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Abstract

Before releasing databases which contain sensitive information about individuals, statistical
agencies have to apply Statistical Disclosure Limitation (SDL) methods to such data. The goal
of these methods is to minimize the risk of disclosure of the confidential information and at the
same time provide legitimate data users with accurate information about the population of interest.
SDL methods applicable to the microdata (i.e. collection of individual records) are often called
masking methods. In this paper, several multiplicative noise masking schemes are presented.
These schemes are designed to preserve positivity and inequality constraints in the data together
with the vector of means and covariance matrix.
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1. Introduction

When statistical offices release information about individuals, they face two conflicting
goals: preserve confidentiality of the data—identities of the data subjects and values
of sensitive attributes— and at the same time, release useful information for policy,
research or other purposes.

Data may be released in two formats: microdata (i.e. collection of individual records)
and tabular data. Release of microdata is often considered to be more dangerous from
the point of view of the disclosure risk, but at the same time the range of statistical
analyses may be wider for the microdata comparative to the tabular data.
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This paper focuses entirely on the microdata releases. Multiple means of access to mi-
crodata records exist, including restricted data centers (e.g., ANES; MEPS; SSDS), licens-
ing [NCES] and remote access servers [Gomatamet al.]. These are effective, but they do
not meet all needs, and many agencies also release deliberately altered microdata publicly.

For public microdata releases, the role of statistical disclosure limitation (SDL) is to
alter the data in a way that maintains the utility but limits disclosure risk.

Many Statistical Disclosure Limitation (SDL) methods can be used to prepare
microdata releases. Of course, the initial step is to removeexplicit identifiers for
individuals – names, addresses and social security numbers.

Almost always, removal of identifiers alone is inadequate. Rare attribute combina-
tions (for example, a 17-year old widow) can lead to re-identification. Moreover, in
high-dimensional data, virtually every subject may have a unique set of attributes. There-
fore, almost invariably, released data attributes must be modified. Some SDL techniques
coarsen the resolution of the data; for example, date of birth can be replaced by age,
and age may be reported in five-year intervals. Extreme attribute values can be top- or
bottom-coded.

Another approach is to generate synthetic records, which are draws from a distribu-
tion (typically, a posterior predictive distribution) representing the original data.

Other methods actually change attribute values. Examples are addition of noise, data
swapping and microaggregation [Karret al.(2006); Oganian and Karr (2006)]. We term
methods whose output is a perturbed version of the original datathe perturbation meth-
ods. This paper focuses on one of these – a perturbation by means of externally gen-
erated “noise.” Each specific perturbation method has consequences on both disclosure
risk and data utility. Some limit risk effectively but are poor at preserving utility, while
others yield high utility, but at the price of high risk. No method is superior with respect
to both. Oganian and Karr (2006) show how to combine two methods with the goal of
capturing the good aspects of each.

From a data utility perspective, it is important to preservequalitative characteristics
of data, for example, positivity constraints of the formX ≥ 0 for some variables and
inter-attribute relationships such as linear inequalities. Age, many economic variables
(gross income, taxes) and many demographic variables (number of employees, number
of students in the sixth grade) obey positivity constraints; examples of inequality
constraints are “Federal taxes≤ gross income”, “number of salaried employees≤
number of employees” and “year of birth≤ year of death.”

There is also a risk aspect. Because such characteristics are derived from domain
knowledge available to both legitimate data users and intruders, failure to preserve them
poses a disclosure risk: the extent to which constraints areviolated can be informative
about the nature and intensity of the SDL applied to the data.

Some SDL methods preserve such characteristics more by coincidence than by de-
sign, and only partially. For instance, data swapping preserves positivity, but not multi-
attribute constraints. Microaggregation preserves positivity, but whether it preserves lin-
ear inequalities depends on specifics of the implementation.
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In this paper, we present several SDL methods applicable to numerical data that
preserves positivity constraints, inequality constraints and the first two moments– the
vector of means and covariance matrix.

For the purposes of this paper, the original and released (which we hereafter term
masked) databases are flat files in which rows represent data subjects (individuals,
households, business establishments, ...) and columns numerical attributes of those
subjects. We denote the original data byXo and the released (masked) data byXm. We
assume that some variables inXo are nonnegative, others can take positive and negative
values. The goal is to obtainXm( j) ≥ 0 for those variablesj which are nonnegative in
the original data, alsoXm should have the same mean and covariance matrix asXo.

As background, the analogous procedure for addition of noise to unconstrained
numerical data is as follows. LetΣo be the covariance matrix ofXo – in practice, one
can use either the usual empirical estimator or a shrinkage-based estimator. Letk> 0 be
a parameter chosen by the agency; then

Xm = E[Xo]+
(Xo−E[Xo])+E√

1+k
, (1)

where the noiseE has distributionN(0,kΣo), has the requisite properties [Oganian and
Karr (2006)]. Note that the value ofk need not be released, even if it were made known
that the method of SDL is addition of noise. Ask → ∞, Xm becomes a very simplistic
form of synthetic data [Reiter (2002)], and any non-normal distributional characteristics
of Xo are lost.

The structure of this paper is the following: several multivariate noise protocols that
preserve the first two moments are presented in Section 2, close forms for higher order
moments are given in Section 3, the extension of these protocols to satisfy inequality
constraints is described in Section 4 and the results of the numerical experiments are
reported in Section 5.

2. Multiplicative noise protocols

Suppose thatXo contain n records, each withd numerical attributes. Some of the
attributes are nonnegative, denote themXo

p. We wish to construct and release a masked
data setXm with these characteristics:

Xm
p ≥ 0 (2)

E[Xm] = E[Xo] (3)

Σ(Xm) = Σ(Xo), (4)

whereXm
p are the masked values ofXo

p andΣ(·) means “covariance matrix of(·).”
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Oganian and Karr (2011) proposed a masking scheme which preserves the positiv-
ity, means and covariance matrix. The basis of this scheme isto use multiplicative noise,
implemented by taking logarithms, applying additive, normally distributed noise and ex-
ponentiating. This scheme works only if all the variables inthe data set are nonnegative.
Below are the details.

Let E be noise that is conditionally independent ofXo given E[Xo] andΣ(Xo), and
satisfies

E[Xo◦exp(E)] = E[Xo] (5)

Σ(Xo◦exp(E)) = (1+k)Σ(Xo), (6)

wherek> 0 is an agency-chosen parameter and◦ denotes elementwise matrix multipli-
cation (Schur or Hadamard product). That is, the exponentiation in (5), (6) and elsewhere
below also takes place componentwise. Then

Xm =
(
√

1+k−1)E[Xo]+ [Xo◦exp(E)]√
1+k

(7)

satisfies (2)–(4).
For normally distributed noiseE, Oganian and Karr (2011) showed that the following

vector of meansµE and the covariance matrixΣE should be chosen forE to satisfy (5)
and (6):

ΣE(i, j) = log

(

1+
kΣo(i, j)

E[Xo(i)Xo( j)]

)

, i, j = 1, . . . ,d (8)

µE(i) =−σE(i)/2, i = 1, . . . ,d. (9)

Here,d is the number of the dimensions in the data.
Note that the fact that the original data are multiplied by the lognormal noise does

not mean that such a noise introduce a significant skewness tothe data. In fact, because
of the specific choice of the parameters of the lognormal distribution, the introduced
skewness is minimal. In particular, from (8), the variance of the lognormal noise is
less thank, wherek is a parameter of the method and typically small,e.g.0.15. The
lognormal noise with such a small variance is practically symmetrical with very slight
skew to the right, to the point that its distribution is almost indistinguishable from a
normal distribution.

If the data set contains not only nonnegative variables but variables with negative
values as well, the scheme described above cannot be applieddirectly. The variables
with negative and positive values may lead to

1+
kΣo(i, j)

E[Xo(i)Xo( j)]
< 0 (10)
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Figure 1: Example of a data set when covariance matrix for noise cannotbe computed.

so, the covariance matrix (8) cannot be computed. After experimentation with different
data sets, it was noticed that for some very rare distributions of values ofXo

p, (10) may
still hold. This will happen when positive variables are negatively correlated and when

E[Xo(i)Xo( j)]<
k

1+k
E[Xo(i)]E[Xo( j)]

For positive variables this may happen only when the values of the variables are strongly
aligned along the axes. Example of such distribution is shown in Figure 1.

One possible solution to this problem is described in [Oganian (2010)] which consist
of converting all the variables to z-scores and making thesez-scores nonnegative by
adding some value (or vector – for multivariate data)lag, such thatlag ≥ |min(Z)|.
Denote these nonnegative z-scores byZp. Then masking scheme described by (7), (8)
and (9) can be applied toZp and after that the resulting data are returned to the original
scale:

Zm =
(
√

1+k−1)lag+[Zp◦exp(Ezp)]√
1+k

(11)

Xm = (Zm− lag)◦σo+E(Xo) (12)

whereσo is the main diagonal ofΣo and the noiseEzp has the following mean and
covariance matrix:
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ΣEzp
(i, j) = log

(

1+
kΣzp(i, j)

E[Zp(i)Zp( j)]

)

, i, j = 1, . . . ,d (13)

µEzp
(i) =−σEzp

(i)/2, i = 1, . . . ,d. (14)

whereΣzp(i, j) is the(i, j) element of the covariance matrix ofZp.
Masked dataXm in this case can be represented as

Xm =
((Zp◦exp(Ezp)+(

√
1+k−1)lag√

1+k
− lag

)

◦σo+E(Xo) =

=
[Xo◦exp(Ezp)]−E(Xo)◦exp(Ezp)+σo◦ lag◦exp(Ezp)√

1+k
+

+
E(Xo)

√
1+k− lag◦σo√

1+k
(15)

It is easy to see that such scheme preserves the means and covariance matrix:

E(Xm) =
1√

k+1
[E(Xo)−E(Xo)+σo◦ lag−σo◦ lag+

+E(Xo)
√

1+k] = E(Xo) (16)

The equality in the formula above follows from the fact that the noise is independent
from Xo andE(exp(Ezp)) = 1.

Σm(i, j) = Σ
(Zp(i)exp(Ezp(i))σo(i)√

1+k
,
Zp( j)exp(Ezp( j))σo( j)√

1+k

)

=

=
σo(i)σo( j)

1+k
(1+k)cov(Zp(i),Zp( j)) =

= σo(i)σo( j)cor(Xo(i),Xo( j)) = Σo(i, j) (17)

wherecov(·) andcor(·) denote covariance and correlation of(·) respectively. Note that
the second equality in the formula above follows from the property (6).

Oganian (2010) shows that masking scheme (15) with the specific choice forlag will
never lead to the case described by (10).

In particular, first, let us see what are the possible values for lag in this scheme.
lag should be greater than|min(Z)|, however, a very biglag may lead to a negative
masked data (this follows from equation(12)), which violates positivity constrants for
the variablesXo

p.
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From (11),Zm is minimized whenEn →−∞:

min(Zm)>
(
√

1+k−1)lag√
1+k

From (12),min(Xm) is larger than

−lag√
1+k

σo+E(Xo) (18)

To preserve positivity in the masked data, it would be enoughto require positivity of
(18). So, we have an upper bound forlag:

lag≤ E(Xo)

σo

√
1+k

where division is done componentwise.
The lower bound forlag is |min(Z)|. For nonnegative variables with zeros|min(Z)|=

E(Xo)/σo. So, the lower and upper bound forlag are:

E(Xo)

σo
≤ lag≤ E(Xo)

σo

√
1+k (19)

Let us consider a few choices forlag in this range. If we chooselag = E(Xo)/σo,
then the scheme withz-scores transformation (15) is equivalent to the scheme without
transformation (7). In fact, it is straightforward to verify that the masked data in this
case can be written as:

Xm =
(
√

1+k−1)E[Xo]+ [Xo◦exp(Ezp)]√
1+k

(20)

Expression (20) is almost identical to (7) except the secondterm in the nominator:
[Xo◦exp(Ezp)].

Below we will show that even this term is identical in both schemes. In particular,
after the application of our masking scheme to the positivez-scores, noiseEzp has the
mean and covariance matrix defined by (14) and (13) respectively.

Note, that

Σzp(i, j)

E[Zp(i)Zp( j)]
=

cor(Xo(i),Xo( j))

E[( (Xo(i)−E(Xo(i)))
σo(i)

+ lag(i))( (Xo( j)−E(Xo( j)))
σo( j) + lag( j))]

=

=
cor(Xo(i),Xo( j))

E[Xo(i)/σo(i)∗Xo( j)/σo( j)]
=

Σo(i, j)
E[Xo(i)Xo( j)]
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So, whenlag = E(Xo)/σo, the transformation to positivez−scores does not make
any changes in the original scheme (7).

Now let us consider another extreme forlag: lag=
√

(1+k)E(Xo)/σo.
It is easy to verify that masked data in this case can be written as:

Xm =
(
√

1+k−1)E[Xo]◦exp(Ezp)+ [Xo◦exp(Ezp)]√
1+k

(21)

Covariance matrix for the noise for this scheme is:

ΣEzp
(i, j) = log

(

1+
kΣzp(i, j)

E[Zp(i)Zp( j)]

)

(22)

To prove that the expression under logarithm of (22) is always positive, let’s express
it in terms of original data.

Zp(i) =
Xo(i)+E(Xo(i))(

√
1+k−1))

σo(i)

It is easy to see that

E[Zp(i)Zp( j)] =
E[Xo(i)Xo( j)]+kE(Xo(i))E(Xo( j))

σo(i)σo( j)

ΣEzp
(i, j) = log

(

1+
kσo(i)σo( j)cor(Xo(i),Xo( j))

E[Xo(i)Xo( j)]+kE(Xo(i))E(Xo( j))

)

=

= log

(

(1+k)E[Xo(i)Xo( j)]
E[Xo(i)Xo( j)]+kE(Xo(i))E(Xo( j))

)

(23)

The expression under the logarithm in (23) is always positive for the nonnegativeXo,
so we can always computeΣEzp

. In the same way, it is possible to show that no other
value forlag (in the range of its possible values) can guarantee positivity of (10) for all
possible data sets.

When the data set contains variables which can take positiveand negative values
together with nonnegative variables, the scheme with z-scores transformations will work
too. First the data should be made nonnegative by adding|min(Xo)| and then scheme
(21) is applied to this data. Last, to return the data to the original location, we have to
substract|min(Xo)| from the result of the previous step.
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3. Preservation of higher moments

Multivariate noise protocols described in Section 2 maintain positivity and the first
two moments. Exact preservation of higher-order moments isnot guaranteed. Here
we consider the extent to which higher-order moments can be distorted by the scheme
with z-scores transformation, which has a wider range of applicability than the scheme
without z-scores transformation

Consider theP-th (mixed) moment,E(Xm
p1
1 Xm

p2
2 · · ·Xm

pd
d ), whereP= ∑d

i=1 pi:

E[
d

∏
j=1

Xm( j)p j ] = E
[ d

∏
j=1

((
√

1+k−1)E(Xo( j))exp(Ezp( j))+√
1+k

+
Xo( j)exp(Ezp( j))√

1+k

)p j
]

=
1

(
√

1+k)∑d
j=1 p j

E
[ d

∏
j=1

(

p j

∑
i j=0

(

p j

i j

)

×

× (
√

1+k−1)p j−i j Ep j−i j (Xo( j))exp((p j − i j)E
zp( j))Xo( j)×

×exp(i jE
zp( j))

)]

=
1

(
√

1+k)∑d
j=1 p j

p1

∑
i1=0

· · ·
pd

∑
id=0

E
[ d

∏
j=1

Xo( j)i j

]

×

×E
[

exp(
d

∑
j=1

p jE
zp( j))

]

× (
√

1+k−1)∑d
j=1(p j−i j )

d

∏
j=1

(

p j

i j

)

Ep j−i j [Xo( j)] .

Note thatW = ∑d
j=1 p jEzp( j) is a weighted sum ofd normal variables that are not

independents but are jointly normal. So,W is a normal variable too. Thus, exp(W) is
log-normal with mean equal to exp(µW +0.5VarW). Then, since

E[exp(W)] =

= exp

[

d

∑
j=1

p jµE( j)+0.5

(

d

∑
j=1

p2
j ΣEzp

( j j )+∑
j<l

2p j pl ΣEzp
( jl )

)]

= exp

[

−0.5
d

∑
j=1

i jΣEzp
( j j )+0.5

(

d

∑
j=1

i2j ΣEzp
( j j )+∑

j<l

2i j i l ΣEzp
( jl )

)]

=
d

∏
j=1

(

(1+k)E[Xo( j)2]

E[Xo( j)2]+kE2[Xo( j)]

)

pj (pj−1)
2

∏
j<l

(

(1+k)E[Xo( j)Xo(l)]
E[Xo( j)Xo(l)]+kE[Xo( j)Xo(l)]

)p j pl

(24)
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we obtain

E

[

d

∏
j=1

Xm( j)p j

]

=
p1

∑
i1=0

· · ·
pd

∑
id=0

E

[

d

∏
j=1

Xo( j)i j

]

(
√

1+k−1)∑d
j=1(p j−i j )

(
√

1+k)∑d
j=0 p j

×

d

∏
j=1

(

p j

i j

)

×
d

∏
j=1

(

(1+k)E[Xo( j)2]

E[Xo( j)2]+kE2[Xo( j)]

)

p j (p j −1)
2 ×

×∏
j<l

(

(1+k)E[Xo( j)Xo(l)]
E[Xo( j)Xo(l)]+kE[Xo( j)Xo(l)]

)p j pl d

∏
j=1

Ep j−i j [Xo( j)] .

(25)

Now, (25) can be written as

E

[

d

∏
j=1

Xm( j)p j

]

= E

[

d

∏
j=1

Xo( j)p j

]

A

(
√

1+k)∑d
j=1 p j

+
u1

∑
i1=0

· · ·
ud

∑
id=0

E

[

d

∏
j=1

Xo( j)i j

]

×

×
d

∏
j=1

(

p j

i j

)

Ep j−i j [Xo( j)]
A(
√

1+k−1)∑d
j=1(p j−i j )

(
√

1+c)∑d
j=1 p j

,

(26)
whereu1 ∈ {(p1−1), p1}, u2 ∈ {(p2−1), p2}· · · ud ∈ {(pd −1), pd}, such thatu1,u2

· · · ud 6= {p1, p2 · · · pd} and

A=
d

∏
j=1

(

(1+k)E[Xo( j)2

E [Xo( j)2]+kE2[Xo( j)]

)

p j (p j −1)
2 ×

×∏
j<l

(

(1+k)E[Xo( j)Xo(l)]
E[Xo( j)Xo(l)]+kE[Xo( j)Xo(l)]

)p j pl

From (26) we see how the moments of the original and masked data are related. If
the agency decides to release information about masking algorithm – in particular the
value of k, then this formula can be reported to data users, allowing them to adjust
their analyses and to calculate the original moments. To compute the original moments
users would employ expression (26) recursively: first and second order moments of the
original data in (26) can be substituted by the corresponding moments computed on
the masked data. All higher order original moments can be computed recursively using
formula (26). However, the safety of the releasingk is problematic in some scenarios,
because doing so might lead to attribute disclosure risk forsome records.

A question of practical interest is how large the expression(26) can be, compared
to the corresponding original moments. Because the masked data are scaled to have the
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same covariance matrix as the original data, higher-order moments seem unlikely to be
grossly inflated, but it is possible. In most our experimentswith different data sets, third-
order moments were only 2.5% larger than the original moments on average for skewed
original data with outliers, such as the lognormal data setsdescribed in Section 5). For
the symmetrical data sets with the same covariance matrix asthe lognormal ones, they
were only .15% larger than the corresponding original ones.Fourth-order moments were
about 15% larger on average for the lognormal original data and only .8% larger for the
symmetrical data. In general, the discrepancy increases with the order of the moment,
but only slowly.

4. Inequality constraints preservation

Suppose our original data in addition to positivity constraints also have inequality
constraints of the formX >Y. For example, masking an income data with the variables
“Gross income” and “Federal taxes“ should produce a masked data such that “Gross
income> Federal taxes”. The protocols described above can be used asbuilding blocks
of a new scheme which would guarantee the preservation of inequality constraints. This
scheme is the following:

• Apply the multiplicative noise scheme to(Yo, [Xo −Yo]). Denote the result by
(Y∗, [Xo−Yo]

∗)

• The masked data corresponding to(Xo,Yo) are(Xm,Ym) = (Y∗+[Xo−Yo]
∗,Y∗)

It is easy to see that this scheme preserves the means and covariance matrix.

E(Xm,Ym) = E(Y∗+[Xo−Yo]
∗,Y∗) =

= (E(Yo)+E[Xo−Yo]),(E(Yo)) = (E(Xo),E(Yo))

cov(Xm,Ym) = cov(Y∗+[Xo−Yo]
∗,Y∗) = var(Yo)+

+cov([Xo−Yo]
∗,Y∗) = var(Yo)+cov([Xo−Yo],Yo) =

= var(Yo)+cov(Xo,Yo)−var(Yo) = cov(Xo,Yo)

var(Xm) = var((Y∗+[Xo−Yo]
∗) = var(Yo)+var([Xo−Yo])+

+2cov(Yo, [Xo−Yo]) = var(Xo)

The scheme can be readily extended for the cases when multiple variables are related
by inequality constraints. For example, suppose
Xo1 > Xo2 > Xo3, thenXm1 = X∗

3 +[Xo2 −Xo3]
∗+[Xo1 −Xo2]

∗, Xm2 = X∗
3 +[Xo2−Xo3]

∗

andXm3 = X∗
3 .
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Or in general case ifXo1 > Xo2 > · · ·> Xol−1 > Xol

Xmi = X∗
l +

l

∑
j=i+1

[Xo j−1 −Xo j ]
∗ (27)

5. Numerical experiments

Both multiplicative noise schemes (with and withoutz-scores transformation) were im-
plemented and evaluated on different data sets. These data sets have different distribu-
tional characteristics: a skewed distribution with many outliers and a symmetrical one
without outliers. The symmetrical data sets had a multivariate normal distribution and
the skewed sets were log-normally distributed. 500 replicates of three-dimensional nor-
mal and lognormal sets were generated. Each set had 10,000 records. They were mod-
erately correlated (cor = 0.5). The log-normal sets had means around 2 and variances
ranging from 4 to 16. These sets had outliers – values close to50 or larger.

The normal sets had means around 3.5 and variances ranging from 5 to 10. The
variance inflation factork was chosen to be 0.15 as recommended in Oganian (2003).

The experiments showed that means were very well preserved for both schemes
and both types of data: the ratio of masked and original meansshowed only a very
small variation around 1. The results on variance/covariance matrix were different for
skewed and symmetrical data sets. The experiments showed that covariance matrix was
preserved for the symmetrical data sets without outliers. There was slight variability in
variance/covariance matrix inflation, defined asΣm/Σo, where/ denotes elementwise
division. Values of this ratio ranged from 0.98 to 1.02.

There was more variability in variance/covariance matrix inflation for the skewed
data sets with outliers. Values of this ratio ranged approximately from 0.7 to 1.3. The
scheme withz-transformation resulted to be slightly more stable: variance/covariance
inflation ranged approximately from 0.8 to 1.2. However, the average and most frequent
value were 1 in both schemes and both types of data sets, as expected.

Such variability over replications is not very surprising in light of the nature of the noise
and the variation in log-normal original data, which as noted above had a number of large
outlying values. Records in the original data with big values – especially outliers – can
undergosignificant changes when multiplied by noise, distorting the covariance matrix.

One possible solution to reduce variability in the resulting masked data when the
original is skewed and/or has many outliers is to apply different levels of noise to
different zones of the data, as discussed in Oganian and Karr(2011). It is illustrated
in the Figure 2, where zone 1 is masked with the parameterk1 and zone 2 with the
parameterk2 < k1. Because all the protocols presented in Section 2 are designed to
preserve the mean and covariance matrix of the original data, we can apply different
independent noises to different zones of the data and the covariance matrix of the masked
data should be the same as that of the original data.
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Figure 2: Two zones of masking: black points correspond to the first zone of masking
and grey points to the second zone.

Two-zone masking was implemented with different values ofk for the same three-
dimensional lognormal data as in the experiment with only one zone. The first zone
consisted of all the points from 0 to 15; all the other recordswere included in the second
zone. For the second zone we chosek2 = 0.01. For the first zone we chosek1 = 0.15.

This approach reduced variability in the covariance matrixof the skewed data
significantly: in 95% of replicates of the masked dataXm/Xo was in the interval of
[0.98,1.02].

Optimal ways of variability reduction in the masked data when the original have
outliers and severe skewness are the subject of our current and future research.

Note, that the multiple-zone masking may be used for other goals. For example,
suppose a numerical variable in the data set has a lot of zeros, which happens often in the
household data. Suppose the same numerical variable is paired with an indicator variable
I , such that whenI = 0, it is strictly positive and whenI = 1, it is zero. Examples ofI
are “In the labor force” or “Income is greater than taxable min”. If the agency wants to
preserve such a relationship in the masked data, they can separately mask records paired
with different values of the indicator variable leaving zeros in the numerical variable
unchanged. Again, because our protocols preserve means andthe covariance matrix, the
first two moments of the overall data should be preserved.

Last, we want to discuss the disclosure risk associated withthe method. Our mea-
sures of disclosure risk focus on re-identification disclosure risk. Re-identification dis-
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closure is defined as an average percentage of correctly identified records when record
linkage techniques [Jaro (1989)] are used to match the original and masked data. Specif-
ically, we assume that the intruder tries to link the masked file with an external database
containing a subset of the attributes present in the original data [Oganian (2003)]. The
overall re-identification risk of the multiplicative noiseis very small. Our experiments
showed that only about 0.3% of records could be correctly identified in both schemes.
So, the multiplicative noise can be successfully compared with the most protective meth-
ods, like microaggregation and rank swapping, at the same time performing significantly
better than those in terms of utility.
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