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Abstract

Before releasing databases which contain sensitive information about individuals, statistical
agencies have to apply Statistical Disclosure Limitation (SDL) methods to such data. The goal
of these methods is to minimize the risk of disclosure of the confidential information and at the
same time provide legitimate data users with accurate information about the population of interest.
SDL methods applicable to the microdata (i.e. collection of individual records) are often called
masking methods. In this paper, several multiplicative noise masking schemes are presented.
These schemes are designed to preserve positivity and inequality constraints in the data together
with the vector of means and covariance matrix.
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1. Introduction

When statistical offices release information about indieid, they face two conflicting
goals: preserve confidentiality of the data—identitiesheff tata subjects and values
of sensitive attributes— and at the same time, release Iusdgfumation for policy,
research or other purposes.

Data may be released in two formats: microdata (i.e. catladf individual records)
and tabular data. Release of microdata is often considerbd thore dangerous from
the point of view of the disclosure risk, but at the same tiime tange of statistical
analyses may be wider for the microdata comparative to thddadata.
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This paper focuses entirely on the microdata releasesipuiheans of access to mi-
crodata records exist, including restricted data centegs ANES; MEPS; SSDS), licens-
ing [NCES] and remote access servers [Gomagaal]. These are effective, but they do
not meet all needs, and many agencies also release dadigeitéred microdata publicly.

For public microdata releases, the role of statisticalldgae limitation (SDL) is to
alter the data in a way that maintains the utility but limitsadosure risk.

Many Statistical Disclosure Limitation (SDL) methods cae bsed to prepare
microdata releases. Of course, the initial step is to remexdicit identifiers for
individuals —names, addresses and social security numbers

Almost always, removal of identifiers alone is inadequatareRattribute combina-
tions (for example, a 17-year old widow) can lead to re-idieation. Moreover, in
high-dimensional data, virtually every subject may havaigue set of attributes. There-
fore, almost invariably, released data attributes must béified. Some SDL techniques
coarsen the resolution of the data; for example, date dfi loiain be replaced by age,
and age may be reported in five-year intervals. Extremebattrivalues can be top- or
bottom-coded.

Another approach is to generate synthetic records, whiehli@ws from a distribu-
tion (typically, a posterior predictive distribution) mresenting the original data.

Other methods actually change attribute values. Exampéeadalition of noise, data
swapping and microaggregation [Katral. (2006); Oganian and Karr (2006)]. We term
methods whose output is a perturbed version of the origiat@te perturbation meth-
ods This paper focuses on one of these —a perturbation by mdamgdeawnally gen-
erated “noise.” Each specific perturbation method has cpresees on both disclosure
risk and data utility. Some limit risk effectively but arequaat preserving utility, while
others yield high utility, but at the price of high risk. No thed is superior with respect
to both. Oganian and Karr (2006) show how to combine two nusthaith the goal of
capturing the good aspects of each.

From a data utility perspective, it is important to presegualitative characteristics
of data, for example, positivity constraints of the fo> 0 for some variables and
inter-attribute relationships such as linear inequalitikge, many economic variables
(gross income, taxes) and many demographic variables (auaflemployees, number
of students in the sixth grade) obey positivity constraimsamples of inequality
constraints are “Federal taxes gross income”, “number of salaried employe€s
number of employees” and “year of birthyear of death.”

There is also a risk aspect. Because such characteristiadesived from domain
knowledge available to both legitimate data users anddiets) failure to preserve them
poses a disclosure risk: the extent to which constraintyiatated can be informative
about the nature and intensity of the SDL applied to the data.

Some SDL methods preserve such characteristics more bgideirte than by de-
sign, and only partially. For instance, data swapping pvesepositivity, but not multi-
attribute constraints. Microaggregation preserves pagitbut whether it preserves lin-
ear inequalities depends on specifics of the implementation
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In this paper, we present several SDL methods applicablautoenical data that
preserves positivity constraints, inequality constraiahd the first two momenisthe
vector of means and covariance matrix.

For the purposes of this paper, the original and releaseitivwhe hereafter term
masked) databases are flat files in which rows represent dajacts (individuals,
households, business establishments, ...) and columnegrimanattributes of those
subjects. We denote the original dataXyand the released (masked) dataXpy We
assume that some variables{nare nonnegative, others can take positive and negative
values. The goal is to obtai,(j) > O for those variableg which are nonnegative in
the original data, als¥, should have the same mean and covariance matdy.as

As background, the analogous procedure for addition ofentisunconstrained
numerical data is as follows. L&l, be the covariance matrix of, —in practice, one
can use either the usual empirical estimator or a shrinkaged estimator. Lé&t> 0 be
a parameter chosen by the agency; then

(Xo—EXo]) +E
Vitk

where the nois& has distributiorN (0, kX,), has the requisite properties [Oganian and
Karr (2006)]. Note that the value &fneed not be released, even if it were made known
that the method of SDL is addition of noise. ks 0, X, becomes a very simplistic
form of synthetic data [Reiter (2002)], and any non-nornigtributional characteristics
of X, are lost.

The structure of this paper is the following: several maltigte noise protocols that
preserve the first two moments are presented in Section & &boms for higher order
moments are given in Section 3, the extension of these mistoc satisfy inequality
constraints is described in Section 4 and the results of timeenical experiments are
reported in Section 5.

Xm = E[Xo] + (1)

2. Multiplicative noise protocols

Suppose thak, containn records, each witld numerical attributes. Some of the
attributes are nonnegative, denote thégh. We wish to construct and release a masked
data selX,, with these characteristics:

X >0 ()
EXm] = E[Xo] ®3)
2(Xm) = 2(Xo), (4)

whereX,,P are the masked values ¥§P andZ(-) means “covariance matrix ¢f).”
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Oganian and Karr (2011) proposed a masking scheme whickrmpessthe positiv-
ity, means and covariance matrix. The basis of this schetwoaise multiplicative noise,
implemented by taking logarithms, applying additive, naliyndistributed noise and ex-
ponentiating. This scheme works only if all the variableghmdata set are nonnegative.
Below are the detalils.

Let E be noise that is conditionally independentfgiven E[X,] andZ(X,), and
satisfies

E[Xooexp(E)] = E[X] ®)
Z(Xooexp(E)) = (1+ k)2 (%), (6)

wherek > 0 is an agency-chosen parameter amttnotes elementwise matrix multipli-
cation (Schur or Hadamard product). That is, the exponmtian (5), (6) and elsewhere
below also takes place componentwise. Then

(V1I+Kk—1)E[X] + [Xooexp(E)]
V1+k

Xm = Q)
satisfies (2)—(4).

For normally distributed noisg, Oganian and Karr (2011) showed that the following
vector of meangig and the covariance matr: should be chosen fdg to satisfy (5)
and (6):

Zdi,j):log(l+%), i,j=1,....d (8)
pe(i) = —oe(i)/2,  i=1,....d. 9)

Here,d is the number of the dimensions in the data.

Note that the fact that the original data are multiplied by kbgnormal noise does
not mean that such a noise introduce a significant skewnels ttata. In fact, because
of the specific choice of the parameters of the lognormatidigion, the introduced
skewness is minimal. In particular, from (8), the varianégh® lognormal noise is
less thark, wherek is a parameter of the method and typically small.0.15. The
lognormal noise with such a small variance is practicallijmsyetrical with very slight
skew to the right, to the point that its distribution is alrhoglistinguishable from a
normal distribution.

If the data set contains not only nonnegative variables huables with negative
values as well, the scheme described above cannot be apipieadly. The variables
with negative and positive values may lead to

<0 (10)
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Figure1: Example of a data set when covariance matrix for noise cabe@omputed.

so0, the covariance matrix (8) cannot be computed. After ex@mtation with different
data sets, it was noticed that for some very rare distribstaf values o, (10) may
still hold. This will happen when positive variables are agely correlated and when

k

EXo(i)X%o(])] < 17K

EX(NIEXo())]
For positive variables this may happen only when the valfiiseovariables are strongly
aligned along the axes. Example of such distribution is shiowrigure 1.

One possible solution to this problem is described in [Ogai2010)] which consist
of converting all the variables to z-scores and making tlzeseores nonnegative by
adding some value (or vector —for multivariate daaj, such thatag > |min(Z)|.
Denote these nonnegative z-scoresZy Then masking scheme described by (7), (8)
and (9) can be applied @, and after that the resulting data are returned to the ofligina
scale:

(V1+k—1)lag+ [Zpoexp(E?)]

Zm = V1Fk ()
Xm= (Zm—lag)o oo+ E(X) (12)

where g, is the main diagonal of, and the nois€e? has the following mean and
covariance matrix:
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K2, (1, j .
ZEZp(i,j):Iog<1+W(lzpj()m>, ij=1,....d (13)

ue, ()= —0e, ()/2,  i=1,...d. (14)

where, (i, j) is the(i, j) element of the covariance matrix &§.
Masked data, in this case can be represented as

(ZpoexpE®) + (vV1+k—1)lag

Xn = ( NeEn ~lag) 0 0o+ E(Xo) =
~ [Xooexp(E?)] —E(X,) oexpE?) 4o olagoexpE?) n
a VItk
E(X)v1+k—lago o,
+ JTTk (15)

It is easy to see that such scheme preserves the means andmoanatrix:

E (Xn) =~ [E(%) ~ (%) + 000 lag - 0olag+

+EX) V14K =E(X) (16)

The equality in the formula above follows from the fact tHa¢ noise is independent
from X, andE(expE®)) = 1.

(20 eBER)ull) Zy(i) e ())ou(i)y
2l =2 (e S )=

_ %m K)COUZp (i), Zp( 1)) =

— 04(1)o )COr(Xo(i), Xo( 1)) = Zofi. ]) (17)

wherecoV-) andcor(-) denote covariance and correlation(gf respectively. Note that
the second equality in the formula above follows from theperty (6).

Oganian (2010) shows that masking scheme (15) with thefgpekoice forlag will
never lead to the case described by (10).

In particular, first, let us see what are the possible valoesay in this scheme.
lag should be greater thamin(Z)|, however, a very bidag may lead to a negative

masked data (this follows from equation(12)), which vielapositivity constrants for
the variables<,P.
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From (11),Zn, is minimized wherg, — —oo:

(vV1+k—1)lag
V14K

min(Zy,) >
From (12),min(Xq,) is larger than

Oo+ E(xo) (18)

To preserve positivity in the masked data, it would be endogkquire positivity of
(18). So, we have an upper bound fag:

lag < @\/w K

0o

where division is done componentwise.
The lower bound fotag is |min(Z)|. For nonnegative variables with zerlosin(Z)| =
E(Xo)/00. SO, the lower and upper bound fag are:

EO) < jag < B ik 19)

Oo o

Let us consider a few choices ftag in this range. If we chooskag = E(X,)/0o,
then the scheme witlrscores transformation (15) is equivalent to the schemieourit
transformation (7). In fact, it is straightforward to verithat the masked data in this
case can be written as:

(V14+Kk—1)E[X] + [Xooexp(E®)]

— 20
X VITK (20)
Expression (20) is almost identical to (7) except the sedenah in the nominator:

[Xo 0 exp(E®)].

Below we will show that even this term is identical in both sgtes. In particular,
after the application of our masking scheme to the pos#iseores, nois&* has the
mean and covariance matrix defined by (14) and (13) respdgetiv

Note, that

25 (1,]) cor(Xo(i), Xo(1))

ElZo()Zo(])] E[( PB4 jag(j))( Xl EDGl) | jag(j))]

— Cor(x0(|)7XO(J)) _ ZO(I7J)
EXo(i)/00(i) *Xa(])/a0(])]  E[Xo(i)Xo(])]
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So, whenlag = E(X,) /00, the transformation to positive-scores does not make
any changes in the original scheme (7).

Now let us consider another extreme fag: lag = \/_1+ KIE(Xo)/00.
It is easy to verify that masked data in this case can be \mrase
X, — (V1+k—1)E[X] o exp(E?) + [X, 0 exp(E?)] (21)
B V1+k
Covariance matrix for the noise for this scheme is:
S, |,J):Iog<1++> (22)
= EZo()Zo(1)

To prove that the expression under logarithm of (22) is atnagsitive, let's express
it in terms of original data.

L Xo(i) FEX(i) (VI+Kk—1))
Zy(i) = o)

It is easy to see that

E[Xo(1)Xo(j)] +KE(Xo(i))E(Xo(]))
oo(i)oo(])

E[Zy(1)Zp())] =

koo(i)oa())C0r(%(i). Xe(1))
2ep (1) = '°g<1+E[xo<>xo< )]+ KE(G()E (X <>>>‘

(14 EXe() X ()]
'°g< EXe()%(])] 1 KE(Xe(1) E (X <>>> (@)

The expression under the logarithm in (23) is always pasitiv the nonnegativi,,
so we can always compubg, . In the same way, it is possible to show that no other
value forlag (in the range of its possible values) can guarantee pdgitwi(10) for all
possible data sets.

When the data set contains variables which can take positidenegative values
together with nonnegative variables, the scheme with zresaoansformations will work
too. First the data should be made nonnegative by addigX,)| and then scheme
(21) is applied to this data. Last, to return the data to thgirmal location, we have to
substractmin(X,)| from the result of the previous step.
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3. Preservation of higher moments

Multivariate noise protocols described in Section 2 mamizositivity and the first
two moments. Exact preservation of higher-order momentsoisguaranteed. Here
we consider the extent to which higher-order moments caristerted by the scheme
with z-scores transformation, which has a wider range ofiegigility than the scheme
without z-scores transformation

Consider theP-th (mixed) momentE (Xmt Xmb? - - - Xmi), whereP = 59, pi:

: (VTR DE (X)) eXBER(1))+
rle " “_l( VLK

Xo(1) eXP(E*(])) \py 1 L (< (P
\/)ﬁ "] = (\/m)Z?lij{ﬂ(ijZij])X

< (VI K—1)PEPI (X)) expl(py — 1)) E® (1)) %ol ) x

1

ceniEn()] = e lp,llo..id: mxo =

d . d _ _
Eexpy, piE(i))] x (vVIHk-pHR T (P)err i
= SN
j J
Note thatW = Z?:l piE*(j) is a weighted sum ofl normal variables that are not
independents but are jointly normal. St,is a normal variable too. Thus, e}fy) is

log-normal with mean equal to egpy + 0.5Vary). Then, since

ElexpW)] =

[ d
= exp ijue +05<Zip,zzez (1) + Zijplzezp(jl)>]
: 1<

[ d
=exp —OSZlZEZ i +05<Z'ZZEZ i +ZZ| i Ze,, (1)

pj(pj—1)

d( (14 KEXo()?] )f ( (14 KEXo( ) %o(1)] )“J“"
EX (112 1 KEZXo(]) [ ER( %]+ KEXo() %1

" (24)
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we obtain
(Vi+k— 1211PJ J)
[I_lxm ] [I_lxo ] (VI K)Zi-oP
¢ o\ REX
J X X (25)
ﬂ(n) ﬂ(E[xou)ZHkEZ[xom)

(L+K)EXo(J)Xo(1)] PPl d e
XJE'<E[X0(j)xo(|)]+kE[Xo(j)X0(I)]> JIJE" Xo(J)]-

up

Now, (25) can be written as
d
E|MXa(D)P | =E | [1X%( E
fee| e |peor] b 5 S| e
\/m 12] 1(Pj—ij)

d /p i
Xﬂ(i,-])Ep [Xo(])] W an
(26)

whereu; € {(p1—1),p1}, Uz € {(p2—1),p2} -+ Ug € {(pa — 1), pa}, such thau, u,
+ Ug # {P1, P2+~ pa} and

§ Yo( )2 pj(pé—l)
A= ﬂ( ) "

1+k VEXo(j)Xo(1)] PiP
. ( <I>]>

)]+ KEX(1)%o

From (26) we see how the moments of the original and maskedatatrelated. If
the agency decides to release information about maskirayitdm —in particular the
value ofk, then this formula can be reported to data users, allowiegtto adjust
their analyses and to calculate the original moments. Tgoedenthe original moments
users would employ expression (26) recursively: first ardisé order moments of the
original data in (26) can be substituted by the correspandioments computed on
the masked data. All higher order original moments can bepced recursively using
formula (26). However, the safety of the releasknig problematic in some scenarios,
because doing so might lead to attribute disclosure riskdane records.

A question of practical interest is how large the expres$i$i) can be, compared
to the corresponding original moments. Because the masMechde scaled to have the
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same covariance matrix as the original data, higher-oradenemts seem unlikely to be
grossly inflated, but it is possible. In most our experimevith different data sets, third-
order moments were only 2.5% larger than the original momentaverage for skewed
original data with outliers, such as the lognormal data detxribed in Section 5). For
the symmetrical data sets with the same covariance mattixea®gnormal ones, they
were only .15% larger than the corresponding original oResrth-order moments were
about 15% larger on average for the lognormal original dathanly .8% larger for the

symmetrical data. In general, the discrepancy increaststiagé order of the moment,
but only slowly.

4. Inequality constraints preservation

Suppose our original data in addition to positivity constis also have inequality
constraints of the fornX > Y. For example, masking an income data with the variables
“Gross income” and “Federal taxes" should produce a maskeda suich that “Gross
income> Federal taxes”. The protocols described above can be udrdldisig blocks

of a new scheme which would guarantee the preservation g@ialiy constraints. This
scheme is the following:

e Apply the multiplicative noise scheme 1o, [X, — Yo]). Denote the result by
(Y, X —Yo]")
e The masked data corresponding X3, Y,) are(Xm, Ym) = (Y* + [Xo — Yo]*,Y*)

It is easy to see that this scheme preserves the means anthnogamatrix.

E(Xm, Ym) = E(Y"+ X0 —Yo| ", Y7) =
= (E(Yo) + E[X—Yo]), (E(Yo)) = (E(Xo),E(Yo))
COMXm, Ym) = coM Y™ + [Xo — Yo| ", Y*) = var(Yy)+
+cov[Xo — Yo, Y*) = var(Yo) + coU[Xo — Yo], Yo) =
= var(Yp) + couXo, Yo) — var(Yy) = couXo, Yo)
var(Xm) = var((Y* + [Xo — Yo|*) = var(Yo) + var([X — Yo| )+
+ 2cou Yo, [Xo — Yo]) = var(Xo)

The scheme can be readily extended for the cases when ramgiphbles are related
by inequality constraints. For example, suppose
)(01 > X02 > X031 thenxml = X§ + [XOZ - )(03]* + [XO]_ - )(02]*1 Xm2 = Xék + [XOZ _X03]*
andXmz = X3.
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Or in general case Ko, > Xo, > -+ > Xg_, > Xo|

|
X=X+ 3 Koy s =X (27)

j=I+1

5. Numerical experiments

Both multiplicative noise schemes (with and withatgcores transformation) were im-
plemented and evaluated on different data sets. These etathave different distribu-
tional characteristics: a skewed distribution with manyliets and a symmetrical one
without outliers. The symmetrical data sets had a multatarnormal distribution and
the skewed sets were log-normally distributed. 500 ref@daf three-dimensional nor-
mal and lognormal sets were generated. Each set h&@iQ@0ecords. They were mod-
erately correlatedcpr = 0.5). The log-normal sets had means around 2 and variances
ranging from 4 to 16. These sets had outliers —values clos@ tw larger.

The normal sets had means aroun8l 8nd variances ranging from 5 to 10. The
variance inflation factok was chosen to be 05 as recommended in Oganian (2003).

The experiments showed that means were very well presenreboth schemes
and both types of data: the ratio of masked and original mehng/ed only a very
small variation around 1. The results on variance/covadanatrix were different for
skewed and symmetrical data sets. The experiments shoaecavariance matrix was
preserved for the symmetrical data sets without outliengr& was slight variability in
variance/covariance matrix inflation, defined2g/%,, where/ denotes elementwise
division. Values of this ratio ranged from 0.98 to 1.02.

There was more variability in variance/covariance matniftation for the skewed
data sets with outliers. Values of this ratio ranged appnately from 07 to 13. The
scheme withe-transformation resulted to be slightly more stable: va@covariance
inflation ranged approximately from®to 12. However, the average and most frequent
value were 1 in both schemes and both types of data sets, astedp

Such variability over replications is not very surprisingdight of the nature of the noise
and the variation in log-normal original data, which as dabove had a number of large
outlying values. Records in the original data with big valaeespecially outliers— can
undergo significant changes when multiplied by noise, disigthe covariance matrix.

One possible solution to reduce variability in the resgltinasked data when the
original is skewed and/or has many outliers is to apply diife levels of noise to
different zones of the data, as discussed in Oganian and(Ratrl). It is illustrated
in the Figure 2, where zone 1 is masked with the paranigtend zone 2 with the
parametelk, < k;. Because all the protocols presented in Section 2 are dssbigm
preserve the mean and covariance matrix of the original, datacan apply different
independent noises to different zones of the data and tlegieoce matrix of the masked
data should be the same as that of the original data.
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Figure2: Two zones of masking: black points correspond to the first dmasking
and grey points to the second zone.

Two-zone masking was implemented with different valuek @r the same three-
dimensional lognormal data as in the experiment with onlg @ane. The first zone
consisted of all the points from O to 15; all the other recavdse included in the second
zone. For the second zone we ch&se- 0.01. For the first zone we chokg= 0.15.

This approach reduced variability in the covariance matrfixthe skewed data
significantly: in 95% of replicates of the masked daig/X, was in the interval of
[0.98,1.02.

Optimal ways of variability reduction in the masked data wtliee original have
outliers and severe skewness are the subject of our cumdrititure research.

Note, that the multiple-zone masking may be used for othatsgd-or example,
suppose a numerical variable in the data set has a lot of, zehish happens often in the
household data. Suppose the same numerical variable élpaiith an indicator variable
I, such that wheh = 0, it is strictly positive and wheh= 1, it is zero. Examples df
are “In the labor force” or “Income is greater than taxable’'mif the agency wants to
preserve such a relationship in the masked data, they caredely mask records paired
with different values of the indicator variable leaving @giin the numerical variable
unchanged. Again, because our protocols preserve meatiseaoavariance matrix, the
first two moments of the overall data should be preserved.

Last, we want to discuss the disclosure risk associated tivithmethod. Our mea-
sures of disclosure risk focus on re-identification disgtesisk. Re-identification dis-
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closure is defined as an average percentage of correctliifiddmecords when record
linkage techniques [Jaro (1989)] are used to match ther@iigind masked data. Specif-
ically, we assume that the intruder tries to link the masHKedaiith an external database
containing a subset of the attributes present in the origiata [Oganian (2003)]. The
overall re-identification risk of the multiplicative noise very small. Our experiments
showed that only about®% of records could be correctly identified in both schemes.
So, the multiplicative noise can be successfully compaiiddtive most protective meth-
ods, like microaggregation and rank swapping, at the sameegierforming significantly
better than those in terms of utility.

Acknowledgments

This research was partly funded by NSF grant EIA—013188Hdd\@ational Institute of
Statistical Sciences (NISS). The sincerest thanks go to Kkar.

Any opinions, findings, and conclusions or recommendatiexigressed in this
publication are those of the author and do not necessarlgctethe views of the
National Science Foundation.

References

ANES. American National Election Studies Resticted Dataess, http://www.electionstudies.org/rda/
anesrda.htm

Gomatam, S., Karr, J. P. A. F., Reiter, J. P. and Sanil, A.00%2 Data dissemination and disclosure limi-
tation in a world without microdata: A risk-utility framewlo for remote access serveatistical
Science20, 163-177.

Jaro, A. M. (1989). Advances in record-linkage methodolagyapplied to matching the 1985 Census of
Tampa, FloridaJournal of the American Statistical Associati@4, 414—420.

Karr, A. F., Kohnen, C. N., Oganian, A., Reiter, J. P. and BanP. (2006). Framework for Evaluating the
Utility of Data Altered to Protect Confidentialitf,he American Statisticiar60, 224—232.

MEPS Medical Expenditure Panel Survey, Restricted DatasFilvailable at Data Centers, http://www.
meps.ahrg.gov/mepsweb/dat@ts/onsitedatacenter.jsp.

NCES Confidentiality procedures, http://nces.ed.gowWSty/confproc.asp.

Oganian, A. (2003)Security and Information Loss in Statistical Database Betiony PhD thesis, Univer-
sitat Politecnica de Catalunya.

Oganian, A. (2010). Multiplicative Noise ProtocoRrivacy in Statistical Databases 2010, Lecture Notes
in Computer Scien¢&344, 107-117.

Oganian, A. and Karr, A. F. (2006). Combinations of SDC Methéor Microdata ProtectiorRrivacy in
Statistical Databases 2006, Lecture Notes in Computem8eid302, 102—-113.

Oganian, A. and Karr, A. F. (2011). Masking Methods that Enes Positivity Constraints in Microdata,
Journal of Statistical Planning and Inferenck41, 31-41.

Reiter, J. P. (2002). Satisfying disclosure restrictioiith wynthetic data setdpurnal of Official Statistics
18, 531-544.

SSDS Social Science Data Services, http://librarieseghitguides/subjects/data/access/restricted.html.



