
Statistics & Operations Research Transactions

SORT 38 (1) January-June 2014, 3-12

Statistics &
Operations Research

Transactions
c© Institut d’Estadstica de Catalunya

sort@idescat.catISSN: 1696-2281
eISSN: 2013-8830
www.idescat.cat/sort/

Improving parametric Clarke and Wright

algorithms by means of iterative empirically

adjusted greedy heuristics⋆

Albert Corominas1, Alberto Garcı́a-Villoria1,∗ and Rafael Pastor1

Abstract

Since Clarke and Wright proposed their well-known savings algorithm for solving the Capacitated

Vehicle Routing Problem, several enhancements to the original savings formula have been

recently proposed, in the form of parameterisations. In this paper we first propose to use

Empirically Adjusted Greedy Heuristics to run these parameterized heuristics and we also

consider the addition of new parameters. This approach is shown to improve the savings

algorithms proposed in the literature. Moreover, we propose a new procedure which leads to

even better solutions, based on what we call Iterative Empirically Adjusted Greedy Heuristics.

MSC: 90C27 (Combinatorial Optimisation).

Keywords: EAGH-1, greedy heuristics, Clarke and Wright savings algorithm, CVRP.

1. Introduction

The Capacitated Vehicle Routing Problem (CVRP) is a well known variant of the NP-

hard Vehicle Routing Problem (VRP). Heuristic methods have been proposed to solve it.

Among them, the Clarke and Wright savings heuristic (CW) (Clarke and Wright, 1964)

is one of the most popular: CW is simple, easy to implement, very fast and obtains quite

good solutions (Altinel and Öncan, 2005).

⋆ Supported by the Spanish MICINN project ENE2010-15509 and co-financed by ERDF
∗ Corresponding author: Alberto Garcı́a-Villoria, e-mail: alberto.garcia-villoria@upc.edu
1 Institute of Industrial and Control Engineering (IOC), Av. Diagonal, 647 (Edif. ETSEIB), 11th floor, 08028

Barcelona, Spain. E-mail: {albert.corominas/alberto.garcia-villoria/rafael.pastor}@upc.edu

Received: October 2012

Accepted: February 2014

4 Improving parametric Clarke and Wright algorithms by means...

CW is based on merging tours according to a savings formula, which refers to the

distance or cost saved by the merged route instead of having the two original ones. Since

CW was introduced, several enhancements to the original savings formula have been

proposed (Gaskell, 1967; Yellow, 1970; Paessens, 1988; and recently Altinel and Öncan,

2005; Doyuran and Çatay, 2011). The best results achieved with a savings heuristic have

been obtained by the Doyran and Çatay’s CW version (let it be called CW-DC) and by

the Altinel and Öncan’s CW version (let it be called CW-AO).

All aforementioned enhanced savings formulae are parameterized. The performance

of these parametric savings heuristics depends on the parameter values. A common

practice in the literature is to set the parameter values and then run the algorithms

using these values, which remain fixed during the run (Adenso-Dı́az and Laguna, 2006).

This approach is followed by Battarra et al. (2008) and Corominas et al. (2010) to set

the parameter values of CW-AO. However, this approach has the drawback of needing

a sufficiently representative set of training instances to calibrate the algorithm so the

values of the parameters are suitable for any instance of the problem. On the other

hand, to solve an instance, Altinel and Öncan (2005), and Doyran and Çatay (2011)

run CW-AO and CW-DC, respectively, with a fixed set of 8,820 different combinations of

parameter values and select the best combination. This other approach has the advantage

that the parameters of the heuristics are specifically tuned for each instance and the

drawback that more computing time is needed to solve each instance.

In this paper we follow and focus on the second approach. The objective is to improve

the results obtained in the literature, by means of: i) considering to add new parameters,

ii) using a more sophisticated procedure in the literature to obtain suitable parameter

values according to the particular instance to be solved, which is known as EAGH-

1 (Empirically Adjusted Greedy Heuristics-1) (Corominas, 2005), and iii) designing a

new procedure based on EAGH-1 that we call Iterative EAGH-1 (IEAGH-1). IEAGH-1

always ensures solutions better than or equal to the solutions obtained by EAGH-1.

The remainder of the paper is organised as follows. Section 2 defines the CVRP and

describes the parametric algorithms based on CW proposed in the literature. Section 3

explains EAGH-1 and proposes the new IEAGH-1 procedure. Section 4 presents the

results of a computational experiment. Finally, the conclusions are given in Section 5.

2. Parametric Clarke and Wright algorithms to solve the CVRP

The VRP consists in finding the set of routes that minimises the total routing cost. The

routes are designed for a fleet of vehicles that has to serve a set of customers with

positive demand from one or several depots, subject to various constraints. The CVRP

is a VRP variant in which all the vehicles have the same capacity, C, and there is only

one depot. The formulation of the CVRP is as follows. Let G = (V,E) be an undirected

graph. V is the set of nodes {0,1, . . . ,n}, in which node 0 represents the depot and the

other n nodes represent the customers, and E is the set of edges. Each vehicle has a

Albert Corominas, Alberto Garcı́a-Villoria and Rafael Pastor 5

capacity C and each customer i has a demand 0 < di ≤ C (i = 1, . . . ,n). For each edge

(i, j) ∈ E (i = 0, . . . ,n; j = 0, . . . ,n), a traversing cost ci j is associated. The objective is

to find the routes that minimise the total cost so that each customer is visited only once

and each route starts and ends at the depot.

Clarke and Wright (1964) proposed a greedy heuristic (CW) which solves the CVRP.

Initially, this heuristic considers n routes to visit all customers, where each route includes

only one customer. Next, at each iteration the two routes that can be feasibly merged

with the largest saving are chosen to be merged. The saving si j = ci0 + c0 j − ci j is the

cost saved by the merge of the routes (0, . . . , i,0) and (0, j, . . . ,0).

Based on CW saving formula, Gaskell (1967) and Yellow (1970) proposed the

parameterised saving expression si j = ci0 + c0 j − λci j, where λ is a parameter that

weights the relative importance of ci j. Paessens (1988) proposed si j = ci0 +c0 j −λci j +

µ |c0i − c j0|, where µ is another weight parameter. Later, Altinel and Öncan (2005)

included the customer demands in their CW enhancement (CW-AO): si j = ci0 + c0 j −

λci j + µ |c0i − c j0|+υ
di+d j

d̄
, where d̄ is the average demand and υ is a new weight

parameter. To set the specific values of the three parameters when solving every instance,

the authors vary the values of λ between 0.1 and 2, and the values of µ and υ between

0 and 2, using a step size equal to 0.1. So, CW-AO is executed 8,820 times with all

combinations of the parameter values and the best solution obtained is chosen. This

method improves on the original CW but requires much more computing time.

Lately, Doyuran and Çatay (2011) proposed the following savings formula:

si j =
ci0 + c0 j −λci j

cmax
+µ

cosθi j

∣

∣cmax − (c0i − c j0)
/

2
∣

∣

cmax
+υ

∣

∣d̄ − (di +d j)
/

2
∣

∣

dmax
,

where θi j is the angular distance between the customers i and j with respect to the depot,

cmax is the longest distance among all customer pairs and dmax is the maximum demand

among all customers. This savings function has the same 3 parameters that the Altinel

and Öncan function, and Doyuran and Çatay also propose to run CW-DC 8,820 times

with the combinations of the parameter values. But the variation of the parameter values

differs: λ between 0.1 and 2, µ between 0 and 2, and υ between −1 and 1, using a step

size equal to 0.1.

3. EAGH-1 and IEAGH-1 for the CVRP

3.1. EAGH-1

The main characteristic of a greedy heuristic is that at each iteration an irreversible

decision is taken according to an index value associated with each possible decision.

When two or more indices are considered in a greedy heuristic, infinite mix-indices

6 Improving parametric Clarke and Wright algorithms by means...

can be generated by linear combination and, therefore, an infinite set H of heuristics

can be obtained. Regarding savings algorithms, the infinite set of heuristics H can be

defined by the following function h which depends on the set of attributes of the decision

(ai j =
{

ci0,c0 j,ci j,c0i,c j0,di,d j, d̄
}

) and a set of parameters (Π= {λ,µ,υ}) that weight

the elementary indices: h(ai j,Π) = ci0 + c0 j −λci j +µ |c0i − c j0|+υ
di+d j

d̄
.

The EAGH-1 procedure (Corominas, 2005) seeks the best heuristic function h ∈ H

for a given instance according to the objective function f (XΠ) to be minimised, where

XΠ is the solution obtained by h(ai j,Π). In the case of the CVRP, f is the total

route cost. Note that to find the best heuristic function h(ai j,Π) is equivalent to find

the Π parameter values that minimise f . Because the function f is not expected to

have any special or recognisable property, only a direct optimisation algorithm (i.e.

an optimisation algorithm that only uses the values of the function) may be used.

Corominas (2005) proposes to apply the Nelder and Mead algorithm (N&M), also

known as the flexible polyhedron algorithm (Corominas et al., 2010), as the optimisation

algorithm for minimising f .

N&M is based on q+ 1 points (q = |Π|) that are the vertices of a q-dimensional

simplex: V0,V1, . . . ,Vi, . . . ,Vq. The coordinates of the vertices represent the parameter

values (Π), and each vertex is evaluated using f , i.e., the value of the solution (according

to f) obtained when the instance is solved using h(ai j,Π) and Π is defined by the

coordinates of the vertex. At each iteration of N&M, the vertices of the simplex are

moved over the q-dimensional space according to their evaluations. N&M starts from

an initial regular simplex. To build it, we have to provide N&M with an initial vertex

(V0) and the length of the edges of the initial simplex (δ). Thus, the N&M parameters

are f , V0 and δ. A more detailed description of N&M is provided in the Appendix.

We propose to solve the CVRP using four procedures based on EAGH-1, and the

CW-AO and CW-DC saving formulae. First define the following two sets of decision

attributes: aAO
i j =

{

ci0,c0 j,ci j,c0i,c j0,di,d j, d̄
}

and aDC
i j =

{

ci0,c0 j,ci j,c0i,c j0,di,d j, d̄,

θi j,c
max,dmax

}

, and define the following three sets of parameters: Π3 = {λ,µ,υ}, Π6 =

{λ,µ,υ,β1,β2,β3} and Π8 = {λ,µ,υ,β1,β2,β3,β4,β5}. Finally, define the following

four sets of heuristics:

hAO
3 (aAO

i j ,Π3) = ci0 + c0 j −λci j +µ |c0i − c j0|+υ
di+d j

d̄

hAO
8 (aAO

i j ,Π8) = c
β1
i0 + c

β2
0 j −λc

β3
i j +µ |c0i − c j0|

β4 +υ
(

di+d j

d̄

)β5

hDC
3 (aDC

i j ,Π3) =
ci0+c0 j−λci j

cmax +µ
cosθi j

∣

∣

∣

∣

∣

cmax−
(c0i−c j0)

2

∣

∣

∣

∣

∣

cmax +υ

∣

∣

∣

∣

∣

d̄−
(di+d j)

2

∣

∣

∣

∣

∣

dmax

hDC
6 (aDC

i j ,Π6) =
(

ci0+c0 j−λci j

cmax

)β1

+µ







cosθi j

∣

∣

∣

∣

∣

cmax−
(c0i−c j0)

2

∣

∣

∣

∣

∣

cmax







β2

+υ







∣

∣

∣

∣

∣

d̄−
(di+d j)

2

∣

∣

∣

∣

∣

dmax







β3

Albert Corominas, Alberto Garcı́a-Villoria and Rafael Pastor 7

The four procedures based on EAGH-1 that we propose, EAGH −1AO
3 , EAGH −1AO

3 ,

EAGH −1DC
3 and EAGH −1DC

6 , consist in applying EAGH-1 to the set of heuristics

defined by hAO
3 , hAO

8 , hDC
3 and hDC

6 , respectively. Regarding the initial vertex V0, we use a

point that corresponds to the original Clarke and Wright algorithm: λ= 1, µ= 0, υ= 0,

β1 = β2 = . . .= 1. Regarding the initial length of the edges δ, since different solutions

may be obtained according to its value, 20 δ values between 0.25 and 5 with a step size

equal to 0.25 have been considered. Thus, EAGH −1AO
3 , EAGH −1AO

3 , EAGH −1DC
3

and EAGH −1DC
6 are run using the 20 δ values and the best found solution is returned.

Since the sets of heuristics defined by hAO
3 and hDC

3 are subsets of the sets defined by

hAO
8 and hDC

6 , respectively, we expect that better solutions are found by EAGH −1AO
3 and

EAGH −1DC
6 , although we also expected that the computing time will be larger since

the best heuristic will be sought in a larger search space.

3.2. IEAGH-1

We propose a new procedure that we call Iterative EAGH-1 (IEAGH-1). It takes

advantage of the two following properties of the optimisation algorithm that is used

by EAGH-1 (the N&M algorithm): i) it is recommended to use a good starting point V0,

and ii) N&M ensures that the best set of parameters found Π∗ is always better than or

equal to V0 (i.e, f (XΠ∗)≤ f (XV0
)).

IEAGH-1 is based on applying iteratively EAGH-1. It first apply EAGH-1. Let ∏
∗
0

be the set of parameters found. Then, at each iteration it (it = 1,2, . . .), it applies EAGH-

1 using the initial vertex ∏
∗
it−1, where ∏

∗
it is the set of parameters found by EAHG-1

at the iteration it. The stop condition of IEAGH-1 is that no improvement is achieved,

that is, f (XΠ∗
it−1

) = f (XΠ∗
it
). Note that IEAGH-1 always ensures solutions better than or

equal to EAGH-1 but the computing time will be, of course, larger.

Analogously to the EAGH-1 procedures proposed for the CVRP, we propose four

IEAGH-1 procedures for solving this problem: IEAGH −1AO
3 , IEAGH −1AO

8 , IEAGH−

1DC
3 and IEAGH −1DC

6 . First, EAGH −1AO
3 , EAGH −1AO

3 , EAGH −1DC
3 and

EAGH −1DC
6 are run, respectively, using the 20 aforementioned δ values. Then, at each,

iteration, EAGH-1 is run using only 5 δ values around the δ value that returned the best

solution at previous iteration. That is, if at iteration it − 1 the best solution was found

using a δ value equal to δ∗, then the δ values δ∗ − 0.50, δ∗ − 0.25, δ∗, δ∗ + 0.25,

δ∗+0.50 are used at the iteration it.

8 Improving parametric Clarke and Wright algorithms by means...

Table 1: Average percentage solution improvement over CW (average computing times, in seconds).

Global P A B CE CMT

Altinel and

Öncan

2.97

(6.96)

4.47

(3.96)

2.44

(4.69)

2.10

(4.79)

3.26

(7.11)

2.88

(32.15)

Doyuran and

Çatay

3.16

(7.43)

5.20

(4.85)

2.47

(5.14)

2.10

(5.24)

3.22

(7.21)

2.86

(31.80)

EAGH −1AO
3 3.22

(5.73)

4.98

(3.74)

2.62

(4.08)

2.21

(4.34)

3.34

(5.65)

3.18

(23.00)

EAGH −1AO
3 3.40

(37.73)

5.39

(24.19)

2.69

(26.90)

2.35

(26.91)

3.43

(37.11)

3.31

(158.31)

EAGH −1DC
3 3.17

(6.53)

5.04

(4.26)

2.54

(4.72)

2.20

(5.10)

3.12

(6.44)

2.97

(25.45)

EAGH −1DC
6 3.46

(24.25)

5.47

(15.42)

2.85

(17.42)

2.33

(18.96)

3.53

(23.58)

3.18

(96.47)

IEAGH −1AO
3 3.26

(12.60)

5.03

(8.30)

2.64

(9.16)

2.27

(9.84)

3.34

(12.16)

3.20

(48.99)

IEAGH −1AO
8 3.51

(88.85)

5.40

(51.15)

2.92

(64.49)

2.39

(64.03)

3.55

(83.34)

3.46

(389.21)

IEAGH −1DC
3 3.29

(22.71)

5.15

(14.04)

2.63

(16.77)

2.35

(18.22)

3.29

(21.56)

3.13

(88.90)

IEAGH −1DC
6 3.51

(30.83)

5.47

(18.71)

2.89

(21.63)

2.42

(24.36)

3.53

(30.18)

3.27

(126.46)

4. Computational experiment

The test instances used in the computational experiment are the same instances used in

Altinel and Öncan (2005), which were also used in Doyuran and Çatay (2011). Namely,

72 instances of Augerat et al. (1995) grouped in three sets (22 in set P, 27 in set A and

23 in set B), 8 instances of Christofides and Eilon (1969) (set CE) and 7 instances of

Christofides et al. (1979) (set CMT).

The algorithms were coded in Java and the computational experiment was carried out

using a 1.17 GHz Intel Core i7 with 3.0 GB of RAM. Because the Altinel and Öncan

(2005) and Doyuran and Çatay (2011) experiments were carried out on computers dif-

ferent from ours, we coded and ran again their experiments on our computer so the com-

parison of the computational times is fair. We found a slight variability in the numerical

results when we rerun their experiments. This phenomenon in savings algorithms have

been reported, for instance, in Laporte et al. (2000) and in Doyuran and Çatay (2011).

The reason that may cause this difference is the computer code (for instance, in savings

Albert Corominas, Alberto Garcı́a-Villoria and Rafael Pastor 9

algorithms it is not specified how to break the ties between pair of costumers with equal

savings). For the sake of consistency, all results reported here are the ones found with

our code.

As it is done in the literature, we consider the following two criteria when evaluating

the procedures: the average percentage solution improvement over the original CW and

the average computing time. Table 1 shows the obtained results, in which the grey rows

indicate dominated procedures (worse solutions, on average, are obtained in equal or

higher computing time or equal solutions, on average, are obtained in higher computing

time).

We can see in Table 1 that the results of Altinel and Öncan (2005) and Doyu-

ran and Çatay (2011) are dominated by EAGH −1AO
3 and EAGH −1DC

3 . Moreover,

EAGH −1DC
3 is dominated by EAGH −1AO

3 . Therefore, we compare EAGH −1AO
3 with

them. Specifically, the average improvement obtained with EAGH −1AO
3 over CW is

7.76%, 1.86% and 1.55% better than the improvement obtained in Altinel and Öncan

(2005), Doyuran and Çatay (2011) and by EAGH −1DC
3 , respectively, and the aver-

age computing time is 1.21, 1.30 and 1.14 times smaller, respectively. Other exist-

ing dominated procedures are EAGH −1AO
3 (by EAGH −1DC

6) and IEAGH −1AO
8 (by

IEAGH −1DC
6). On average, the best solutions obtained with EAGH are those that cor-

respond to EAGH −1DC
6 , whose improvement over CW is 14.16%, 8.67% and 6.94%

better than the improvement achieved by Altinel and Öncan, Doyuran and Çatay and

EAGH −1AO
3 , respectively.

As we expected, all IEAGH-1 procedures obtain better solutions than their respec-

tive EAGH-1 procedures, although the computing times are larger. The average im-

provements over CW obtained with IEAGH −1AO
3 , IEAGH −1AO

8 , IEAGH −1DC
3 and

IEAGH −1DC
6 are 1.23%, 3.13%, 3.65% and 1.42% better than the improvements ob-

tained with EAGH −1AO
3 , EAGH −1AO

3 , EAGH −1DC
3 and EAGH −1DC

6 , respectively,

and the average computing times are 2.20, 2.35, 3.48 and 1.27 times larger, respectively.

The best solutions are obtained with IEAGH −1DC
6 , which dominates IEAGH −1AO

8

(they obtain the same average improvement but the computing time of IEAGH −1AO
8

is larger). Specifically, the IEAGH −1DC
6 improvement over CW is 15.38% and 9.97%

better than the improvement achieved by Altinel and Öncan, and Doyuran and Çatay,

respectively.

5. Conclusions

In this paper we have improved the resolution of the CRVP with parametric Clarke and

Wright savings heuristics. To achieve this objective, we have considered the addition of

new parameters in the parameterized savings formula.

We first propose to use EAGH-1 (Corominas, 2005) and the computational experi-

ment shows that better solutions, on average, can be found with less computing time.

Specifically, the EAGH −1AO
3 improvement over CW is, on average, 1.86% better than

10 Improving parametric Clarke and Wright algorithms by means...

Doyuran and Çatay’s improvement whereas their average computing times are 5.73 s

and 7.43 s, respectively. With some more computing time (24.25 s), EAGH −1DC
6 is

able to obtain an improvement 8.67% better than the Doyuran and Çatay’s procedure

improvement.

Moreover, we propose a new procedure based on EAGH-1 that we call Iterative

EAGH-1 (IEAGH-1). It is shown that the solutions are improved with respect to the

ones obtained by EAGH-1 at the expense of a larger computing time. The best results

are obtained by IEAGH −1DC
6 , which slightly improves EAGH −1DC

6 but the average

computing time is gone up by 6.58 s.

Although we have proposed IEAGH-1 to solve the CRVP, this procedure can be also

applied to solve other combinatorial optimisation problems.

APPENDIX

The N&M algorithm is a direct search method for minimising f (x) where f : Rq → R is

the objective function and q the dimension. It is based on q+1 points that are the vertices

of a simplex in the q-dimensional space: x1,x2, . . . ,xq+1. N&M starts from an initial

simplex (usually regular) and iteratively moves the vertices over the q-dimensional space

according to their objective function values until the differences between the values of

the vertices are small enough and the simplex is small enough.

At each iteration of N&M, the vertices of the simplex are labelled and ordered such

that f (x1) ≤ f (x2) ≤ . . . ≤ f (xq+1). In the case of ties, the oldest vertex has priority.

Let xr = x̄ + α(x̄− xq+1) be the reflection of xq+1, where x̄ is the centroid of the q

best vertices (i.e., x̄ = ∑
q
i=1 xi

/

q) and α > 0 is a parameter. Four cases are considered

according to the f (xr) value:

1. Expansion. If f (xr) < f (x1) then calculate xe = x̄+ γ(xr − x̄), where γ > 1 is a

parameter. If f (xe)< f (x1), replace xq+1 with xe; otherwise, replace xq+1 with xr.

2. Reflection. If f (x1)≤ f (xr)< f (xq) then replace xq+1 with xr.

3. Outside contraction. If f (xq)≤ f (xr)< f (xq+1) then calculate xoc = x̄+η(xr − x̄),

where 0 < η < 1 is a parameter. If f (xoc) < f (xr), replace xq+1 with xoc; other-

wise, replace xq+1 with xr and shrink all vertices except x1: xi = x1 +δ (xi − x1)

i = 2, . . . ,q+1, where 0 < δ < 1 is a parameter.

4. Inside contraction. If f (xq+1) ≤ f (xr) then calculate xic = x̄ + η(xq+1 − x̄). If

f (xic) < f (xq+1), replace xq+1 with xic; otherwise, shrink all vertices except x1

as in 3).

The values of parameters α, γ, η and δ that we have adopted are 1, 2, 0.5 and 0.5,

respectively, which have been almost always used in the literature (Lagarias et al., 1998).

For more details of N&M, see Nelder and Mead (1965) or Corominas et al. (2010).

Albert Corominas, Alberto Garcı́a-Villoria and Rafael Pastor 11

References

Adenso-Dı́az, B. and Laguna, M. (2006). Fine-tuning of algorithms using fractional experimental designs

and local search. Operations Research, 54, 99–114.

Altinel, I. K. and Öncan, T. (2005). A new enhancement of the Clarke and Wright savings heuristic for the

capacitated vehicle routing problem. Journal of the Operational Research Society, 56, 954–61.

Augerat, P., Belenguer, J. M., Benavent, E., Corberán, A., Naddef, D. and Rinaldi, G. (1995). Computational

results with a Branch and Cut Code for the Capacitated Vehicle Routing Problem. Technical report

RR 949-M, U. Joseph Fourier, France.

Battarra, M., Golden, B. and Vigo, D. (2008). Tuning a parametric Clarke-Wright heuristic via a genetic

algorithm. Journal of the Operational Research Society, 59, 1568–72.

Christofides, N. and Eilon, S. (1969). An algorithm for the vehicle routing dispatching problem. Operations

Research Quarterly, 20, 309–18.

Christofides, N., Mingozzi, A. and Toth, P. (1979). The Vehicle Routing Problem. Combinatorial Optimiza-

tion, Christofides, N., Mingozzi, A., Toth, P. and Sandi, C. (Eds.), Wiley, Chichester, 318–38.

Clarke, G. and Wright, J. (1964). Scheduling of vehicles from a central depot to a number of delivery points.

Operations Research, 12, 568–81.

Corominas, A. (2005). Empirically Adjusted Greedy Algoriths (EAGH): A new approach to solving

combinatorial optimisation problems. Working paper IOC-DT-P-2005-22, Universitat Politècnica

de Catalunya, Spain.

Corominas, A., Garcı́a-Villoria, A. and Pastor, R. (2010). Fine-tuning a parametric Clarke and Wright

heuristic by means of EAGH (empirically adjusted greedy heuristics). Journal of the Operational

Research Society, 61, 1309–14.

Doyuran, T. and Çatay, B. (2011). A robust enhancement to the Clarke-Wright savings algorithm. Journal

of the Operational Research Society, 62, 223–31.

Gaskell, T. J. (1967). Bases for vehicle fleet scheduling. Operations Research Quarterly, 18, 281–95.

Lagarias, J. C., Reeds, J. A., Wright, M. H. and Wright, P. E. (1998). Convergence properties of the Nelder-

Mead simplex method in low dimensions. SIAM Journal of Optimization, 9, 112–47.

Laporte, G., Gendreau, M., Potvin, J.and Semet, F. (2000). Classical and modern heuristics for the vehicle

routing problem. International Transactions in Operational Research, 7, 285–300.

Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7,

308–13.

Paessens, H. (1988). The savings algorithm for the vehicle routing problem. European Journal of Opera-

tional Research, 34, 336–44.

Yellow, P. (1970). A computational modification to the savings method of vehicle scheduling. Operations

Research Quarterly, 21, 281–83.

