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Abstract

The U.S. Census Bureau has the responsibility to release high quality data products while
maintaining the confidentiality promised to all respondents under Title 13 of the U.S. Code. This
paper describes a Microdata Analysis System (MAS) that is currently under development, which
will allow users to receive certain statistical analyses of Census Bureau data, such as cross-
tabulations and regressions, without ever having access to the data themselves. Such analyses
must satisfy several statistical confidentiality rules; those that fail these rules will not be output
to the user. In addition, the Drop q Rule, which requires removing a relatively small nhumber of
units before performing an analysis, is applied to all datasets. We describe the confidentiality
rules and briefly outline an evaluation of the effectiveness of the Drop q Rule. We conclude with
a description of other approaches to creating a system of this sort, and some directions for future
research.
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1. Introduction

The U.S. Census Bureau collects its survey and census da¢s Title 13 of the U.S.
Code, which prevents the Census Bureau from releasing day.dawhereby the data
furnished by any particular establishment or individualeirthis title can be identified.”
In addition to Title 13, the Confidential Information Prdiiea and Statistical Efficiency
Act of 2002 (CIPSEA) requires the protection of informatimoilected or acquired for
exclusively statistical purposes under a pledge of confidiy. However, the agency
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also has the responsibility of releasing data for the puwrpdsstatistical analysis. In
common with most national statistical institutes, our gsalo release as much high
quality data as possible without violating the pledge offi@mtiality, as described in
Duncan et al. (2001) and Kaufman et al. (2005).

This paper discusses a Microdata Analysis System (MAS)shatder development
at the U.S. Census Bureau. Much of the framework for the syst@s described in
Steel and Reznek (2005) and Steel (2006). The system isnaektg allow data users
to perform various statistical analyses (regressionssetabulations, correlation coeffi-
cients, etc.) on confidential survey and census microdateowi seeing or downloading
the underlying microdata.

In Section 2, we give some background on the MAS and the niadivéor its devel-
opment. In Section 3, we discuss the current state of thetyqm system, including its
capabilities and the rules that protect confidentialityséttion 4, we briefly summarize
a study of the effectiveness of tiiop q Rule one of the disclosure avoidance mea-
sures taken within the system. In Section 5, we examine sdhex approaches to the
problem of creating a remote access system such as the MAgction 6, we conclude
with remarks on future research and the further developofahie system.

2. Background on the MAS

The Census Bureau conducts reidentification studies onuhlicpuse microdata files.
In these studies, we attempt to link our public use files teml files that contain
identifiers. Itis reasonable to expect that with more piphwailable data and expanded
use of data mining tools, there will be an increase in the ramamd complexity of
confidentiality threats. There is some concern that in otdeneet the confidentiality
requirements under which the Census Bureau operates, whaxayo reduce the detail
available in our data products and use more perturbatidmigaes to protect them, thus
degrading the quality of the data.

This problem of data confidentiality—at the Census Buread atier statistical
agencies around the world—has motivated the creatioernbte access systemvkich
allow the user to request a statistical analysis and retleé/eesult without having direct
access to the underlying microdata. Common to almost albtemccess systems is that
the ability to receive desired results is not absolute: imedinstances, the result might
be based on perturbed data, and most proposals for remassaggstems include the
rejection of some queries to preserve confidentiality. Teaiof a remote access sys-
tem goes back at least to Keller-McNulty and Unger (1998haaigh the concept of
allowing customized queries was proposed much earlieitfeegescription of the Geo-
graphically Referenced Data Storage and Retrieval Systdreliegi et al. (1969). Fel-
legi (1972) anticipates the need to screen the query rasuttssure that confidentiality
is adequately protected. Adam and Worthmann (1989) desegleral restrictions on
systems that release counts of numbers of people with pkaticharacteristics. These
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include suppressing counts if the numbers are too close tot@ the full size of the
database; requiring that multiple queries from the samehesge only limited overlap;
and keeping a log of each user’s queries and checking eaclymery against the log
to verify nondisclosure. However, they acknowledge thatléist of these is sufficiently
time consuming and storage intensive as to be unfeasibég. dlso consider the possi-
bility of partitioning the data into indivisible units of twor more observations each and
allowing only queries that operate on unions of the unitheathan on arbitrary sets of
observations.

The Microdata Analysis System will allow the U.S. Censusdaur to provide a
controlled, cost-effective setting in which data usersehagcess to more detailed and
accurate information than is currently available in ourlpubse microdata files. The
data accessible through the MAS can identify smaller ggdgceareas and show more
detail in certain variables where our public use files wowddcbarsened. Our goal for
the MAS is to allow access to as much high quality data as plesgin advantage of the
MAS is that it lessens the need for data to be released in égsges or more expensive
manners, such as those described in Weinberg et al. (20Qedecessor of the MAS
is discussed in Rowland and Zayatz (2001).

Unlike the proposal in Schouten and Cigrang (2003), our [g#dao make the MAS
available to anyone who wishes to use it. In a sense, the MAISevive as a Research
Data Center for the entire public, although there will betriesons in place that a
qualified researcher would not encounter at an establislesdd®ch Data Center. The
MAS will allow access to data from demographic surveys arabdeial censuses, with
the goal of eventually including economic survey and certata, as well as linked
datasets. We will initially make available regression gse$ and cross-tabulations, with
other analyses to be added in the future. Currently, we ihterkeep a record of all of
the queries entered into the system, but not the identifitaisers making the queries.
Although the record will not directly affect the output thhe system provides, it will
allow us to see how the system is being used. Our goal in dbisgg to improve the
user experience and enhance the disclosure avoidancédgeekiif necessary.

Our current plan—as described in Chaudhry (2007)—is tordffe MAS through
the Census Bureau's free DatFRETT service with the intention that the system will
be used by people needing fairly simple statistical anatysews media, some policy
makers, teachers, students, etc. The MAS has a graphieaface that allows users
to select variables of interest from a list. In the case ofesgjon, variables can be
dragged into equations and, with a few clicks, users maytereariable interactions
and transformations of selected variables. Some users e®ytife need to use the
underlying confidential microdata for more exploratory adanalysis, but it is not
apparent how to allow this within the MAS without violatingrdidentiality. These users
may find our public use files, when available, meet their néfetliey account for the
decreased accuracy inherent in our disclosure avoidamoegures. Having a limited
range of allowable analyses is a weakness of the MAS, bugr ablan expanding the
number of off-the-shelf analyses the system offers, itfficdit to see how to remedy it.
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3. Overview of the MAS Confidentiality Rules

In 2005, the Census Bureau contracted with Synectics tdaleas alpha prototype of
the MAS using the SAS language. We also contracted with Donde Reiter of Duke
University to help in developing the confidentiality rulektbe system and with Dr.
Stephen Roehrig of Carnegie Mellon University to help initesthese rules. Some rules
were developed and modified as a result of the testing. Tleefdvetotype of the MAS
implements a Java interface within DaE#RETT, which submits requested analyses to
an R environment. We are using the publicly available datfthe Current Population
Survey March 2008 Demographic Supplement to test the system

The MAS software is programmed with several confidentialitgs and procedures
that uphold disclosure avoidance standards. The purpdbesd rules and procedures is
to prevent data intruders from reconstructing the micradatords of individuals within
the underlying confidential data through submitting mudtigueries. The confidentiality
rules discussed in this section are quite complex, and thisigsion does not delve into
the complexities. More detail can be found in Lucero (20a®,aa). All analyses are
subjected to two logical checks, referred to as W@eMarginal 1 or 2 Ruleand the
Universe Gamma Rulevhich ensure that no query is answered if the universe is too
small or if the universe can be used to carry out differenattgcks by comparing
results of similar universes. Regression analyses arediusubjected to restrictions on
the use of predictor and response variables. We plan to exploether additional rules
are necessary for correlation coefficients.

3.1. Confidentiality Rules for Universe Formation

MAS users are allowed to run their statistical analyses amgetse, or sub-population,
of interest. Users are presented with a set of variables atedjory levels from which
they can define a universe using condition statements onditigles. For example, if
the user selectgender= 2(femalg from the metadata, the universe is defined to be
the sub-population of all females. A slightly more complézhuniverse iggender=
1(male v employment status O(unemployeg@l One of the confidentiality rules re-
quires that all variables used to define universes must legaatal.

Since a user may want to define a universe based on variabeméhnot inherently
categorical (i.e., those that are continuous), raw nurakxiariables are presented to
the user as categorical recodes based on output of a sepamateg routine. This
cutpoint program, outlined in Lucero et al. (2009b), crediss of numerical values
and ensures a pre-specified minimum number of observatemgebn any two cutpoint
values. Section 3.1.3 describes possible ways to genargteiats.

To define a universe using a numerical variable, a user igfbtc choose from a
predetermined list of ranges the range that best meets lagrkgmr example, if a user
wished to run analysis on people withcome= $46,000, the user would select the
metadatancome= 4, which is the rangé$45 000,$53 000 on the variableéncome
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Table 1: Table representation of the universe defined from (1) and (2)

income
gender | $0 to $28,000] $28,000 to $39,000 $39,000 to $45,000 $45,000 to $53,000 Total
male N1 Ni ni3 N14 Ny,
female No.1 17 N3 N 4 ny,.
Total n1 n.o ns n.4 n.

and defines the universe as the sub-population of all indatsl whose income is
between $45,000 and $53,000. Note that a user cannot deénentherse to be the
rangeincome= ($39 000,$46,000 unless $39,000 and $46,000 are among the pre-
determined cutpoints. The user must choose a range of valesistent with the
cutpoints that are given. This is a crucial restriction onatvh user can do, since
allowing arbitrary universe formation on continuous datald lead to a differencing
attack disclosure, as described in Section 3.1.2.

3.1.1. Confidentiality by Minimum Universe Size Requirements

To define a universe in the MAS, the user would first satectcoded variables from the
metadata, then select upjtins for each of thenrecoded variables. Universe formation
on the MAS is performed using an implicit table server. F@raple, suppose a data user
defines the universe as the union:

gender= female AND $45000< income< $53 000 1)

OR
gender= male AND $28000 < income< $45 000 2

This universe is represented as selected cells from a twotalde of counts for
genderand income as shown inTable 1 Note that there ar@y 4+ ny 2+ ny 3 total
observations in this universe. For convenience, we willtheenotation Uf) to denote
a universe withn observations. In most cases, it should be clear from theegonthich
n observations lie in the universe. In this example, the uswelefined as the union of
(1) and (2) will be referred to as Gf 4+ ny 2+ Ny 3).

In describing universes, we make a distinction between glsimniverse and
a complex universe. A simple universe is one that can be ithesciusing variable
categories and the intersection set operator. A complexewse is constructed as the
union of multiple simple universes.

All universes formed on the MAS must pass two confidentialities: theNo
Marginal 1 or 2 Ruleand theUniverse Gamma Ruldf a universe violates either of
these rules, the MAS will reject the universe query and priothp user to modify
his selections. These rules are tested prior to perforntiagiser’s selected statistical
analysis on the defined universe.
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TheNo Marginal 1 or 2 Rulaequires that for a universe defined usimgariables,
there may not be am— 1 dimensional marginal total equal to 1 or 2 in timeway
contingency table induced by the chosen variables. TheesgvU(y 4 + N12 + N1 3)
passes thdlo Marginal 1 or 2 Ruléf:

(ni,>30Rn =0, fori=1,2) AND (n; >30ORnN ; =0, for j=1,...,4)

The Universe Gamma Rulequires that a universe must contain at Iéasbserva-
tions; otherwise no statistical analysis will be performé&be value ofl” is not given
here since it is Census confidential.

The way this rule is checked is dependent on whether the tssivie disjoint or
joint. A universe is classified afisjointif its individual pieces do not share cell counts
in common. For example, pieces (1) and (2) for the universe MJ¢ ny >+ ny3) are
disjoint. Since Uf24+ Nn12+ Ny 3) is a disjoint universe, the MAS would check that
piece (1) and piece (2) each contain at |dastbservations. Note that the cutpoint
bins ofincomeare combined within piece (2) prior to performing the tesiwbver,
bins representing different classes of an inherently caiegl variable would not be
combined. In this case, since ting, andny 3 bins differ from each other only by a
cutpoint variable, they are combined, and the MAS checks:

Npa>T AND (nio+m3) >T

A universe is classified ggint if at least one of its individual pieces shares cell
counts in common with at least one other piece. For exampfgase the user defines
the universe U, +ny13+n14) = (3) OR (4), where (3) and (4) are given by

[gender= femaléd 3)

[$39,000< income< $53 000 (4)

In this case, the observationsnps andn, 4 — females with income in the interval
($39,000, $53,000] — are included in both pieces (3) and $4e Table 2 Since
U(nz. + 13+ ny4) is a joint universe, théniverse Gamma Ruleould first check
that pieces (3) and (4) contain at lesbbservations, following the disjoint universe
scenario. Next, the intersectidn= (3) N (4) # {} would be checked to determine
that| contains at leadf* observations, wher€* < I is another Census confidential
parameter. In this example, the MAS checks that the follgvimequalities are satisfied
before any results will be returned:

N, >T AND (n3+n4) >T AND (ngz+np4) >T"

Once again, the cutpoint bins of income are first combinetiwjiece (4) and within
| prior to the testing of théJniverse Gamma Rulén general, when a joint universe
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Table2: Table representation of the universe defined from (1) and (2)

income
gender| $0 to $28,000 $28,000 to $39,000 $39,000 to $45,000 $45,000 to $53,000 Total
male N1 M2 M3 N4 ny,.
female No1 N2 N3 N4 ny,.
Total n1 n2 ngs n.4 n.
Th ‘ ES ES Tha ‘ ES ES
Gi|n1 N2 — Gp|ng ma-—1
Gy | o1 Moo G| N1 N2
T ‘ ES ES
=G| O 1
G,| O 0

Figure1: An Example of a Differencing Attack Disclosure.

is considered, all of the non-empty intersections of thegseof the universe must be
checked to make sure they are sufficiently large.

3.1.2. Confidentiality by Random Record Removal

While the preceding rules provide some protection of thdidential data in the MAS,
they do not completely prevent differencing attack disetes. Adifferencing attack
disclosureoccurs when a data intruder attempts to reconstruct a cotifdlenicrodata
record by subtracting the statistical analysis resultgiobd through two queries on
similar universes. Suppose a data intruder first createsibi@rses on the MAS, Wy
and Up—1) (a proper subset of UJ), where both contain the samebservations less
one unique observation, i.eY(n)\U(n— 1)| = 1. The difference U{)\U(n— 1) = U(1)
is a manipulated universe that contains the single targe¢rohtion. For illustration,
suppose a data intruder has prior knowledge of demograjntiassmall geographic
area, and in particular is aware of individuals, househoidsstablishments with unique
characteristics within that area. It may be the case thagtiseonly one non-citizen
among thenresidents of the area. Then the intruder may creatg¢ &{d Uh— 1), where
U(n) is the full universe of people in the area anch(1) is the universe consisting of
citizens who live in the area. Suppose the data intruderriaguests two separate cross-
tabulations for gender by employment status on these ws@seif, and T, 1, as shown
in Figure 1 Since UA) and Uf — 1) differ by a unique observation,T; will be exactly
the same asI less one unique cell count.

We may perform the matrix subtraction F T,,_; = Ty, where T, is a two-way table
of gender by employment status built upon the one uniquereaten contained in
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U(n)\U(n—1) = U(1). As shown irFigure 1, T; contains a cell count of 1 in the male
non-employed cell with zeros in the remaining cells, whieltstthe data intruder that
the one unique observation contained in U(1) is an unemgloyale. By performing
differencing attacks similar to the one just described, ta dtetruder can successfully
rebuild the confidential microdata record for the one unighservation contained in
U(1).

A differencing attack may also be a concern if there are tweeolkations within
an area that have a certain characteristic, particulatiyafintruder is himself one of
these two. Suppose, for example, that the universe comaiggwo non-citizens, one
of whom is the intruder. The intruder could then construetfthil universe U() and the
portion of the universe consisting solely of citizensid(2). Since the intruder knows
his own personal characteristics, he may manually removesdif from Uf) to get
U(n— 1) and then perform a differencing attack as above by comgasin — 1) and
U(n— 2) to obtain information on the other non-citizen in the area

To help protect against differencing attacks, the MAS immats a universe sub-
sampling routine called thBrop q Rule Traditionally, subsampling has usually been
used to estimate parameters when a population is too largaeatyze in an efficient
manner and a (usually small) subset can give approximdtelgame results as the full
population. Our aims are very different here: wp g Ruleis intended to remove just
enough observations from the dataset to thwart a diffengnattack. In most cases, a
differencing attack performed while tiizrop g Ruleis in place will not lead to a mean-
ingful outcome, and even when it does, the intruder cannaupe that the outcome
found is the correct one.

The Drop q Ruleworks as follows. A user-defined universe that passes ahef t
previous rules hag records removed at random. To do this, the MAS will first draw
a random value ofQ, = g € {2,...,k} from a discrete uniform distribution with
probability mass function @, = q1) = kfll Then, givenQ, = q;, the MAS will
subsample the universe J(by removingq; records at random from Uy to yield a
new subsampled universetJ{ qp).

Within the MAS, all statistical analyses are performed om $hbsampled universe
U(n— ;) and not on the original universe Bj( Each unique universe b that is
defined on the MAS will be subsampled independently accgrtbrtheDrop g Rule
To prevent an “averaging of results” attack, the MAS will guge only one subsampled
universe U — ;) for each unique universe by, with this unique subsample persisting
for the lifetime of the system. That is, all users who selespacific universe W)
will have all analyses performed on exactly the same sublkemmiverse Uf— qy).
To avoid obvious storage issues, the MAS accomplishes stemsi subsampling of
universes by using the same random seed to perform the splisgevery time a given
universe comes up. To receive the full disclosure protactitered by theDrop q Rule
itis necessary that the seed, while constant for a givereusey differs across universes,
and this can be implemented by having the seed be a functitiredet of units in the
universe.
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The discrete uniform distribution is ideal for this purpeeeause of all distributions
on{2,...,k}, it minimizes the probability that for two similar univessehe number of
observations dropped will be the same for both universeghws a necessary condition
for an apparent disclosure to be made on a single observation

Because each value used in theop q Ruleis drawn from a discrete uniform
distribution, a data intruder attempting the differenda@k T, — T,_1 = T1 may find
results inconsistent with forming two universes whergd 1) C U(n), as shown in
Figure 2 The values ok;; are the random numbers giving the number of observations
dropped from each cell of Wf in forming U(h— qz). Similarly, the values of;; are the
number of observations dropped from each cell of U@) in forming Up—1—qy)
respectively. Hence:

szij =01,0<xj <1
T

zsz =0,0<yj <o
T

Here,i andj index the rows and columns, respectively, of the contingéatale, with the
obvious generalizations involving higher order multiples for higher-dimensional
data. The resulting table,Tmayyield a successful disclosure génder= G; (male)
AND employment statusE S (unemployed) for the one unique observation contained
in U(1), but it is much more likely to supply nonsense to thelder. Coupled with
the difficulty of finding candidate differencing attack uarges, data intruders will find
their time better spent elsewhere. Section 4 contains adw@eview of the effectiveness
of the Drop g Ruleagainst differencing attack disclosures. The rule is aiafygart
of our disclosure prevention strategy. The contracted wiadcribed by Roehrig et al.
(2008) found several instances in which a prototype versidine MAS lacking this rule
was susceptible to differencing attacks, not just in thdaryalso in practice. However,
their approach was to run a large number of tabulation gsi@re search for universes
that were almost the same. This method could be partly @etdry slowing down the
system, requiring a wait time between each user query.

Tn—ql ‘ ESl ESZ Tn—l—qz ‘ ESl ESz
G| Mmi—X1 Na2—X2 — Gy |ngi—Yyi1 Mmpo—1-yi1>
Go | Np1—Xo1 No2—X22 Ga|Ni—Yo1 Moo—VYopo
T, \ ES ES
= Gr|y11—X11 1+Yi2—X12
G| Yo1—X1  Yoo—X22

Figure2: Differencing Attack Thwarted by thHgrop q Rule
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The Drop q Ruleis a generalization of the previously usedp 1 RuleandDrop 2
Rule where a small and fixed number of observations were remogéatd analysis.
These rules led to tables that were susceptible to diffémgnattacks. One notable
vulnerability could be exploited by starting, as usual,hwitvo universes W{) and
U(n— 1), identical with the exception of one unit, with the intent of performing a
differencing attack. For example, an intruder might knoatth certain geographical
region contains exactly one Korean War veteran. The intradeld then consider the
universe of all people in that region, as compared to theansé of all non-Korean
War veterans in the region. However, instead of requestitegpalation of these two
universes, the intruder may augment each universe by atldinthe full population of
a non-overlapping geographical region of dize- > n, such as a large state that does not
contain the original region. Then a three-way tabulatiom@de done of veteran status
versus state versus the variable that the intruder wishdsttose for the augmented
universes U§+N) and Up— 1+ N). In the case of thBrop 2 Rulgitis overwhelmingly
likely that all four of the dropped observations will be iretlarge region of siz8l, thus
leaving the portions of the provided tables representirgattiginal region of interest
unmodified. We are currently examining other disclosuregub prevent this sort of
“padding” attack.

A differencing attack leads to a correct inference when ifferénce between the
two matrices represented by the modified tables containsatieicorrect cell and Os
in all other cells. In most cases, when eop g Ruleis used, there are cells with both
positive and negative numbers, and no inference can beeaddnhthe intruder. It is
also possible to obtain an apparent—but incorrect—infegewhich occurs when the
difference is a table with a 1 in one cell and Os in all of thesoshbut the 1 is not in the
correct cell.

3.1.3. Cutpoint Methods

The cutpoints used in universe formation in the MAS are gaeteerby a separate pro-
gram. Various methods exist in the program, and each pre\addifferent set of cut-
points, as influenced by the empirical distribution of a ablé. The methods imple-
mented are fixed width, minimum width, increasing width, aaditioned binning. Cut-
points for each variable in the dataset can use a differeatesfy, but the final cutpoints
for a given variable are generated only once, after chooaim@ppropriate strategy.
What follows is a basic description of each strategy.

Fixed width binningensures that all bins have the same width. This is implerdente
as finding a constanbry, such as 10, so that the distance from the minimum value
to the maximum value of each bin will bery. Because bin widths are constant, the
number of observations in each bin will vary, causing some tw be sparsely populated
while others are dense. The fixed width is chosen to be thenmimi valuewgyw such
that all bins contain at leagky observations, for some pre-determined vaug. This
can makewryy large, so that the resolution across dense areas of thesdata crude.
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Figure 3: Fixed and Minimum Width Binning on 1,000 N(0,1) random sas\pl

In data following a Gaussian distribution, the bin widthMaié determined by the tails
and the center bins will be quite dense.

Minimum width binninguses a valugguw and creates bins such that each has as
close tofuw Observations as possible. Identical realizations of tmalklke will not be
split across multiple bins. For example, considering a migakvariableX with support
N, all observations withK = 5 will belong to the same bin regardless of the number
of observations wittX = 5. This approach tends to generate bins of smaller width than
other approaches, since it allows for finer resolution insgeareas of the data but allows
the bins to be much wider when covering sparse data in ordiectode at leasBuw
observations.

Increasing width binningmay be viewed as a compromise between fixed and
minimum width binning. Increasing width binning starts hwa fixed bin width,cy,
which gradually increases as the value of the variable as@e. This corrects the
problem in fixed width binning of bins tending to be large, lghalso allowing for a
consistent bin width, which one does not get in minimum widittming. Considering
income datacw might equal 25000 atX = 0, but when the cutpoint reach&s=
100,000, ww may jump to 150,000 as a way to deal with sparser data in the tai
For sufficiently largeX, we obtain a value ofo;y =  once the number of remaining
observations approaches some vatue 20 .

The previous binning methods are all referred to as bottprmathods since they
begin with some width value and starting point in the data lamttl bins from there.
Alternatively, partitioned binnings a top-down binning strategy in that it uses the data
as a whole in creating bins. Partitioned binning begins byrspthe data and then splits
the set into two subsets containing approximately the sammeber of observations.
These two subsets are themselves each split into two sraabeets in the same fashion.
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Table3: Bins created on the datasét,1,2,2,4,4,5,5.

Method Bin1l Bin 2 Bin 3 Bin 4
Fixed W. 1-2 3-4 5-6 NA
Min. W. 1-1 2-2 4-4 5-6
Inc. W. 1-2 3-6 NA NA
Partitioned 1-1 2-2 4-4 5-6
(1-6]
[1-2 [4—6]
[1-1] 2-2] [4—4] [5-6]

Figure4: Partitioned Binning on datas€il,1,2,2,4,4,5,b.

This process continues as long as there are at f@gbbservations in each bin. The
final result is a binary tree of bins of unequal width.

As a quick example of how each method performs on the same dataider a
dataset 1,1,2,2,4,4,5,8able 3shows the cutpoints, or boundaries, for each bin that the
different algorithms will create. Assume that the minimuomtber of elements in each
bin is Buin = 2.

The binary tree for the partitioned binning is showrFigure 4. A user may choose
pieces for the universe using any node shown in the diagram.

Each approach has its own strengths and weaknesses, so perfonms best on
a given variable depends both on the variable’s support &tdhdition and on the
properties desired by the user. However, none of the mettmusiders the underlying
distribution of a variable in building the bins, so there imecessity to analyze the
performance of a chosen method. Consider how each wouldrperdn a Gaussian
distribution. Fixed width binning may not provide the rag@n desired around the
mean, and increasing width binning is primarily useful wiiea probability density
function of the variable in question is decreasing over mbste range of the variable.
Partitioned and minimum width binning will produce similasults, but the cutpoints
in the minimum width and partitioned approaches may probidaing so fine that the
exact values for some records are at risk.

3.2. Confidentiality Rules for Regression Models

The MAS implements a series of confidentiality rules for esgion models, in addition
to the universe restrictions already mentioned. For exampsers may only select
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up to 20 independent variables for any single regressioatamu Users are allowed to
transform numerical variables only, and they must seleait tinansformations from a
pre-approved list. This prevents the user from performiagsformations that deliber-
ately overemphasize individual observations such asesstliCurrently, the allowable
transformations are square, square root and natural tbgari

Any fully interacted regression model that contains onlynduwy variables as pre-
dictors poses a significant potential disclosure risk, astileed in Reznek (2003) and
Reznek and Riggs (2004). Therefore, users are allowed todemnly two-way and
three-way interaction terms within any specified regrassmodel, and no fully inter-
acted models are allowed. Furthermore, a two-way inteyads allowed only if both
of the interacted variables appear by themselves in the inaxle a three-way interac-
tion is allowed only if all three variables appear unintéeadn the modelnd each of
the three associated two-way interactions appears. Howieteractions do not count
against the 20-variable limit (so that, for example, if a miadcludes two predictor vari-
ables and their interaction, this is considered two vaesphot three, for the purpose
of the limit). Categorical predictor variables are incldde the model through the use
of dummy variables for all categories except one refereategory. The MAS uses the
most common category as the reference category. In addégwh predictor dummy
variable must represent a category containing a certaitinmim number of observa-
tions; if this minimum is not met, the dummy variable is omdttfrom the model. In
effect, this means that very sparse categories are absioethe reference category
level. The minimum allowable number of observations in &gaty is not given here
since it is Census confidential.

Prior to passing any regression output back to the user, th® Mso checks thd®?
is not too close to 1. IR? is too close to 1, then the MAS will suppress the output of
the regression analysis, as releasing the results of thesggn would allow estimation
of the response variable with a high degree of accuracy ifvithees of the predictor
variables for any unit were known. It may also be the casettigtegression does not
have an unreasonably hig, but that there is a subset of units for whom the response
variable can be predicted unusually well given the predicaoiables. Regressions with
this feature may also be suppressed. The system may alscesappstances where an
interaction term leads to a sparse combination of categjaiethis may be a disclosure
risk. If all of these requirements are satisfied, then the MW#ilB pass the estimated
regression coefficients and the Analysis of Variance (ori@we) table to the user
without restrictions (except for the absorption of catég®mentioned above). If the
requirements are not satisfied, the system may attempt tolabdditional categories of
any categorical predictors into the reference categorhiasnay result in a regression
whose output is allowed to be released.

Sparks et al. (2008) propose some other confidentialitysrfde regression, such
as using robust regression to lessen the influence of ajtidthough at the moment
we still plan to use ordinary least squares regression wherrdésponse variable is
numerical.
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3.2.1. Synthetic Residual Plots

To determine whether the regression adequately desctibedata, diagnostics such as
residual plots are necessary. Actual residual values ppeg=atial disclosure risk, since
a data intruder can obtain the values of the dependent \arimbsimply adding the
residuals to the fitted values obtained from the regressiodein Therefore, the MAS
does not pass the actual residual values back to the useelddta users assess the fit
of their ordinary least squares regression models, didigrgsts are based on synthetic
residuals and synthetic real values. These plots are dasigrmimic the actual patterns
seen in the scatter plots of the real residuals versus théitted values, or of the real
residuals versus the values of the individual variables.

The first step in creating synthetic residual plots is to terélae synthetic dataset in
such a way that the synthetic data mimic the actual data.gubi@ notation of Reiter
(2003), letx, be a variable in the collected dataset, foe= 1,...,d. In the synthetic
datasetx} corresponds to the original, variable, with the superscrigtindicating the
use of a synthetic dataset. There are various methods toagerg; but this discussion
will follow the method described in Reiter (2003), both foeating synthetic data and
for creating synthetic residuals, and our exposition artdtian here mostly follow his.

For categorical variables,, X3 are generated from bootstrap sampling the collected
data. If some categories are sparsely populated, thereeipdtential for averaging
the synthetic residual values at the sparse category tdodesaeal residuals, but
otherwise this part of the algorithm poses negligible disate risk. One possible
approach to this problem is to suppress residuals for caesgthat are sufficiently
sparse. For continuous variablgs the distribution of the variable is approximated non-
parametrically using a kernel density estimator, and thearse-cdf sampling is used to
generatexy from the approximate distribution. When Reiter's methodsed, there is
no one-to-one correspondence between real observatidrsyathetic observations, so
there need not be any particular relationship between #eedithe actual dataset and
the size of the synthetic sample. This feature helps to protgliers, as an outlier in the
original data may not appear in the synthetic plot or may app®re than once. In the
case of categorical predictor variables, we let the symtisaimple size equal the actual
sample size, while in the case of numerical predictor végmbwe let the synthetic
sample size be the minimum of 5,000 and the actual sampleTiieis because when
making the synthetic and actual sample sizes equal in theericah case, we found
that the system was slow when dealing with large datasetsthat the vast majority
of the time that the analysis took was spent on creating ththstic residual plots for
numerical variables.

A shortcoming of the method for creating synthetic contumi@redictors is that
the kernel density estimator is not able to identify a prdligbnass at a single point,
but rather will assume that the probability density functishould be high in the
neighborhood of that point. This should not invalidate thetimod, but it will affect the
distribution along the x-axis for a predictor variable sashincome, for whom many
people have a true value of 0.
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It should be noted that both of these methods for creatingyn¢hetic data work
with one variable at a time, i.exy are drawn marginally, not jointly, and thus no valid
analysis can be performed based on the joint distributiothefsynthetic variables.
This is not currently a major concern, as it is not our intemtio release synthetic data
through the MAS. However, this does impose a limitation omiéinge of diagnostics
that we can make available in the future based on synthetiablas generated using
this method.

The next step is to generate the standardized synthetiduasity so that the
relationship betweet}, andxj, at any pointxﬁp in X3 is consistent with the relationship
betweent andx,, around pointg,. To accomplish this, we must make a different set
of synthetic residuals for each predictor variable. Notg t@p, if numerical, will not
necessarily be a value observed in continuous real datanbytbe drawn with the
inverse-cdf method.

For each variable, the goal is to give the user something tkia plot of the
standardized residuals of the full (possibly multiple)ressgion model versus the value
of xp. For a variablep and an indeX, define

tep = Dkp + Vikp+ Nkp

The first term gives the expected value of the standardizeidual for any given
value of p; the second accounts for the variation of the actual staliwkd residuals
around their expected values (which may change dependinthewalue ofxy, if
heteroscedasticity is present); and the third adds noiettoer prevent disclosure.

To calculate the first terrop,, a generalized additive model (GAM) is built foand
Xp. The valueby, equals the value of the GAM curve at the poijt and is used to
fit the valuestlfp to the general relationship #fandxp, ignoring for the moment the
variation oft around its local mean. Note thegtwill differ for every regression a user
requests, and that it is important that the GAM not be ovénfiextreme cases, an overfit
GAM can create some of the same disclosure risks as releasagyession with a high
R?. There may be some difficulty in avoiding such an overfit in atomated setting.
For categorical variables, a GAM cannot be fit, and webggt= 0 because whenever
a regression including a categorical variable is perforntied mean residual among
observations with any particular level of that categoncaiable is O.

Next, ty, is shifted off the curvedp by vip, which represents the amount by which
the points in the real data aroung}, deviate from the curve. For the case whegés
numerical, we consider the real data standardized resigwealhere

j = arg min|Xg, — Xip|

is the index of the unit i, whose value is cIosesttQp. Ties can be broken by selecting
randomly from all tied choices. Having foundwe computey, = t; — b;, wherebj, is
the value obtained from the GAM &j;. If X, is categoricalj is the index of a randomly
selected observation in the real data suchxthat- X, so we setyp = t;, sincebjp =0.
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Finally, a noise termrme, ~ N(0,0) is added to:fp where, for each regression,
should remain constant so that there is not artificial hetadasticity in the synthetic
residuals. The same random seed should be used for all segreausing the same
dependent variable; if this were not done, there would bedssibility of running the
same or similar models a number of times and averaging thereliit results, creating a
disclosure risk. Careful selection ofis important, as a value that is too small may not
provide enough protection against disclosure, while aevéthat is too large may cause
patterns that are of interest to a legitimate user to be @ddrf random variation.

When all steps are complete, the system creates a scattefptbe synthetic
residuals versus each numerical synthetic predictor biaias well as a scatterplot of
the synthetic residuals against the fitted value, with addesmoother used to show the
general shape of the latter curve. To protect outliers,¢hdearplot requires all synthetic
standardized residuals to be in the interval [-4,4], witlhuga that would otherwise be
outside this range truncated appropriately.

Since categorical predictors do not lend themselves toespéits, the residual plots
for categorical variables are replaced by side-by-sideplmis. Sparks et al. (2008)
propose that numerical predictor variables be binned irtotut-like fashion, and that
the bins be used to create categories for side-by-side bspYhich can be returned to
the user instead of scatterplots, with Winsorization b@agormed to protect outliers.
Since this binning lowers the resolution with which we caa g variable along the
x-axis, Sparks et al. (2008) use it as a substitute for syictbata.

We are beginning to implement regression diagnostics fiistic regressions in the
manner described in Reiter and Kohnen (2005).

4. Evaluation: Effectiveness of the  Drop g Rule

What follows is a generalization of some results in Luceralef2009a), although that
paper considered an earlier, less secure version obtbhp g Rulein which g was a
fixed value chosen in advance. We present only a brief owgrofehis evaluation here;
full details are in Lucero (2010b). Given a pair of similaiverses, UQ) and Uf— 1),
differing by only one unique observation, withHarge, we consider the effectiveness of
the Drop g Rulein preventing contingency table differencing attack disdres of the
form Ty = Th_q, — Th-1-g,, @S was shown ifigure 2

For this section, we will consider a contingency table givihe values of two
categorical variables, with the same setup as describe@dtid® 3.1. To make the
notation somewhat less unwieldy, we denote the size of ealtlincthe contingency
table using a single subscript, as showifigure 5 instead of the double subscript used
previously. In the simplest case, the contingency tablexifZtwo categories for each
of two variables), but it could conceivably be larger—irdihg either more categories
for a particular variable or more variables, which wouldde¢a more dimensions and
would require a more elaborate graphical representation.
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Figure5: lllustration of notation used in Section 4.

We also leflI = (M4,...,M,) denote the proportions of observations within each of
the cells of T, and let¥ = (W4,...,¥,) denote the proportions within,T;. If nis large,
thenII ~ ¥. Furthermore, leX denote the vector giving the number of observations
removed from each of the four cells whep observations are dropped from, To
produce TF_q,, and letY denote the vector giving the number of observations removed
from each of the four cells whegy observations are dropped from T to produce
Th-1-q,- A correct disclosure will occur if and only X =Y, and this may occur only
whenq; = 0.

Since sampling with replacement is very similar to sampliithout replacement
whennis large, we can say that for a givgnandgy, X is approximately a multinomial
random variable with sizg; and probabilities given b¥I, andY is approximately a
multinomial random variable with siz and probabilities given by. SubstitutinglT
for ¥ and performing some other manipulations gives a formulaterapproximate
probability of disclosure for a given number of cells maximum number of cells
droppedk and vectodI = (My,...,M;):

k Xi+...+X3=01 1 2 qll 2
ok (M, My) = ( ) < ' > n¥e.....n% (5
' qlzzz xl,..;go k—1 X1l ... X! 1 J

This formula has a total o(f]jk) — (J+ 1) summands within a rather involved summa-
tion, which makes it cumbersome, but it may be useful in @isgghe risk involved
with releasing a given table with a given value lofFurther research may focus on
finding simpler approximations for the value in this sum.

A large number of differencing attacks were simulated, ascideed in
Lucero (2010b), for a pair of tables, differing by one obs¢ion, withn= 978 and
k€ {3,4,5,6,7}. The data were from the Current Population Survey March 2D&0
mographic Supplement. The simulation led to the concluiahthe summation in (5)
generally agrees with the empirical probability of a disciiee to two decimal places for
this sample size.

It may also be desirable to find bounds on the summation im(8)d case in which
IT is not known. This would be useful, for example, if we werekiog at the same table,
but for a number of different universes. The derivation afifids makes use of the fact
that the function in (5) is a Schur-convex function df for more on Schur-convex
functions, see Marshall and Olkin (1979) or Lucero (2010f)e Schur-convexity
allows us to identify the most extreme cases, and leads timliogving bounds:
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1 2 k X+ +X3=01 q]_l 2 1 201 1
(1) 2 3 () (G) =exmemisZ @

G1=2 Xq,...X3=0

The righthand portion of inequality (6) says that the pralitgof an accurate disclosure
is at most the probability that the same valuegokill be chosen for each of the two
tables. The lefthand portion gives a best case for the pilityabf disclosure, upon

which we cannot improve without modifying which cells aretlire table or changing
k (with the proviso that all probabilities are approximate)particular, the best case is
that all cells of the table include exactly the same propartf the population, i.e. that

m=(3...,3).

5. Other Approaches

Since the idea of a remote access system has been in existernseveral years, a
number of approaches have been proposed that differ fromtowarying degrees, and
we survey some of them here.

Schouten and Cigrang (2003) present a variant of the ideaevhate access system,
which allows outstanding versatility, but is also diffictdtcreate and expensive and la-
borious to maintain. Their proposed system allows usersibon# queries by email,
written in any of several statistical programming langusadka query is approved, the
user receives the results by email. Before the analysisrisipeed, an automated sys-
tem determines the legitimacy of the request, with pardidyldifficult cases handled
manually. As with the MAS, certain types of output are alldvend certain types are
not, but since the code is user-generated, rather thanageddby the system behind
the scenes, it is challenging to identify all unallowableges. This is especially true
because, as the authors emphasize, the validity of a quendepend on information
already released as a result of previous successful quéhesauthors write, “Comput-
ers are simply not fast enough and the construction of asysiat fully evaluates the
risk of disclosure may be too costly and complex and theeefiot feasible.” Thus, in a
system like this, it may be necessary to perform some disaamvoidance analysis on a
query after the result of the query has already been retuiifigslis not ideal, as a query
that is a disclosure threat might not be identified until iispot has already been pro-
vided. However, such a method could be effective if the user$rom large institutions
and have signed a contract describing their research addipteto uphold confiden-
tiality. In this case, the fear of a user or institution’spaodizing its future access to the
data may serve as a sufficient deterrent to its deliberatddyngting an invalid query.
In this type of system, a username and password would bessyeso that individual
users’ actions could be properly tracked.

Sparks et al. (2008) propose a system—Privacy-PreserviradyicsR—that per-
forms a number of methods for disclosure avoidance, inolyeeping track of the re-
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gression models a user requests and ensuring that onlytadigailthough large) number
are run for each possible response variable. They alsoetisaira user does not make
too many closely related requests.

Gomatam et al. (2005) make a distinction betwestatic serversand dynamic
servers A static server has a pre-determined set of queries to whighl provide an
answer. A dynamic server receives a query and makes a deoisiowhether to provide
an answer. A dynamic server—such as the one described inufchand Cigrang
(2003)—would keep a running record of all previously an®éegueries, and whenever
a new query was submitted, it would be compared againstghldetermine whether
providing an answer would lead to a disclosure risk when #veanswer was combined
with previously provided answers. A dynamic server has telir undesirable property
that the order in which queries are submitted by the colleagiroup of users plays a
large role in determining which queries are answered, aatldbentually the server
reaches a point where no new queries can be answered. Siadegjare answered
or rejected as they are received, the set of queries thatltareately answered is not
the result of a careful assessment of which analyses wooldda the most utility to
legitimate researchers while keeping disclosure risk aa@eptable level. Gomatam
et al. (2005) write that “[w]hether dynamic servers are fmesremains an open
question.” The MAS is at its heart a static server, since @rafes under a set of rules
that do not depend on previous queries. However, it opelratedynamic fashion, since
the rules are checked for each new query that is submittdterrehan comparing it to
a pre-computed list, as creating such a list would be protébiln a way, the MAS
does not fit into the framework of Gomatam et al. (2005), asnteatimes will provide
regression output that is less detailed than the user mayl liked instead of refusing
output altogether.

Another approach to protecting privacy from a query-adogmtatistical database is
to suppress from any tables any cells that are deemed agliseldsk, either directly or
indirectly. Adam and Worthmann (1989) discuss this po#igildind note that in certain
systems, cell suppression is not a feasible solution toigwasgure problem.

6. Future Work

The MAS will continue to be developed within DaaRRETT. We will soon be testing
the software itself and the confidentiality rules within tMAS beta prototype to
ensure that they properly uphold disclosure avoidancealatds. We will draft a set of
confidentiality rules for cross-tabulations, and add défe types of statistical analyses
within the system. We will explore other types of differemgiattack disclosures, and
investigate ways to prevent such differencing attackso Alspotential interest is doing
more theoretical explorations to evaluate disclosure sk example, it would be of
interest to determine the probability of a correct disctegliven that there is an apparent
disclosure resulting from a differencing attack. If thisnmoer were small enough, it
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could lead to a higher level of protection for the system, msn&uder would not be
able to be highly confident of the correctness of an appaieatogure.
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