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Modelling “calgots” (Allium cepa L.)
growth by the Gompertz function

Joan Sim6, Margal Plans, Francesc Casafias and Jose Sabaté*

Abstract

“Calcots” are the second-year resprouts of the “Ceba Blanca Tardana de Lleida” landrace of
onions. The evolution of three “calg¢ots” populations has been modeled to help farmers to plan the
optimal time to harvest. Four different models that essentially differ in the type of distribution of the
fitting Gompertz function parameters (lag time, maximum growth rate and the maximum attainable
number of commercial size “cal¢ots”) have been tested. The model that considers a multinomial
distribution of the fitting parameters showed the best agreement with the experimental data.
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1. Introduction

“Calcots” are the second-year resprouts of the “Ceba Blanca Tardana de Lleida” lan-
drace of onions. In the production of “calgots”, all the resprouts from an onion are
harvested at the same time, when > 50 % reach commercial size (1.7 cm—2.5 c¢cm in
diameter and 20 cm in length, as specified in the regulations for the “Calgot de Valls”
(Protected Geographical Indication). Each onion yields between 1 and 20 “calcots”, but
their thickness is negatively correlated with the number of “calcots” per onion, so in
the most productive onions many “calcots” never fulfill the commercial requirements
for size. Production lasts from mid-November to the end of April, and a more or less
constant release of marketable product is needed during this period. Farmers exploit ge-
netic variability in earliness, using combinations of genotypes and/or sowing dates to
adjust the production to consumer demand, but these combinations are haphazard and
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inefficient. Thus, it would be interesting to develop a methodology that would enable
farmers to predict crop evolution and help them plan the optimal time to harvest.

The data recorded in our experimental crops suggest that the evolution of the number
of commercial “cal¢ots” through the growing season can be described by a sigmoidal
pattern: an initial period where no commercial “calgots” are observed is followed by
a second stage of rapid expansion and a final phase where the number of “calcots”
asymptotically tends to a maximum value. Sigmoidal curves have been widely reported
in biology, particularly in the growth of microorganisms under specific physical and
chemical conditions (Rodriguez-Gonzalez et al., 2011; Zwietering et al., 1990), in the
microorganisms inactivation (Gil et al., 2011), in the seasonal growth of fish (Singhi,
2011), and in the growth and development of field crops (Barker et al., 2010; Tei,
Aikman and Scaife, 1996).

One of the most popular models to explain sigmoidal curves is based on the
Gompertz function, which can be expressed in several forms, such as the following
one, which involves three biologically meaningful parameters.

N=N,e ¢ N ((A—f)'*'l)’ (1)

where N and ¢ are the measured number of individuals and time, respectively. N, is the
maximum N that can be reached at infinite time, W,, is the maximum growth rate, and A
is the lag time.

The Gompertz model for microorganisms’ growth has been used to predict the safety
and shelf life of foods (Gil et al., 2011; Rodriguez-Gonzalez et al., 2011; Zwietering et
al., 1990). The Gompertz function has been fitted to lettuce growth, although onions
and red beets have expolinear growth (Tei et al., 1996). The Gompertz model has also
been fitted to herbage mass and herbage accumulation (Barker et al., 2010); growth of
tobacco leaves, stems, and roots (Ismail, Khamis and Jaafar, 2003); total biomass, leaf
area index, number of plants per meter, and productivity of sugarcane (Simoes, Rocha
and Lamparelli, 2005); and dry matter production and cob weight in maize cultivars
(Ramachandra Prasad, Krishnamurthy and Kailasam, 1992).

We aim to i) use parameters based on the Gompertz function to discriminate among
different populations and ii) use the same parameters to model the growth of “calcots”
to enable the evolution of the crop to be predicted and the optimal harvest time to be
planned.

2. Materials and methods

In a single location, we cultivated 100 onions from three populations (P1, P2, and
P3) corresponding to three different genotypes. We scored the number of commercial
“calcots” (V) in each viable plant every two weeks over a seven-month period.

First, the three Gompertz function parameters (A; j, u;; and N, ; ;) were estimated
for any plant i of the population j, by nonlinear least squares using the Gauss-Newton
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algorithm. The goodness of fit was tested for each plant through the R?, the root mean
square error (RMSE) and the residuals distribution. All these data were used to compare
the behaviour of the three populations and to develop a simulation process aimed at
predicting the evolution of the three crops.

2.1. Comparison of the three populations

Multivariate ANOVA of the Gompertz parameters was performed following Y = XB+E
where Y is the parameters matrix distributed as a N, ~ (W, X), X is the design matrix, B
is the unknown parameters matrix (U;,, @), and E is the error matrix. The distribution
of error matrix was supposed N, ~ (0,X¢), Wilks’ statistic was used to test the
significance of MANOVA. Comparisons of several multivariate means were analyzed
using simultaneous confidence intervals (CI) with Bonferroni correction (Johnson and
Witchern, 2007; Chung et al., 2009).

2.2. Simulations

Simulations were performed independently for each genotype. Viable plants of each
genotype (n;) were randomly split in 2 groups: the “calibration” and the “validation”
groups, composed of n.,j and n,; plants respectively, being n.; ~ 2n,; and n; =
ne,j+n, ;. Gompertz parameters achieved from the calibration set were used to generate
a simulated set of n, ; plants.

The simulated set was generated according to four different models that essentially
differ in the type of distribution of the fitting parameters of the Gompertz function.
Model 1 only considers the average value of A, u, and N,. Then all the simulated
plants evolved with the same rate for this model. Model 2 takes the average value of
A, U, and N, and their variance-covariance matrix into account considering a normal
multivariate distribution (Ripley, 1987) following the Equation (2):

1
(2m)2 (5[

1

Filxr,.ox) = (—E(X—M)TZ_I(X—M)), )

where k is the numbers of random variables, ¥ is the Variance-Covariance matrix
between variables and W is the mean vector of these variables. Model 3 is similar to
Model 2 but uses the transformed parameters obtained from the Box-Cox method (Box
and Cox, 1964; Ripley, 1987). Model 4 considers a univariate Weibull distribution of
A, W, and N, independently (Johnson et al., 1994). The probability density function of
a random variable x is described by Equation (3):

k(x\KU —(r
Flak )= (X) e A x>0,
0 if x>0,

3)
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where k is the shape parameter and A is the scale parameter. Then, the shape and scale
parameters were obtained by maximum likelihood estimation and were subsequently
used to generate the simulated set (Johnson et al., 1994).

For each model and each genotype, the simulation was repeated 100 times from the
first step (i.e., from the random selection of the calibration and validation sets). The
suitability of the simulations for predicting the evolution of the crop was evaluated by
comparing each simulated set with its corresponding validation set. Comparisons were
carried out in three ways: first, by applying the chi-square test on the total number of
commercial “cal¢ots” of any population, N; along the 14 scoring dates, second with a
parametric model survival analysis in which the target success was the time (fy) when a
plant produces a given fraction (X) of “cal¢ots” meeting the commercial specifications,
and third using a one-way ANOVA performed on the maximum number of commercial
“calcots”, N,, in which scores at the latest time (count 14) were taken for the N,, of
validation plants.

All calculations were done with the R-program (www.R-project.orq), using
packages agricolae (Mendiburu, 2010), doBy (Hgjsgaard and Halekoh, 2011),
fitdistrplus (Delignette-Muller et al., 2010), CAR (Fox and Weisberg, 2011),
MASS (Venables and Ripley, 2002) and survival (Therneau and Lumley, 2011).

3. Results

The evolution of commercial “cal¢ots” number for a typical plant of any population is
shown in Figure 1. The experimental vs. fitted values of N; ; for each plant with the
modified Gompertz equation yielded average R* values of 0.901, 0.915, and 0.906, with
their corresponding standard deviations of 0.078, 0.051, and 0.066 for the populations
P1, P2 and P3, respectively. The average values of RMSE were 0.41, 0.39 and 0.22,
which can be considered low compared with the number of “calgots” expected to
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Figure 1: Evolution of commercial “calg¢ots” number for some typical plants: ¢ P1, and o P3.
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Figure 2: Residuals vs experimental number of commercial “calcots”. a) o P1, b) A P2 and c) o P3.

harvest, 6 to 9. The residuals for of all the plants of any population, plotted in Figure 2,
are nearly symmetrically distributed around the X axis for all the values of N. The only
exception to this trend is observed for N = 0, as the predicted value of N should always
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be positive according to Equation (1). All these data together support the suitability of
the fitting.

3.1. Comparison of the three populations

First of all, the Shapiro-Wilks test shows that the set of estimates values of A, u,,
and N, of the individual plants for each population do not mainly follow a normal
distribution, so they were transformed using the Box-Cox method and checked again
(Box and Cox, 1964; Royston, 1982). Although conversion by the Box-Cox method
resulted in transformed A and u,, values with a normal distribution, the transformed N,,
(P = 0.033) still does not pass the test (Table 1). The Box-Cox parameter values for
A, U, and N, were 0.7, —0.2, and —0.4, respectively. The p-values using Wilks tests
were < 0.001 for both raw and transformed parameters. MANOVA with Bonferroni
simultaneous CI test for multiple means comparisons (Table 2) indicates that the A,
mean value is smaller than A; and A3 and U,,3 is smaller than u,,; and W, for both raw
and transformed data. When the raw parameters are compared, the N, mean value is
larger than N,,; and N,,3; however, when the transformed parameters are compared the
N,, mean values of the three populations show significant differences.

3.2. Simulations

Mean parameters values and their coefficients of variation for simulation and variation
sets can be seen in Table 3. Although a rigorous comparison was not performed, it can
be seen that, generally, mean parameter values for the simulation sets are close to those
corresponding to the validation sets. Further, the coefficients of variation indicate that
fitting parameters are more scattered for simulation sets than for validation samples.

Table 1: P-values for Shapiro-Wilks test of normality.

Raw parameters Transformed parameters
A 6.4x1073 0.215
Ui 6.89 x 10716 0.146
N 2.75x 10713 0.033

Table 2: Comparison of parameters mean values with simultaneous CI for
treatments’ difference using Bonferroni correction in multiple comparison.

A Um N
Raw Transformed Raw Transformed Raw Transformed
P1 6.25a 6.09 a 2.78 a 2.07a 7.89b 7.19b
P2 4.84b 4.66 b 251a 193 a 9.40 a 825a
P3 599 a 575a 221b 1.74 b 691b 6.40 ¢
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Table 3: Mean values and coefficients of variation (CV) for simulation and validation sets.
Set ‘ Factor ‘ Population Model 1 Model 2 Model 3 Model 4
Mean | CV (%) | Mean | CV (%) | Mean | CV (%) | Mean | CV (%)
P1 6.51 | 937 | 648 | 890 | 643 | 858 | 642 | 992
A P2 513 | 9.17 | 517 | 871 | 4.69 | 10.56 | 4.78 | 10.17
P3 621 | 722 | 628 | 848 | 590 | 1087 | 591 | 11.37
P1 320 | 1475 | 3.16 | 13.99 | 2.89 | 20.56 | 2.90 | 14.06
Simulation | U, P2 2.69 | 10.56 | 2.69 | 10.17 | 2.89 | 19.27 | 2.60 | 13.18
P3 2.37 | 12.53 | 246 | 1293 | 2.25 | 16.54 | 2.24 | 14.19
P1 848 | 7.92 | 844 | 693 | 694 | 557 | 842 | 7.77
Nn P2 10.19| 7.14 1999 | 7.76 | 7.35 | 5.68 |10.32| 8.00
P3 747 | 625 | 752 | 627 | 653 | 583 | 753 7.04
P1 625 | 728 | 621 | 823 |6.18 | 6.14 | 6.18 | 7.06
A P2 483 | 640 | 480 | 688 | 488 | 7.38 |480 | 7.51
P3 596 | 833 | 598 | 694 | 6.05| 720 |595| 7.5
P1 2.80 | 13.76 | 2.76 | 13.33 | 2.79 | 13.97 | 2.72 | 13.76
Validation | P2 2.55 | 1097 | 249 | 10.66 | 2.55 | 11.12 | 248 | 11.48
P3 224 | 11.79 | 2.21 | 11.64 | 2.20 | 12.82 | 2.21 | 10.68
P1 787 | 679 | 789 | 569 | 797 | 673 | 795 | 5.89
Nm P2 938 | 655 | 952 | 660 |937| 675 |939 | 7.68
P3 694 | 634 | 684 | 539 | 6.86 | 6.01 690 | 6.15

That can be understood because fitting parameters of validation set are estimated in
one step. Nevertheless, the fitting parameters of simulations sets are estimated after two
previous processes, the parameters estimation of calibration samples and the generation
of a validation set with a limited number of samples. Additionally, for simulation sets,
the parameters of Model 3 tend to be slightly lower than those of other models. Although
the mean parameter values of the validation sets will not be used in future computations,
comparing them to the corresponding simulation sets gives a first rough view of the
goodness of the simulation.

Table 4: Percentage of simulations that pass the chi-square test without reaching significance.

Model 1 Model 2 Model 3 Model 4
P1 0 28 32 22
P2 0 29 23 16
P3 0 27 27 18
All 0 5 10 10

First, the chi-square test was performed on the total number of commercial “cal¢ots”
in a given population. The percentage of simulations that accomplish the chi-square
without significance (p < 0.01) is very low: about 20% for Model 4 and about 30% for
Models 2 and 3 (Table 4). No simulations of Model 1 pass the test, which indicates that a
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given distribution of A, u,, and N,,, and not only their mean values, has to be considered
in order to make reasonable predictions of the evolution of the crop.

To analyze the reason for the failures of the chi-square test, the residuals between the
predicted and experimental values of N vs. time were plotted (Figure 3). As expected,
Model 1 gave the highest residual values throughout the growing season. Models 2 and 3
show a similar tendency for any population and two smaller peaks are observed at counts
4 and 9. Model 4 follows a particular trend for any population, peaks are observed at
count 4 for population 1 but peaks at counts 4 and 8 appear for population 3.
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Figure 3: Chi-square test mean residuals of N; between validation and simulation sets for 100 simulations.

As a second method to check the suitability of the simulations, a survival analysis
was performed at the four times when 25%, 50%, 75%, and 90% of the “calcots” of one
plant achieved the commercial size. In agreement with the results of the chi-square test,
Model 1 fails for the three populations at all times. The other models behave differently
depending on the percentage considered. When 25% of the “calcots” of a plant attained
the commercial size (#,5), the number of successful simulations was visibly lower than
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those corresponding to #sg, #75, and fgg, for which more than 90% of the simulations were
successful (Table 5).

Table 5: Percentage of simulations that fulfill the survival analysis
without reaching significance (p < 0.01).
125 150 175 f9p

PL|P2|P3|ALL |P1 |P2|P3|ALL| Pl |P2|P3|ALL|P1|P2| P3 |ALL
Model1| O | O | O 0 0010 0 0O]01]O0 0 0oj01] O 0
Model2 | 54 | 86 | 69 | 92 |90 |94 |96 | 98 | 100 |95 |98 | 100 | 83|97 | 94 | 98
Model3 | 73 (86 | 87| 95 [99 |94 (97| 100 | 99 |97 |97 | 99 |99 |98 | 100 | 100
Model4 | 70 | 84 | 74| 96 |94 |93 97| 98 | 96 |98 |98 | 100 | 76 | 93 | 93 | 99

The third way to evaluate the simulation was a one-way ANOVA performed on the

maximum number of commercial “calgots”, N,,. Again, the results showed that model
1 did not work (Table 6). Models 2 and 4 lead to more than 90% of simulations with
the ANOVA test non-significant, whereas the suitability of Model 3 is clearly lower and
varies greatly depending on the population.

Table 6: Percentage of simulations that fulfill the ANOVA for Ny,.

Model 1 Model 2 Model 3 Model 4
P1 4 99 32 100
P2 55 100 86 98
P3 17 94 65 99
All 55 100 93 97

A global comparison of the different models can be seen in Figure 4, where the total
number of commercial “calcots” of any population, N, is represented. Points for the
hundred simulations of any count are included. As stated above, the points of Model 1
are farthest from the target line, where experimental and calculated values of N would
match. Models 2 and 4 tend to overestimate the production of “cal¢ots”. For the last
stages of the culture, when N, approaches its maximum value, the points of Model 3
move away from the bisector, in agreement with the ANOVA test for N,,. Globally, the
best predictions were achieved by Model 2.

4. Conclusions

The modified Gompertz function allowed us to compare several populations with
different genotypes throughout the growing season instead of making the comparison
at peak times when scoring is carried out.

The multinomial distribution of fitting parameters of the Gompertz function used in
Model 2 was the best distribution to model the growth of “calcots”, predict the evolution
of the crop, and decide the optimal harvest time.



104 Modelling “calgots” (Allium cepa L.) growth by the Gompertz function

400

Model1 / x Model2  + * . /

Simulation

Validation Validatien

Figure 4: Simulation vs. validation of total number of commercial “cal¢ots”. Symbols: o P1, A P2 and o P3.

Model 1 yielded the worst results for all the tests used. Thus, models that consider
a given distribution of the Gompertz fitting parameters (A, u,, and N,,) are much more
suitable to explain the growth of “calcots” than those that consider only mean values.

Studies of the effects of the environment and genotypes on crop growth are needed
to understand the different behaviour of each population so that better models can be
constructed for the entire growing season.
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