
Statistics & Operations Research Transactions

SORT 38 (1) January-June 2014, 73-88

Statistics &
Operations Research

Transactions
c© Institut d’Estadstica de Catalunya

sort@idescat.catISSN: 1696-2281
eISSN: 2013-8830
www.idescat.cat/sort/

The asymptotic relative efficiency and the ratio of

sample sizes when testing two different null

hypotheses
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Abstract

Composite endpoints, consisting of the union of two or more outcomes, are often used as the

primary endpoint in time-to-event randomized clinical trials. Previously, Gómez and Lagakos

provided a method to guide the decision between using a composite endpoint instead of one

of its components when testing the effect of a treatment in a randomized clinical trial. Consider

the problem of testing the null hypotheses of no treatment effect by means of either the single

component or the composite endpoint. In this paper we prove that the usual interpretation of

the asymptotic relative efficiency as the reciprocal ratio of the sample sizes required for two test

procedures, for the same null and alternative hypothesis, and attaining the same power at the

same significance level, can be extended to the test procedures considered here for two different

null and alternative hypotheses. A simulation to study the relationship between asymptotic relative

efficiency and finite sample sizes is carried out.
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1. Introduction

In clinical trials research, one of the most important issues that investigators have

to solve at the design stage of the study is the appropriate choice of the primary

endpoint. Composite endpoints (CE) consisting of the union of two or more outcomes

are commonly used as primary endpoints. For example, in the cardiovascular area the
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relevant endpoint of death is often combined with other additional endpoints such as

myocardial infarction, stroke or hospitalization. Pros and cons on the use of CE have

been extensively discussed (Freemantle et al., 2003; Ferreira-González et al., 2007,

among many others). One of the main advantages of using a CE relies in the fact that

by means of a CE the problem of multiplicity is adequately addressed and the bias

associated with competing risks (Wittkop et al., 2010) is avoided. Also, with a CE the

number of observed events will be higher and, hopefully, the power of the test will

increase. However, as it has been discussed (Montori et al., 2005) and shown in Gómez

and Lagakos (2013), adding inappropriate components to the relevant endpoint might

actually lead to a decrease in the power of the test statistic, consequently having a larger

chance to fail in detecting a real effect of the treatment under study.

Gómez and Lagakos (2013) developed a methodology to help to decide when it is

worthwhile to base the analysis on the composite endpoint E∗ = E1 ∪E2 where E1 and

E2 are two candidate relevant endpoints to evaluate the effect of a treatment instead of

sticking to one of them, E1, say. In order to do so, they compared how more efficient than

E1 would E∗ be to justify its use. Let H0 be the null hypothesis of no treatment effect

evaluated on E1 and denote by Ha an alternative hypothesis, for instance, claiming to

delay the event E1. Analogously, define H∗
0 and H∗

a the null and alternative hypotheses

if the treatment effect is to be evaluated on E∗. Since when comparing two treatment

groups based on time-to-event endpoints, the primary analysis would be based, very

commonly, on a logrank test, their method considers the logrank test Z to test H0 versus

Ha and the logrank test Z∗ to test H∗
0 versus H∗

a . The asymptotic relative efficiency

(ARE) of Z∗ versus Z is the measure proposed to choose between E1 and E∗, with

values larger than 1 in favour of E∗. This relative measure can be computed as (µ∗/µ)2

where µ and µ∗ are, respectively, the asymptotic means of Z and Z∗, under alternative

contiguous hypotheses to H0 and H∗
0 . The purpose of this paper is to prove that the usual

interpretation of the ARE, as the ratio of sample sizes, n and n∗, needed to attain the

same power for a given significance level, still holds even though two different sets of

hypothesis (H0 versus Ha and H∗
0 versus H∗

a ) are compared.

To clarify the purpose of our investigation consider the following. If we were to test

H0 versus Ha with two different test statistics Sn and Tm, Pitman’s relative efficiency

would be defined as the ratio m/n, where n and m are the required sample sizes for Sn

and Tm, respectively, to attain the same power for a given significance level. Furthermore,

if both Sn and Tm are asymptotically normal with unit variance and means µS and

µT , it can be proved that Pitman’s ARE corresponds to the square of the ratio of the

noncentrality parameters, that is (µS/µT )
2. Gómez and Lagakos’ method compares the

logrank statistics: Z and Z∗ derived for two different set of hypotheses H0 versus Ha

and H∗
0 versus H∗

a and do so using, as definition of the ARE, the ratio (µ∗/µ)2 where µ

and µ∗ are, respectively, the asymptotic means of Z and Z∗, under alternative contiguous

hypotheses to H0 and H∗
0 .

This paper is organized as follows. In Section 2 the notation, assumptions and

main results from Gómez and Lagakos’ paper are introduced. Section 3 establishes
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the limiting relationship between ARE and sample sizes and proves that the usual

interpretation of the ARE as the ratio of sample sizes holds. Section 4 presents a

simulation to study under which conditions and for finite sample sizes, the relationship

ARE(Z∗,Z) = (µ∗/µ)2 = n/n∗ holds where n and n∗ are the needed sample sizes for Z

and Z∗, respectively, to attain the same power for a given significance level. Section 5

concludes the paper with a discussion.

2. Notation, the logrank test and the asymptotic relative efficiency

2.1. The logrank tests for the relevant and for the composite endpoints

Assume that we have a two-arm study involving random assignment to an active (X = 1)

or control treatment (X = 0) aiming to prove the efficacy of the new active treatment.

The effect of treatment is to be evaluated on the time T
( j)

1 to a relevant event E1, where

the superscript j indicates the treatment group ( j = 0 for the control group and j = 1 for

the treatment group). Let λ
( j)
1 (t) denote the hazard function of T

( j)
1 ( j = 0,1). The null

hypothesis of no effect is given by H0 : HR1(t) = λ
(1)
1 (t)/λ

(0)
1 (t) = 1 and the alternative

that the new treatment improves survival by Ha : HR1(t)< 1. The logrank test Z is used

to test that the new treatment improves survival.

Assume now that an additional endpoint E2 is considered as component of the

primary endpoint and the composite endpoint E∗ = E1 ∪ E2 is to be used, instead, to

prove the efficacy of the new treatment. The effect of treatment would then be evaluated

on the time T
( j)
∗ to E∗ where T

( j)
∗ = min{T

( j)
1 ,T

( j)
2 } and T

( j)
2 stands for the time to E2

( j = 0,1). Let λ
( j)
2 (t) and λ

( j)
∗ (t) denote, respectively, the hazard functions of T

( j)
2 and

T
( j)
∗ ( j = 0,1). The treatment effect on E∗ would then be tested with the logrank test Z∗

to compare H∗
0 : HR∗(t) = λ

(1)
∗ (t)/λ

(0)
∗ (t) = 1 versus H∗

a : HR∗(t)< 1.

Observation of endpoints E1 and E2 depends on whether or not they include a

terminating event and yield four different situations referred, in Gómez and Lagakos

(2013), as Cases 1, 2, 3 and 4. In this paper we assume that the additional endpoint does

not include a terminating event, which corresponds to Case 1 when neither the relevant

nor the additional endpoint includes a terminating event, and Case 3, when the relevant

endpoint includes a terminating event.

Schoenfeld (1981) studies the asymptotic behaviour of the logrank statistic and proves

that under the null hypothesis of no treatment difference, the logrank is asymptotically

N(0,1) and, under a sequence of alternatives contiguous to the null, the logrank is

asymptotically normal with unit variance and finite mean. Gómez and Lagakos apply

Schoenfeld’s results and proceed as follows. They consider λ
(0)
1 (t) as fixed and define a

sequence of alternatives Ha,n consisting of instantaneous hazard functions close enough

to λ
(0)
1 (t), for instance taking λ

(1)
1,n(t) = λ

(0)
1 (t)eg(t)/

√
n for some g(t) function. These

sequence of alternatives, formulated equivalently as HR1,n(t) = eg(t)/
√

n, include pro-
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portional hazard alternatives, i.e, taking g(t) = β for a fixed real value β . Logrank Z

is asymptotically N(0,1) under the null hypothesis of no treatment difference (H0 :

HR1(t) = 1) and asymptotically normal with unit variance and mean µ given in equation

(1) under the sequence of alternatives Ha,n : HR1,n(t) = eg(t)/
√

n < 1. Analogously, fix

λ
(0)
∗ (t) and define H∗

0 : HR∗(t) = 1 and the sequence of alternatives H∗
a,n : HR∗,n(t) =

eg∗(t)/
√

n < 1 for a given function g∗(t). It follows that Z∗ is asymptotically N(0,1) under

H∗
0 and asymptotically normal with unit variance and mean µ∗ given in equation (2)

under the sequence H∗
a,n. The asymptotic means of Z and Z∗ are given by

µ=

∫

∞

0 g(t)p(t)[1− p(t)]PrH0
{U ≥ t}λ(0)1 (t)dt

√

∫

∞

0 p(t)[1− p(t)]PrH0
{U ≥ t}λ(0)1 (t)dt

, (1)

µ∗ =

∫

∞

0 g∗(t))p∗(t)[1− p∗(t)]PrH∗
0
{U∗ ≥ t}λ(0)∗ (t)dt

√

∫

∞

0 p∗(t)[1− p∗(t)]PrH∗
0
{U∗ ≥ t}λ(0)∗ (t)dt

, (2)

where U = min{T1,C} (in Cases 1 and 3) and U∗ = min{T∗,C} denote the observed out-

come; C denotes the censoring time; p(t) = PrH0
{X = 1|U ≥ t} and p∗(t) = PrH∗

0
{X =

1|U∗ ≥ t} are the null probabilities that someone at risk at time t is in treatment group 1;

PrH0
{U ≥ t} and PrH∗

0
{U∗ ≥ t} are the null probabilities that someone is still at risk at

time t and PrH0
{U ≥ t}λ(0)1 (t) and PrH∗

0
{U∗ ≥ t}λ(0)∗ (t) correspond to the probabilities,

under the null hypothesis, of observing events E1 and E∗, respectively, by time t.

2.2. Asymptotic relative efficiency

Efficiency calculations throughout the paper will assume that end-of-study censoring at

time τ (τ = 1 without loss of generality) is the only non-informative censoring cause

for both groups; this assumption indirectly implies that the censoring mechanism is

the same for both groups. It is as well assumed that the hazard functions λ
( j)
1 (t) and

λ
( j)
2 (t) ( j = 0,1) are proportional, that is, HR1(t) = HR1 and HR2(t) = HR2, for all

t, where HR1(t) = λ
(1)
1 (t)/λ

(0)
1 (t) and HR2(t) = λ

(1)
2 (t)/λ

(0)
2 (t) are the hazard ratios

between T
(0)

1 and T
(1)

1 and between T
(0)

2 and T
(1)

2 , respectively. Note that although we

are assuming that the hazard functions λ
( j)
1 (t) and λ

( j)
2 (t) ( j = 0,1) are proportional,

this does not imply the proportionality of hazards λ
(0)
∗ (t) and λ

(1)
∗ (t) for the composite

endpoint T∗ (see Figure 1).

To assess the difference in efficiency between using logrank test Z, based on the

relevant endpoint E1, and logrank test Z∗, based on the composite endpoint E∗, Gómez

and Lagakos base their strategy on the behaviour of the asymptotic relative efficiency

(ARE) of Z∗ versus Z. The ARE is a measure of the relative power of two tests that can
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Figure 1: Survival and hazard ratio for the relevant endpoint (RE), T1, for the additional endpoint (AE),

T2 and for the composite endpoint (CE), T∗ = min{T1,T2}. T1 ∼ Weibull with shape parameter β1 = 2

(increasing hazard) for treatment groups 0 and 1 and T2 ∼ Weibull with shape parameter β2 = 1 (constant

hazard) for treatment groups 0 and 1. Scale parameters for T1 and T2 have been calculated such that Pr{T1

observed in group 0}=0.1, Pr{T2 observed in group 0}=0.25, HR1 = 0.5, HR2 = 0.9 and Spearman’s

ρ(T1,T2) = 0.45 assuming Frank’s copula between T1 and T2. Considering the RE as a terminating event

(case 3), in this setting ARE(Z∗,Z) = 0.21.

be interpreted, when the two tests are for the same null and alternative hypothesis, as

the ratio of the required sample sizes to detect a specific treatment effect to attain the

same power for a given significance level (Lehmann and Romano, 2005). In this case,

a value of ARE= 0.6 would mean that we only need 60% as many cases to reach a

given power if we use E1 as we would need if we used E∗. Whenever the tests under

consideration, Z and Z∗, are asymptotically N(0,1) under H0 and H∗
0 , respectively, and

asymptotically normal with variance 1 under a sequence of contiguous alternatives to

the null hypothesis, a different definition for Pitman’s relative efficiency as the square

of the ratio of the non-centrality parameters µ and µ∗ is appropriate

ARE(Z∗,Z) =

(

µ∗
µ

)2

, (3)

where µ and µ∗ are to be replaced by expressions (1) and (2).

Before providing the expression that is being used to evaluate the ARE, and for the

sake of clarity, we enumerate the assumptions that have been taken into account:

• End-of-study censoring at time τ is the only non-informative censoring cause for

both groups.

• The additional endpoint does not include a terminating event.
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• The hazard ratios between T
(0)

1 and T
(1)

1 and between T
(0)

2 and T
(1)

2 are propor-

tional, that is, HR1(t) = λ
(1)
1 (t)/λ

(0)
1 (t) = HR1 and

HR2(t) = λ
(1)
2 (t)/λ

(0)
2 (t) = HR2 for all t.

• Effect of treatment on E1 is tested establishing H0 : HR1 = 1 versus a sequence

of alternatives Ha,n : λ
(1)
1,n(t) = λ

(0)
1 (t)eg(t)/

√
n for some g(t) function. Note that

g(t)/
√

n = log{λ(1)1,n(t)/λ
(0)
1 (t)}.

• Effect of treatment on E∗ is tested establishing H∗
0 : HR∗(t) = 1 versus a sequence

of alternatives H∗
a,n : HR∗,n(t) = eg∗(t)/

√
n < 1 for a given function g∗(t). Note that

g∗(t)/
√

n = log{HR∗,n(t)}.

Under the above assumptions expression (3) becomes

ARE(Z∗,Z) =

(

∫ 1
0 log

{

λ
(1)
∗ (t)/λ

(0)
∗ (t)

}

f
(0)
∗ (t)dt

)2

(

log
{

HR1

})2
(
∫ 1

0 f
(0)
∗ (t)dt)(

∫ 1
0 f

(0)
1 (t)dt)

, (4)

where f
(0)
1 (t) and f

(0)
∗ (t) are the density functions of T

(0)
1 and T

(0)
∗ , respectively.

Remark The density function f
(0)
∗ (t) is the density of the T

(0)
∗ = min{T

(0)
1 ,T

(0)
2 },

computed from the joint density between T
(0)

1 and T
(0)

2 , which itself is built from the

marginals of T
(0)

1 and T
(0)

2 by means of a bivariate copula.

3. Relationship between ARE and sample sizes

We start establishing that if the hazard ratios for T
( j)

1 ( j = 0,1) and for T
( j)

2 ( j = 0,1)

approach the unity as n gets large, so does the hazard ratio of the minimum T
( j)
∗ between

T
( j)

1 and T
( j)

2 ( j = 0,1).

Lemma 1 Given two sequences of hazard ratios {HR1,n(t) = λ
(1)
1,n(t)/λ

(0)
1 (t)} and

{HR2,n(t) = λ
(1)
2,n(t)/λ

(0)
2 (t)}, both converging uniformly to 1 as n → ∞, the sequence

corresponding to the hazard ratio of T
( j)
∗ = min{T

( j)
1 ,T

( j)
2 }, namely {HR∗,n(t) =

= λ
(1)
∗,n(t)/λ

(0)
∗ (t)}, tends to 1 as n → ∞. In particular, this lemma holds whenever

log(λ
(1)
k,n(t)/λ

(0)
k (t)}) = O(n−1/2), which in turn, is true if log(λ

(1)
k,n(t)/λ

(0)
k (t)}) =

= gk(t)/
√

n, for any bounded real function gk(t) (k = 1,2).

Proof 1 It follows immediately that for fixed t, limn→∞λ
(1)
1,n(t) = λ

(0)
1 (t) and

limn→∞λ
(1)
2,n(t) = λ

(0)
2 (t). Furthermore, it follows that the corresponding densities and
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survival functions f
(1)
1,n (t), f

(1)
2,n (t), S

(1)
1,n(t) and S

(1)
2,n(t), converge to f

(0)
1 (t), f

(0)
2 (t), S

(0)
1 (t)

and S
(0)
2 (t), respectively. Taking into account that the survival function of the minimum,

S
(1)
∗,n(t) is expressed in terms of the marginal survival functions S

(1)
1,n(t) and S

(1)
2,n(t) of T

(1)
1

and T
(1)

2 via a copula C, that is,

S
(1)
∗,n(t) =C(S

(1)
1,n(t),S

(1)
2,n(t)), it remains to prove that limn→∞ S

(1)
∗,n(t) = S

(0)
∗ (t). This result

will imply that

limn→∞ f
(1)
∗,n (t)= f

(0)
∗ (t), limn→∞λ

(1)
∗,n(t)=λ

(0)
∗ (t) and hence the sequence HR∗,n(t)→

1 as n → ∞, as we wanted to prove.

The convergence of S
(1)
∗,n(t) to S

(0)
∗ (t) is guaranteed by the convergence of S

(1)
1,n(t) and

S
(1)
2,n(t) to S

(0)
1 (t) and S

(0)
2 (t), respectively, together with the fact that bivariate copulas

C are bivariate distribution functions with uniform marginals. The reader is referred to

Lindner and Szimayer (2005) for the corresponding technical proofs. �

Proposition 1 Consider two test procedures φn and φ∗
n to test H0 : HR1(t) = 1 against

Ha,n : HR1,n(t)< 1 and H∗
0 : HR∗(t) = 1 against H∗

a,n : HR∗,n(t)< 1, respectively. Let n

and n∗ be the sample sizes required for φn and φ∗
n , respectively, to have power at least

Π at level α. Assume the sequences φ = {φn} and φ∗ = {φ∗
n} are based on the logrank

statistics Z and Z∗, respectively, converging, to Normal (µ,1) and Normal (µ∗,1) with

µ and µ∗ given in (1) and (2), under sequences of local alternatives HRk,n(t) (k = 1,2)

converging uniformly to 1 as n → ∞. Given 0 < α< Π < 1,

lim
HR1,n(t)→1

HR2,n(t)→1

n

n∗
= ARE(Z∗,Z).

The usual interpretation of the ARE as the reciprocal ratio of the sample sizes holds even

when two different sets of hypotheses (H0 versus Ha,n and H∗
0 versus H∗

a,n) are tested.

As a consequence of this proposition, the interpretation of the ARE is the following. If

ARE(Z∗,Z) = 0.7, then, asymptotically, we only need 70% as many cases to attain a

given power if we use Z as we would need if we used Z∗.

Proof 2 By Lemma 1, uniform convergence to 1 of {HR1,n(t)} and {HR2,n(t)} imply

that limHR∗,n(t) → 1. Under the sequence of contiguous alternatives to the null Ha,n :

{HR1,n(t) = λ
(1)
1,n(t)/λ

(0)
1 (t)} → 1 and H∗

a,n : {HR∗,n(t) = λ
(1)
∗,n(t)/λ

(0)
∗ (t)} → 1, both Z

and Z∗ are asymptotically N(µ,1) and N(µ∗,1), respectively. The power function for a

one-sided test with size α is therefore given, respectively, by

Π1 = lim
n→∞

Prob{Z < z1−α|Ha,n}= 1−Φ(−z1−α+µ)

Π∗ = lim
n→∞

Prob{Z∗ < z1−α|H∗
a,n}= 1−Φ(−z1−α+µ∗) (5)
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where Φ is the distribution function of the standard normal and z1−α is the standard

normal quantile corresponding to the left tail probability α. It immediately follows that

Π1 = Π∗ is equivalent to µ= µ∗.
The equivalence of powers (Π1 = Π∗) implies that µ = µ∗, given by (1) and (2).

Equivalently

(

µ∗
µ

)2

= 1 ⇐⇒















∫

∞

0 g(t)p(t)[1−p(t)]PrH0
{U≥t}λ(0)1 (t)dt

√

∫

∞

0 p(t)[1−p(t)]PrH0
{U≥t}λ(0)1 (t)dt

∫

∞

0 g∗(t)p∗(t)[1−p∗(t)]PrH∗
0
{U∗≥t}λ(0)∗ (t)dt

√

∫

∞

0 p∗(t)[1−p∗(t)]PrH∗
0
{U∗≥t}λ(0)∗ (t)dt















2

= 1. (6)

Since

p(t) =
PrH0

{U ≥ t|X = 1}π
PrH0

{U ≥ t} =
PrH0

{U ( j) ≥ t}π
PrH0

{U ≥ t}

where π= PrH0
{X = 1}, we have

p(t)(1− p(t))PrH0
{U ≥ t}= PrH0

{U (1) ≥ t}πPrH0
{U (0) ≥ t}(1−π)

PrH0
{U (0) ≥ t}(1−π)+PrH0

{U (1) ≥ t}π .

Based on the stated assumptions, because T
( j)

1 is right-censored by the end-of-study

at time τ, and under the null hypothesis of no effect (S
(0)
1 (t) = S

(1)
1 (t)), we have

PrH0
{U ( j) ≥ t} = S

(0)
1 (t)1{[0,1]}(t), for j = 0,1. Replacing in (1), the noncentrality

parameter µ becomes

µ=

√

π(1−π)
∫ 1

0 g(t)S
(0)
1 (t)λ

(0)
1 (t)dt

√

∫ 1
0 S

(0)
1 (t)λ

(0)
1 (t)dt

=

√

π(1−π)
∫ 1

0 g(t) f
(0)
1 (t)dt

√

∫ 1
0 f

(0)
1 (t)dt

where f
(0)
1 (t) is the marginal density function for T

(0)
1 . Analogously, it can be seen that

µ∗ =

√

π(1−π)
∫ 1

0 g∗(t) f
(0)
∗ (t)dt

√

∫ 1
0 f

(0)
∗ (t)dt

where f
(0)
∗ (t) is the density function for T

(0)
∗ . The reader is addressed to the online

supporting material of Gómez and Lagakos paper for other technical details.
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If we would replace g(t) and g∗(t) by
√

n log

(

λ
(1)
1,n(t)

λ
(0)
1 (t)

)

=
√

n log(HR1) and
√

n∗ log

(

λ
(1)
∗,n(t)

λ
(0)
∗ (t)

)

,

respectively, equality (6), after cancelling π(1−π), becomes equal to

lim
HR1,n(t)→1

HR2,n(t)→1

√
n∗√
n

∫ 1
0 log

{

λ
(1)
∗ (t)/λ

(0)
∗ (t)

}

f
(0)
∗ (t)dt

√

∫ 1
0 f

(0)
∗ (t)dt

log(HR1)

√

∫ 1
0 f

(0)
1 (t)dt

= 1

which in turn is equivalent to

lim
HR1,n(t)→1

HR2,n(t)→1

n

n∗
=

(

∫ 1
0 log

{

λ
(1)
∗ (t)/λ

(0)
∗ (t)

}

f
(0)
∗ (t)dt

)2

(log(HR1))
2 (

∫ 1
0 f

(0)
∗ (t)dt)(

∫ 1
0 f

(0)
1 (t)dt)

(7)

and it follows that ARE(Z∗,Z) = lim
HR1,n(t)→1

HR2,n(t)→1

n

n∗
, as we wanted to prove. �

Note that (7) implies

(

∫ 1
0 log

{

λ
(1)
∗ (t)/λ

(0)
∗ (t)

}

f
(0)
∗ (t)dt

)2

(log(HR1))
2
(

∫ 1
0 f

(0)
∗ (t)dt

)2
= lim

HR1,n(t)→1

HR2,n(t)→1

n(
∫ 1

0 f
(0)
1 (t)dt)

n∗(
∫ 1

0 f
(0)
∗ (t)dt)

≈ expected number E1

expected number E∗

and whenever λ
(1)
∗ (t)/λ

(0)
∗ (t) is approximately constant and equal to HR∗, we would

have

(

1
log(HR1)

)2

(

1
log(HR∗)

)2
= lim

HR1,n(t)→1

HR2,n(t)→1

n(
∫ 1

0 f
(0)
1 (t)dt)

n∗(
∫ 1

0 f
(0)
∗ (t)dt)

≈ expected number E1

expected number E∗

4. Simulation

4.1. Simulation

Our next aim is to simulate data to empirically check how close we are to the limiting

relationship n/n∗ = ARE(Z∗,Z) when Π1 = Π∗ for different finite sample sizes. To
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conduct the simulations we will assume, as Gómez and Lagakos did, that T
( j)

1 and

T
( j)

2 follow Weibull distributions. Weibull distributions are chosen for their wide use

in the field of survival analysis due to its flexibility, allowing decreasing, constant and

increasing hazard rates. The corresponding shape and scale parameters are denoted by

βk and b
( j)
k ( j = 0,1, k = 1,2) (shape parameters for both groups are taken equal so

that the assumption of the proportionality of the hazard ratios holds). To establish the

bivariate distribution of (T
(0)

1 ,T
(0)

2 ) we consider Frank’s Archimedean survival copula,

again as Gómez and Lagakos did. Other choices of copulas would be possible, although

main conclusions and recommendations will not differ (Plana-Ripoll and Gómez, 2014).

Frank’s copula depends on an association parameter θ between T
(0)

1 and T
(0)

2 which

is biunivocally related to Spearman’s rank correlation ρ. Different scenarios will be

simulated according to several choices of (β1,β2, p
(0)
1 , p

(0)
2 ,HR1,HR2,ρ) where p

(0)
1

and p
(0)
2 are the probability of observing events E1 and E2, respectively, for treatment

group 0, HR1 and HR2 are relative treatment hazard ratios for T
(1)
j versus T

(0)
j ( j = 1,2,

respectively) and ρ is Spearman’s rank correlation between T
(0)

1 and T
(0)

2 .

Given a set of values for (β1,β2, p
(0)
1 , p

(0)
2 ,HR1,HR2,ρ), for a given power Π and a

significance level α, the simulation steps are the following:

1. Computations for the relevant endpoint E1. The scale parameters b
(0)
1 and b

(1)
1

and the probability p
(1)
1 of observing the relevant endpoint in group 1 are derived

as:

b
(0)
1 =

1

(− log(1− p
(0)
1 ))1/β1

b
(1)
1 =

b
(0)
1

HR
(1/β1)
1

p
(1)
1 = 1− e−(1/b

(1)
1 )β1

2. Computations for the additional endpoint E2. The scale parameters b
(0)
2 and b

(1)
2

and the probability p
(1)
2 of observing the additional endpoint in group 1 are derived

as:

b
(0)
2 =







1

(− log(1−p
(0)
2 ))1/β2

for Case 1

∗ for Case 3

b
(1)
2 =

b
(0)
2

HR
(1/β2)
2

p
(1)
2 = 1− e−(1/b

(1)
2 )β2
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∗ For Case 3, b
(0)
2 is found as the solution of equation p

(1)
2 =

∫ 1
0

∫ 1
u f

(0)
(1,2)(u,v;ρ)dvdu,

where f
(0)
(1,2)(·, ·;ρ) is the joint density between T

(0)
1 and T

(0)
2 and ρ is Spearman’s

ρ coefficient between T
(0)

1 and T
(0)

2 .

3. Computation of sample sizes n and n∗

(a) Compute n (per group) following Freedman (1982) formulas as follows

n =
E

p
(0)
1 + p

(1)
1

(8)

where

E =
(HR1 +1)2(z1−α+ zΠ)

2

(HR1 −1)2
(9)

(b) Compute ARE(Z∗,Z) based on (β1,β2, p
(0)
1 , p

(0)
2 ,HR1,HR2,ρ).

(c) Compute n∗ = n/ARE(Z∗,Z).

(d) Compute N = max{n,n∗}.

4. Simulation of T
(0)

1 ,T
(1)

1 ,T
(0)

2 ,T
(1)

2 ,T
(0)
∗ ,T

(1)
∗

Simulate 1000 samples of size N for the 4 endpoints T
( j)

k from Weibull (b
( j)
k ,βk)

( j = 0,1, k = 1,2). Compute T
( j)
∗ = min{T

( j)
1 ,T

( j)
2 }.

5. Computation of empirical powers Π̂1 and Π̂∗
For each sample of size n (n∗), compute the logrank statistic Z (Z∗) to compare the

treatment effect between T
(0)

1 and T
(1)

1 ( T
(0)
∗ and T

(1)
∗ ). For a given significance

level α, the rejection region comprises all observed Z (Z∗) such that Z < z1−α
(Z∗ < z1−α) where z1−α is the standard normal quantile corresponding to the left

tail probability α. The empirical powers, denoted by Π̂1 ( Π̂∗ ), are calculated as

the proportion of samples for which Z < z1−α (Z∗ < z1−α).

We note here that whenever n∗ < n, we only use, for each sample, the first n∗
simulated values to compute Π̂∗, while when n < n∗, we only use the first n

simulated values to compute Π̂1.

6. Comparison between Π̂1 and Π̂∗
For each scenario (β1,β2, p

(0)
1 , p

(0)
2 ,HR1,HR2,ρ), we compare the differences

between the two empirical powers Π̂1 and Π̂∗ obtained from the 1000 simulations.
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Table 1: Values of parameters β1, β2, p1, p2, HR1, HR2 and ρ used for the simulations. There are 624

different configurations, excluding those yielding sample sizes larger than 1100 and ARE(Z∗,Z)> 10.

Parameters

β1 = β2 0.5 1 2

(p1, p2) (0.05, 0.01) (0.05, 0.15) (0.05,0.35) (0.1, 0.01) (0.1, 0.15) (0.1,0.35)

(p1, p2) (0.15, 0.01) (0.15, 0.15) (0.15,0.35) (0.35, 0.01) (0.35, 0.15) (0.35,0.35)

ρ 0.15 0.45 0.75

(HR1,HR2) (0.5, 0.3) (0.5, 0.7) (0.5, 0.9) (0.6, 0.3) (0.6, 0.7) (0.6, 0.9)

(HR1,HR2) (0.7, 0.3) (0.7, 0.7) (0.7, 0.9) (0.8, 0.3) (0.8, 0.7)

Total number

of cases 624

4.2. Results

We have set Π = 0.9 and α= 0.05 (other values would not provide additional informa-

tion). We have chosen meaningful values for (β1,β2, p
(0)
1 , p

(0)
2 ,HR1,HR2,ρ), based on

those arising in cardiovascular clinical trials (Gómez, Gómez-Mateu, Dafni, 2014) (see

Table 1). We restrict our simulation study to 624 scenarios corresponding to ARE(Z∗,Z)
≤ 10 and sample sizes smaller than 1100 patients per group. These scenarios yield

ARE(Z∗,Z) values between 0.20 and 9.93, sample sizes, n, for the relevant endpoint

between 142 and 1081, and, n∗, for the composite endpoint between 53 and 1077 (see

Table 2). Similar results were obtained for Case 1, when neither the relevant nor the

additional endpoint includes a terminating event, and for Case 3 when the relevant end-

point includes a terminating event, and we only discuss here Case 1.

Table 2: Computed values of n, n∗ and ARE(Z∗,Z) in step 3 of the simulation

based on the parameter values given in Table 1.

min median max

n 142 509 1081

n∗ 53 398 1077

ARE(Z∗,Z) 0.2 1.04 9.93

The empirical powers Π̂1 in our simulation study resulted in powers between 0.87

and 0.94, with a median of 0.91. A slightly higher median was found for scenarios with

low hazard ratios. This finding is acknowledged as well by Freedman (1982).

Table 3 provides the percentiles for the absolute value differences between Π̂∗ and

Π̂1. We observe that in 75% of the cases the difference is smaller than 2.3%, and among

cases with ARE as large as 3 the difference shrinks to 1.9%. There are, however, few

instances, where this difference can be as large as 6%, and they deserve a closer look.
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Table 3: Percentiles of |Π̂∗− Π̂1| as a function of ARE values,

where wi indicates the corresponding percentile.

min w0.1 w0.25 w0.5 w0.75 w0.9 max

For all ARE 0 0.002 0.004 0.010 0.023 0.036 0.062

ARE(Z∗,Z)≤ 3 0 0.002 0.004 0.008 0.019 0.033 0.062

ARE(Z∗,Z)> 3 0.001 0.009 0.016 0.026 0.038 0.046 0.062

Figure 2 plots the differences Π̂∗− Π̂1 as a function of the ARE(Z∗,Z) values. The

behaviour is remarkably different when ARE(Z∗,Z)≤ 3 or ARE(Z∗,Z)> 3. Whenever

ARE(Z∗,Z) ≤ 3, Π̂∗ fluctuates around Π̂1, within a range of 4%. However, when

ARE(Z∗,Z) > 3, corresponding mostly to scenarios where treatment has an stronger

effect on the additional endpoint than on the relevant endpoint (HR2 ≤ HR1 − 0.2)

and the anticipated number of events in the control group is larger for the additional

endpoint than for the relevant (p
(0)
2 ≥ p

(0)
1 ), the empirical power Π̂∗ of the logrank test

based on the CE never achieves the same power as the logrank test for the relevant

endpoint would get. In these cases the interpretation of the ARE(Z∗,Z) as the ratio of

the sample sizes, n/n∗, is not as straightforward. Nevertheless, this does not mean that

the recommendation of using the CE does not have to be followed since larger values

for n∗ needed to attain the same power as n does, would reduce the ARE value but not

as much as to cross the “1” border that would imply to use the relevant endpoint instead

of the CE.
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Figure 2: Differences between empirical powers Π̂∗ − Π̂1 as function of ARE(Z∗,Z) and in terms of

HR2 −HR1.
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If we analyze the differences between Π̂∗ and Π̂1 as a function of the differences

between the two hazard ratios (HR2 − HR1), we observe that when the two hazard

ratios are very close, the two empirical powers are as well very close. Whenever

HR2 −HR1 ≤ −0.2, not only ARE(Z∗,Z) values tend to be higher, but also Π̂∗ < Π̂1.

(see Figure 2).

Taking into account that absolute differences between powers smaller than 5% could

be considered irrelevant, we conclude that the asymptotic relationship ARE(Z∗,Z) =
n/n∗ is valid in the majority of scenarios.

All computations in this paper have been implemented in R and are available on

request to either author.

5. Discussion

Pitman’s relative efficiency is defined as the limiting ratio of sample sizes to give the

same asymptotic power under sequences of local alternatives. Given two asymptotically

standard normal tests Sn and Tm under the same null and alternative hypotheses, the

alternative definition ARE = (µS/µT )
2 where

√
nµS and

√
mµT are the respective

means under local alternatives, can be used because the equality of the powers holds

if m
n
= ( µS

µT
)2.

Gómez and Lagakos’ method uses the alternative definition of ARE to develop all

the computations for the two corresponding logrank tests. Our goal has been to check

that the relationship between (µS/µT )
2 and the ratio of sample sizes still held when the

two hypotheses under test were not the same (H0 versus Ha and H∗
0 versus H∗

a ).

It is important to keep in mind that these two hypotheses tests are by no means

equivalent, for instance, to check whether treatment has a beneficial effect, we might

use E1 or we might add endpoint E2 and use E∗. As it is shown in Gómez (2011), even if

we assume that the times to E1 and to E2 are independent, a beneficial effect on E∗ can

occur simultaneously with a beneficial effect on E1 and a harmful effect on E2 and not

finding a beneficial effect on the composite event E∗ is no guarantee of not having some

effect on the individual events E1 or E2.

The main result of this paper proves that ARE(Z∗,Z) coincides with n/n∗, being n

and n∗ the sample sizes needed to detect specific alternatives HR1 and HR2 to attain

power Π and for the same significance level α. Therefore, we can use and interpret ARE

in its usual way.

The simulation study has been conducted in such a way that for fixed values n

and ARE(Z∗,Z), the sample size n∗ is calculated as n∗ = n/ARE(Z∗,Z). Hence an

approximate equality of the empirical powers Π̂1, of logrank test Z for H0 versus

Ha,n, and of Π̂∗ of logrank test Z∗ for H∗
0 versus H∗

a,n, indicates that the relationship

ARE(Z∗,Z) = n/n∗ holds. Main results from our simulations show that the absolute

differences between Π̂1 and Π̂∗ are most of the times less than 2.5%, hence the usual

interpretation between (n,n∗) and ARE(Z∗,Z) holds for finite sample sizes.
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For those scenarios under which ARE(Z∗,Z) > 3, we observe that the empirical

power of the test based on E∗ never achieves the empirical power that the logrank

test based on E1 would get. Consequently, larger values of n∗ would be needed to

attain the same power as n does. In these instances, even though the relationship

ARE(Z∗,Z) = n/n∗ is not necessarily true, the recommendation to use the composite

endpoint E∗ instead of the relevant endpoint E1 will still be valid because very rarely a

value of ARE(Z∗,Z)> 3 would go down to less than 1. However, caution will be needed

if one wants to use the relationship ARE(Z∗,Z) = n/n∗ to compute the required sample

size n∗ if ARE(Z∗,Z)> 3. In these cases, a different formulation should be seek.
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