude the paper with a brief summary Section 7.

2. Methodological background of SAFE

In this section we briefly describe the methodological approach of SAFE, as far as it
is relevant for an application to protect tabulations of population Census counts data.
Starting point for the method is a microdata file where all variables are recoded to give
the highest degree of detail foreseen for any publication. Imagine a variable like age,
where perhaps data are collected so that for each person age could be deduced down to
the level of age in months, but publications should offer data at most by age in years.
Then the variable would be recoded to the level of age in years. We also assume here
that the data set consists of categorical variables only.

The basic idea of the method is to turn this data set (with, say, N variables atni

(i = 1, . . .,N) categories) into a data set, in which either none of the records, or at least
three records score on each of then1∗n2∗· · ·∗nN theoretical combinations of categories.

With respect to data quality, the method aims to preserve as far as possible cell counts
in a pre-defined set of ‘controlled’ tables. For those tables, the method yields results that
are in some sense ‘optimal’. If any other table is derived from the perturbed data set, it
will be safe (i.e. it will not contain any ones or twos), but differences between original
counts and those computed on basis of the perturbed data set can be much larger than
they arise for the controlled tables. The experience is thatthe method is usually able to
achieve a maximum deviation between 4 and 8 for a sensibly defined set of controlled
tables.

2.1. The SAFE mathematical model

The algorithm computes a heuristic solution for the problemof minimizing the maxi-
mum absolute deviation between true and perturbed cell values in the controlled tables.

Instances are defined by the following parameters:

• A set of linear relationsAy= a defining the table cells of the controlled tables as
sums of cells of an elementary table consisting of all combinations of categories
of all variables in the microdata set.

• Vectora,a= (ai , i ∈ I) denote the original frequencies presented in the controlled
tables, and vectory,y= (y j , j = 1, . . .,N) the entries (e.g. frequencies of category
combinations) of the cells of the elementary table. In a valid solution, vectory
does not contain any entries of 1 or 2.
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• Vectorw of weights associated to perturbations of the table cells ofthe controlled
tables. For example, we may want to allow larger perturbations for larger cells, or
avoid them for cells that are rated “highly important”.

The objective of the model is to minimize the maximum entry ofvectord = (di, i ∈ I),
di ∈ Z, denoting the deviations of original and perturbed cell counts in the controlled
tables. With these definitions, broadly, the model is as follows:

Solve the problem

miny maxi∈I (|di |+wi)

subject to Ay= a+d

y j ∈ {0,3,4,5, . . .} j = 1, . . . ,N

(1)

This statement of the problem resembles a huge non-linear integer optimization
problem which is computationally intractable1. Therefore, an efficient heuristic algo-
rithm has been developed that gives near optimal solutions at reasonable expense of
computer resources.

Beginning with the (infeasible) initial solution given byd = 0, i.e. where cell values
are kept at their original value, a first feasible solution isobtained. This solution is
optimized later on.

A first feasible solution
In addition to the above parameters, we define now

• Vector b = (bi , i ∈ I), bi ∈ B of bounds for maximum allowed deviations. In
practice,B consists of two values only, one stating the maximum deviation to be
allowed for cells defined by only one variable, the other one stating the maximum
allowed deviation for the other cells, e.g. cells defined as cross-combination of
categories of two or more variables,

• Vectorx= (x j , j = 1, . . .,N), x j ∈ {0,1} is 1, if elementary table cellj is “unsafe”,
e.g. ify j ∈ {1,2} and 0 otherwise.

The problem to be solved is

miny ∑
j=1,...,N

x j

subject to |Ay−a|< w+b

y j ∈ {0,1,2,3, . . .}

x j = 1; if y j ∈ {1,2} x j = 0;i f y j /∈ {1,2}

(2)

1. Note, in our test setting which is still substantially smaller than the real setting will be, the size of vectory
(and thus the number of columns of matrixA) is approximatelyN = (2∗4∗7∗8∗111∗10000) ∼ 5∗108.
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A feasible solution is obtained when the objective functionis zero.
Minimizing the number of “unsafe” frequencies, using a heuristic, the algorithm step

by step changes critical frequencies of 1 and 2 into uncritical frequencies 0,3,4,. . . If the
process stagnates, the statement of the problem is modified automatically by increasing
the vector of boundsb, e.g.b= b+1.

Optimizing the solution
Once a feasible solution has been obtained, the method will seek to improve the solution
by reducing the maximum allowed perturbation, e.g.b and eventuallyw. Usually, the
number of cells where the deviation is identical or near-identical to the respective bound
is relatively small. In the optimization step, after changing (decreasing)b or w, some of
the constraints in model (2) will be violated. Accordingly,we define now

• Vector z = (zi , i ∈ I), zi ∈ {0,1} is 1, if for controlled tables celli the bound
constraint of model (2) is violated and 0 otherwise.

The algorithm derives a heuristic solution to

miny ∑
i∈I

zi

subject to |Ay−a|− (w+b)< z

y j ∈ {0,3,4. . .}

(3)

If a solution is obtained where∑
i∈I

zi = 0, the constraints will be tightened further (e.g.

decreaseb or w), and model (3) will be solved again. This step is repeated until either
an expected level of optimality (in the bounds) is reached, or further attempts seem to
be rather unpromising.

3. Generating random noise for frequency tables

The Australian Bureau of Statistics Fraser, B., Wooton, J. (2006), Leaver, V. (2009) has
developed a concept for a cell perturbation method. They propose that the random noise
should have zero-mean and a fixed variance. An alternative cell perturbation method re-
ferred to as “Invariant Post-tabular SDL” method was suggested in Shlomo, N., Young,
C. (2008). In the following two subsections we briefly outline the two alternative con-
cepts and discuss the technical construction of suitable probability transition matrices
for a random perturbation eliminating all small frequency counts.
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3.1. How to create zero-mean/fixed variance cell perturbati ons?

Fraser, B., Wooton, J. (2006) propose to generate for each cell c with non-zero cell count
ic an independent integer value perturbationdc satisfying the following two criteria:

(a) mean of zero

(b) fixed varianceV for all cellsc and all frequency countsi

A third criterion, in order to meet the requirement that perturbed cells do not have a
count of one or two, would be

(c) ic+dc /∈ {1, 2} f.a. ic, dc

This means we look for aL×L transition matrixP2 containing conditional proba-
bilities: pi j = p (perturbed cell value isj | original cell value isi) with the following
properties:

(1) pi νi = 0

(2) pi (νi)
2 =V

(3) pi j = 0 for jin{1,2}

(4) ∑
j

pi j = 1

(5) pi j = 0; if j < i −D or j > i +D,

(6) p00 = 1 andp0 j = 0 for j > 0, and of course

(7) 0≤ pi j ≤ 1

where pi denote theith row-vector of matrixP andνi a column vector of the noise
which is added, if an original value ofi is turned into a value ofj. I.e. the j th entry
of νi is ( j − i). For exampleνi = (−1,0,1,2,3, . . .,L− 2). (1) is equivalent to (a) and
expresses the requirement that the expected value of the noise should be zero. Similarly,
(2) is equivalent to (b), expressing the requirement of a constant variance, and (3)
relates to (c). (4) and (7) are of course necessary for any Transition matrix, (5) states
a maximum allowed absolute perturbation of some pre-definedconstantD and (6) states
that zero frequencies must not change. Note for all rows after row D+2, condition (3) is
always satisfied, when (5) holds. Hence we can facilitate thetask of computing suitable
transition probabilities by adding a symmetry requirementfor all rows after rowD+2:

(8) pi,i−k = pi,i+k for k= 1, . . . ,D, if i > D+2

2. As indexj may take a value of zero (when a cell value is changed to zero), in the following we start counting
matrix and vector indices at 0, enumerating rows and columns of theL×L matrix by 0,1,2, . . .,L−1.
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With (8), condition (1) is always satisfied because the negative and positive devia-
tions balance each other. (2) simplifies into

9(2a) 2 ∑
j=1,...,D

pi j j2 =V.

For simplicity, in the following we therefore assumeL− 1 = D+ 3, applying the
perturbation probabilities given by row(D+3) of matrix P to all cell counts≥ D+3.

For every row (or cell count)i (i = 1, . . . ,D+2) conditions (1) to (5) can be rewritten
as system of three linear equations

(9) AiD x= b,

whereAiD is a(3× (min(i,D)+1+D−k)) 3 coefficient matrix andb= (1,0,V)′. The
elements ofx correspond to the entries of rowi in P which are not zero anyway by
definition (because of (3) or (5)). The first row ofAiD corresponds to condition (4), the
second row to (1) (e.g. unbiasedness) and the third row to (2)(fixed varianceV).

Consider for exampleA13 =







−1 1 1
−1 2 3
−1 4 9







. In this simple case, the coefficient

matrix is invertible. The last row of the inverse is(−1/2,−1/4, 1/4). Hence, in order
for p13 to be positive,(−1/2,−1/4, 1/4) · b = (−1/2+V/4) must be positive, and
henceV must be at least 2. In this case (9) has a unique solution, depending on the
choice ofV only. If V is exactly 2,p13 is zero.

In general,AiD has more columns than rows. So usually, there is no unique solution
for (9). But we can use (9) to derive feasibility intervals for x (e.g. for thepi j ). A practical
approach is to fixV to 2+ǫ with a small positive value forǫ (increasingǫ and hence the
variance of the perturbation leads to an unnecessary loss ofinformation). The system (9)
can be further strengthened by additional constraints, forexample to express desirable
monotony properties likepi j ≥ pi, j+1 for j > i, or to improve symmetry by bounding
the difference betweenpi, i−1 andpi, i+1.

We have experimented withD = 3, 4 and 5. One of the findings was that for small
D andi, the linear programming problem derived from (9) (eventually together with the
additional constraints) gives quite small intervals forx. For largerD andi the intervals
for x are wider. In those cases we first fixed a value (like 70 %) for the centre of the
distribution,pii . Afterwards we fitted each tail of the distributionpi j , j > i andpi j , j < i
to the tails of a normal distribution using a simple heuristic approach:

At first, provisionally fix one (say, the left-hand) tail of the distribution. This gives
a target total probability and target total variance for theright-hand tail (through
subtracting the corresponding left hand tail values from differencing one (V, resp.)).

3. k is the number of elements in{1,2}∩ [i−D; i+D].
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Then approximatepi j ( j > i) by Fk+0.5+i − Fk−0.5+i , where Fx denote the Normal
distribution with zero expectation and suitable Varianceσ2 atx, andk denote the starting
point of the distribution tail. The starting pointk should be selected as to achieve that
the approximatepi , D+i is about zero. See Gießing, S., Höhne, J., (2010) (Appendix),
for further details, and how to obtain a suitable variance parameter.

The corrected approximatepi, i+ j distribution can then be used to derive the target
values for a corrected total probability and variance of theleft-hand tail. Carry out the
procedure described for the right hand tail for the left handtail now. Finally, feed back
the corrected approximatepi j into the system (9) and (by minimizing or maximizing
one of the variables) obtain a final distribution which meetsthe requirements of (9) with
sufficient precision.

Table 1 in the appendix shows the final probability matrices for D = 3, 4 and 5,
e.g. the design transition probabilities and compares themto the transition probabilities
observed empirically for the cells of the set of controlled tables after protecting the data
by SAFE. Obviously, the SAFE method results in much smaller probabilities that cell
values change by less than three.

3.2. Combination of invariance and a “no-small-cells” requ irement?

The idea of the “Invariant Post-tabular SDL” method Shlomo,N., Young, C. (2008) is to
preserve the frequency distribution of the cell counts. Butin our setting we require the
frequency of perturbed small counts (ones and twos) to be zero. So for the small counts
these are aims that clearly exclude each other. A possible way out would be to relax the
goal of invariance. E.g. only seek to preserve the frequencydistribution of cell counts
above three and the total frequency of all cell counts below four. This can be achieved
as follows:

As shown in Shlomo, N., Young, C. (2008), an invariant matrixR is obtained by
multiplying some pre-defined initial transition matrixP (for an example see Shlomo,
N., Young, C. (2008)) with a suitable matrixQ. Q is obtained by transposing matrixP,
multiplying each columnj by the relative frequency of countj and then normalizing
its rows so that the sum of each row equals one. Finally the diagonal elements of this
matrix are increased by the following transformationR* = αR+(1−α) I , whereI is
the identity matrix of the appropriate size.

Gießing, S., Ḧohne, J., (2010) explain how to adapt this procedure to the “no-small-
cells” requirement. In a first stage, an invariant matrixR* is computed such that the first
row gives the joint transition probabilities of all counts under four, and the first column
gives the probabilities for changing a given count into a count smaller than four. The
procedure to obtainR* is the same as in Shlomo, N., Young, C. (2008), except that here
we use a vector of relative frequencies, where the entries corresponding to the ones,
twos and threes are added up to one joint entryv1−3. We also replace the first row of
the initial transition matrix by a column vector where all entries except for the first two
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are zero. See Gießing, S., Höhne, J., (2010) for details of how to compute the first two
entries of this vector, and on how to compute separate transition probabilities for counts
under four. Finally, we replace the first line ofR* by the separate transition probabilities
for counts under four (and attach three columns of zeros to the other lines). This way
we get a transition matrixR**, which is almost invariant, except that for counts under
four only their total frequency is preserved. For illustration, in the following we present
an example using real data of a table of the last West German census of 1987.

Example 1:
For a census table with frequencies (V1,V2,V3,V4,V5, . . .) = (96, 32, 20, 16, 15, . . .)
observed for counts (1,2,3,4,5,. . . ), we computed an initial invariant matrixR* (with
D = 2). Table 2 shows the first four rows and six columns of the matrixof expected
frequencies obtained from (V1−3,V4,V5,V6,V7, . . .) ·R*

Table 2: Expected frequencies ni, j of counts of i perturbed into counts of j.

0-3 4 5 6 7 8

0-3 144.62403 2.9690406 0.4069246 0 0 0
4 2.9690406 11.81552 1.0893785 0.1260606 0 0
5 0.4069246 1.0893785 12.211631 1.196397 0.0956693
6 0 0.1260606 1.196397 10.676843 0.9239783 0.0767213

Table 3 below shows the first six rows and six columns of the matrix of expected
frequencies computed as (V1,V2,V3,V4,V5, . . .) ·R**. The sum of the first two column
totals in Table 3 (regardingj = 0.3) is 148, e.g. the total observed frequency of the
counts under 4(= 96+32+20) is exactly preserved.

Table 3: Expected frequencies ni, j of counts of i perturbed into counts of j for example 1.

0 3 4 5 6

1 60.531974 35.468026
2 9.510658 22.489342
3 4.6240348 12 2.9690406 0.4069246 0
4 2.9690406 11.81552 1.0893785 0.1260606
5 0.4069246 1.0893785 12.211631 1.196397
6 0 0.1260606 1.196397 10.676843

Note that apart from this introductive example, we did not carry out further testing of
this method. The concept of preserving frequencies for eachindividual cell count is not
too convincing when the expected use of the data is a rather naı̈ve one4. An exception
would be a situation where the frequencies for individual cell counts are a statistic of
interest for the user. Such an application is outlined in Section 7.

4. Note that there will be options for researchers to access the original data via research data centres.
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4. Selection of random noise

The random mechanism proposed in Fraser, B., Wooton, J., (2006) can be implemented
very easily: For our experiments, we used the SAS random number generator which
produces pseudo random numbers distributed uniformly over[0;231− 1]. We assign
such a random key to each record in the microdata file. When computing the tables,
also the random keys are aggregated. The result is then transformed back into a random
number on this interval by applying the modulo function, e.g. mod231−1. If the same
group of respondents is aggregated into a cell, the resulting random key will always be
the same. Cells which are logically identical thus have identical random keys.

Then we simply use a transition matrix computed to give zero-mean / fixed variance
noise (as explained in 3.1), compute cumulated probabilities (for each row) and multiply
the resulting matrix by 231−1. Denoting the entries of this matrix byMi j we change a
cell count ofi of some cellc into j, if the random key of cellc is betweenMi, j−1 andMi j .
This will guarantee that the expected values of the perturbed counts are identical to the
original counts (unbiasedness) and lead to consistently perturbed data. However, for a
given table, the mean perturbation of cells of a given frequency counti is not necessarily
zero. This mean will depend on the actual distribution of thecorresponding record keys.
For the data of example 1 above the observed difference between a true cell count and
the mean of the corresponding perturbed counts varies between−0.82 and 0.78.

See Section 4.1 of Gießing, S., Höhne, J., (2010) for some special issues regarding
an appropriate selection procedure in the context of the invariant post tabular method.

5. How to restore table-additivity?

Non-additivity is a potential nuisance for users, and may also be source of some
disclosure risk. As simple example, assume random noise with a maximum perturbation
of two has been applied. Assume two cells with original countone are perturbed to
count three, and the original total of two is perturbed to zero. Users are informed on the
maximum perturbation. Hence they know that both inner cellsmust have original count
one at least. But if any of them were greater then one, the original total would be at least
three and could not have turned into a perturbed value of zero.

This kind of disclosure risk typically arises, when all inner cells are all perturbed
in the same direction, each with the maximum possible perturbation, and the total cell
is perturbed in the other direction, also with the maximum possible deviation. With
perturbations based on transition matrices like the ones discussed in Section 3 with
usually small probabilities on the tails these events will be relatively rare. However, we
should also bear in mind, that this is only the simplest kind of attack. A systematic
analysis based on linear optimization techniques and taking into account the aggregate
structure of a perturbed non-additive multidimensional table with a published maximum
perturbation might eventually break other perturbation patterns as well.
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Restoring table additivity, as suggested in Fraser, B., Wooton, J. (2006) and Shlomo,
N., Young, C., (2008) is considered there an integral part ofthe method. Leaver,
V. (2009) and Shlomo, N., Young, C., (2008) point out that restoring additivity can
be achieved by iterative methods. As an alternative, we suggest to consider a linear
programming based method like Controlled Tabular Adjustement (see f.i. Dandekar,
R.H., Cox, L. (2002), Castro, J. (2006)).

For a first experiment, we use the CTA implementation of Castro, J., Gonźalez, J.A.
(2009)5. The algorithm restores additivity to a table, minimizing an overall distance to
the table provided as input. The distance function implemented is a weighted sum of
absolute per-cell-distances. Weights are provided by the user of the software. The user
can define for each cell upper and lower bounds on the deviations, and can define a set
of cells labeled as ‘sensitive cells’. Sensitive cells are forced to change their values. For
each sensitive cell, the user defines a ‘protection interval’. The adjusted cell value is not
allowed to take a value within the protection interval.

Computational complexity of the problem depends strongly on the number of sen-
sitive cells. In a first experiment, we therefore use a two stage approach: in a first CTA
run, we only restore additivity to the table. Although in this step we assign cell weights
which will avoid to some extent that the algorithm adjusts cell counts of zero6 or three,
we will usually get an adjusted table with some small cell counts (e.g. ones and twos). In
a refinement run, we define these ones and twos as sensitive, and define the correspond-
ing protection interval as the interval (0;3). At the same time, for all cells with counts
greater or equal to three we defined a lower bound of at least three. For all cells with
zero count, the upper bound is zero. This way, however, we runa certain risk of defining
an infeasible problem, especially if we define at the same time rather narrow bounds for
the non-sensitive cells. See Section 6 for a test result.

Because the adjustment cannot simultaneously take into account all tables ever to
be released7, it introduces inconsistencies in the perturbation. Identical cells, even if
they received the same perturbation by the random process, may become adjusted to
different values. This fact leads to some risk that some perturbations might be undone,
if intruders run an LP-based analysis taking into account the aggregate structure across
several tables. But this is not such an easy task, on one hand,and on the other hand, it
may not be very successful, because it may happen that only original frequencies can be
broken that do not cause disclosure risk.

Of course one might consider using the adjustment methodology without previous
random perturbation, only to ‘remove’ cells with small counts from the table. But as long
as this does not – unlike the SAFE method – yield a fully consistent data base, there is
then a risk that by averaging cell values over a number of tables a user can recover the

5. See Castro (2011) for an extension of the methodology.

6. Note that we do not allow original zero cell counts to be adjusted.

7. (This would be a problem similar to the on solved by SAFE, c.f. 2(in particular in size) and too huge for
today computational resources).
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original data. With a previous random perturbation, such anapproach will only recover
the underlying perturbed table, as pointed out in Leaver, V., (2009).

6. Some test results

Table 1 in the appendix shows the probability matrices we computed for the zero
mean/fixed variance noise approach when the maximum alloweddeviations areD =

3, 4 and 5 respectively, and compares them to the transition probabilities observed
empirically for the cells of the set of controlled tables after protecting the data by
SAFE. Obviously, the SAFE method results in much smaller probabilities that cell
values change by less than three.

For all counts afterD+3, in our implementation of the stochastic noise, transition
probabilities are defined identical to those obtained forD+3. Figure 1a below shows
the empirical SAFE probabilities for countsi to change byd for counts between 9
and 16 in the set of controlled tables, compared to the transition probabilities of the
stochastic noise obtained forD = 5. Figure 1b shows those probabilities for counts
grouped into count size classes observed for cells that are not in the controlled tables. For
our experiment we defined as control tables only tables defined by cross-combination of
at most 3 variables. The results presented in Figure 1b on theother hand relate to cells
defined by cross-combination of 4 variables.

As can be seen in Figure 1a, the SAFE probabilities become approximately normal
when the cell count increases. It is also very clear that the SAFE perturbation is stronger
than that of our stochastic noise implementation: Compare f.i. the probability of no
change (i.e. atd = 0) which is about 70 % for the stochastic noise, but between 13%
and 26 % for SAFE. However, the difference matters mainly forthe small perturbations,
and hence will matter more for smaller counts.
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Figure 1a: SAFE vs. stochastic noise transition probabilities.
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Figure 1b: SAFE, transition probabilities for banded counts in non-control tables. probabilities.

Figure 1b shows that also for cells that are not contained in the controlled tables,
the deviations resulting from SAFE are still normally distributed, but the tails of the
distribution are longer. While we got a maximum deviation between true and perturbed
count of 7 for controlled tables cells, deviations of up to 30occurred in the set of 4-
dimensional cells, as can be seen in table 4 presenting the maximum observed deviations
for the cell count size classes of Figure 1b.

Table 4: SAFE, maximum observed deviations D for non-control table by cell count size class.

Counts 20-49 50-99 100-299 300-499 500-999 1000-4999 ≥ 5000

D 16 19 25 21 30 24 26

Considering that table additivity is a very important issue, it makes sense to compare
SAFE transition probabilities not only to the design transition probabilities of stochastic
noise, but also to the noisy tables after restoring additivity. We have applied the approach
of Section 5 for restoring table additivity using CTA to a 3-dimensional test table.
The table has been perturbed using the design transition probabilities displayed in
Table 1 (appendix). For this instance we obtained adjusted tables where the maximum
perturbation of cell counts is identical before and after the adjustment. This is certainly
encouraging, but it seems unlikely that it is a general result. Table 5 compares the noisy

Table 5: Distribution of 22670 non-zero test table cells by absolutedeviations to true cell values.

Abs. Dev. SAFE noiseD3 adj. noiseD3 noiseD4 adj. noiseD4 noiseD5 adj. noiseD5

0 12.88 23.17 29.44 29.44 38.99 30.62 40.18
1 44.62 44.05 40.23 39.87 34.08 40.05 34.63
2 27.68 23.31 22.31 21.01 19.20 20.41 18.48
3 11.09 9.47 8.01 5.86 4.31 5.07 3.33
4 3.16 3.82 3.42 2.38 1.92
5 0.48 1.47 1.46
6 0.10
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tables before and after restoring additivity to those computed with SAFE protected data.
It presents the frequency distribution of the 22670 non-zero cells of the example by
absolute deviations between true and perturbed values.

For this example, we observed a mean-deviation between trueand perturbed values
of 1.49 for SAFE. For stochastic noise atD = 3, 4 and 5 we got mean deviations of
1.09, 0.99 and 0.97, resp., and after restoring additivity 1.19 (D = 3), 1.15 (D = 4)
and 1.13 (D = 5). Obviously, in this example, even after restoring additivity, stochastic
noise outperforms SAFE. On the other hand, the experiment also shows that – at least
when we use the methodology of Section 5 not allowing that newsmall cells appear
in the adjusted tables – restoring additivity tends to increase deviations (for example
the mean deviation forD = 5-noise from 0.97 to 1.13)8. It has to be expected that this
effect increases with increasing size of the tables where additivity has to be restored.
The computationally expensive second CTA step9 required between about 6 and 24
minutes. As it is intended that table generation for the Census results should be an
OnLine process, this is certainly too long. Even, if this issue could be solved, before
such an approach could be put into practice, a lot of experimentation would be necessary,
for example to determine “sustainable” parameters for the initial random perturbation in
the sense that the adjustment process can preserve to some extent the properties of the
random perturbation (like f.i. the maximum perturbation).

7. Data utility – a cell level measure of information loss

Probably, many users of census counts data do not use them forcomplex statistical
analyses, but are merely interested in learning simple facts, like ‘how many people with
properties X live in area Y?’. When those counts are perturbed, they should be informed
how reliable each individual cell is. This is especially important, if a perturbation method
may produce fairly large perturbations, although only for avery small portion of the
cells, which can f.i. be the case for SAFE for cells which do not belong to the set of
controlled tables.

A simple information loss measure on the cell level could be given by publishing
along with the perturbed counts the absolute value of the perturbation. However, this
may be too much information, leading to disclosure risk. Instead, one might publish the
absolute value of a perturbed version of the perturbation.

Usually, to inform about data utility, one publishes information on the perturbation
on the table level, like the frequency distribution of the noise (c.f. Table 5). Therefore,
when perturbing the perturbations, it makes sense seeking to preserve these frequencies.
E.g. use an invariant matrix of transition probabilities for perturbing the perturbations

8. Note that these findings may not apply to all additivity methods.

9. The first step which only restores additivity to the table takes just a few seconds for this instance.
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of the original counts in a table. Generating such a transition matrix is a straightforward
application of Shlomo, N., Young, C. (2008). The only difference is that, unlike the
original counts which are positive numbers, the perturbations take values between
–D and D. Table 6 shows the results of an application to table Region x Age x
Countryof Birth10. The observed frequencies of the perturbed SAFE-deviations (nd∗)
match the frequencies of the unperturbed SAFE-deviations (nd) nearly exactly.

Table 6: Number of cells of a test table by deviation of the SAFE protected results: true frequencies(nd)

vs. frequencies after invariant perturbation of observed deviations(nd∗).

Cells with negative deviationd Cells with positive deviationd

d nd nd* nd −nd* d nd nd* nd −nd*
−13 1 0 1 13 0 0 0
−12 5 5 0 12 7 6 1
−11 30 31 −1 11 44 45 −1
−10 110 110 0 10 108 108 0
−9 310 309 1 9 372 370 2
−8 836 837 −1 8 878 879 −1
−7 1872 1871 1 7 2141 2141 0
−6 8203 8204 −1 6 9230 9231 −1
−5 34859 34859 0 5 37674 37675 −1
−4 162116 162115 1 4 170659 170657 2
−3 369234 369234 0 3 393652 393654 −2
−2 622462 622464 −2 2 778735 778735 0
−1 1226831 1226831 0 1 783760 783758 2
0 739905 739905 0 0 739905 739905 0

8. Summary and final remarks

In preparation for a comparative study of several perturbation methods for census
tabular frequency data, in this paper we have raised some practical issues regarding the
implementation of two alternative approaches explained inliterature. In particular, this
paper has discussed in some detail how to construct zero-mean/fixed variance transition
matrices required to implement the methodology of Fraser, B., Wooton, J. (2006). We
also discuss an extension of an idea of an invariant transition matrix suggested in
Shlomo, N., Young, C. (2008) to a situation where the perturbation procedure should
eliminate small cells.

As pointed out in Fraser, B., Wooton, J. (2006) and Shlomo, N., Young, C. (2008),
additivity is not preserved by the post-tabular random perturbation method, but can be
restored afterwards – however, at the expense of between tables consistency. We have

10. Note that variable Countryof Birth has been defined here to involve one category which defines an extra-
subtotal not contained in the set of cells defined by the set ofcontrolled tables. Therefore, SAFE perturbs some
cells of this table by more than the control-tables maximum of 7.
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outlined and tested on a small instance an approach based on linear optimization, e.g.
CTA methodology.

Leaving a larger scale empirical comparison of the post-tabular methods discussed
in the paper with the pre-tabular perturbation method SAFE outlined in Section 2 for
the future, the paper provides evidence that the post-tabular methods as implemented
here tend to result in smaller changes to the data than SAFE. On the other hand, as a
pre-tabular method, SAFE preserves additivity and consistency, is easier to implement
in a flexible OnLine table generation environment, and is able to keep the maximum de-
viations in a set of pre-specified tables acceptably small. These are important properties
and may be worth “less optimal” performance regarding data quality to some degree.
While the perturbation caused by SAFE tends to be stronger than those caused by a
non-additive post-tabular approach, the paper shows that they tend to be normally dis-
tributed, e.g. large deviations are relatively unlikely, also for cells that are not contained
in the set of pre-specified, controlled tables.
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Appendix

Table 1: Zero mean, Variance2+ǫ probability transition matrices for maximum
perturbations D of 3, 4 and 5 vs. empirically observed transition probabilities for SAFE.

0 3 4 5 6 7 8 9 10 11 12 13

Random Noise,D = 3

1 0.667 0.332 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.334 0.666 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.125 0.687 0.063 0.063 0.063 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.601 0.099 0.100 0.100 0.100 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.167 0.167 0.416 0.083 0.083 0.083 0.000 0.000 0.000 0.000 0.000
6 0.000 0.072 0.072 0.072 0.571 0.072 0.072 0.072 0.000 0.000 0.000 0.000
7 0.000 0.000 0.072 0.072 0.0720.571 0.072 0.072 0.072 0.000 0.000 0.000
8 0.000 0.000 0.000 0.072 0.072 0.0720.571 0.072 0.072 0.072 0.000 0.000

Random Noise,D = 4

1 0.667 0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.334 0.666 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.120 0.700 0.082 0.045 0.027 0.026 0.000 0.000 0.000 0.000 0.000 0.000
4 0.064 0.076 0.700 0.068 0.037 0.029 0.026 0.000 0.000 0.000 0.000 0.000
5 0.000 0.143 0.143 0.542 0.043 0.043 0.043 0.043 0.000 0.000 0.000 0.000
6 0.000 0.063 0.063 0.063 0.662 0.038 0.038 0.038 0.038 0.000 0.000 0.000
7 0.000 0.032 0.033 0.034 0.0500.700 0.050 0.034 0.033 0.032 0.000 0.000
8 0.000 0.000 0.032 0.033 0.034 0.0500.700 0.050 0.034 0.033 0.032 0.000

Random Noise,D = 5

1 0.667 0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.334 0.666 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.119 0.700 0.082 0.050 0.028 0.014 0.007 0.000 0.000 0.000 0.000 0.000
4 0.062 0.076 0.704 0.075 0.037 0.020 0.014 0.012 0.000 0.000 0.000 0.000
5 0.025 0.068 0.068 0.700 0.059 0.027 0.019 0.018 0.017 0.000 0.000 0.000
6 0.000 0.057 0.057 0.057 0.700 0.041 0.023 0.021 0.021 0.021 0.000 0.000
7 0.000 0.025 0.035 0.035 0.0620.700 0.060 0.028 0.020 0.018 0.018 0.000
8 0.000 0.015 0.016 0.019 0.032 0.0680.700 0.068 0.032 0.019 0.016 0.015

SAFE

1 0.680 0.288 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.408 0.472 0.073 0.006 0.040 0.001 0.000 0.000 0.000 0.000 0.000 0.000
3 0.208 0.514 0.101 0.015 0.153 0.008 0.000 0.001 0.000 0.000 0.000 0.000
4 0.077 0.440 0.122 0.026 0.262 0.058 0.002 0.013 0.000 0.000 0.000 0.000
5 0.022 0.294 0.112 0.046 0.337 0.111 0.023 0.053 0.002 0.000 0.000 0.000
6 0.004 0.157 0.085 0.051 0.347 0.154 0.052 0.136 0.010 0.000 0.002 0.000
7 0.000 0.037 0.070 0.044 0.2940.182 0.087 0.198 0.071 0.004 0.013 0.000
8 0.000 0.009 0.015 0.035 0.203 0.1640.119 0.244 0.123 0.044 0.042 0.002




