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Abstract

In this paper, we will introduce the new Kumaraswamy-power series class of distributions. This

new class is obtained by compounding the Kumaraswamy distribution of Kumaraswamy (1980)

and the family of power series distributions. The new class contains some new double bounded

distributions such as the Kumaraswamy-geometric, -Poisson, -logarithmic and -binomial, which

are used widely in hydrology and related areas. In addition, the corresponding hazard rate function

of the new class can be increasing, decreasing, bathtub and upside-down bathtub. Some basic

properties of this class of distributions such as the moment generating function, moments and

order statistics are studied. Some special members of the class are also investigated in detail.

The maximum likelihood method is used for estimating the unknown parameters of the members

of the new class. Finally, an application of the proposed class is illustrated using a real data set.

MSC: 60E05, 62E10.

Keywords: Kumaraswamy distribution, Maximum likelihood estimation, Power series distributions,

Uniform-power series distributions.

1. Introduction

Many times, the data are modelled by the finite range distributions. For many years,

the beta distribution has been used as one of the most basic and useful distributions

supported on finite range (0,1) which has been utilized widely in both practical and

theoretical aspects of Statistics. This distribution is very flexible to model data which

are restricted to any finite interval in view of the fact that it can take an amazingly great
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variety of forms depending on the values of the index parameters (cf. Lemonte and

Barreto-Souza, 2013). In econometrics, hydrological processes and related areas several

types of data can be modelled by the beta distribution.

An alternative distribution like the beta distribution, which is easier to work with it, is

the K distribution proposed by Kumaraswamy (1980). Unlike the beta distribution, the K

distribution has a simple closed form of cumulative distribution function (cdf) given by

G(x) = 1− (1− xa)b; 0 < x < 1, (1)

where a > 0 and b > 0 are the shape parameters. The K distribution, similar to the

beta distribution, can be unimodal, uniantimodal, increasing, decreasing or constant

depending on the values of its parameters. In addition, one can easily show that the

K distribution has the same basic shape properties of the beta distribution. But, because

of the cdf of the K distribution, which has a simple closed form, it has received much

attention in simulating hydrological data and related areas. For more detailed properties

of the K distribution see Kumaraswamy (1980) and Jones (2009).

To model data with the finite range on (0,1), we can only address a few distribu-

tions in the literature. Here, we attempt to introduce a new family of distributions in

this connection. Indeed, to obtain some new double bounded distributions, we com-

pound the K distribution with the family of power series distributions and construct the

Kumaraswamy-power series (KPS) class of distributions. Compounding a continuous

distribution with a discrete one is a known method to introduce new continuous distri-

butions. In recent years, many authors have been interested using this method for con-

structing new models. For example, the four compound classes proposed by Chahkandi

and Ganjali (2009), Morais and Barreto-Souza (2011), Mahmoudi and Jafari (2012) and

Silva et al. (2013) are some researches in this regard.

The rest of the paper is organized as follows. In Section 2, we introduce the KPS class

of distributions. The density, survival, hazard rate and moment generating functions as

well as the moments, quantiles and order statistics are given in this section. In Section 3,

we obtain some special distributions and study some of their distributional properties in

detail. In addition, the stress-strength parameter is obtained for a special member of the

family of KPS distributions in this section. Estimation of the parameters involved using

the maximum likelihood method and some related inferences are discussed in Section 4.

An application of the new class, using a real data set, is illustrated in Section 5. Finally,

some concluding remarks are given in Section 6.

2. The KPS class of distributions

Given N, let X1,X2, . . . ,XN be independent and identically distributed (iid) random

variables following a K distribution with cdf (1). Here, N is independent of Xi’s and
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it is a member of the family of power series distributions, truncated at zero, with the

probability mass function

πn = P(N = n) =
anθ

n

C(θ )
; n = 1,2, . . . ,

where an ≥ 0 depends only on n, C(θ ) = ∑
∞
n=1 anθ

n and θ ∈ (0,s) (s can be +∞).

C(θ ) is finite and C′(.), C′′(.) and C′′′(.) denote its first, second and third derivatives,

respectively. Useful quantities of some power series distributions, truncated at zero, such

as geometric, Poisson, logarithmic and binomial (with m being the number of replicates)

distributions are shown in Table 1. For more detailed properties of the power series class

of distributions, see Noack (1950).

Table 1: Useful quantities for some power series distributions.

Model an C(θ) C′(θ) C′′(θ) C′′′(θ) s

Geometric 1 θ(1−θ)−1 (1−θ)−2 2(1−θ)−3 3(1−θ)−4 1

Poisson n!−1 eθ −1 eθ eθ eθ +∞

Logarithmic n−1 − log(1−θ) (1−θ)−1 (1−θ)−2 2(1−θ)−3 1

Binomial
(

m
n

)

(θ +1)m −1
m

(θ +1)1−m

m(m−1)

(1+θ)2−m

m(m−1)(m−2)

(1+θ)3−m
1

Now, let X(1) = min{Xi}
N
i=1. Then, the conditional cdf of X(1)|N = n is given by

GX(1)|N=n(x) = 1− [G(x)]n = 1− (1− xa)nb; 0 < x < 1,

where G(.) is the survival function of K distribution associated to cdf (1). As we see,

X(1)|N = n follows a K distribution with parameters a and nb. The marginal cdf of X(1),

that is,

F(x) =
n

∑
n=1

anθ
n

C(θ )
{1− [G(x)]n}= 1−

C(θG(x))

C(θ )

= 1−
C(θ (1− xa)b)

C(θ )
; 0 < x < 1, (2)

defines the cdf of the family of KPS distributions. We denote a random variable X

following the KPS distribution with parameters a, b, and θ by KPS(a,b,θ ).
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2.1. Density, survival and hazard rate functions

The probability density function (pdf) of a random variable X following a KPS(a,b,θ )

distribution is given by

f (x) = θabxa−1(1− xa)b−1C′(θ (1− xa)b)

C(θ )
; 0 < x < 1. (3)

Proposition 2.1 The pdf of KPS distributions has at least a mode, for a > 1 and b > 1.

It is increasing, for a > 1 and b < 1, and decreasing or bathtub elsewhere.

Proof. See Appendix A.

Proposition 2.2 The K distribution with parameters a and bc is a limiting distribution

of the KPS distribution when θ → 0+, where c = min{n ∈ N : an > 0}.

Proof. See Appendix B.

Proposition 2.3 The pdf of KPS distributions can be written as a mixture of the K

distribution with parameters a and nb.

Proof. Using a conditional argument on N, the proof is completed.

The survival and hazard rate functions of KPS distributions are given by

F(x) =
C(θ (1− xa)b)

C(θ )
(4)

and

h(x) = θabxa−1(1− xa)b−1C′(θ (1− xa)b)

C(θ (1− xa)b)
, (5)

respectively. To see the density and hazard rate functions shapes of KPS distributions,

let C(θ ) = θ + θ 20 (see also Mahmoudi and Jafari, 2012; Morais and Barreto-Souza,

2011). Then, for θ = 1, we have f (x) = ab
2

xa−1(1−xa)b−1[1+20(1−xa)19b] and h(x) =

abxa−1(1 − xa)b−1 1+20(1−xa)19b

(1−xa)b+(1−xa)20b . The plots of this density and the corresponding

hazard rate function are given in Figure 1 for some selected values of parameters.
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Figure 1: Plots of density and hazard rate functions of KPS(a,b,1) distribution with C(θ) = θ +θ20.

2.2. Quantiles and median

The q-th quantile, say xq, of the KPS distributions is given by

xq = {1− [
1

θ
C−1((1−q)C(θ ))]1/b}1/a,

where C−1(.) is the inverse function of C(.). In particular, the median is immediately

obtained by

m = {1− [
1

θ
C−1(

C(θ )

2
)]1/b}1/a.

2.3. Moment generating function and moments

Let Y be a random variable following the K distribution with parameters a and b.

Lemonte and Barreto-Souza (2013) obtained the moment generating function (mgf) of

the random variable Y as follows:
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MY (t) = b
∞

∑
s=0

Γ(b)(−1)s

Γ(b− s)(s+1)!
1F1(a(s+1),a(s+1)+1; t), (6)

where 1F1 denotes the confluent hypergeometric function defined by

1F1(a,b; t) =
∞

∑
m=0

a(m)

b(m)m!
tm

in which a(m) =
Γ(a+m)

Γ(a) = a(a+ 1)...(a+m− 1) is the ascending factorial. Combining

Eq. (6) and Prop. 2.3 yields the mgf of the random variable X ∼ KPS(a,b,θ ) as follows:

MX(t) = b
∞

∑
n=1

∞

∑
s=0

nΓ(nb)(−1)s

Γ(nb− s)(s+1)!
1F1(a(s+1),a(s+1)+1; t)πn. (7)

The r-th moment of the K distribution is given by bB(1+ r
a
,b) (see Jones, 2009), where

B(α,β) =
∫ 1

0 xα−1(1 − x)β−1dx denotes the beta function. Thus, the r-th moment of

X ∼ KPS(a,b,θ ) is given by

E(X r) = b
∞

∑
n=1

nB(1+
r

a
,nb)πn, r = 1,2, ... . (8)

2.4. Order statistics

Let X1,X2, . . . ,Xn be a random sample from a KPS distribution and Xi:n, i = 1,2, ...,n,

denote its i-th order statistic. The pdf of Xi:n is given by

fi:n(x) =
1

B(i,n− i+1)
f (x)[F(x)]i−1[1−F(x)]n−i, (9)

where F and f are the cdf and pdf of KPS distributions given by (2) and (3), respectively.

Eq. (9) can be written as the following forms

fi:n(x) =
1

B(i,n− i+1)

n−i

∑
k=0

(

n− i

k

)

(−1)k f (x)[F(x)]k+i−1 (10)

or

fi:n(x) =
1

B(i,n− i+1)

i−1

∑
k=0

(

i−1

k

)

(−1)k f (x)[1−F(x)]k+n−i. (11)
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In view of the fact that

f (x)[F(x)]k+i−1 =
1

k+ i

d

dx
[F(x)]k+i,

the corresponding cdf of fi:n(x), denoted by Fi:n(x), becomes

Fi:n(x) =
1

B(i,n− i+1)

n−i

∑
k=0

(

n−i
k

)

(−1)k

k+ i
[F(x)]k+i

=
1

B(i,n− i+1)

n−i

∑
k=0

(

n−i
k

)

(−1)k

k+ i
[1−

C(θ (1− xa)b)

C(θ )
]k+i (12)

=
1

B(i,n− i+1)

n−i

∑
k=0

(

n−i
k

)

(−1)k

k+ i
FW (x;a,b,θ ,k+ i),

where W follows an exponentiated KPS (EKPS) distribution with parameters a, b, θ

and k+ i. For more details of exponentiated F distributions or, equivalently, resilience

parameter families, see Marshall and Olkin (2007).

An alternative expression for Fi:n(x), using Eq. (11), is

Fi:n(x) = 1−
1

B(i,n− i+1)

i−1

∑
k=0

(

i−1
k

)

(−1)k

k+n− i+1
[1−F(x)]k+n−i+1

= 1−
1

B(i,n− i+1)

i−1

∑
k=0

(

i−1
k

)

(−1)k

k+n− i+1
[
C(θ (1− xa)b)

C(θ )
]k+n−i+1.

Expressions for moments of the i-th order statistic Xi:n, i = 1,2, ...,n, with cdf (12), can

be obtained using a result of Barakat and Abdelkader (2004) as follows:

E(X r
i:n) = r

n

∑
k=n−i+1

(−1)k−n+i−1

(

k−1

n− i

)(

n

k

)

∫ ∞

0
xr−1[F(x)]kdx

= r
n

∑
k=n−i+1

(−1)k−n+i−1

C(θ )k

(

k−1

n− i

)(

n

k

)

∫ ∞

0
xr−1[C(θ (1− xa)b)]kdx,

for r = 1,2, . . . and i = 1,2, . . . ,n, where F(x) is the survival function given by (4); see

also Morais and Barreto-Souza (2011). An application of the first moments of order

statistics can be considered in calculating the L-moments which are in fact the linear

combinations of the expected order statistics. See Hosking (1990) for details.



218 Double bounded Kumaraswamy-power series class of distributions

0 0.5 1
0

1

2

3

4

5

x

D
e

n
s
it
y

(a,b)=(0.5,0.5)

0 0.5 1
0

1

2

3

4

5

x
D

e
n

s
it
y

(a,b)=(0.5,1.5)

0 0.5 1
0

0.5

1

1.5

2

x

D
e

n
s
it
y

(a,b)=(1.5,1.5)

0 0.5 1
0

5

10

15

x

H
a

z
a

rd

(a,b)=(0.5,0.5)

0 0.5 1
0

5

10

15

x

H
a

z
a

rd

(a,b)=(0.5,1.5)

0 0.5 1
0

2

4

6

8

10

x
H

a
z
a

rd

(a,b)=(1.5,1.5)

θ=0.2

θ=0.5

θ=0.9

θ=0.2

θ=0.5

θ=0.9

θ=0.2

θ=0.5

θ=0.9

θ=0.2

θ=0.5

θ=0.9

θ=0.2

θ=0.5

θ=0.9

θ=0.2

θ=0.5

θ=0.9

Figure 2: Plots of KG(a,b,θ) density and hazard rate functions for some parameter values.

3. Special cases of the KPS family

In this section, we study basic distributional properties of the Kumaraswamy-geometric

(KG), Kumaraswamy-Poisson (KP), Kumaraswamy-logarithmic (KL) and Kumaraswa-

my-binomial (KB) distributions as special cases of KPS family. In addition, expressions

for the pdf and moments of order statistics as well as the stress-strength parameter of the

KG distribution are obtained. First, to illustrate the flexibility of the distributions, plots

of the density and hazard rate functions are presented in Figures 2, 3, 4 and 5 for some

selected values of the parameters.

3.1. Basic distributional properties

Using Table 1 and Eqs. (4-8) given in Section 2, basic distributional properties of the

four special distributions of KPS family are immediately obtained. Table 2 contains the

survival function, pdf, hazard rate function, mgf and the moments of KG, KP, KL and

KB distributions.
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Figure 3: Plots of KP(a,b,θ) density and hazard rate functions for some parameters values.
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Figure 4: Plots of KL(a,b,θ) density and hazard rate functions for some parameter values.
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Figure 5: Plots of KB(a,b,θ) density and hazard rate functions for some values of (a,b,θ) and m = 5.

Table 2: Survival function, pdf, hazard rate function, mgf and moments of KG, KP, KL and KB dists.

Model survival function pdf hazard rate function

KG 1−
1− (1− xa)b

1−θ(1− xa)b

(1−θ)abxa−1(1− xa)b−1

{1−θ(1− xa)b}2

abxa−1(1− xa)b−1

{1−θ(1− xa)b}(1− xa)

KP
eθ (1−xa)b

−1

eθ −1

θabxa−1(1− xa)b−1eθ (1−xa)b

eθ −1

θabxa−1(1− xa)b−1eθ (1−xa)b

eθ (1−xa)b
−1

KL
log(1−θ(1− xa)b)

log(1−θ)
−

θabxa−1(1− xa)b−1

log(1−θ)(1−θ(1− xa)b)
−

θabxa−1(1− xa)b−1

log(1−θ(1− xa)b)(1−θ(1− xa)b)

KB
(θ(1− xa)b +1)m −1

(θ +1)m −1

mθabxa−1(1− xa)b−1(θ(1− xa)b +1)m−1

(θ +1)m −1

mθabxa−1(1− xa)b−1(θ(1− xa)b +1)m−1

(θ(1− xa)b +1)m −1

mgf moments

b(1−θ)∑
∞
n=1 ∑

∞
s=0

nΓ(nb)(−1)sθn−1

Γ(nb− s)(s+1)!
1F1(a(s+1),a(s+1)+1; t) b(1−θ)∑

∞
n=1 nB(1+

r

a
,nb)θn−1

b

eθ −1
∑

∞
n=1 ∑

∞
s=0

Γ(nb)θn(−1)s

Γ(nb− s)(s+1)!(n−1)!
1F1(a(s+1),a(s+1)+1; t)

b

eθ −1
∑

∞
n=1 B(1+

r

a
,nb)

θn

(n−1)!

−b

log(1−θ)
∑

∞
n=1 ∑

∞
s=0

Γ(nb)θn(−1)s

Γ(nb− s)(s+1)!
1F1(a(s+1),a(s+1)+1; t) −

b

log(1−θ)
∑

∞
n=1 B(1+

r

a
,nb)θn

b

(θ +1)m −1
∑

∞
n=1 ∑

∞
s=0

nΓ(nb)
(

m
n

)

θn(−1)s

Γ(nb− s)(s+1)!
1F1(a(s+1),a(s+1)+1; t)

b

(θ +1)m −1
∑

∞
n=1 n

(

m
n

)

θnB(1+
r

a
,nb)
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3.2. Order statistics of the KG distribution

By inserting the pdf and cdf of KG distribution into Eq. (10), we obtain the pdf of the

i-th order statistic of KG distribution as follows:

fi:n(x) =
1

B(i,n− i+1)

n−i

∑
k=0

(

n−i

k

)

(−1)k(1−θ )abxa−1(1− xa)b−1{1− (1− xa)b}k+i−1

{1−θ (1− xa)b}k+i+1
.

Expanding the binomial term {1−θ (1− xa)b}k+i+1 by the series representation

(1− z)−k =
∞

∑
i=0

Γ(k+ i)

Γ(k)i!
zi; k > 0, |z|< 1, (13)

the pdf of the i-th order statistic can be rewritten as

fi:n(x) =
1−θ

B(i,n− i+1)

∞

∑
j=0

n−i

∑
k=0

(

n−i

k

)

(−1)kθ j

k+ i
fBK(x;k+ i, j+1,a,b),

where

fBK(x;α,β ,a,b) =
1

B(α,β)
abxa−1(1− xa)bβ−1{1− (1− xa)b}α−1 (14)

is the density function of beta-Kumaraswamy (BK) distribution of Carrasco et al. (2012).

An alternative expression for the pdf of the i-th order statistic of KG distribution can

be obtained by Eq. (11). Hence,

fi:n(x) =
∞

∑
j=0

i−1

∑
k=0

(

i−1
k

)

(−1)k
(

k+n−i+ j
j

)

θ j(1−θ )k+n−i+1

(k+n− i+1)B(i,n− i+1)
fK(x;a,b(k+n− i+ j+1)), (15)

where fK is the density function of K distribution. As we see, the pdf of order statistics

of KG distribution can be expressed as a linear combination of the pdf of BK or K

distributions. Therefore, some properties of the i-th order statistic, such as the mgf and

moments, can be obtained directly from those of BK or K distributions. For example,

from Eq. (15), the moments of the i-th order statistic of KG distribution are given by

E(X r
i:n) =

∞

∑
j=0

i−1

∑
k=0

(

i−1
k

)

(−1)k
(

k+n−i+ j

j

)

θ j(1−θ )k+n−i+1

(k+n− i+1)B(i,n− i+1)

×b(k+n− i+ j+1)B(1+ r/a,b(k+n− i+ j+1)), r = 1,2, . . . .
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3.3. Stress-strength parameter of the KG distribution

The stress-strength parameter R = P(X > Y ) is a measure of component reliability and

its estimation problem when X and Y are independent and follow a specified distribution

has been discussed widely in the literature. Let X be the random variable of the strength

of a component which is subjected to a random stress Y . The component fails whenever

X < Y and there is no failure when X > Y . Here, we obtain an expression for the stress-

strength parameter of the KG distribution.

Let X ∼ KG(a,b,θ1) and Y ∼ KG(a,b,θ2) be independent random variables. The

stress-strength parameter is defined as

R = P(X > Y ) =

∫ 1

0
fX(x)FY (x)dx

=

∫ 1

0

(1−θ1)abxa−1(1− xa)b−1{1− (1− xa)b}

{1−θ1(1− xa)b}2{1−θ2(1− xa)b}
dx.

Expanding the binomial terms {1−θ1(1− xa)b}2 and {1−θ2(1− xa)b} as in Eq. (13),

we obtain

R = (1−θ1)
∞

∑
i=0

∞

∑
j=0

θ i
1θ

j
2 (i+1)

(i+ j+1)2(i+ j+2)

∫ 1

0
fBK(x;2, i+ j+1,a,b)dx

=
∞

∑
i=0

∞

∑
j=0

θ i
1θ

j
2 (i+1)

(i+ j+1)2(i+ j+2)
,

where fBK has been already defined by Eq. (14). It is clear that R can be estimated when

the parameters θ1 and θ2 are estimated by the maximum likelihood method.

Remark 3.1 If a = 1 [b = 1] in a KPS(a,b,θ ) distribution, then we obtain the beta-

PS(1,b,θ ) [beta-PS(a,1,θ )] distribution. In addition, KPS(a,b,θ ) distribution reduces

to a standard uniform-PS distribution, when a= b= 1. All properties of KPS distribution

are valid for these special distributions.

4. Estimation and inference

Let x1,x2, . . . ,xn be n observations of a random sample from a KPS(a,b,θ ) distribution

and θθθ = (a,b,θ )T be the unknown parameter vector in the rest of the paper. The log-

likelihood function is given by
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ℓn = ℓn(θθθ ;x1,x2, . . . ,xn) = n logθ +n loga+n logb+(a−1)
n

∑
i=1

logxi

+(b−1)
n

∑
i=1

log(1− xa
i )+

n

∑
i=1

logC′(θ (1− xa
i )

b)−n log(C(θ )).

The associated score function is given by Un(θθθ ) = (∂ℓn/∂a,∂ℓn/∂b,∂ℓn/∂θ )T , where

∂ℓn

∂a
=

n

a
+

n

∑
i=1

logxi − (b−1)
n

∑
i=1

xa
i logxi

1− xa
i

−
n

∑
i=1

θbxa
i logxi(1− xa

i )
b−1C′′(θ (1− xa

i )
b)

C′(θ (1− xa
i )

b)
,

∂ℓn

∂b
=

n

b
+

n

∑
i=1

log(1− xa
i )+

n

∑
i=1

θ (1− xa
i )

b log(1− xa
i )C

′′(θ (1− xa
i )

b)

C′(θ (1− xa
i )

b)

and

∂ℓn

∂θ
=

n

θ
+

n

∑
i=1

(1− xa
i )

bC′′(θ (1− xa
i )

b)

C′(θ (1− xa
i )

b)
−n

C′(θ )

C(θ )
.

The maximum likelihood estimation (MLE) of θθθ , say θ̂θθ , is obtained by solving the

nonlinear system Un(θ̂θθ ) = 0. The solution of this nonlinear system of equations can be

found by using a numerical method. We need the Fisher information matrix for interval

estimation and hypotheses testing on the model parameters. The 3×3 Fisher information

matrix is given by

In(θθθ ) =−





Iaa Iab Iaθ

Iba Ibb Ibθ

Iθa Iθb Iθθ



 ,

whose elements are obtained by the relationship Iθiθ j
= E[ ∂ 2ℓn

∂θi∂θ j
]; i, j = 1,2,3 (see

Appendix C). However, for usual large sample, the Fisher information matrix can be

approximated by its observed matrix. That is,

In(θ̂θθ )≈−[
∂ 2ℓn

∂θiθ j

|
θθθ=θ̂θθ ]; i, j = 1,2,3,

where θ̂θθ is the MLE of θ . See, for example, Cox and Hinkley (1974) for more

discussions of MLEs properties.
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Table 3: Phosphorus concentration in leaves data set.

0.22 0.17 0.11 0.10 0.15 0.06 0.05 0.07 0.12 0.09 0.23 0.25 0.23 0.24 0.20 0.08

0.11 0.12 0.10 0.06 0.20 0.17 0.20 0.11 0.16 0.09 0.10 0.12 0.12 0.10 0.09 0.17

0.19 0.21 0.18 0.26 0.19 0.17 0.18 0.20 0.24 0.19 0.21 0.22 0.17 0.08 0.08 0.06

0.09 0.22 0.23 0.22 0.19 0.27 0.16 0.28 0.11 0.10 0.20 0.12 0.15 0.08 0.12 0.09

0.14 0.07 0.09 0.05 0.06 0.11 0.16 0.20 0.25 0.16 0.13 0.11 0.11 0.11 0.08 0.22

0.11 0.13 0.12 0.15 0.12 0.11 0.11 0.15 0.10 0.15 0.17 0.14 0.12 0.18 0.14 0.18

0.13 0.12 0.14 0.09 0.10 0.13 0.09 0.11 0.11 0.14 0.07 0.07 0.19 0.17 0.18 0.16

0.19 0.15 0.07 0.09 0.17 0.10 0.08 0.15 0.21 0.16 0.08 0.10 0.06 0.08 0.12 0.13

5. Application of the KPS distributions

Fonseca and Franca (2007) studied the soil fertility in influence and the characterization

of the biologic fixation of N2 for the Dimorphandra wilsonii rizz growth. For 128 plants,

they made measures of the phosphorus concentration in the leaves. The data, which have

also been analyzed by Silva et al. (2013), are listed in Table 3.

We fit the KG, KP, KL and K models to the data to show the capability and

potentiality of the new class of distributions in data modelling. In addition, we fit the

Weibull-geometric (WG) distribution of Barreto-Souza et al. (2011), which is also a

member of the proposed class of Silva et el. (2013), and compare it with our models.

We first estimate unknown parameters of the models by the maximum likelihood method

and, then, we obtain the values of Akaike information criterion (AIC) and Bayesian

information criterion (BIC) as well as Kolmogorov-Smirnov (K-S) statistic and their

corresponding p-values. A summary of computations is given in Table 4.

Table 4: MLE, maximized log-likelihood, AIC, BIC and K-S statistic (p-value) for fitted models.

Model MLEs of parameters logL AIC BIC K-S (p-value)

KG (â, b̂, θ̂ ) = (3.5909,318.2081,0.7338) 196.7994 −387.5989 −380.0127 0.0944 (0.1911)

KP (â, b̂, θ̂ ) = (3.1424,73.3827,5.1828) 194.4806 −382.9613 −374.4052 0.1110 (0.0792)

KL (â, b̂, θ̂ ) = (2.6380,130.8358,0.0327) 194.3899 −382.7797 −374.2236 0.0943 (0.1927)

K (â, b̂) = (2.8104,176.3491) 194.8007 −385.6015 −379.8974 0.1181 (0.0517)

WG (α̂, γ̂, θ̂ ) = (2.4471,4.2041,0.9995) 192.2505 −378.5125 −370.0125 0.1208 (0.0461)

As we see from the results presented in Table 4, the KG model with the minimum

values of AIC and BIC gives a better fit than the other rival models. However, the KG,

KP and KL models (even K model with the two parameters) have better fits than the WG

model of Silva et al. (2013). Further, Figures 6 and 7 also confirm these conclusions.
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Figure 6: Plots of the fitted KG, KP, KL, K and WG densities.
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Figure 7: Empirical cdf plots of the fitted KG, KP, KL, K and WG models.
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6. Concluding remarks

A new compound class of distributions with a finite range on (0,1) is defined by the

stochastic representation X(1) = min{Xi}
N
i=1, where Xi’s have a Kumaraswamy distri-

bution and N is a member of the family of the power series distributions, independent

of Xi’s. The new class, namely KPS, contains four new distributions with applications

to hydrological areas. We had a comprehensive study on this class of distributions and

investigated some their important distributional properties. In the application section,

we fitted some special members of the KPS class to a real data set to indicate the

potential of the new class in data modelling. As a new family of distributions in this

connection, one can establish a new class by considering the stochastic representation

X(n) = max{Xi}
N
i=1. In the context of reliability, the stochastic representations X(1) and

X(n) have important roles in the series and parallel systems, respectively, which appear

in many industrial applications and biological organisms.
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Appendix A

Here, we examine the density shapes of KPS distributions. For this purpose, for all b> 0,

we have

lim
x→0+

f (x) =



















∞, a < 1

θb
C′(θ )

C(θ )
, a = 1

0, a > 1

and, for all a > 0,

lim
x→1−

f (x) =



















∞, b < 1

θa
C′(θ )

C(θ )
, b = 1

0, b > 1.

Therefore, as wee see, for a > 1 and b > 1, the pdf of KPS distributions has at least a

mode and for a > 1 and b < 1, the pdf is increasing.
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Appendix B

Below, we give a proof for Proposition 2.2:

lim
θ→0+

F(x) = lim
θ→0+

{1−
C(θG(x))

C(θ )
}= 1− lim

θ→0+

∑
∞
n=1 anθ

n[G(x)]n

∑
∞
n=1 anθ n

= 1− lim
θ→0+

ac[G(x)]c +∑
∞
n=c+1 anθ

n−c[G(x)]n

ac +∑
∞
n=c+1 anθ n−c

= 1− [G(x)]c = 1− (1− xa)bc.

Appendix C

Let pi = (1− xa
i ). Then, the elements of In(θθθ) are given by

Ia,a =
∂ 2ℓn

∂a2
=−

n

a2
− (b−1)

n

∑
i=1

xa
i [

logxi

pi

]2 +
n

∑
i=1

z′′(aa)i,

Ia,b = Ib,a =
∂ 2ℓn

∂a∂b
=−

n

∑
i=1

xa
i logxi

pi

+
n

∑
i=1

z′′(ab)i,

Ia,θ = Iθ ,a =
∂ 2ℓn

∂a∂θ
=

n

∑
i=1

z′′(aθ )i, Ib,b =
∂ 2ℓn

∂b2
=−

n

b2
+

n

∑
i=1

z′′(bb)i,

Ib,θ = Iθ ,b =
∂ 2ℓn

∂b∂θ
=

n

∑
i=1

z′′(bθ )i

and

Iθ ,θ =
∂ 2ℓn

∂θ 2
=−

n

θ 2
−n

C′′(θ )C(θ )− [C′(θ )]2

[C(θ )]2
+

n

∑
i=1

z′′(θθ )i,

where

z′′(aa)i =
∂ 2

∂a2
logC′(θ pb

i )

=
−bθ (logxi)

2xa
i

[C′(θ pb
i )]

2
{[pb−1

i C′′(θ pb
i )− (b−1)pb−2

i C′′(θ pb
i )−θbxa

i p2b−2
i C′′′(θ pb

i )]C
′(θ pb

i )

+θbxa
i p2b−2

i [C′′(θ pb
i )]

2},
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z′′(ab)i =
∂ 2

∂a∂b
logC′(θ pb

i )

=
−θ pb−1

i xa
i logxi{[b log piC

′′(θ pb
i )−C′′(θ pb

i )−θC′′′(pb
i )]C

′(θ pb
i )−θbpb

i [C
′′(θ pb

i )]
2}

[C′(θ pb
i )]

2
,

z′′(aθ )i =−
bxa

i pb−1
i logxi{[C

′′(θ pb
i )+θ pb

i C
′′′(θ pb

i )]C
′(θ pb

i )−θ pb
i [C

′(θ pb
i )]

2}

[C′(θ pb
i )]

2
,

z′′(bb)i =
θ log pi{[p

b
i log piC

′′(θ pb
i )+θ p2b

i log piC
′′′(θ pb

i )]C
′(θ pb

i )}

[C′(θ pb
i )]

2

−
θ 2 p2b

i (log pi)
2[C′′(θ pi)]

2

[C′(θ pi)]2
,

z′′(bθ )i =
pb

i log pi{[C
′′(θ pb

i )+θ pb
i C

′′′(θ pb
i )]C

′(θ pb
i )−θ pb

i [C
′′(θ pb

i )]
2}

[C′(θ pb
i )]

2
,

z′′(θθ )i =
p2b

i C′′′(θ pb
i )C

′(θ pb
i )− p2b

i [C′′(θ pb
i )]

2

[C′(θ pb
i )]

2
.
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