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Abstract

Survival estimates for women with screen-detected breast cancer are affected by biases specific

to early detection. Lead-time bias occurs due to the advance of diagnosis, and length-sampling

bias because tumors detected on screening exams are more likely to have slower growth than

tumors symptomatically detected. Methods proposed in the literature and simulation were used

to assess the impact of these biases. If lead-time and length-sampling biases were not taken into

account, the median survival time of screen-detected breast cancer cases may be overestimated

by 5 years and the 5-year cumulative survival probability by between 2.5 to 5 percent units.

MSC: 62N02; 62P10.
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1. Introduction

Some types of cancer can be detected before they cause symptoms. The primary goal

of cancer screening programs is to reduce mortality. Screening tests, such as mam-
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mography, can detect cancer at an earlier stage compared to symptomatic diagnosis.

It is expected that an early diagnosis will be associated with a better prognosis and

consequently, with an increase of survival time. However, measuring the benefit of early

detection as survival time from the date of diagnosis is confounded by two screening-

specific biases: lead-time and length-sampling biases (Zelen and Feinleib, 1969).

For a screen-detected cancer, the lead-time is defined as the time gained by diag-

nosing the disease before the patient experiences symptoms. Even if early diagnosis

and early treatment had no benefit, the survival of early detected cancer cases would

be longer than the survival of clinical cases (see Figure A.1 in the Appendix). Length-

sampling bias arises because screen-detected cancers are more likely to have slower

growth than non-screen detected cancers. It seems reasonable to assume that the clinical

course of the disease is positively correlated with its pre-clinical course. Thus, patients

with screen-detected cancers survive longer in part because their tumors are less aggres-

sive. Therefore the difference in survival cannot be only attributed to the early detection

(see Figure A.1 in the Appendix). Different authors have studied the effect of these bi-

ases in the survival functions of women with screen-detected breast cancer (BC) and

have proposed several corrections (Walter and Stitt, 1987; Xu and Prorok, 1995; Xu,

Fagerstrom and Prorok, 1999; Duffy et al., 2008 and Mahnken et al., 2008). The goals

of this study are: 1) To review the methods of bias correction for BC; 2) To obtain bias-

corrected survival estimates of the screen-detected cases; and 3) To evaluate the impact

of the lead-time and length-sampling biases. The rest of the paper is organized as fol-

lows. Section 2 reviews the existing methods in the literature for bias correction and

describes the statistical methods used, including a simulation study. Section 3 presents

the results, and Section 4 is a general discussion.

2. Methods

2.1. Breast cancer early detection model

As defined by Zelen and Feinleib (1969), the progress of BC can be characterized as a

stochastic process, assuming that each individual in a specific population is in one of

these three states: disease-free (S0); the pre-clinical or asymptomatic state (Sp), when

the disease can be diagnosed by a special exam; and the clinical or symptomatic state

(Sc). Sometimes an absorbing state (Sbc
d ) referring to death from BC can be added.

Based on this early work, Lee and Zelen (LZ) proposed a stochastic model for pre-

dicting the mortality of the early detection programs as a function of the characteristics

of the early detection scenario (Lee and Zelen, 1998, 2008). The assumptions of the LZ

model are: (1) progressive disease; (2) age-dependent transitions into the different states,

S0 → Sp → Sc → Sbc
d ; (3) age-dependent examination sensitivity; (4) age-dependent so-

journ times in each state; and (5) exam-diagnosed cases have a stage-shift in the direc-

tion of more favorable prognosis relative to the distribution of stages in symptomatic

detection.
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Note that the transition S0 → Sp is never observed and the transition Sp → Sc refers

to the disease incidence. If the early detection exam does diagnose the disease in the

pre-clinical state, the transition Sp → Sc will never be observed.

The LZ model considers:

• n screening exams at times t0 < t1 < ... < tn−1. It is assumed that t0 = 0 and z= age

at t0.

• Three chronological times (see above schema):

– x: time at entering Sp, z+x: age when entering Sp. The time x is not observed

but can be derived from the incidence function and the distribution of sojourn

time in the Sp state. x takes a negative value if the transition to Sp occurs

before the age at first exam, z.

– τ: time at entering Sc, z + τ: age at entering Sc. The time τ can not be

observed in cases detected by exam, only in the clinically detected cases.

For cases detected by exam, τ can be estimated.

– y: time at death, z+ y: age at death. Then x < τ< y

• Sojourn time in Sp: τ− x

• Sojourn time in Sc: y−τ

The LZ basic model calculates the cumulative probability of death for the cohort group

exposed to any screening program after T years of follow-up. Similarly, the cumulative

probability of death for the cohort group not exposed to screening can be calculated.

These probabilities are used to calculate the possible reduction in mortality from an

early detection program after T years of follow-up and can be obtained as follows.

Survival distributions for exam-diagnosed, interval, and control cases are assumed

to be conditional on the stage at diagnosis and treatment, but are not dependent on the

mode of diagnosis. The LZ model assumes k disease stages which describe the severity

of a person’s cancer based on the size and/or extent of the tumor. If φs( j), φi( j) and

φc( j) represent the probability of being diagnosed at stage j, j = 1, . . . ,k for exam-

diagnosed, interval and control cases, respectively, and f j(t|z + τ) is the probability

density function (pdf) of survival time t among subjects who would have been clinically

diagnosed at stage j in the absence of screening, then the survival time pdf s of the

exam-diagnosed, interval and control cases are the mixtures:
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gs(t|z+τ) =
k

∑
j=1

φs( j) f j(t|z+τ), gi(t|z+τ) =
k

∑
j=1

φi( j) f j(t|z+τ)

and

gc(t|z+τ) =
k

∑
j=1

φc( j) f j(t|z+τ),

respectively. In other words, the g density functions are obtained by weighting the f

functions by the distribution of disease stages at diagnosis. Since screening will appear

to increase survival time, the LZ model controls for lead-time bias by setting the origin

of survival time for the screened, interval, and clinical cases at the time of clinical

diagnosis. Consequently, there is an implied guarantee time for disease-specific survival,

that is, the cases diagnosed earlier would have been alive at the time the disease would

have been clinically diagnosed. This guarantee time, also called lead-time, is a random

variable and is incorporated into the equations of the model. Explicitly, the lead-time is

τ− tr where τ is the time at which the individual enters the clinical state and tr is the

time at which the r detection exam, when the disease is diagnosed, is given.

2.2. Methods for correcting the biases specific to early detection

After reviewing the literature, we selected the methods of Walter and Stitt (1987), Xu

and Prorok (1995), Xu et al. (1999) and Duffy et al. (2008). All these authors assume

the progressive disease model aforementioned with an exponential distribution of the

sojourn time in the pre-clinical state. The observed survival time, Z, after diagnosis by

screening is defined as Z = X +Y , Y is the lead-time, and X the post-lead survival time

(the time from clinical detection to death or the end of study). X is the time of interest,

free of biases.

2.2.1. The Walter and Stitt method

Walter and Stitt (1987) developed a model for the survival of screen-detected cases,

with a hazard function that depends on an individual’s lead-time, Y , the duration of

the sojourn time in the pre-clinical state and the time since diagnosis, Z. Their main

assumptions were that the hazard function considers a guarantee time from the screening

detection until when the disease would become clinical and an exponential distribution

for the lead-time, Y (Walter and Day, 1983). The authors showed that if the post-

lead-time, X , can be assumed to have an exponential distribution, the corresponding

parameter can be estimated by maximum likelihood using life-table methods.
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2.2.2. The Xu and Prorok method

Xu and Prorok (1995) developed a model under the assumption of an exponential

distribution for the lead-time and independence between the lead-time and post-lead-

time. They presented a method to estimate the survival function of the post-lead time,

X , of screen-detected cancer cases based on the observed total survival time, Z. The

authors relaxed the parametric assumption for the post-lead-time and obtained the non-

parametric maximum likelihood estimator (NPMLE) of the survival function of the post-

lead time, X .

2.2.3. The Xu et al. method

As Xu and Prorok mentioned, it seems biologically reasonable that the lead-time and the

post-lead-time are positively correlated. Xu et al. (1999) introduced a new model that

involved dependence between the lead- and post-lead-time through nuisance variables

to ensure positive correlation. Several levels of correlation were studied. They applied

the Xu and Prorok method on the new model to obtain the NPMLE of the post-lead-time

survival function.

2.2.4. The Duffy et al. method

Duffy et al. (2008) proposed a simple correction for lead time, assuming an exponential

distribution of the sojourn time in the pre-clinical state. The additional follow-up due

to lead-time is estimated individually for each patient with a screen-detected cancer as

the expected lead-time conditional on its being less than the observed survival time or

time to last follow-up. The expression of the expected lead-time depends on whether

the patient died of BC or not. The corrected survival time, for screen-detected cases, is

obtained subtracting the expected lead-time from the observed survival time.

2.3. Data

BC survival data were obtained from the Girona and Tarragona population-based cancer

registries (PCR) in Catalonia (both provinces representing 20% of the total Catalan

population and covering either urban or rural areas). Data from Girona were provided

directly by the Girona Cancer Registry and data from Tarragona was obtained through

the Foundation League for the Research and Prevention of Cancer (FUNCA). Given

that the BC incidence and mortality rates in the Girona and Tarragona registries were

similar, both datasets were merged. The PCR sample included 1,221 women residing

in the province of Girona and diagnosed between 2002 and 2006, and 2,149 women

residing in the province of Tarragona and diagnosed between 2000 and 2005.

We also obtained BC survival data from the hospital cancer registry of Parc de Salut

Mar (HCR-PSMAR) in the city of Barcelona. The HCR-PSMAR included BC tumours

from women attending an early detection program (screen-detected or not) and also
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BC tumours from other women living in the hospital area. The HCR-PSMAR sample

included 1,704 women diagnosed with BC between 1996 and 2006. BC cases in this

study refer to invasive BC. Ductal carcinoma in situ (DCIS) cases were not included.

2.4. Statistical analysis

2.4.1. Survival analysis

First, we estimated the biased BC specific survival using the Kaplan-Meier method,

assuming that BC was the single cause of death. We considered death from BC as the

event of interest. Deaths from other causes (OC) or lost to follow-up (either dropouts

or withdrawals) were treated as right-censored observations. Censoring was assumed to

be non-informative. Survival time was calculated as the difference between the date of

diagnosis and the minimum of time to the event and censored time. Then, we applied the

methods described in Section 2.2 in order to correct the BC-specific survival of screen-

detected cases. We assumed an exponential distribution with scale parameter 0.25 for

the lead-time. This assumption was based on the values proposed by Lee and Zelen

(2006) for the mean sojourn time in the pre-clinical state, the previous work of Zelen and

Feinleib (1969), the age at diagnosis distribution of the studied cases, and the simulation

study described in 2.4.2. For the method of Xu et al. (1999), we considered a dependence

parameter 0.5 corresponding to a moderate dependence between lead-time and post-

lead-time. All analyses were performed with R version 3.0.1 (R Core Team, 2013).

2.4.2. Simulation study

Since the observed data were characterized by heavy right censoring, we conducted a

simulation study. The main goal of the simulation study was to estimate the lead-time

and length biases under different screening strategies and to compare the results with

those obtained using the correction methods described in Section 2.2. The simulation

reproduces the individual life histories of women initially in the disease-free state. Our

simulation model considered the Lee and Zelen model inputs for Catalonia (Vilaprinyo

et al., 2008, 2009; Martinez-Alonso et al., 2010) and additional assumptions described

below. For simplicity, in the following sections t refers to chronological time or age.

Initial parameters We used observed or predicted data on BC incidence and mortality

for the cohort of Catalan women born in 1950. We assumed a sample size of n= 100,000

women. The time horizon was 0-85 years of age, we only considered BC incident

cases before age 85 and stopped the follow-up at age 85. We grouped the data by

age, considering J yearly disjoint intervals (a j−1,a j] for j = 1, . . . ,J, where a0 = 0.

We assumed the values proposed by Lee and Zelen (2006) for the age-dependent

examination sensitivity, β(t), and the exponential distribution with age-dependent mean,

m(t), for sojourn time in Sp. The m(t) in years was: 2 for women 40 years old or younger,
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4 for women older than 50 years and the linear interpolation m(t) = −6+ 0.2 ∗ age

for women aged 40-50 years. The periodicity of the exams was annual or biennial.

The initial ages of screening schedules were 40 and 50 years, while the ages at

the last examination were 68 years for biennial and 69 years for annual strategies,

resulting in four screening strategies. Bivariate correlated data of sojourn times in Sp

and Sc were simulated using copula models (Trivedi and Zimmer, 2007). We chose the

Clayton’s Archimedean copula because it has some interesting features. For example, it

is adequate for positive associations between times. Under the Clayton’s copula model,

three different dependence parameters were chosen, α ∈ {1,5/4,3/2}; they represent

values for Kendall’s tau of τK ∈ {0,1/9,1/5} ranging from no association to moderate

association.

Death from causes other than breast cancer The age-specific death rates from OC for

Catalan women, by birth cohort, were used as the hazard function in a survival process

where failure was death from OC. Then, ages at death from OC were sampled using the

inverse transformation of the cumulative survival function.

Generation of the pre-clinical cases We used Catalan BC incidence rates, estimated

assuming no screening for BC (Martinez-Alonso et al., 2010), to obtain the transition

probabilities to the pre-clinical state using the method described by Lee and Zelen

(1998). We considered these transition probabilities as the hazard in a survival process,

where failure consists of entering Sp. Using the same reasoning as for OC, an age when

entering Sp was generated for each simulated woman.

Generation of the age at entering the clinical state ScScSc Some authors have provided

evidence that the sojourn time in the pre-clinical state is exponentially distributed (Zelen

and Feinleib, 1969; Walter and Day, 1983). A sojourn time in Sp was sampled assuming

an age-dependent exponential distribution with mean m(t). Then an age when entering

Sc was generated adding the sojourn time to the age at entering Sp, for each simulated

woman that transitioned to Sp.

Generation of the screen-detected and the interval cancer cases For women that

entered Sp, we considered that their BC could be screen-detected if they received

screening exams during their sojourn time in Sp. To decide whether the result of an exam

was positive or negative we used a Bernoulli random variable with success probability

the sensitivity of the exam, β(t). The cases diagnosed at the interval between two exams

were considered as interval cases.

Death from breast cancer We used the Clayton’s copula, as described in Trivedi and

Zimmer (2007), to generate a survival time from the BC diagnosis, using the Catalan

age-specific survival functions for BC (Vilaprinyo et al., 2009). The survival time was

correlated with the sojourn time in Sp through the copula function.
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For screen-detected cases, we considered two assumptions for the survival time: with

and without benefit of early detection. When survival benefit was assumed, the survival

pdf s for screen-detected, interval, and clinical cases were obtained weighting the age-

and stage-specific survival pdf s by the distribution of disease stages at diagnosis. (See

Section 2.1 for more details). The distribution of disease stages at diagnosis for screen-

detected, interval and clinical BC cases is shown in Table A.1 in the Appendix.

The no-survival benefit assumption was based on a systematic review that reported a

non-statistically significant reduction in BC mortality for trials with adequate random-

ization (Gotzsche and Nielsen, 2009). When no-survival benefit from screening was as-

sumed, we used the clinical stages distribution for screen-detected, interval and clinical

cases.

Once the survival time was generated, the age of death from BC was obtained adding

the survival time to the age when entering the clinical state Sc for the screened, interval

and clinical cases. In that way, there is no lead-time bias for the screen-detected cases.

Age at death We obtained the age of death as the minimum between age at BC

death and age at OC death, assuming that both events were independent. A total of

24 scenarios were analysed considering the two assumptions for the survival benefit of

early detection, the four screening strategies and the three copula parameters.

The simulation code was developed in R version 3.0.1 (R Core Team, 2013). For

each scenario, to generate one dataset, the algorithm ran for approximately 45 seconds

on a MacBook Pro machine with 2.4 Ghz Intel Core 2 Duo processor with 4 GB of

RAM memory. For each scenario B = 100 datasets were generated.

2.4.3. Estimation of the lead-time and length-sampling biases for

screen-detected cases

The lead-times for the screen-detected cases were obtained as the difference between the

age at entering the clinical state and the age at detection. To estimate the mean lead-time

of each scenario, first we obtained the mean lead-time within each dataset and then we

calculated the mean and the empirical standard error of the 100 dataset means.

To estimate the length bias, first we obtained the median survival time of screen

detected cases corrected by the lead-time bias. Then we obtained the median survival

time of the background scenario (no screening). Finally, the difference of the two median

survival times was considered the length bias effect on the median survival time of

screen-detected cases. For the scenarios with no benefit of screening and independence

between sojourn time in the pre-clinical state and survival time, the expected length bias

would be zero.
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2.4.4. Comparison of the methods of bias correction

We calculated the root mean square error (RMSE) between the simulated unbiased

cumulative survival and the corrected cumulative survival for the different methods

of bias correction. The RMSE gives the standard deviation of the model prediction

errors. A smaller value indicates a better model performance. To compute the RMSE we

considered the first 25 years of follow-up. The mean RMSE over the 100 simulations

was obtained for each scenario (Burton et al., 2006).

2.4.5. Validation

We have compared our results with results in the literature on cumulative incidence and

BC cumulative survival. In addition, we have compared a) the frequencies of screen-

detected and interval cancer, by age-group; and b) the sensitivity of the program, with the

results of the INterval CAncer (INCA) study in Spain, which included 645,764 women

aged 45/50 to 69 years that participated biennially in seven population-based screening

programs, from January 2000 to December 2006 (Blanch et al., 2014 and Domingo et

al., 2014). The cohort was followed until June 2009 for breast cancer identification,

resulting in 5,309 cases screen-diagnosed and 1,653 interval cancers. The sensitivity of

the program was defined as the ratio of the number of tumors detected in the screening

exams between all the detected tumors.

3. Results

3.1. Observed and corrected cumulative survival.

Data from the cancer registries

Table 1 presents the median follow-up time and the censoring percentage for screen-

detected and clinical cases, according to BC survival status. Both the PCR and HCR-

PSMAR samples presented a large percentage of right censoring, which was around

95% or higher for screen-detected cases. The median follow-up time was shorter for the

PCR sample.

Table 1: Follow-up time and survival status for the two studied samples.

Population Cancer Registries

Girona and Tarragona

Hospital Cancer Registry

PSMAR

No BC death BC death No BC death BC death

Screen-detected cases (n) 633 19 463 27

Median of follow-up (years) 5.46 3.82 7.19 4.31

Percent (%) 97.1 2.9 94.5 5.5

Clinical cases (n) 2284 434 988 226

Median of follow-up (years) 5.10 2.31 6.43 3.10

Percent (%) 84.0 16.0 81.4 18.6
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Figure 1: Observed (black) and corrected survival (colours) for each method of correction, for screen-

detected cases.

Figure 1 shows the observed and corrected BC survival of screen-detected cases,

using the methods described in Section 2.2, for both studied samples. The corrected

cumulative survival curves grouped together below the observed survival curve. Table 2

presents the observed and corrected cumulative survival rates at five years after BC

detection. Differences of observed and corrected cumulative survival varied from 2.5 to

5.1% units. Observed cumulative survival rate at 5 years around 97% decreased to 94 or

92% after correction. The higher difference was observed for the Duffy method in the

PCR sample (5.1%) followed by the Xu and Prorok (4.5%) and the Duffy methods in

the HCR-PSMAR sample (4.2%).

Table 2: Observed and corrected survival rates at five years after breast cancer detection.

Population Cancer Registries Hospital Cancer Registry

Cumulative Survival Girona and Tarragona PSMAR

Observed (uncorrected) 97.44 96.59

Walter and Stitt 94.44 93.52

Xu and Prorok 94.19 92.11

Xu et al. 94.94 93.77

Duffy et al. 92.33 92.39

3.2. Simulation study

The detailed simulation results for all the 24 scenarios can be found in the Appendix

(Tables A.2, A.3, A.4 and A.5 and Figure A.2).

Table 3 describes the lead-time (mean and standard error of the 100 simulated

datasets for each of the 24 scenarios), overall and stratified by age at entering Sp, for
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Table 3: Estimated lead-time (years) for screen-detected cases, overall and by age at entering the pre-

clinical state. Mean and standard error (S.E.) of the 100 simulated datasets for each screening strategy.

Age at entering the pre-clinical state

Overall < 40 yrs 40−49 yrs ≥ 50 yrs

Strategy Mean S.E. Mean S.E. Mean S.E. Mean S.E.

A4069 3.67 0.06 1.98 0.26 3.17 0.14 3.83 0.07

B4068 3.69 0.07 1.98 0.27 3.22 0.15 3.85 0.08

A5069 3.81 0.06 1.73 1.60 3.56 0.22 3.84 0.07

B5068 3.81 0.07 1.63 1.59 3.56 0.22 3.84 0.08

A4069: Annual exams in the age interval 40-69 years. B4068: Biennial exams in the age interval 40-68 years.

A5069: Annual exams in the age interval 50-69 years. B5068: Biennial exams in the age interval 50-68 years.

the four screening strategies. Mean lead-times for all the strategies, by age group, were

similar, with an increasing trend by age at entering Sp. It is important to notice that the

mean lead-times correspond to screen-detected cancers only.

Figure 2 shows the cumulative observed (solid) and corrected (dashed) BC survival

after diagnosis of BC for screen-detected cases, for biennial screening strategies. The

figure corresponds to one of the 100 simulated datasets for α = 1.25 with (left) and

without (right) survival benefit. The separation of the curves is more marked in the

assumption of no survival benefit, mainly for the 5 to 10 years follow-up time interval.
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Figure 2: BC cause-specific survival of screen-detected cases. B5068: Biennial exams in the age interval

50-68 years. α= 1.25, left: with screening benefit, right: without screening benefit.

Table 4 presents the mean and standard error estimates of the median survival time

and the median post-lead-time for the screen-detected cases with the assumption of

no benefit. The lead-time and length biases are also summarized. For each screening

strategy, both the survival time and post-lead-time increase as α increases. This result is
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Table 4: Median total survival time (biased), median post-lead-time (corrected) and early detection biases

for screen-detected cases, without benefit of screening. Different assumptions (values of α) of correlation

between time in Sp and survival time.

Without benefit of screening

Median Median Median Median

α= 1 survival time post-lead time lead-time bias length bias

Strategy Mean S.E. Mean S.E. Mean S.E. Mean S.E.

A4069 15.83 0.43 11.20 0.44 4.63 0.23 -0.03 0.31

B4068 15.83 0.48 11.20 0.49 4.63 0.26 -0.03 0.35

A5069 15.69 0.43 10.92 0.42 4.76 0.21 -0.31 0.31

B5068 15.66 0.48 10.92 0.46 4.75 0.27 -0.31 0.38

Median Median Median Median

α= 1.25 survival time post-lead time lead-time bias length bias

Strategy Mean S.E. Mean S.E. Mean S.E. Mean S.E.

A4069 16.09 0.52 11.74 0.45 4.35 0.23 1.11 0.34

B4068 16.69 0.59 12.32 0.53 4.38 0.25 1.69 0.41

A5069 15.99 0.48 11.50 0.45 4.49 0.23 0.87 0.34

B5068 16.49 0.59 12.01 0.53 4.48 0.24 1.38 0.44

Median Median Median Median

α= 1.5 survival time post-lead time lead-time bias length bias

Strategy Mean S.E. Mean S.E. Mean S.E. Mean S.E.

A4069 16.40 0.54 12.23 0.46 4.17 0.20 2.00 0.36

B4068 17.71 0.70 13.37 0.64 4.34 0.27 3.13 0.53

A5069 16.35 0.51 12.03 0.45 4.31 0.26 1.80 0.35

B5068 17.45 0.65 13.03 0.57 4.42 0.27 2.79 0.48

A4069: Annual exams in the age interval 40-69 years. B4068: Biennial exams in the age interval 40-68 years.

A5069: Annual exams in the age interval 50-69 years. B5068: Biennial exams in the age interval 50-68 years.

consistent with the facts: 1) screen-detected tumors have a longer sojourn time in Sp; and

2) higher values of α indicate higher correlation between time in Sp and survival time,

therefore, longer sojourn times will have more chances of being followed by longer

survival times and post-lead times. Median lead-time is higher than 4 years in all the

screening strategies and decreases as α increases. In contrast, the median length bias

is near zero for α = 1 and increases with α. For α = 1.25, which indicates moderate

correlation between sojourn time in Sp and survival time, the median length bias takes

values around 1 year. While the lead-time is similar in annual and biennial strategies,

the length bias is higher in biennial than annual strategies.

Table 5 provides the RMSE mean between the simulated and predicted survival when

the bias correction methods were used, for each screening scenario. For all scenarios, the

Xu and Prorok and the Duffy et al. methods outperformed the other methods in terms

of mean RMSE. The Walter and Stitt method obtained the worst mean RMSE in all
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scenarios and the Xu and Prorok method performed better in scenarios with moderate

association; on the other hand the Xu et al. method performed better in moderate or

strong association scenarios and with survival benefit.

3.3. Validation

Our cumulative incidence estimate in the 0-85 age interval was 7.81% for the cohort of

Catalan women born in 1950 (Table A.2 in the Appendix). The results are consistent

with cross-sectional estimates in the 0-74 age-interval of 7.01% in 1995 and 7.89% in

2002, for Catalan women (Borras et al., 2008). Moreover, the Catalan survival rate at

five years was 80.9 for women diagnosed with BC in the period 1995-1999 (Galceran et

al., 2008). The corresponding estimate in our simulation study, assuming that there was

a screening benefit, is somewhat lower, 76.1%.

Our simulated results show that around 40 to 50% of women diagnosed with BC are

expected to die of the disease (Table A.5 in the Appendix). These results are comparable

with those obtained by Bush et al. who reported that non-BC deaths accounted for almost

half of deaths among BC patients in the 15 years following diagnosis (Bush et al., 2010).

Our simulated data estimated percentages of interval cases among all BC cases

equal to 30.6% and 28.7% in the age groups 50-59 and 60-69 years, respectively, for

the scenario B50-68. Corresponding data for the INCA study were 36% and 26%,

respectively (data not published).

Our estimated overall program sensitivity for B50-68 was 70.5%. This value in the

INCA study was 68.1% (data not published).

4. Discussion

4.1. Principal findings

This study used BC registry data and simulations to correct BC survival estimates and

to assess the impact of lead-time and length sampling biases on survival estimates of

screen-detected BC. When the observed survival estimates from the PCR or the HCR-

PSMAR were corrected for lead-time bias, the cumulative survival estimates at 5 years

decreased between 2.5 to 5.1 percent units, depending on the correction method used.

The simulation results showed that, except the Walter and Stitt method, the other three

methods for correcting biases performed without major differences. Furthermore, the

most accurate correction for the survival estimate was obtained with one or another

method depending on different settings. In addition, the simulation results also showed

that: 1) screening for BC annually or biennially after 40 years of age brings the age at

diagnosis for screen detected cancers forward by more than 3 years; 2) median survival

time of screen-detected cases may be overestimated by more than 4 years due to lead-

time bias; and 3) assuming a moderate correlation between sojourn time in the pre-
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clinical state and survival time (parameter α = 1.25), women with screen-detected BC

may have a median survival time (already corrected by lead-time) around 1 year or more

longer than non-screened women due to length bias. Overall, median survival of screen-

detected cases might have been overestimated by 5 years if no corrections for these

biases were made.

4.2. Comparison with other studies

Some authors, such as Kafadar and Prorok (2009), have assumed that the benefit of

screening is zero to be able to estimate the length bias. According to Kafadar and Prorok,

since survival time for screen-detected cases confounds the effects of lead-time, benefit

time, and length-sampling bias, studies that use survival time to evaluate screening

programs need to take account of these effects.

Shen et al. (2005) found an apparent survival benefit beyond stage shift for patients

with screen-detected BC compared with patients with BC detected otherwise. They

concluded that method of detection is an important prognostic factor for BC survival,

even after adjusting for known tumor characteristics. This result is consistent with our

results which indicate a non-negligible length bias effect.

Lehtimaki et al. (2011) performed a multivariate analysis to assess the effect of meth-

ods of detection on BC survival, adjusted by tumor size, node involvement, differentia-

tion grade, hormonal status and ductal type. The method of detection was an indepen-

dent prognostic factor, with a hazard ratio of 1.69 (95% confidence interval = 1.06 to

2.70) between patients whose tumors were detected outside screening and those whose

tumors were screen-detected. The authors conclude that survival differences could not

be explained completely by lead-time and length bias-related variables, although they

may have not completely corrected these biases when adjusting by known risk factors.

4.3. Limitations

This study has several limitations. First, data from the PCR and the HCR-PSMAR

presented a large percentage of right censoring, that hindered the application of the

methods of bias correction and interpretation of the results. Our simulation study tried to

overcome this limitation by extending the follow-up and therefore increasing the number

of events. Second, our model relies on data and assumptions that may be not correct. For

instance, a) the older age-specific BC incidence and mortality rates for the studied 1950

cohort were projected using an age-period-cohort model. b) The distribution of disease

stages at diagnosis for annual or biennial strategies or for screen-detected, clinical or

interval cases was taken from US data due to non-availability of annual screening data

from the Catalan or Spanish registries. c) We assumed independence between death from

BC and other causes. d) We could not test the appropriateness of the copula parameters

that correlate both sojourn and survival times. Thus, we used several values compatible

with low, medium or high correlation assumptions between the sojourn times. In any
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case, many of the simulated results are consistent with the literature and the trends

observed are compatible with the studied screening scenarios, therefore we think that

our estimates of lead-time and length sampling biases are reliable.

4.4. Conclusion

Survival estimates of screen-detected BC cases are affected by the lead-time and length-

sampling biases. The size of these biases depends on the starting age and periodicity

of the screening exams. If lead-time and length-sampling bias were not taken into

account, the median survival time of screen-detected BC cases may be overestimated

by 5 years and the cumulative survival at 5 years may be overestimated between 2.5 to

5 percent. Our results illustrate the importance of correcting or controlling these biases

when assessing the benefit of screening mammography. The Xu and Prorok, Duffy et al.

and Xu et al. methods for correcting biases outperformed the Walter and Stitt method,

with slight differences depending on the scenarios’ assumptions.

Acknowledgements

In Memory of Professor Marvin Zelen, without whose enormous contributions to the

field of statistics this article would not have been possible.

This study was funded by grant PS09/01340 from the Health Research Fund (Fondo

de Investigación Sanitaria) of the Spanish Ministry of Health. We are also indebted to

the INCA Study Group for providing data that was used to validate our simulation study

and to the research group Grup de Recerca en Anàlisi Estadı́stica de la Supervivència
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Appendix

Table A.1: Distribution of stages at diagnosis of BC.

Stages1

Age (years) I II- II+ III IV

Background1,2

40-49 0.3008 0.2277 0.3091 0.0999 0.0625

50-59 0.2868 0.2176 0.3111 0.1021 0.0825

60-69 0.3028 0.2225 0.2713 0.0974 0.1061

70-79 0.3157 0.2671 0.2227 0.0983 0.0961
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Table A.1 (cont): Distribution of stages at diagnosis of BC.

Annual screening. Screen-detected cases1,3

40-49 0.6200 0.1131 0.2141 0.0436 0.0092

50-59 0.6669 0.1057 0.1935 0.0296 0.0043

60-69 0.7641 0.0739 0.1412 0.016 0.0047

70-79 0.7821 0.0875 0.1067 0.0165 0.0072

Annual screening. Interval cases1,3

40-49 0.4644 0.1903 0.2598 0.0667 0.0188

50-59 0.4501 0.1744 0.2976 0.0665 0.0113

60-69 0.5417 0.1532 0.2320 0.0591 0.0141

70-79 0.5446 0.2345 0.1583 0.0496 0.013

Biennial screening. Screen-detected cases1,3

40-49 0.5839 0.1217 0.2360 0.0438 0.0146

50-59 0.6210 0.1472 0.1734 0.0423 0.0161

60-69 0.6563 0.1295 0.1830 0.0246 0.0067

70-79 0.7287 0.1311 0.1128 0.0137 0.0137

Biennial screening. Interval cases1,3

40-49 0.3673 0.2246 0.3099 0.0819 0.0164

50-59 0.2945 0.2609 0.2648 0.1166 0.0632

60-69 0.4077 0.2231 0.2672 0.0744 0.0275

70-79 0.4336 0.2885 0.1770 0.0673 0.0336

1 American Joint Committee on Cancer (AJCC) stage distribution.

2 From Surveillance, Epidemiology, and End Results (SEER).

3 From Breast Cancer Surveillance Consortium (BCSC).

Table A.2: Pre-clinical state summary and cumulative incidence. Background scenario. One hundred

simulated scenarios for each screening strategy. Time horizon 0-85 years.

Parameter Mean S.E.

Cumulative transition to Sp (%) 9.08 0.09

Cumulative incidence (%) 7.81 0.08

Mean sojourn time in Sp (years) 3.24 0.04

Mean sojourn time in Sp ≤ 40 (years) 2.00 0.11

Mean sojourn time in Sp 40−50 (years) 3.16 0.13

Mean sojourn time in Sp > 50 (years) 4.01 0.05
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Table A.4: Median survival summary for interval cancer cases. One hundred simulated scenarios for each

screening strategy. Time horizon 0-85 years.

Survival time for interval cancer cases

Strategy1

A4069

B4068

A5069

B5068

Strategy1

A4069

B4068

A5069

B5068

Strategy1

A4069

B4068

A5069

B5068

With benefit of screening

Mean

18.79

14.24

17.55

13.41

S.E.

2.01

0.95

2.03

1.05

With benefit of screening

Mean

13.52

11.13

12.99

10.62

S.E.

1.16

0.63

1.07

0.71

With benefit of screening

Mean

10.92

9.40

10.65

8.98

S.E.

0.74

0.49

0.75

0.55

Without benefit of screening

Mean

11.55

11.40

10.86

10.86

S.E.

1.01

0.70

1.00

0.81

Without benefit of screening

Mean

8.70

8.99

8.26

8.60

S.E.

0.66

0.52

0.67

0.60

Without benefit of screening

Mean

7.07

7.57

6.74

7.24

S.E.

0.51

0.42

0.51

0.47

α= 1

α= 1.25

α= 1.5

1 A4069: Annual exams in the age interval 40-69 years. B4068: Biennial exams in the age interval 40-68 years.

A5069: Annual exams in the age interval 50-69 years. B5068: Biennial exams in the age interval 50-68 years.

No screening
Symptoms
(clinical diagnosis) Death

Survival

Screening

Early detection

Survival

Death

Lead Time

Fast Growth

Slow Growth

Screening exam

Figure A.1: Lead-time (top) and length bias (bottom).
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Table A.5: Mortality summary. One hundred simulated scenarios for each screening strategy. Time horizon

0-85 years.

With benefit of screening

α= 1 Cumulative mortality Deaths by BC Deaths by BC SD2 Deaths by BC I2

Strategy1 Mean S.E. Mean S.E. Mean S.E. Mean S.E.

A4069 3.04 0.05 38.90 0.59 40.82 0.82 51.03 1.74

B4068 3.24 0.05 41.53 0.57 43.12 0.93 55.89 1.25

A5069 3.10 0.05 39.71 0.61 40.02 0.87 51.40 1.96

B5068 3.29 0.05 42.10 0.58 42.60 0.97 56.63 1.66

α= 1.25 Cumulative mortality Deaths by BC Deaths by BC SD2 Deaths by BC I2

Strategy1 Mean S.E. Mean S.E. Mean S.E. Mean S.E.

A4069 3.13 0.05 40.10 0.60 40.06 0.88 57.47 1.80

B4068 3.34 0.05 42.73 0.60 41.36 0.95 61.32 1.31

A5069 3.19 0.05 40.92 0.61 39.17 0.91 57.85 1.99

B5068 3.38 0.05 43.30 0.60 40.84 0.98 62.19 1.62

α= 1.5 Cumulative mortality Deaths by BC Deaths by BC SD2 Deaths by BC I2

Strategy1 Mean S.E. Mean S.E. Mean S.E. Mean S.E.

A4069 3.19 0.05 40.88 0.61 39.24 0.88 62.60 1.72

B4068 3.40 0.05 43.54 0.62 39.79 0.97 65.73 1.22

A5069 3.25 0.05 41.69 0.61 38.26 0.88 63.00 1.90

B5068 3.44 0.05 44.10 0.62 39.24 0.97 66.66 1.59

Without benefit of screening

α= 1 Cumulative mortality Deaths by BC Deaths by BC SD2 Deaths by BC I2

Strategy1 Mean S.E. Mean S.E. Mean S.E. Mean S.E.

A4069 3.72 0.05 47.65 0.59 57.88 0.81 59.78 1.73

B4068 3.72 0.05 47.65 0.59 58.10 0.90 59.97 1.23

A5069 3.72 0.05 47.65 0.59 57.93 0.86 60.78 1.91

B5068 3.72 0.05 47.65 0.59 58.23 0.97 60.88 1.53

α= 1.25 Cumulative mortality Deaths by BC Deaths by BC SD2 Deaths by BC I2

Strategy1 Mean S.E. Mean S.E. Mean S.E. Mean S.E.

A4069 3.80 0.05 48.72 0.57 56.78 0.80 66.40 1.73

B4068 3.80 0.05 48.72 0.57 55.96 0.88 65.50 1.28

A5069 3.80 0.05 48.72 0.57 56.74 0.83 67.34 1.79

B5068 3.80 0.05 48.72 0.57 56.07 0.96 66.46 1.60

α= 1.5 Cumulative mortality Deaths by BC Deaths by BC SD2 Deaths by BC I2

Strategy1 Mean S.E. Mean S.E. Mean S.E. Mean S.E.

A4069 3.86 0.05 49.49 0.58 55.89 0.77 71.71 1.67

B4068 3.86 0.05 49.49 0.58 54.22 0.85 69.96 1.17

A5069 3.86 0.05 49.49 0.58 55.76 0.83 72.72 1.65

B5068 3.86 0.05 49.49 0.58 54.27 0.90 71.07 1.45

1 A4069: Annual exams in the age interval 40-69 years. B4068: Biennial exams in the age interval 40-68 years.

A5069: Annual exams in the age interval 50-69 years. B5068: Biennial exams in the age interval 50-68 years.
2 SD: Screen-detected cases, I: Interval cases.
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Figure A.2: Mean simulated (black dots) and observed (red line) BC transition to Sp and incidence rates.

One hundred simulated scenarios for each screening strategy. Time horizon 0-85 years.
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