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Abstract

In this paper, a general method for predicting future lower and upper current records and record

range from any arbitrary continuous distribution is proposed. Two pivotal statistics with the same

explicit distribution for lower and upper current records are developed to construct prediction

intervals for future current records. In addition, prediction intervals for future observations of the

record range are constructed. A simulation study is applied on normal and Weibull distributions to

investigate the efficiency of the suggested method. Finally, an example for real lifetime data with

unknown distribution is analysed.
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1. Introduction

Let {Xi; i ≥ 1} be a sequence of iid continuous random variables each distributed

according to cumulative distribution function (cdf) FX(x) = P(X ≤ x) and probability

density function (pdf) fX(x). An observation X j will be called an upper record value if

its value exceeds that of all previous observations. Thus, X j is an upper record if X j > Xi

for every i < j. An analogous definition, with the inequality being reversed, deals with

lower record values. The times at which the records occur are called record times.
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There are some situations wherein upper and lower records are observed together,

such as the case of weather data. In these cases, It is quite conceivable to consider lower

and upper records jointly, when a new record of either kind (upper or lower) occurs, and

these records are called current records. In this paper, we denote them by Uc
n and Lc

n,

respectively, and call the nth upper current record and the nth lower current record of the

sequence {Xn} when the nth record of any kind (either an upper or lower) is observed. It

can be noticed that Uc
n+1 =Uc

n if Lc
n+1 < Lc

n and that Lc
n+1 = Lc

n if Uc
n+1 >Uc

n . That is, the

upper current record value is the largest observation seen to date at the time when the nth

record (of either kind) is observed. According to the definition, Lc
0 =Uc

0 = X1. For n≥ 1,

the interval (Lc
n,U

c
n ) is then referred to as the record coverage. The record range is then

defined by Rc
n =Uc

n −Lc
n. The record range may also be defined as the nth record range in

the sequence of the usual sample range Rn = max(X1,X2, . . . ,Xn)−min(X1,X2, . . . ,Xn),

where by definition Rc
0 = 0 and Rc

1 = R2. Notice that a new record range is attained

once a new upper or lower record is observed (see, Basak, 2000). Both current record

values and record range can be detected in several real-life situations. For example, the

consistency of the production process is required to meet a product’s specifications. If

the record range is large, then it is likely that large number of products will lie outside

the specifications of the product. Predictions of future upper and lower current records,

as well as record range, are of natural interest in this context. Prediction of future events

is a problem of great interest and plays an important role in many applications, such

as meteorology, hydrology, industrial stress testing and athletic events. Several authors

have considered prediction problems involving record values. For example, Ahmadi

and Balakrishnan (2004) derived distribution-free confidence intervals to estimate the

fixed quantiles of an arbitrary unknown distribution, based on current records of an iid

sequence from that distribution. Raqab and Balakrishnan (2008) obtained distribution-

free prediction intervals for records from the Y -sequence based on record values from

the X-sequence of iid random variables from the same distribution. Raqab (2009)

obtained prediction intervals for the current records from a future iid sequence based

on observed current records from an independent iid sequence of the same distribution.

Ahmadi and Balakrishnan (2011) discussed the prediction of future order statistics based

on the current record values. In this paper, we consider two pivotal quantities for the

lower and upper current records based on an arbitrary cdf FX with the same explicit

distribution-free (not depending on the cdf FX ). By using these pivotal quantities,

prediction intervals of future observations of lower-upper current records and record

range are explicitly derived. Moreover, simulation study is applied on normal and

Weibull distributions to investigate the efficiency of the suggested method. Finally, an

example of real lifetime data is analysed, where it is assumed that the distribution of the

data is unknown.
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2. Auxiliary results

Houchens (1984) used an inductive argument to derive the pdf of Uc
n , Lc

n and Rc
n, based

on an arbitrary cdf FX , (in the sequel we write Uc
n ‖ X , Lc

n ‖ X and Rc
n ‖ X to indicate that

these statistics are based on the cdf FX ), respectively by

fUc
n‖X(x) = 2n fX(x)

[

1− F̄X(x)
n−1

∑
k=0

[− log F̄X(x)]
k

k!

]

, (2.1)

fLc
n‖X(x) = 2n fX(x)

[

1−FX(x)
n−1

∑
k=0

[− logFX(x)]
k

k!

]

and

fRc
n‖X(r) =

2n

(n−1)!

∫ ∞

−∞

fX(r+ x) fX(x)

[

− log(1−FX(r+ x)+FX(x))
]n−1

dx, 0 < r < ∞,

where F̄X(x) = 1−FX(x).

Houchens (1984) deduced a useful representation for Uc
n ‖ Y, when Y has a negative

exponential with parameter 2, i.e., Y ∼ EX(2). Namely,

Uc
n ‖ Y

d
= Y0 +Y1 + ...+Yn, (2.2)

where “
d
=”means identical in distribution and Yi’s are independent random variables

such that Y0 ∼ EX(2) and the remaining Yi ∼ EX(1). An analogous representation for

the lower current record can be easily obtained by noting that

f−Uc
n‖X(x) = fUc

n‖X(−x) = 2n fX(−x)
[

1− F̄X(−x)
n−1

∑
k=0

(− log F̄X(−x))k

k!

]

= 2n f−X(x)
[

1− F̄−X(x)
n−1

∑
k=0

(− log F̄−X(x))
k

k!

]

,

which yields

−Uc
n ‖ X

d
= Lc

n ‖ −X . (2.3)

Applying (2.3), we get −Uc
n ‖ Y

d
= −Y0 −Y1 − ·· · −Yn

d
= Z0 + Z1 + · · ·+ Zn, where

Z0 ∼ EX+(2), Zi ∼ EX+(1), i = 1,2, . . . ,n, and EX+(β) is the positive exponential cdf
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with parameter β . Thus, by applying again (2.3) and noting that Y ∼ EX(β) ⇒ Z =

−Y ∼ EX+(β), we get

Lc
n ‖ Z

d
= Z0 +Z1 + ...+Zn,

where Z ∼ EX+(2), Z0 ∼ EX+(2) and Zi ∼ EX+(1), i = 1,2, . . . ,n.

3. Main results

The following theorem is the main result of this article. In what follows we assume that

FX is a continuous cdf with the generalized inverse function F−1
X (y) = inf{x : FX(x)≥ y}.

Theorem 3.1. Let Uc
n = Uc

n ‖ X , Lc
n = Lc

n ‖ X and Rc
n = Rc

n ‖ X be the upper current

record, the lower current record and the record range based on the cdf FX , respectively.

Furthermore, let 0 < α,β < 1 and m = 1,2, . . . Then,

1.
(

Uc
n ,F

−1
X

(

1− F̄
1+tm:α

X (Uc
n )
)

)

is (1−α)% confidence interval for Uc
n+m.

2.
(

F−1
X (F

1+tm:β

X (Lc
n)),L

c
n

)

is (1−β)% confidence interval for Lc
n+m,

3.
(

Rc
n = Uc

n − Lc
n,F

−1
X

(

1 − F̄
1+tm:α

X (Uc
n )
)

− F−1
X

(

F
1+tm:β

X (Lc
n)
))

is γ% confidence

interval for Rc
n+m, where γ≥ max(1−α−β ,0) (e.g., γ≥ 0.98 if α= β = 0.01).

Theorem 3.1 will follow from the following lemma, which is proved in the Appendix

and individually expresses an interesting fact.

Lemma 3.1. Let U⋆
n = Uc

n ‖ Y and L⋆
n = Lc

n ‖ Z, where Y ∼ EX(2) and Z ∼ EX+(2).

Then, for every m = 1,2, . . . , the two pivotal statistics T̄m =
U⋆

n+m−U⋆
n

U⋆
n

and Tm =
L⋆n+m−L⋆n

L⋆n

have the same pdf f (t), where

f (t) =
2n−1mtm−1

(t + 1
2
)m+1

−
n−1

∑
k=0

(

k+m

k

)

2n−k−1mtm−1

(t +1)k+m+1
. (3.1)

Remark 3.1. One can easily check that
∫ ∞

0 f (t)dt = 1, by using the two formulas

∫ ∞

0

tN

(t +a)M
dt = aN−M+1

N

∑
i=0

(

N

i

)

(−1)i+1

N − i−M+1
, a > 0,



H. M. Barakat, E. M. Nigm and R. A. Aldallal 255

and

N

∑
i=0

(−1)i

M+ i

(

N

i

)

=
N!(M−1)!

(M+N)!
,

for any two positive integers N and M, for which N < M−1.

Proof of Theorem 3.1. On applying Lemma 3.1, we get P
(

0 ≤ T̄m ≤ tm:α

)

= 1−α, and

P
(

0 ≤ Tm ≤ tm:β

)

= 1−β . Therefore, we get

P
(

0 ≤
U∗

n+m −U∗
n

U∗
n

≤ tm:α

)

= P
(

U∗
n ≤U∗

n+m ≤U∗
n (1+ tm:α)

)

= 1−α (3.2)

and

P
(

0 ≤
L∗

n+m −L∗
n

L∗
n

≤ tm:β

)

= P
(

0 ≥ L∗
n+m −L∗

n ≥ L∗
ntm:β

)

= 1−β (3.3)

(note that L∗
n ≤ 0). Thus, the first two relations of Theorem 3.1 (1. and 2.) follow imme-

diately by applying the transformations U⋆
n = −2log(F̄X(U

c
n )) and L⋆

n = 2log(FX(L
c
n)),

respectively, on the relations (3.2) and (3.3).

In order to find the confidence interval for the record range we use the two well-

known relations

P(C1C2)≥ max(P(C1)+P(C2)−1,0),

for any two events C1 and C2, and

{a+ ā ≤ X +Y ≤ b+ b̄} ⊂ {ā < X < b̄,a < Y < b},

for any two random variables X and Y, to get

P
(

Rc
n =Uc

n −Lc
n ≤ Rc

n+m ≤ F−1
X

(

1− F̄
1+tm:α

X (Uc
n )
)

−F−1
X

(

F
1+tm:β

X (Lc
n)
))

≥P
(

Uc
n ≤Uc

n+m≤ F−1
X

(

1− F̄
1+tm:α

X (Uc
n )
)

,−Lc
n≤−Lc

n+m≤−F−1
X

(

F
1+tm:β

X (Lc
n)
))

= γ≥ max(1−α−β ,0).

This completes the proof. �
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By using an argument similar to the one applied in Lemma 3.1, the proofs of the

following two results are in the appendix.

Lemma 3.2. The joint pdf’s of U⋆
1 ,U

⋆
2 , . . . ,U

⋆
n and L⋆

1,L
⋆
2, . . . ,L

⋆
n are given respectively

by

fU⋆
n ,U

⋆
n−1,...,U

⋆
1
(yn,yn−1, . . . ,y1) = e−yn [ey1/2 −1],0 < y1 < y2 < · · ·< yn,

and

fL⋆n,L
⋆
n−1,...,L

⋆
1
(zn,zn−1, . . . ,z1) = ezn [e−z1/2 −1], zn < zn−1 < · · ·< z1 < 0.

Lemma 3.2 opens the way for interesting inferential study based on the current records.

Actually, by noting that U⋆
n = −2log(F̄X(U

c
n ‖ X)) and L⋆

n = 2log(FX(L
c
n ‖ X)), we

can obtained the likelihood functions based on the upper and lower current records,

respectively, as

fUc
n‖X ,...,Uc

1‖X(xn, . . . ,x1) =
F̄2

X (xn)FX(x1)

F̄X(x1)

(

n

∏
j=1

2 fX(x j)

F̄X(x j)

)

, x1 < x2 < · · ·< xn

and

fLc
n‖X ,...,Lc

1‖X(xn, . . . ,x1) =
F̄2

X (xn)F̄X(x1)

FX(x1)

(

n

∏
j=1

2 fX(x j)

FX(x j)

)

, xn < xn−1 < · · ·< x1.

The above likelihood functions can be used to obtain the point estimators of any

unknown parameters of the cdf FX , especially if the available data are the current record

values.

Lemma 3.3. Each of the sequence {Uc
n ‖ X} and {Lc

n ‖ X} forms a Markov chain.

Tables 1, 2 and 3 give the values of tm:θ , where
∫ tm:θ

0 f (t)dt = 1−θ , for the values of

n = 2,3, . . . ,20,m = 1,2, . . . ,5 and θ = 0.1,0.05,0.01. The calculations in these tables

are carried out by Mathematica 8.
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Table 1: P(T̄m ≤ tm:0.1) = P(Tm ≤ tm:0.1) = 0.9.

n m = 1 m = 2 m = 3 m = 4 m = 5

2 0.893932 1.64789 2.12161 3.09928 3.81681

3 0.637903 1.15382 1.64826 2.13481 2.61746

4 0.496616 0.887298 1.25887 1.62313 1.98369

5 0.406947 0.720864 1.01764 1.30767 1.59422

6 0.34491 0.607108 0.853803 1.09426 1.33144

7 0.299402 0.524443 0.735349 0.940467 1.14249

8 0.264573 0.461651 0.645749 0.824454 1.00024

9 0.237047 0.41233 0.575618 0.733861 0.88935

10 0.214737 0.37256 0.519236 0.661177 0.80051

11 0.196285 0.339808 0.472924 0.601579 0.727758

12 0.180767 0.312366 0.434205 0.551829 0.667099

13 0.167533 0.289036 0.401353 0.509676 0.615756

14 0.156111 0.268957 0.373128 0.473505 0.571739

15 0.146152 0.251494 0.348617 0.442127 0.533588

16 0.137392 0.236166 0.327132 0.41465 0.500204

17 0.129626 0.222602 0.308145 0.390389 0.470749

18 0.122693 0.210515 0.291243 0.368811 0.444567

19 0.116466 0.199676 0.276101 0.349494 0.421142

20 0.110841 0.1899 0.262458 0.332101 0.400062

Table 2: P(T̄m ≤ tm:0.05) = P(Tm ≤ tm:0.05) = 0.95.

n m = 1 m = 2 m = 3 m = 4 m = 5

2 1.33466 2.36039 3.35038 4.32794 5.29962

3 0.917775 1.58465 2.22095 2.84604 3.46562

4 0.699294 1.18883 1.65183 2.10471 2.55247

5 0.565044 0.950237 1.31202 1.66461 2.01244

6 0.474206 0.791113 1.08708 1.37465 1.6578

7 0.408643 0.677553 0.927536 1.16979 1.4079

8 0.359082 0.592484 0.808619 1.01759 1.2227

9 0.320292 0.526398 0.716627 0.900193 1.08012

10 0.2891 0.473584 0.643377 0.806939 0.967069

11 0.263469 0.430412 0.583685 0.731109 0.875286

12 0.242029 0.394463 0.534115 0.668256 0.799318

13 0.223828 0.364064 0.492298 0.615323 0.735419

14 0.208182 0.338022 0.45655 0.570139 0.680937

15 0.194588 0.315462 0.42564 0.531123 0.633941

16 0.182666 0.29573 0.39865 0.497096 0.592992

17 0.172124 0.278324 0.374878 0.46716 0.556997

18 0.162736 0.262857 0.353783 0.440621 0.525111

19 0.154321 0.249021 0.334935 0.416931 0.49667

20 0.146736 0.23657 0.317995 0.395657 0.471145
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Table 3: P(T̄m ≤ tm:0.01) = P(Tm ≤ tm:0.01) = 0.99.

n m = 1 m = 2 m = 3 m = 4 m = 5

2 2.85847 4.79726 6.66544 8.50916 10.3413

3 1.79354 2.91229 3.97659 5.02093 6.05546

4 1.29678 2.06118 2.78104 3.4839 4.17816

5 1.01294 1.58618 2.12161 2.64218 3.15505

6 0.830235 1.28585 1.70856 2.11803 2.52051

7 0.703094 1.07977 1.42729 1.76285 2.09202

8 0.609623 0.929976 1.22414 1.50739 1.78474

9 0.538056 0.816357 1.07087 1.31536 1.55434

10 0.481519 0.727304 0.951294 1.166 1.37557

11 0.435735 0.655671 0.855492 1.04666 1.23301

12 0.397907 0.596827 0.777067 0.949212 1.11681

13 0.366128 0.547641 0.711716 0.868181 1.02035

14 0.339055 0.505923 0.656439 0.799775 0.939036

15 0.315716 0.470098 0.609086 0.741278 0.869594

16 0.295387 0.439003 0.568075 0.690695 0.80962

17 0.277521 0.411761 0.532217 0.646532 0.757316

18 0.261696 0.387699 0.500602 0.607646 0.711309

19 0.247582 0.366292 0.472522 0.573149 0.670533

20 0.234914 0.347123 0.447416 0.542341 0.63415

4. Simulation study

In order to check the efficiency of the presented method in Theorem 3.1, a simulation

study is conducted for two important lifetime distributions: Weibull[1,2], with scale and

shape parameters 1 and 2, respectively, and Normal[0,1]. For each of these distributions,

we generate a random sample of size 100. Moreover, for each of these random samples,

the lower and upper current record values are picked up and then the corresponding

record ranges are computed. By accident, we got the same number, 12, of current

records (lower and upper) for the two random samples (i.e., for the two distributions).

Table 4 gives these 12 observed values of Uc
n ‖ X and Lc

n ‖ X , as well as Rc
n ‖ X ,

where X ∼ Weibull[1,2], or X ∼ Normal[0,1]. Now, we assume that we have only

observed the first 9 values of current records (lower and upper) (i.e., 75% of the observed

values of the current records) and we want to predict the three next ones (i.e., 25% of

the observed values of the current records). Theorem 3.1 enables us to get predictive

confidence intervals for these three next values. Tables 5 and 6 give these predictive

confidence intervals for Uc
9+m ‖ X , Lc

9+m ‖ X and Rc
9+m ‖ X , where m = 1,2,3, for the

cdf’s X ∼Weibull[1,2] and X ∼ Normal[0,1], respectively.

Algorithm

Step 1: select the cdf FX from which the data will come,

Step 2: choose the values of N,



H. M. Barakat, E. M. Nigm and R. A. Aldallal 259

Step 3: generate a random sample of size N from FX ,

Step 4: pick up the lower and upper current record values from the observed data and

compute the corresponding record range values. Let the number of the observed lower

and upper current record values be n. Choose the value of M, which is about 25% of n,

Step 5: choose a significant coefficient θ and numerically solve the equation

∫ tm:θ

0
f (t)dt = 1−θ , m = 1,2, . . . ,M,

using (3.1) (after replacing n in (3.1) by n−M) and Mathematica 8,

Step 6: determine the lower and upper bounds of the predictive confidence intervals for

Uc
n−M+m ‖ X , Lc

n−M+m ‖ X and Rc
n−M+m ‖ X , m = 1,2, ..,M, by using Theorem 3.1 and

the step 5.

The presented results in Tables 5 and 6 show that all the true values of Uc
9+m ‖ X ,

Lc
9+m ‖ X and Rc

9+m ‖ X , where m = 1,2, are included in their predictive confidence

intervals for the two cdf’s X ∼ Weibull[1,2] and X ∼ Normal[0,1]. Moreover, almost,

the true values of these statistics are also included in their predictive confidence intervals

for the two cdf’s, for m= 3. Nevertheless, the length of the predictive confidence interval

increases (i.e., we get less accuracy) with increasing the value of m, i.e. the number of

the unobserved data is increased. Therefore, we advise predicting no more than one

fourth of the data that we have.

Table 4: Current records and record range from Weibull[1,2] and Normal[0,1].

Weibull[1,2] Normal[0,1]

n Uc
n Lc

n Rc
n n Uc

n Lc
n Rc

n

1 3.84915 3.84915 0 1 −0.187968 −0.187968 0

2 3.84915 0.446312 3.402838 2 −0.187968 −0.35455 0.166582

3 5.64291 0.446312 5.196598 3 0.1652 −0.35455 0.51975

4 5.64291 0.375142 5.267768 4 0.1652 −1.21013 1.37533

5 5.64291 0.192999 5.449911 5 1.40996 −1.21013 2.62009

6 6.1647 0.192999 5.971701 6 1.40996 −1.37108 2.78104

7 10.2282 0.192999 10.035201 7 1.40996 −1.66077 3.07073

8 10.2282 0.108285 10.119915 8 2.07656 −1.66077 3.73733

9 10.2282 0.0235643 10.2046357 9 2.07656 −1.90336 3.97992

10 10.5855 0.0235643 10.5619357 10 2.10684 −1.90336 4.0102

11 12.9219 0.0235643 12.8983357 11 2.10684 −2.15466 4.2615

12 12.9219 0.0202959 12.9016041 12 2.96574 −2.15466 5.1204
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Table 5: Predictive confidence intervals for the next three observations of current records and record range

from Weibull[1,2], with different significance levels (SL’s) 90%, 95% and 99%.

for m = 1 SL = 90% SL = 95% SL = 99%

Uc
10 (10.2282,12.6528) (10.2282,13.5042) (10.2282,15.7315)

Lc
10 (0.00818032,0.0235643) (0.00564575,0.0235643) (0.00214174,0.0235643)

Rc
10 (10.2046357,12.6446) (10.2046357,13.4986) (10.2046357,15.7294)

for m = 2 SL = 90% SL = 95% SL = 99%

Uc
11 (10.2282,14.4456) (10.2282,15.6123) (10.2282,18.5781)

Lc
11 (0.00374765,0.0235643) (0.00225577,0.0235643) (0.000621026,0.0235643)

Rc
11 (10.2046357,14.4418) (10.2046357,15.61) (10.2046357,18.5774)

for m = 3 SL = 90% SL = 95% SL = 99%

Uc
12 (10.2282,16.1157) (10.2282,17.558) (10.2282,21.1813)

Lc
12 (0.00181212,0.0235643) (0.000967742,0.0235643) (0.000200224,0.0235643)

Rc
12 (10.2046357,16.1139) (10.2046357,17.577) (10.2046357,21.1811)

Table 6: Predictive confidence intervals for the next three observations of current records and record range

from Normal[0,1], with different SL’s 90%, 95% and 99%.

for m = 1 SL = 90% SL = 95% SL = 99%

Uc
10 (2.07656,2.43784) (2.07656,2.55498) (2.07656,2.84252)

Lc
10 (−2.24886,−1.90336) (−2.36081,−1.90336) (−2.63544,−1.90336)

Rc
10 (3.97992,4.6867) (3.97992,4.91579) (3.97992,5.47796)

for m = 2 SL = 90% SL = 95% SL = 99%

Uc
11 (2.07656,2.67961) (2.07656,2.82774) (2.07656,3.17785)

Lc
11 (−2.47987,−1.90336) (−2.62134,−1.90336) (−2.9555,−1.90336)

Rc
11 (3.97992,5.15948) (3.97992,5.44908) (3.97992,6.13335)

for m = 3 SL = 90% SL = 95% SL = 99%

Uc
12 (2.07656,2.88969) (2.07656,3.06129) (2.07656,3.45983)

Lc
12 (−2.68049,−1.90336) (−2.84427,−1.90336) (−3.22445,−1.90336)

Rc
12 (3.97992,5.57018) (3.97992,5.90556) (3.97992,6.68428)
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5. The case when the cdf F is unknown and real data example

Undoubtedly the lack of knowledge of the distribution of the resulted data in any sta-

tistical experiment is the most frequent case. In fact the assumption that the distribution

F is known is unreal. However, we can overcome this problem by using the observed

data that we have (i.e., X1,X2, . . . ,XN) to select a statistical distribution that best fits

this data set. Actually, we cannot “just guess” and use any other particular distribution

without testing several alternative models as this can result in analysis errors. In most

cases, we need to fit two or more distributions, compare the results, and select the most

valid model (see Example 5.1). Naturally, the “candidate” distributions we fit should be

chosen depending on the nature of our observed data. For example, in the case of a life

testing experiment we should fit non-negative distributions such as Gamma or Weibull.

Obviously when this procedure is applied, all we need, is that the size N of the ob-

served data to be large enough to carry the necessary identification methods (e.g., build

a histogram) and goodness-of-fit tests (e.g., the Kolmogorov-Smirnov test) based on the

empirical cdf of X1, . . . ,XN . In Example 5.1, we consider N = 130 realistic observations

(cf. Arnold, et al. 1998, Page 49) with unknown distribution. These data yield 14 cur-

rent records (lower-upper). The first 11 of them resulted from the first 48 observations.

Thus, we look for the best distribution F that fits these data (the 48 observations). After

that we predict the last three current records and their corresponding record ranges by

applying the results of Theorem 3.1 on the first 11 current records and their correspond-

ing record ranges. We find almost all the predictions are accurate even when we select

another fitted distribution for the data but with less goodness-of-fit to the data than the

first one.

Example 5.1. The following data (read row-wise) represent the average July tempera-

tures (in degrees centigrade) of Neuenburg, Switzerland, during the period 1864-1993

(from Klupppelberg and Schwere, 1995).

19.0 20.1 18.4 17.4 19.7 21.0 21.4 19.2 19.9 20.4 20.9 17.2 20.2 17.8 18.1

15.6 19.4 21.7 16.2 16.4 19.0 20.6 19.0 20.7 15.8 17.7 16.8 17.1 18.1 18.4

18.7 18.7 18.4 19.2 18.0 18.7 20.7 19.4 19.2 17.4 22.0 21.4 19.3 16.8 18.2

16.2 15.9 22.1 17.5 15.3 16.5 17.4 17.0 18.3 18.3 15.3 18.2 21.5 17.0 21.6

18.2 18.1 17.6 18.2 22.6 19.9 17.1 17.2 17.3 19.4 20.1 20.1 17.0 19.4 17.5

16.8 17.0 19.9 18.2 19.2 18.5 20.8 19.5 21.1 15.8 21.3 21.2 18.8 22.3 18.6

16.8 18.2 17.2 18.4 18.7 21.1 16.3 17.4 18.0 19.5 21.2 16.8 17.4 20.7 18.4

19.8 18.7 20.5 18.3 18.2 18.2 19.2 20.2 18.2 17.4 19.2 16.3 17.4 20.3 23.4

19.2 20.2 19.3 19.0 18.8 20.3 19.7 20.7 19.6 18.1

The above data yield 14 current records. These current records and their corresponding

record ranges are presented in Table 7. First, we try to fit the first 48 observations, for

several cdf’s such as exponential, logistic, Gamma, normal, Weibull, Gumbel, Laplace



262 Exact prediction intervals for future current records and record range...

and inverse Gamma distributions. The methods of maximum likelihood and moments

are used to estimate the parameters of the candidate cdf’s. After that we apply the

Anderson-Darling, Cramér-von Mises, and Kolmogorov-Smirnov goodness of fit tests to

check the fitting of these cdf’s. Among these cdf’s, we found that only the Gamma, nor-

mal and logistic distributions fit these data. Moreover, the Gamma[119.277,0.157808]

distribution is the best cdf that fits these data (in the average w.r.t the three applied

goodness of fit tests and the two used methods of estimation) the second cdf is Normal

[18.8229,1.71722], while the third is logistic distribution Logistic[18.8205,1.01236],

see Tables 8-10 and Figures 1-3. The predictive confidence intervals for the next three

statistics Uc
11+m

,Lc
11+m

and Rc
11+m

,m = 1,2,3, for the Gamma, normal and logistic cdf’s

are represented in Tables 11-13, respectively. These tables show that almost all the true

values of the above three statistics are included in the predictive confidence intervals.

This result shows that our suggested method is stable regardless the choice of the cdf

that fits the data.

Table 7: Current records and record ranges which are resulted from all our data.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Uc
n 19.0 20.1 20.1 20.1 21.0 21.4 21.4 21.4 21.7 22.0 22.1 22.1 22.6 23.4

Lc
n 19.0 19.0 18.4 17.4 17.4 17.4 17.2 15.6 15.6 15.6 15.6 15.3 15.3 15.3

Rc
n 0 1.1 1.7 2.7 3.6 4.0 4.2 5.8 6.1 6.4 6.5 6.8 7.3 8.1

Table 8: Fitting the first 48 observations for gamma cdf.

Distribution/Test-Method Gamma[α,β ]

Maximum Likelihood α̂ML = 119.277

β̂ML = 0.157808

P-Value Statistic

Kolmogorov-Smirnov 0.995234 0.0569809

Anderson-Darling 0.977713 0.235002

Cramér-Von-Mises 0.983675 0.0274912

Moments α̂M = 120.149

β̂M = 0.156663

P-Value Statistic

Kolmogorov-Smirnov 0.994289 0.0578043

Anderson-Darling 0.974785 0.241202

Cramér-Von-Mises 0.981763 0.0281783
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Table 9: Fitting the first 48 observations for normal cdf.

Distribution/Test-Method Normal[µ,σ]

Maximum Likelihood µ̂ML = 18.8229

σ̂ML = 1.71722

P-Value Statistic

Kolmogorov-Smirnov 0.994086 0.0579686

Anderson-Darling 0.982812 0.222963

Cramér-Von-Mises 0.987088 0.0261305

Moments µ̂M = 18.8229

σ̂M = 1.71722

P-Value Statistic

Kolmogorov-Smirnov 0.994086 0.0579686

Anderson-Darling 0.982812 0.222963

Cramér-Von-Mises 0.987088 0.0261305

Table 10: Fitting the first 48 observations for logistic cdf.

Distribution/Test-Method Logistic[µ,β ]

Maximum Likelihood µ̂ML = 18.8205

β̂ML = 1.01236

P-Value Statistic

Kolmogorov-Smirnov 0.98876 0.061264

Anderson-Darling 0.964482 0.260431

Cramér-Von-Mises 0.979247 0.02903

Moments µ̂M = 18.8229

β̂M = 0.946754

P-Value Statistic

Kolmogorov-Smirnov 0.927317 0.0756047

Anderson-Darling 0.838543 0.409448

Cramér-Von-Mises 0.882778 0.0489246
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Figure 1: Plot showing the goodness-of-fit for gamma cdf.

Figure 2: Plot showing the goodness-of-fit for normal cdf.

Figure 3: Plot showing the goodness-of-fit for logistic cdf.
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Table 11: Predictive confidence intervals for Uc
11+m,L

c
11+m and Rc

11+m, m = 1,2,3, from

Gamma[119.277,0.157808].

for m = 1 SL = 90% SL = 95% SL = 99%

Uc
12 (22.1,22.6482) (22.1,22.8253) (22.1,23.2593)

Lc
12 (15.1588,15.6) (15.0195,15.6) (14.6846,15.6)

Rc
12 (6.5,7.4894) (6.5,7.8058) (6.5,8.5747)

for m = 2 SL = 90% SL = 95% SL = 99%

Uc
13 (22.1,23.021) (22.1,23.2463) (22.1,23.7782)

Lc
13 (14.8674,15.6) (14.6945,15.6) (14.2959,15.6)

Rc
13 (6.5,8.1536) (6.5,8.5516) (6.5,9.4823)

for m = 3 SL = 90% SL = 95% SL = 99%

Uc
14 (22.1,23.3496) (22.1,23.6122) (22.1,24.222)

Lc
14 (14.6161,15.6) (14.4189,15.6) (13.9732,15.6)

Rc
14 (6.5,8.7335) (6.5,9.1933) (6.5,10.2488)

Table 12: Predictive confidence intervals for Uc
11+m,L

c
11+m and Rc

11+m, m = 1,2,3, from

Normal[18.8229,1.71722].

for m = 1 SL = 90% SL = 95% SL = 99%

Uc
12 (22.1,22.5884) (22.1,22.756) (22.1,23.1421)

Lc
12 (15.107,15.6) (14.9494,15.6) (14.5665,15.6)

Rc
12 (6.5,7.4814) (6.5,7.8066) (6.5,8.5756)

for m = 2 SL = 90% SL = 95% SL = 99%

Uc
13 (22.1,22.9307) (22.1,23.1306) (22.1,23.5979)

Lc
13 (14.7762,15.6) (14.578,15.6) (14.1147,15.6)

Rc
13 (6.5,8.1545) (6.5,8.5526) (6.5,9.4832)

for m = 3 SL = 90% SL = 95% SL = 99%

Uc
14 (22.1,23.2219) (22.1,23.4528) (22.1,23.9826)

Lc
14 (14.4875,15.6) (14.2586,15.6) (13.7333,15.6)

Rc
14 (6.5,8.7344) (6.5,9.1942) (6.5,10.2493)
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Table 13: Predictive confidence intervals for Uc
11+m,L

c
11+m and Rc

11+m, m = 1,2,3, from

Logistic[18.8205,1.01236].

for m = 1 SL = 90% SL = 95% SL = 99%

Uc
12 (22.1,22.77) (22.1,22.997) (22.1,23.5757)

Lc
12 (14.9403,15.6) (14.7169,15.6) (14.1475,15.6)

Rc
12 (6.5,7.8297) (6.5,8.2801) (6.5,9.4282)

for m = 2 SL = 90% SL = 95% SL = 99%

Uc
13 (22.1,23.2539) (22.1,23.5578) (22.1,24.3102)

Lc
13 (14.4641,15.6) (14.1651,15.6) (13.4251,15.6)

Rc
13 (6.5,8.7898) (6.5,9.3927) (6.5,10.8851)

for m = 3 SL = 90% SL = 95% SL = 99%

Uc
14 (22.1,23.7001) (22.1,24.0702) (22.1,24.9755)

Lc
14 (14.0251,15.6) (13.6612,15.6) (12.771,15.6)

Rc
14 (6.5,9.675) (6.5,10.409) (6.5,12.2045)

6. Conclusion

In this paper we focused on the prediction of upper and lower records. The obtained

results are useful when people are interested in knowing extreme values on different

periods, areas, etc. and their range of variation. Theorem 3.1 suggests a new method

to estimate confidence intervals for upper, lower and range records. This new method

depends on constructing two pivotal statistics with the same distribution for lower and

upper current records. The real data Example 5.1, shows that when the cdf of the

data is unknown, this method is applicable with acceptable degree of accuracy, even

if we fail to assign the type of the distribution of the data with a high accuracy. It is

worth mentioning that the result and the method of the proofs of this paper are quite

different from the known results concerning the prediction problems of record values.

For example, Ahmadi and Balakrishnan (2004) used only the current records to estimate

the fixed quantiles of the given cdf (unknown cdf), while Raqab and Balakrishnan (2008)

obtained distribution-free prediction intervals for the usual records (not the current

records). Finally Raqab (2009) predicted the current records, by using the two-sample

prediction plan, where the variable to be predicted comes from an independent future

sample. In this paper, we consider the one-sample prediction plan, where the variable to

be predicted comes from the same sample so that it may be correlated with the observed

data.
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Appendix

Proof of Lemma 3.1. By using (2.2), we get

P(U⋆
n+m ≤ x|U⋆

n = y) = P(Y0 +Y1 + · · ·+Yn + · · ·+Yn+m ≤ x|Y0 +Y1 + ...+Yn = y)

=P(Yn+1+ · · ·+Yn+m ≤ x−y|Y0+Y1+ · · ·+Yn = y)=P(Yn+1+ · · ·+Yn+m ≤ x−y). (1)

On the other hand, since Yi ∼ EX(1), for i = n+1, . . . ,n+m, then

fU⋆
n+m|U

⋆
n
(x|y) = fYn+1+···+Yn+m(x− y) =

(x− y)m−1

(m−1)!
e−(x−y)I(0,∞)(x− y), (2)

where IA(.) is the usual indicator function of the set A. Therefore, by combining (1) and

(2) with (2.1), we get

fU⋆
n+m,U

⋆
n
(x,y) = fU⋆

n+m|U
⋆
n
(x|y) fU⋆

n
(y)

=
(x− y)m−1

(m−1)!
e−(x−y)2n(

1

2
e−y/2)

[

1− e−y/2
n−1

∑
k=0

(− loge−y/2)k

k!

]

=
2n−1(x− y)m−1e−(x−y/2)

(m−1)!

[

1− e−y/2
n−1

∑
k=0

yk

2kk!

]

. (3)

Now, by using the transformation T̄m =
U⋆

n+m−U⋆
n

U⋆
n

and W =U⋆
n , we get

fT̄m,W (t,w) =
2n−1wmtm−1e−w(t+ 1

2 )

(m−1)!
−

2n−1tm−1e−w(t+1)

(m−1)!

n−1

∑
k=0

wk+m

2kk!
.

Thus, we conclude that

fT̄m
(t) =

∫ ∞

0
fT̄m,W (t,w)dw =

2n−1mtm−1

(t + 1
2
)m+1

−
n−1

∑
k=0

(

k+m

k

)

2n−k−1mtm−1

(t +1)k+m+1
.
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Similarly, we can show, for any x ≤ z ≤ 0, that P(L⋆
n+m ≤ x|L⋆

n = z) = P(Zn+1 + · · ·+

Zn+m ≤ x− z). Since Zi ∼ EX+(1), for i = n+1, . . . ,n+m, then

fL⋆n+m|L
⋆
n
(x|z) = fZn+1+···+Zn+m(x− z) =

(−(x− z))m−1

(m−1)!
e(x−z)I(−∞,0)(x− z).

Thus,

fL⋆n+m,L
⋆
n
(x,z) = fL⋆n+m|L

⋆
n
(x|z) fL⋆n

(z)

=
2n−1(−(x− z))m−1e(x−z/2)

(m−1)!

[

1− ez/2
n−1

∑
k=0

(−z)k

2kk!

]

, x ≤ z ≤ 0.

Now, by using the transformation Tm =
L⋆n+m−L⋆n

L⋆n
and V = L⋆

n, we get

fTm,V (t,v) =
2n−1(−v)mtm−1ev(t+ 1

2 )

(m−1)!
−

2n−1tm−1ev(t+1)

(m−1)!

n−1

∑
k=0

(−v)k+m

2kk!
,v ≤ 0, t ≥ 0.

Then, we conclude that

fTm(t) =
∫ 0

−∞

fTm,V (t,v)dv =
2n−1mtm−1

(t + 1
2
)m+1

−
n−1

∑
k=0

(

k+m

k

)

2n−k−1mtm−1

(t +1)k+m+1
.

This completes the proof. �

Proof of Lemma 3.2. Clearly, (3) yields

fU⋆
n ,U

⋆
n−1

(yn,yn−1) = 2n−2e−(yn−yn−1/2)
[

1− e−yn−1/2
n−2

∑
k=0

(

yn−1/2
)k

k!

]

.

On the other hand, by applying the same argument as in Lemma 3.1, we can show that

P(U⋆
n ≤ yn,U

⋆
n−1 ≤ yn−1|U

⋆
n−2 = yn−2)

= P(Yn−1 +Yn ≤ yn − yn−2,Yn−1 ≤ yn−1 − yn−2|Y0 +Y1 + · · ·+Yn−2 = yn−2)

= P(Yn−1 +Yn ≤ yn − yn−2,Yn−1 ≤ yn−1 − yn−2).

Since, fYn−1,Yn(yn−1,yn) = e−yn−1−yn , we get

fYn−1,Yn−1+Yn(yn−1 − yn−2,yn − yn−2) = e−(yn−yn−2), yn−2 < yn−1 < yn.
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Therefore, fU⋆
n ,U

⋆
n−1|U

⋆
n−2

(yn,yn−1|yn−2) = e−(yn−yn−2), which by using (2.1) implies

fU⋆
n ,U

⋆
n−1,U

⋆
n−2

(yn,yn−1,yn−2) = e−(yn−yn−2) fU⋆
n−2

(yn−2)

= 2n−3e−(yn−yn−2/2)
[

1− e−yn−2/2
n−3

∑
k=0

(yn−2/2)k

k!

]

.

Therefore, by induction we get the claimed result for the upper current records and the

result for the lower current records can be proved by applying the same argument. �

Proof of Lemma 3.3. Since the proof of the lemma for the two sequences {Uc
n ‖ X} and

{Lc
n ‖ X} are very similar, we only prove the lemma for the 1st sequence. For any two

positive integers t < s, we can easily, by applying the same argument in the proof of

Lemmas 3.1, 3.2, to show that

P(Uc
s ‖ X ≤ xs|U

c
1 ‖ X = x1, . . . ,U

c
t ‖ X = xt)

= P(U⋆
s ≤ x⋆s |U

⋆
1 = x⋆1, . . . ,U

⋆
t = x⋆t ) = P(Yt+1 + · · ·+Ys ≤ x⋆s − x⋆t ),

where x⋆i =−2log[F̄X(xi)], i = t,s. Therefore,

fUc
s ‖X |Uc

1‖,...,U
c
t ‖X(xs|x1, . . . ,xt) =

(x⋆s − x⋆t )
m−1

(m−1)!
e−(x⋆s−x⋆t )I(0,∞)(x

⋆
s − x⋆t ).

This completes the proof. �
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