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Abstract

Ranked set sampling (RSS) is known to be superior to the traditional simple random sampling

(SRS) in the sense that it often leads to more efficient inference procedures. Basic version of RSS

has been extensively modified to come up with schemes resulting in more accurate estimators of

the population attributes. Multistage ranked set sampling (MSRSS) is such a variation surpassing

RSS. Entropy has been instrumental in constructing criteria for fitting of parametric models to the

data. The goal of this article is to develop tests of uniformity based on sample entropy under RSS

and MSRSS designs. A Monte Carlo simulation study is carried out to compare the power of the

proposed tests under several alternative distributions with the ordinary test based on SRS. The

results report that the new entropy tests have higher power than the original one for nearly all

sample sizes and under alternatives considered.

MSC: 62G30; 62F03

Keywords: Information theory, ranked set sampling, test of fit.

1. Introduction

When the sampling units are difficult to measure but are reasonably simple and cheap

to order according to the variable of interest, ranked set sampling (RSS) serves as an

appealing alternative to the usual simple random sampling (SRS). Examples of this

setup can be found in areas such as agriculture, environment and ecology. The RSS

design works by ranking randomly drawn sampling units and quantifying a selected

subset of them. McIntyre (1952) introduced this sampling technique while studying the

yield of pasture in Australia. He suggested that a fairly accurate ordering of a set of

adjacent plots by yield can be made using visual perception, although measuring the
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yield of each plot is expensive. As a similar situation, consider the following example

mentioned by Gulati (2004). Suppose it is of interest to count the number of specific

bacterial cells per unit volume in a cell suspension. A set of test tubes, containing the

cell suspension, can be ordered by concentration using an optical device without actual

measurement on them.

The RSS method can be elucidated as follows.

1. Draw k random samples, each of size k, from the target population.

2. Apply judgement ordering, by any cheap method, on the elements of the ith

(i = 1, . . . ,k) sample and identify the ith smallest unit.

3. Actually measure the k identified units in step 2.

4. Repeat steps 1-3, h times (cycles), if necessary, to obtain a ranked set sample of

size n = hk.

The set of measured observations makes up a ranked set sample of size n denoted by

{X[i] j : i = 1, . . . ,k ; j = 1, . . . ,h}, where X[i] j is the ith judgement order statistic from the

jth cycle. To have better understanding of difference between the ranked set sample and

simple ranked set sample of the same size, we consider the case of single cycle (h = 1)

and perfect judgement ranking. In this case, the ranked set sample observations are also

the respective order statistics. Let X1, . . . ,Xk be a simple random sample of size k from

a continuous population with probability density function (PDF) f (x) and cumulative

distribution function (CDF) F(x), and let X[1], . . . ,X[k] denote a ranked set sample of size

k obtained as described above.

In the SRS case, the k observations are independent and each of them represents

a typical value from the population. Letting X(1) ≤ . . . ≤ X(k) be the order statistics

associated with these SRS observations, we note that they are dependent random

variables with joint PDF given by

gSRS(x(1), . . . ,x(k)) = k!
k

∏
i=1

f (x(i)).

In the RSS settings, additional information and structure is provided by through the

judgement ranking process. The k measurements X[1], . . . ,X[k] are also order statistics but

in this case they are independent observations and each of them provides information

about a different aspect of the population. The joint PDF for X[1], . . . ,X[k] is given by

gRSS(x[1], . . . ,x[k]) =
k

∏
i=1

fi(x[i]),

where fi(.) is the PDF for the ith order statistic of a simple random sample of size k

from the target population. It is this extra structure provided by judgement ranking and
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the independence of the resulting order statistics that enables RSS-based procedures to

be more efficient than their RSS competitors with the same number of quantified units.

A detailed discussion on the theory and applications of RSS can be found in the recent

book by Chen et al. (2004).

Consider estimating the population mean under the aforesaid designs. Let X̄SRS =

∑
k
i=1 Xi/k and X̄RSS =∑

k
i=1 X[i]/k be the SRS and RSS sample mean, respectively. Hence,

we have

E(X̄RSS) =
1

k

k

∑
i=1

{

∫ ∞

−∞

kx

(

k−1

i−1

)

[F(x)]i−1[1−F(x)]k−i f (x)dx
}

=
∫ ∞

−∞

x f (x)
{ k

∑
i=1

(

k−1

i−1

)

[F(x)]i−1[1−F(x)]k−i
}

dx. (1)

Since the summation in equation (1) is just the sum over entire sample space of the

probabilities for a binomial random variable with parameters k−1 and F(x), it follows

that

E(X̄RSS) =
∫ ∞

−∞

x f (x)dx = µ.

Letting µ[i] = E(X[i]), for i = 1, . . . ,k, we note that

E(X[i]−µ)
2 = E(X[i]−µ[i]+µ[i]−µ)

2 = E(X[i]−µ[i])
2 +(µ[i]−µ)

2,

since the cross-product terms are zero. So

Var(X̄RSS) =
1

k2

{

k

∑
i=1

E(X[i]−µ)
2 −

k

∑
i=1

(µ[i]−µ)
2
}

. (2)

Now, proceeding as we did with E(X̄RSS), we see that

k

∑
i=1

E(X[i]−µ)
2 =

k

∑
i=1

∫ ∞

−∞

k(x−µ)2

(

k−1

i−1

)

[F(x)]i−1[1−F(x)]k−i f (x)dx

= k

∫ ∞

−∞

(x−µ)2 f (x)
{ k

∑
i=1

(

k−1

i−1

)

[F(x)]i−1[1−F(x)]k−i
}

dx.

Once again, using the binomial expansion, the interior sum is equal to 1 and we obtain

k

∑
i=1

E(X[i]−µ)
2 = k

∫ ∞

−∞

(x−µ)2 f (x)dx = kσ2. (3)



6 Improved entropy based test of uniformity using ranked set samples

Combining equations (2) and (3) yields

Var(X̄RSS) =
σ

2

k
−

1

k2

k

∑
i=1

(µ[i]−µ)
2 ≤ Var(X̄SRS).

Al-Saleh and Al-kadiri (2000) extended the usual concept of RSS to to double ranked

set sampling (DRSS) with the aim of constructing improved estimators of the population

as compared with those associated with RSS and SRS. Subsequently, Al-Saleh and Al-

Omari (2002) introduced multistage ranked set sampling (MSRSS), as a generalization

of DRSS, and showed that estimators based on MSRSS dominate those obtained by

DRSS. The MSRSS scheme can be summarized as follows.

1. Randomly identify kr+1 units from the population of interest, where r is the

number of stages.

2. Allot the kr+1 units randomly into kr−1 sets of k2 units each.

3. For each set in step 2, apply 1-2 of RSS procedure explained above, to get a

(judgement) ranked set of size k. This step gives kr−1 (judgement) ranked sets,

each of size k.

4. Without actual measuring of the ranked sets, apply step 3 on the kr−1 ranked set to

gain kr−2 second stage (judgement) ranked sets, of size k each.

5. Repeat step 3, without any actual measurement, until an rth stage (judgement)

ranked set of size k is acquired.

6. Actually measure the k identified units in step 5.

7. Repeat steps 1-6, h times, if necessary, to obtain an rth stage ranked set sample of

size n = hk.

In analogy with the previous notation, the rth stage ranked set sample will be denoted

by {X
(r)
[i] j : i = 1, . . . ,k ; j = 1, . . . ,h}. Two special cases of r = 1 and r = 2 in MSRSS

coincide with RSS and DRSS, respectively.

Goodness-of-fit tests are used to decide whether an observed sample can be consid-

ered as a set of independent realization from a given CDF F0. More precisely, they are

used to test the hypothesis H0 : F = F0, with F being the true CDF of the observations.

For a review of goodness-of-fit tests based on SRS refer to the book by D’Agostino and

Stephens (1986). Testing hypotheses on the parameters of classical distributions using

ranked set samples have been developed in a large number of papers. However, this is

not true in the case of test of fit, and a limited number of works are available on this

topic. Stokes and Sager (1988) exploited RSS in estimating CDF. They proposed RSS

analogue of Kolmogorov-Smirnov (KS) test and derived the null distribution of the test

statistic.

Some distributions like normal, exponential and uniform have received much atten-

tion in the literature because of their tractable mathematical form. This is true in the
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case of RSS and its variations. For example, estimation of parameters and quantiles of

uniform distribution using generalized ranked-set sampling have been investigated (e.g.,

Adatia, 2003; Adatia and Ehsanes Saleh, 2004). In practical situations, however, the dis-

tributional form of the population is rarely known. Thus, application of these customized

inferential methods is dependent on the availability of appropriate testing procedures for

the assumptions of uniformity. Given a sample size, relative precision (RP) of the RSS

estimator of the population mean with respect to its SRS counterpart (defined as the

variance of the SRS mean divided by the variance of the RSS mean) differs according to

the underlying distribution of the data, and is bounded above by (k+1)/2 for continu-

ous distributions (1 < RP < (k+1)/2) (where k is the set size with which the ranked set

sample is collected), with the upper bound achieved only for the uniform distribution.

We may be interested to know whether the RSS has the highest efficiency over SRS in

estimating the population mean in a specific situation. This could be another reason for

developing uniformity test based on RSS.

As an information-theoretic measure of uncertainty, Shannon (1948) proposed en-

tropy of a distribution, and proved that the entropy of normal distribution exceeds that of

any other distribution with a density having the same variance. Vasicek (1976) used this

property to introduce a test of the composite hypothesis of normality, and impressed de-

velopment of tests of fit for other distributions. Such entropy-based tests of fit are avail-

able for some other distributions. See Dudewicz and van der Meulen (1981), Gokhale

(1983), Grzegorzewski and Wieczorkowski (1999), and Mudholkar and Tian (2002). In

this paper, we tackle the problem of testing uniformity, with an entropy-based approach,

when the researcher obtains data using RSS and MSRSS. Similar procedures for the

inverse Gaussian law was suggested by Mahdizadeh and Arghami (2010).

The paper proceeds as follows. In Section 2, some basic notions from information

theory are reviewed, entropy based tests of uniformity based on RSS and MSRSS are

suggested, and critical values of the respective test statistics are provided for some

sample sizes. Power properties of the new tests are assessed by means of simulations

whose results are reported in Section 3. A summary completes the paper in Section 4.

2. The tests

Entropy of a distribution F(x) with density function f (x) is defined as

H( f ) =−

∫ ∞

−∞

f (x) log f (x)dx. (4)

Vasicek (1976) presented a nonparametric entropy estimator for H( f ) based on spacings

of sample order statistics. The estimator called sample entropy is given by
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Vm,n( fX) =
1

n

n

∑
i=1

log
( n

2m
(X(i+m)−X(i−m))

)

, (5)

where X(1), . . . ,X(n) are the ordered values of a random sample of size n from F ,

X( j) = X(1), if j < 1, X( j) = X(n), if j > n and the window size m is a positive integer

such that m ≤ n/2. This estimator is derived by expressing (4) in the form

H( f ) =

∫ 1

0
log

( d

du
F−1(u)

)

du,

replacing the distribution F by the empirical distribution function, and using a difference

operator instead of the differential operator.

Since entropy estimator (5) is based on spacings, one would need ordered values of

the ranked set sample to estimate entropy in RSS. Imitating the SRS case, we first pool

the units in all cycles and then form the estimator based on the ordered pooled sample.

The MSRSS analogue of Vm,n( fX) turns out to be

V (r)
m,n( fX) =

1

n

n

∑
i=1

log
( n

2m
(X

(r)
(i+m)−X

(r)
(i−m))

)

,

where X
(r)
(a) is the ath (a = 1, . . . ,n) order statistic of the rth stage ranked set sample.

From now on, the estimator (5) will be denoted by V
(0)
m,n( fX).

A simulation study was undertaken to compare the proposed estimators of entropy

when the uniform U(0,1) is the underlying distribution. Table 1 displays simulated biases

and root mean square errors (RMSEs) of V
(r)

m,n for r = 0,1,2 based on 10,000 samples

with n = 10,20,30, and k = 10 in MSRSS design (this setup is retained throughout

the paper). It is seen that MSRSS improves entropy estimation with respect to SRS for

given m and n. Besides, as the stage number increases, the absolute bias, and RMSE of

the corresponding estimator diminishes.

Consider a random sample X1, . . . ,Xn from a population having a density function

f with the support (0,1) and suppose it is of interest to verify H0 : X ∼ U(0,1) versus

H1 :∼ H0. It is well-known that for an f concentrated on (0,1) we have H( f ) ≤ 0, and

the maximum value of H( f ) is uniquely attained by the U(0,1) density (see Ash, 1965).

Based on this result, Dudewicz and van der Meulen (1981) developed a test of H0. Their

test procedure is alternatively defined by the critical region

Tm,n( fX) = exp
(

Vm,n( fX)
)

≤ T ∗
m,n,α( fX),

where T ∗
m,n,α( fX) is the 100α percentile of the null distribution of Tm,n( fX). It can be

shown, using convexity and Jensen’s inequality, that Vm,n( fX) ≤ 0 for all f on (0,1).
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Table 1: Simulated biases and RMSEs of V
(r)
m,n( f ) (r = 0,1,2)

for the U(0,1) distribution with H( f ) = 0.

SRS RSS DRSS

n m Bias RMSE Bias RMSE Bias RMSE

10 1 −0.5192 0.5709 −0.4007 0.4469 −0.3262 0.3692

2 −0.4112 0.4478 −0.3085 0.3348 −0.2598 0.2778

3 −0.4223 0.4532 −0.3272 0.3430 −0.2968 0.3067

4 −0.4580 0.4866 −0.3715 0.3831 −0.3477 0.3541

5 −0.5026 0.5282 −0.4256 0.4360 −0.4043 0.4101

20 1 −0.3955 0.4193 −0.3420 0.3646 −0.3088 0.3299

2 −0.2718 0.2903 −0.2194 0.2351 −0.1894 0.2027

3 −0.2547 0.2712 −0.2048 0.2160 −0.1826 0.1919

4 −0.2609 0.2751 −0.2153 0.2242 −0.1987 0.2054

5 −0.2783 0.2908 −0.2349 0.2420 −0.2212 0.2262

6 −0.2972 0.3080 −0.2592 0.2650 −0.2478 0.2518

7 −0.3230 0.3336 −0.2859 0.2908 −0.2755 0.2787

8 −0.3468 0.3567 −0.3141 0.3184 −0.3041 0.3068

9 −0.3772 0.3871 −0.3425 0.3468 −0.3344 0.3370

10 −0.4041 0.4133 −0.3708 0.3747 −0.3637 0.3661

30 1 −0.3539 0.3697 −0.3210 0.3360 −0.2978 0.3118

2 −0.2247 0.2373 −0.1917 0.2024 −0.1698 0.1795

3 −0.1980 0.2089 −0.1642 0.1725 −0.1464 0.1538

4 −0.1954 0.2049 −0.1639 0.1708 −0.1484 0.1542

5 −0.2016 0.2101 −0.1719 0.1776 −0.1605 0.1651

6 −0.2136 0.2211 −0.1850 0.1899 −0.1749 0.1788

7 −0.2273 0.2342 −0.2000 0.2041 −0.1922 0.1954

8 −0.2441 0.2509 −0.2179 0.2214 −0.2104 0.2131

9 −0.2596 0.2655 −0.2354 0.2385 −0.2286 0.2308

10 −0.2769 0.2826 −0.2543 0.2572 −0.2482 0.2501

11 −0.2948 0.3003 −0.2736 0.2762 −0.2681 0.2698

12 −0.3138 0.3191 −0.2921 0.2946 −0.2880 0.2897

13 −0.3329 0.3381 −0.3117 0.3142 −0.3070 0.3086

14 −0.3508 0.3559 −0.3323 0.3347 −0.3272 0.3287

15 −0.3702 0.3753 −0.3520 0.3544 −0.3473 0.3487

Thus, we used the exponential of the original test statistic in the above for mathematical

nicety.

In order to obtain the percentiles of the null distribution, Tm,n( fX) was calculated

using the estimators V
(r)
m,n( fX) for r = 0,1,2 based on 10,000 samples of size n generated

from the U(0,1) distribution. The values were then used to determine T ∗
m,n,0.1( fX) in

different designs and for different sample sizes. Table 2 displays 0.1 critical points for

the test statistics.
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Table 2: 0.1 critical points for the test statistics under SRS, RSS and DRSS designs.

n m SRS RSS DRSS n m SRS RSS DRSS

10 1 0.4329 0.5186 0.5730 30 1 0.6089 0.6374 0.6557

2 0.5213 0.6197 0.6765 2 0.7215 0.7575 0.7801

3 0.5267 0.6272 0.6725 3 0.7508 0.7894 0.8129

4 0.5119 0.6084 0.6458 4 0.7569 0.7982 0.8143

5 0.4881 0.5769 0.6091 5 0.7553 0.7940 0.8094

20 1 0.5576 0.6003 0.6325 6 0.7491 0.7852 0.7980

2 0.6642 0.7185 0.7518 7 0.7387 0.7748 0.7892

3 0.6871 0.7432 0.7706 8 0.7276 0.7631 0.7758

4 0.6865 0.7425 0.7667 9 0.7153 0.7506 0.7624

5 0.6783 0.7317 0.7532 10 0.7039 0.7380 0.7485

6 0.6645 0.7178 0.7365 11 0.6914 0.7235 0.7346

7 0.6490 0.7005 0.7173 12 0.6767 0.7098 0.7211

8 0.6324 0.6811 0.6980 13 0.6640 0.6955 0.7071

9 0.6141 0.6613 0.6768 14 0.6501 0.6816 0.6912

10 0.5968 0.6416 0.6574 15 0.6379 0.6671 0.6758

The test statistics use the entropy estimators and there is no criteria to select the

optimal window size associated with a given sample size in order to calculate these

estimators. As a guide mentioned by some authors, the window size producing the

largest critical value for a given n is apt to yield the highest power. In this sense, the

optimal window size, denoted by m∗, at the significance level 0.1 for sample sizes 10,

20 and 30 are approximately 3, 3 and 4, respectively. Figure 1 shows a comparison of

Figure 1: This figures compares the CDF of null distribution of T3,10 under SRS, RSS and DRSS designs.
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CDF of the test statistics in differen designs. It is observed that the null distribution of

T3,10 under SRS (RSS) is stochastically smaller than that under RSS (DRSS) (a similar

trend is observed for sample sizes n = 20,30). Thus, we expect the entropy test based

on RSS (DRSS) to be more powerful than that based on SRS (RSS).

3. Simulation results

A Monte Carlo simulation experiment is carried out to compare power of the entropy

tests. We considered three classes of alternatives presented by Stephens (1974) which

have been used by many authors. These alternatives specified by their distribution

functions are

A(k) : F(z) = 1− (1− z)k 0 ≤ z ≤ 1 (k = 1.5,1.75,2),

B(k) : F(z) =

{

2k−1zk

1−2k−1(1− z)k

0 ≤ z ≤ 0.5

0.5 ≤ z ≤ 1
(k = 1.5,1.75),

and

C(k) : F(z) =

{

0.5−2k−1(0.5− z)k

0.5+2k−1(z−0.5)k

0 ≤ z ≤ 0.5

0.5 ≤ z ≤ 1
(k = 2,2.5).

As compared with uniform, the first and second family give points closer to 0 and 0.5,

respectively. And the third family gives points clustered at 0 and 1. We also considered

Beta(2,2) as a symmetric distribution.

Under each design, 10,000 samples of sizes n = 10,20,30 were generated from each

alternative distribution and the power of the tests were estimated by proportion of the

samples falling into the corresponding critical region. Tables 3–6 exhibit the estimated

power of the tests.

The results manifest that given a sample size, the entropy tests based on RSS

and DRSS are more powerful than that based on SRS irrespective of the alternative

distribution. Moreover, improved tests are obtained by increasing the sampling effort.

That is DRSS has the best performance among three considered designs as is the case of

entropy estimation. This could be traced to the fact that the test statistic in each design

is constructed based on the corresponding entropy estimator. It is notable that RSS and

DRSS do not have much to offer when power of SRS design is less than 0.1. We observe

that for n = 10, the value m = 4 is best (in the sense that it yields the highest power)

for the tests under most alternatives except C (for which m = 1 is best). For n = 20,

best m for alternatives A, B and C are respectively 7, 10 and 2, while for n = 30 these

are 10, 15 and 3. Given a sample size, best m is different according to the alternative
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Table 3: Power comparison for the entropy tests

of size 0.1 against alternatives A(1.5) and A(1.75).

A(1.5) A(1.75)

n m SRS RSS DRSS SRS RSS DRSS

10 1 0.1745 0.1879 0.1924 0.2431 0.2716 0.2887

2 0.2182 0.2668 0.3360 0.3147 0.4198 0.5609

3 0.2325 0.3306 0.4635 0.3451 0.5276 0.7142

4 0.2397 0.3814 0.5285 0.3570 0.5766 0.7628

5 0.2436 0.3794 0.5017 0.3503 0.5728 0.7396

20 1 0.2298 0.2367 0.2620 0.3474 0.3843 0.4356

2 0.3052 0.3530 0.4098 0.4786 0.6022 0.7178

3 0.3292 0.4351 0.5174 0.5342 0.7264 0.8413

4 0.3704 0.5064 0.6030 0.5760 0.7956 0.9032

5 0.3728 0.5301 0.6386 0.5817 0.8207 0.9186

6 0.3846 0.5693 0.6962 0.5932 0.8494 0.9451

7 0.3817 0.5867 0.7092 0.5870 0.8575 0.9482

8 0.3754 0.5801 0.7126 0.5821 0.8490 0.9436

9 0.3720 0.5718 0.6996 0.5713 0.8358 0.9322

10 0.3681 0.5536 0.6812 0.5608 0.8114 0.9156

30 1 0.2737 0.2871 0.2890 0.4554 0.4962 0.5216

2 0.3795 0.4287 0.4882 0.6026 0.7538 0.8430

3 0.4260 0.5468 0.6324 0.6748 0.8710 0.9406

4 0.4556 0.6195 0.6958 0.7106 0.9175 0.9748

5 0.4821 0.6536 0.7476 0.7382 0.9387 0.9824

6 0.4926 0.6783 0.7662 0.7512 0.9435 0.9870

7 0.5016 0.6985 0.8210 0.7533 0.9516 0.9936

8 0.5137 0.7245 0.8344 0.7642 0.9578 0.9945

9 0.5068 0.7352 0.8490 0.7618 0.9622 0.9934

10 0.5184 0.7510 0.8538 0.7723 0.9651 0.9927

11 0.5170 0.7486 0.8612 0.7674 0.9601 0.9954

12 0.4996 0.7442 0.8569 0.7505 0.9570 0.9932

13 0.4954 0.7355 0.8556 0.7410 0.9513 0.9942

14 0.4825 0.7190 0.8230 0.7295 0.9372 0.9900

15 0.4768 0.6925 0.7942 0.7153 0.9241 0.9786
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Table 4: Power comparison for the entropy tests

of size 0.1 against alternatives A(2) and B(1.5).

A(2) B(1.5)

n m SRS RSS DRSS SRS RSS DRSS

10 1 0.3181 0.3742 0.4107 0.1948 0.2245 0.2310

2 0.4254 0.5969 0.7821 0.2716 0.3520 0.4633

3 0.4635 0.7208 0.8913 0.3188 0.4795 0.6490

4 0.4674 0.7648 0.9134 0.3425 0.5734 0.7572

5 0.4612 0.7430 0.8882 0.3609 0.6026 0.7698

20 1 0.4983 0.5712 0.6344 0.2417 0.2672 0.2856

2 0.6541 0.8348 0.9318 0.3458 0.4236 0.4978

3 0.7103 0.9221 0.9830 0.3973 0.5324 0.6206

4 0.7472 0.9532 0.9926 0.4564 0.6213 0.7230

5 0.7624 0.9608 0.9952 0.4900 0.6792 0.7844

6 0.7718 0.9680 0.9964 0.5140 0.7328 0.8465

7 0.7697 0.9735 0.9972 0.5406 0.7760 0.8751

8 0.7562 0.9658 0.9948 0.5510 0.8035 0.8924

9 0.7445 0.9567 0.9931 0.5636 0.8142 0.9172

10 0.7320 0.9453 0.9876 0.5727 0.8210 0.9204

30 1 0.6324 0.7255 0.7740 0.2911 0.3128 0.3397

2 0.8009 0.9472 0.9872 0.4085 0.4939 0.5516

3 0.8613 0.9861 0.9986 0.4821 0.6174 0.7050

4 0.8870 0.9934 0.9998 0.5349 0.6960 0.7812

5 0.9010 0.9963 1.0000 0.5719 0.7486 0.8305

6 0.9084 0.9968 1.0000 0.6034 0.7764 0.8570

7 0.9142 0.9980 0.9998 0.6170 0.8123 0.8996

8 0.9175 0.9985 1.0000 0.6452 0.8375 0.9230

9 0.9151 0.9984 0.9998 0.6636 0.8681 0.9408

10 0.9182 0.9992 1.0000 0.6901 0.8894 0.9562

11 0.9135 0.9981 1.0000 0.7004 0.9045 0.9636

12 0.9064 0.9977 1.0000 0.7088 0.9173 0.9748

13 0.8998 0.9964 1.0000 0.7190 0.9257 0.9782

14 0.8890 0.9932 1.0000 0.7201 0.9212 0.9718

15 0.8756 0.9925 0.9996 0.7236 0.9220 0.9706
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Table 5: Power comparison for the entropy tests

of size 0.1 against alternatives B(1.75) and C(2).

B(1.75) C(2)

n m SRS RSS DRSS SRS RSS DRSS

10 1 0.2696 0.3250 0.3514 0.2082 0.2431 0.2487

2 0.3875 0.5339 0.6872 0.1430 0.1829 0.2151

3 0.4612 0.6872 0.8495 0.0647 0.0483 0.0465

4 0.5026 0.7831 0.9155 0.0475 0.0069 0.0009

5 0.5219 0.8106 0.9287 0.0296 0.0025 0.0004

20 1 0.3815 0.4294 0.4830 0.4006 0.4483 0.5054

2 0.5372 0.6652 0.7646 0.4324 0.5364 0.6298

3 0.6054 0.7884 0.8820 0.3662 0.4892 0.5904

4 0.6687 0.8607 0.9381 0.2751 0.3866 0.4613

5 0.7018 0.8939 0.9562 0.1416 0.1989 0.2258

6 0.7351 0.9210 0.9742 0.0626 0.0548 0.0476

7 0.7600 0.9469 0.9834 0.0372 0.0062 0.0030

8 0.7684 0.9573 0.9858 0.0261 0.0014 0.0002

9 0.7842 0.9618 0.9902 0.0208 0.0007 0.0000

10 0.7890 0.9624 0.9944 0.0149 0.0004 0.0000

30 1 0.4742 0.5268 0.5600 0.5574 0.6159 0.6627

2 0.6537 0.7695 0.8597 0.6590 0.7601 0.8653

3 0.7351 0.8835 0.9443 0.6512 0.7963 0.8977

4 0.7867 0.9287 0.9725 0.6032 0.7654 0.8693

5 0.8136 0.9508 0.9873 0.5244 0.6888 0.7830

6 0.8362 0.9621 0.9897 0.4213 0.5626 0.6690

7 0.8514 0.9723 0.9906 0.2789 0.4130 0.5117

8 0.8725 0.9782 0.9950 0.1507 0.2194 0.2453

9 0.8799 0.9847 0.9962 0.0652 0.0672 0.0705

10 0.8980 0.9906 0.9967 0.0338 0.0097 0.0067

11 0.9061 0.9912 0.9990 0.0241 0.0008 0.0000

12 0.9078 0.9926 0.9993 0.0176 0.0003 0.0003

13 0.9134 0.9953 1.0000 0.0142 0.0004 0.0000

14 0.9142 0.9938 0.9993 0.0097 0.0001 0.0000

15 0.9187 0.9947 0.9997 0.0075 0.0000 0.0000
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Table 6: Power comparison for the entropy tests

of size 0.1 against alternatives C(2.5) and B(2,2).

C(2.5) B(2,2)

n m SRS RSS DRSS SRS RSS DRSS

10 1 0.3168 0.3782 0.4105 0.2630 0.3174 0.3496

2 0.2124 0.2951 0.3884 0.3767 0.5336 0.6941

3 0.0820 0.0672 0.0713 0.4382 0.6843 0.8560

4 0.0506 0.0066 0.0005 0.4821 0.7805 0.9158

5 0.0292 0.0018 0.0001 0.5064 0.8028 0.9275

20 1 0.6375 0.7308 0.8150 0.3713 0.4160 0.4682

2 0.6932 0.8286 0.9361 0.5364 0.6647 0.7724

3 0.6184 0.7948 0.9178 0.6171 0.7995 0.8843

4 0.4951 0.6870 0.8216 0.6796 0.8713 0.9420

5 0.2755 0.4264 0.5384 0.7204 0.9035 0.9600

6 0.0978 0.1192 0.1374 0.7446 0.9351 0.9784

7 0.0480 0.0071 0.0030 0.7657 0.9483 0.9860

8 0.0326 0.0010 0.0000 0.7780 0.9609 0.9876

9 0.0254 0.0004 0.0000 0.7832 0.9626 0.9915

10 0.0169 0.0001 0.0000 0.7894 0.9610 0.9928

30 1 0.8298 0.8974 0.9457 0.4624 0.5109 0.5486

2 0.9129 0.9740 0.9963 0.6508 0.7693 0.8460

3 0.9064 0.9781 0.9990 0.7440 0.8832 0.9476

4 0.8806 0.9738 0.9987 0.7974 0.9346 0.9704

5 0.8246 0.9464 0.9943 0.8294 0.9540 0.9835

6 0.7350 0.8897 0.9718 0.8545 0.9654 0.9884

7 0.5681 0.7825 0.9196 0.8679 0.9766 0.9942

8 0.3442 0.5314 0.6851 0.8834 0.9825 0.9960

9 0.1338 0.1970 0.2430 0.8920 0.9879 0.9982

10 0.0523 0.0218 0.0210 0.9056 0.9915 0.9994

11 0.0327 0.0012 0.0000 0.9142 0.9923 0.9986

12 0.0242 0.0003 0.0000 0.9165 0.9942 0.9991

13 0.0170 0.0001 0.0000 0.9178 0.9948 0.9994

14 0.0122 0.0001 0.0000 0.9160 0.9936 0.9992

15 0.0097 0.0000 0.0000 0.9181 0.9943 0.9994
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distribution. As a remedy, we may use data histogram to determine best window size

for implementing the tests. Table 7 compares the power of RSS entropy based test for

uniformity, when m is best, with that of the KS test whose results are given in italic. It is

seen that entropy test shows remarkable dominance over the KS test against alternatives

B and B(2,2), whereas the KS test is better for alternatives A and C.

Table 7: Power comparison for the entropy test and KS test of size 0.1

against several alternative distributions under RSS.

Distribution

n A(1.5) A(1.75) A(2) B(1.5) B(1.75) C(2) C(2.5) B(2,2)

10 0.381 0.577 0.765 0.603 0.811 0.243 0.378 0.803

0.629 0.875 0.971 0.176 0.290 0.583 0.798 0.235

20 0.587 0.858 0.974 0.821 0.962 0.536 0.829 0.961

0.884 0.993 1.000 0.327 0.566 0.845 0.975 0.482

30 0.751 0.965 0.999 0.922 0.995 0.796 0.978 0.994

0.970 1.000 1.000 0.463 0.768 0.950 0.997 0.691

Table 8: 0.1 critical points of the test statistics under MSRSS designs.

Stage Number

n(m∗) r = 2 r = 3 r = 4

10(3) 0.6725 0.6910 0.7048

20(3) 0.7706 0.7892 0.7956

30(4) 0.8143 0.8236 0.8281

Table 9: Power comparison for the entropy tests of size 0.1

against several alternative distributions under MSRSS designs.

Distribution

n(m∗) r A(1.5) A(1.75) A(2) B(1.5) B(1.75) C(2) C(2.5) B(2,2)

10(3) 2 0.4635 0.7142 0.8913 0.6490 0.8495 0.2487 0.4105 0.8560

3 0.5371 0.7925 0.9467 0.7459 0.9011 0.2660 0.4419 0.9078

4 0.5940 0.8593 0.9702 0.7762 0.9304 0.3171 0.5295 0.9517

20(3) 2 0.5174 0.8413 0.9830 0.6206 0.8820 0.5904 0.9178 0.8843

3 0.5866 0.8945 0.9956 0.6874 0.9268 0.6780 0.9732 0.9282

4 0.6218 0.9387 1.0000 0.7033 0.9409 0.7161 0.9846 0.9613

30(4) 2 0.6958 0.9748 0.9998 0.7812 0.9725 0.8693 0.9987 0.9704

3 0.7340 0.9896 1.0000 0.8126 0.9893 0.9221 1.0000 0.9855

4 0.7535 1.0000 1.0000 0.8290 0.9984 0.9407 1.0000 1.0000
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Tables 2 and 3–6 were formed under MSRSS with r = 3,4 to see whether further

increase in power is achieved by increasing the stage number. Tables 8 and 9 contain 0.1

critical points and power of the tests, respectively. For a given n, the results are provided

only for the optimal m, except for C family and n = 10 where m = 1 is applied. Also,

results of DRSS design were included to ease comparison. From Table 9, we can see

that as r increases, some improvement in power happens. The differences in results for

r = 2 and r = 3,4 are less pronounced in large sample size, and thus we may restrict

ourselves to DRSS in practice.

4. Conclusion

This article was directed at the problem of developing tests of uniformity under RSS and

MSRSS designs. In line with the available entropy based test of fit in SRS, our tests use

sample entropy based on the pre-mentioned designs. Simulation studies accompany the

presentation to explore power behaviour of the proposed tests in finite sample sizes. The

results disclose that RSS and its variations outperform SRS in constructing powerful

entropy based test of uniformity. The authors have developed similar tests for other

distributions (e.g. uniform, beta, exponential, gamma, log-normal, Pareto, Rayleigh,

Weibull, normal, Laplace, etc.) using improved entropy estimators (e.g., see Ebrahimi

et al. (1994) and Novi Inverardi (2003)). The results will be reported in separate works.
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