
Statistics & Operations Research Transactions

SORT 38 (2) July-December 2014, 305-324

Statistics &
Operations Research

Transactions
c© Institut d’Estadı́stica de Catalunya

sort@idescat.catISSN: 1696-2281
eISSN: 2013-8830
www.idescat.cat/sort/

Global hypothesis test to compare the likelihood
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Abstract

In this article, a global hypothesis test is studied to simultaneously compare the likelihood ratios

of multiple binary diagnostic tests when in the presence of partial disease verification the missing

data mechanism is ignorable. The hypothesis test is based on the chi-squared distribution.

Simulation experiments were carried out to study the type I error and the power of the global

hypothesis test when comparing the likelihood ratios of two and three diagnostic tests respectively.

The results obtained were applied to the diagnosis of coronary stenosis.
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1. Introduction

The fundamental parameters to assess the accuracy of a binary diagnostic test are

the sensitivity and the specificity. Sensitivity (Se) is the probability of the diagnostic

test being positive when the individual has the disease, and specificity (Sp) is the

probability of the diagnostic test being negative when the individual does not have the

disease. Sensitivity and specificity depend on the intrinsic ability of the diagnostic test

to distinguish between individuals with and without the disease. Other parameters to

assess the accuracy of a binary diagnostic test are the likelihood ratios (LRs). When the

result of the diagnostic test is positive, the likelihood ratio, called positive likelihood

ratio (LR+), is the ratio between the probability of a positive test result in individuals

with the disease (Se) and the probability of a positive result in individuals without the

disease (1−Sp). When the result of the diagnostic test is negative, the likelihood ratio,
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called negative likelihood ratio (LR−), is the ratio between the probability of a negative

test result in individuals with the disease (1−Se) and the probability of a negative test

result in individuals without the disease (Sp). The LRs only depend on the sensitivity and

specificity of the diagnostic test, and their values vary between zero and infinite. When

the diagnostic test and the gold standard are independent then LR+ = LR− = 1, and if

the diagnostic test correctly classifies all of the individuals (with or without the disease)

then LR+ = ∞ and LR− = 0. A value of LR+ > 1 indicates that a positive test result

is more probable for an individual with the disease than for an individual without the

disease, and a value of LR− < 1 indicates that a negative test result is more probable for

an individual who does not have the disease than for one who has the disease. The LRs

quantify the increase in knowledge of the disease presence through the application of

the diagnostic test. Let T be the random variable that models the result of the diagnostic

test (T = 1 when the result is positive and T = 0 when the result is negative), let D be the

random variable that models the result of the gold standard (D= 1 when the individual is

diseased and D = 0 when this is not the case), and p = P(D = 1) the disease prevalence

in the population which is subject to the study. The ratio between the probability that

an individual has the disease and the probability that an individual does not have the

disease before applying the diagnostic test is

Odds pre-test =
p

1− p
.

After applying the diagnostic test the ratio is

Odds post-test(T ) =
P(D = 1|T )
P(D = 0|T ) .

The LRs relate the two previous odds, i.e.

Odds post-test(T = 1) = LR+×Odds pre-test

and

Odds post-test(T = 0) = LR−×Odds pre-test

Furthermore, the comparison of the LRs of diagnostic tests has been the subject

of different studies. In designs with independent samples, Luts et al (2011) studied a

hypothesis test to compare the LRs of two or more binary diagnostic tests studying the

effect of sample sizes on the asymptotic behaviour of the proposed test. The hypothesis

test proposed by these authors allows us to simultaneously compare the LRs of the

diagnostic tests subject to this type of sample design and is based on the chi-squared

distribution. For paired designs, Leisenring and Pepe (1998) proposed a GEE model
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to independently compare the positive LRs and the negative LRs of two diagnostic

tests; and Roldán Nofuentes and Luna del Castillo (2007) proposed a hypothesis test

to independently and jointly compare the positive LRs and the negative LRs of two

diagnostic tests through a likelihood-based approach. Nevertheless, in clinical practice

the gold standard is frequently not applied to all of the individuals in a sample, leading

to the problem known as partial disease verification (Begg and Greenes, 1983; Zhou,

1993). In this situation, the disease status (whether the disease is present or absent)

is unknown for a subset of individuals in the sample, and therefore if the previous

parameters are estimated only considering those individuals whose disease status are

known, the estimators are affected by what is known as verification bias. The same

problem occurs when, in the presence of partial disease verification, the parameters

of two (or more) binary diagnostic tests are compared in relation to the same gold

standard. When in the presence of partial verification the missing data mechanism is

MAR, Roldán Nofuentes and Luna del Castillo (2005) studied a hypothesis test to

independently compare the LRs of two binary diagnostic tests. In this article, we extend

the results of these authors and we study a hypothesis test to simultaneously compare the

LRs of two or more binary diagnostic tests. In Section 2, we propose a global hypothesis

test based on the chi-squared distribution to simultaneously compare the LRs of multiple

binary diagnostic tests when, in the presence of partial disease verification, the missing

data is ignorable. In Section 3, we carry out simulation experiments to study the type

I error and the power of the global hypothesis test when simultaneously comparing the

LRs of two and of three binary diagnostic tests. In Section 4, the global test is applied to

an example and in Section 5 we discuss the results obtained.

2. Global hypothesis test

Let us consider J binary diagnostic tests (J ≥ 2) that are applied independently to all

of the individuals in a random sample sized n, and a gold standard that is only applied

to a subset of the n individuals in the sample. Let Tj ( j = 1, . . . ,J), V and D be the

random variables defined as: Tj models the result of the jth binary test (Tj = 1 when

the test result is positive and Tj = 0 when it is negative); V models the verification

process (V = 1 when the individual is verified with the gold standard and V = 0 when

the individual is not verified with the gold standard); and D models the result of the

gold standard (D = 1 when the individual has the disease and D = 0 when the individual

does not have the disease). Let si1,...,iJ be the number of individuals verified in which

T1 = i1, T2 = i2, . . . ,TJ = iJ and D = 1; ri1,...,iJ the number of individuals verified in

which T1 = i1, T2 = i2, . . . ,TJ = iJ and D = 0; and ui1,...,iJ the number of individuals

not verified in which T1 = i1, T2 = i2, . . . ,TJ = iJ , with i j = 0, 1 and j = 1, . . . ,J. Let

ni1,...,iJ = si1,...,iJ + ri1,...,iJ +ui1,...,iJ and n =
1

∑
i1,...,iJ=0

ni1,...,iJ . Let the probabilities be
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φi1,...,iJ = P(V = 1, D = 1, T1 = i1, . . . ,TJ = iJ)

ϕi1,...,iJ = P(V = 1, D = 0, T1 = i1, . . . ,TJ = iJ)

and

γi1,...,iJ = P(V = 0, T1 = i1, . . . ,TJ = iJ)

with i j = 0, 1, and it is verified that

1

∑
i1,...,iJ=0

φi1,...,iJ +
1

∑
i1,...,iJ=0

ϕi1,...,iJ +
1

∑
i1,...,iJ=0

γi1,...,iJ = 1.

Let ω = (φ1,...,1, . . . ,φ0,...,0,ϕ1,...,1, . . . ,ϕ0,...,0,γ1,...,1, . . . ,γ0,...,0)
T

be a vector of size

3 · 2J whose components are the previous probabilities. As the disease status of all

the individuals in the sample is not verified with the gold standard, the verification

probabilities are defined as

λk,i1,...,iJ = P(V = 1|D = k, T1 = i1, T2 = i2, . . . ,TJ = iJ).

Therefore, λk,i1,...,iJ is the probability of selecting an individual to verify the disease sta-

tus in which D=k, T1 = i1, T2 = i2, . . . and TJ = iJ , with k, i j = 0, 1, j = 1, . . . ,J. If the ver-

ification process only depends on the results of the J binary tests and does not depend on

the disease status, that is to say when λk,i1,...,iJ = λi1,...,iJ = P(V = 1|T1 = i1, T2 = i2, . . . ,

TJ = iJ), this is equivalent to assuming that the verification process is missing at ran-

dom (MAR) (Rubin, 1976). Assuming that the verification process is MAR and that

the parameters of the data model and the parameters of the missingness mechanism

are different, the missing data mechanism is called to be ignorable (Schafer, 1997) and

all of the parameters of the model can be estimated applying the method of maximum

likelihood. Under this assumption, the LRs of the jth diagnostic test are written as

LR+
j =

(1− p)




1

∑
i1,...,iJ=0

i j=1

φi1,...,iJηi1,...,iJ

φi1,...,iJ +ϕi1,...,iJ




p


(1− p)−

1

∑
i1,...,iJ=0

i j=0

ϕi1,...,iJηi1,...,iJ

φi1,...,iJ +ϕi1,...,iJ



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and

LR−
j =

(1− p)


p−

1

∑
i1,...,iJ=0

i j=1

φi1,...,iJηi1,...,iJ

φi1,...,iJ +ϕi1,...,iJ




p




1

∑
i1,...,iJ=0

i j=0

ϕi1,...,iJηi1,...,iJ

φi1,...,iJ +ϕi1,...,iJ




,

where p =
1

∑
i1,...,iJ=0

φi1,...,iJ
ηi1,...,iJ

φi1,...,iJ
+ϕi1,...,iJ

is the disease prevalence and ηi1,...,iJ = φi1,...,iJ +

ϕi1,...,iJ +γi1,...,iJ . The log-likelihood of the observed data is

l =
1

∑
i1,...,iJ=0

si1,...,iJ log(φi1,...,iJ )+
1

∑
i1,...,iJ=0

ri1,...,iJ log(ϕi1,...,iJ )+
1

∑
i1,...,iJ=0

ui1,...,iJ log(γi1,...,iJ )

Maximizing this function, the maximum likelihood estimators of the probabilities

φi1,...,iJ , ϕi1,...,iJ and γi1,...,iJ are

φ̂i1,...,iJ =
si1,...,iJ

n
, ϕ̂i1,...,iJ =

ri1,...,iJ

n
and γ̂i1,...,iJ =

ui1,...,iJ

n

and, therefore, the maximum likelihood estimators of the LRs of the jth diagnostic test

are

L̂R
+

j =

(
1

∑
i1,...iJ=0

ri1,...iJ
ni1,...iJ

si1,...iJ
+ri1,...iJ

)
 1

∑
i1,...iJ=0

iJ=1

si1,...iJ
ni1,...iJ

si1,...iJ
+ri1,...iJ




(
1

∑
i1,...iJ=0

si1,...iJ
ni1,...iJ

si1,...iJ
+ri1,...iJ

)
 1

∑
i1,...iJ=0

ri1,...iJ
ni1,...iJ

si1,...iJ
+ri1,...iJ

−
1

∑
i1,...iJ=0

iJ=0

ri1,...iJ
ni1,...iJ

si1,...iJ
+ri1,...iJ




and

L̂R
−
j =

(
1

∑
i1,...iJ=0

ri1,...iJ
ni1,...iJ

si1,...iJ
+ri1,...iJ

)
 1

∑
i1,...iJ=0

si1,...iJ
ni1,...iJ

si1,...iJ
+ri1,...iJ

−
1

∑
i1,...iJ=0

iJ=1

si1,...iJ
ni1,...iJ

si1,...iJ
+ri1,...iJ




(
1

∑
i1,...iJ=0

si1,...iJ
ni1,...iJ

si1,...iJ
+ri1,...iJ

)
 1

∑
i1,...iJ=0

iJ=0

ri1,...iJ
ni1,...iJ

si1,...iJ
+ri1,...iJ




.
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Let η=
(
LR+

1 , . . . ,LR+
J ,LR−

1 , . . . ,LR−
J

)T
be a vector of size 2J whose components are

the LRs of each diagnostic test. As the vector ω is the vector of probabilities of a multi-

nomial distribution, the variance-covariance matrix of ω̂ is ∑ω̂=
{

diag(ω)−ωωT
}/

n,

and applying the delta method (Agresti, 2002) the asymptotic variance-covariance ma-

trix of η̂ is

∑
η̂

=

(
∂η

∂ω

)
∑
ω̂

(
∂η

∂ω

)T

(1)

The positive and negative LRs of each one of the J diagnostic tests depend on the

same parameters (sensitivity and specificity of the jth diagnostic test) and, therefore,

these parameters can be compared simultaneously. The global hypothesis test to com-

pare simultaneously the LRs of the J diagnostic tests is

H0 : LR+
1 = LR+

2 = · · ·= LR+
J and LR−

1 = LR−
2 = · · ·= LR−

J

H1 : at least one equality is not true.

This hypothesis test is equivalent to the hypothesis test

H0 :ψη= 0 vs H1 :ψη 6= 0 (2)

where ψ is a full range matrix whose dimension is 2(J−1)×2J, and whose elements

are known values. For J = 2 the matrixψ is

ψ=

(
1 −1 0 0

0 0 1 −1

)

and for J ≥ 3 the matrixψ is

ψ=

(
ψ1 ψ0

ψ0 ψ1

)

where ψ0 is a matrix (J−1)× J with all of the elements equal to 0, and ψ1 is a matrix

(J−1)×J where the elements (i, i) are equal to 1, the elements (i, i+1) are equal to -1

for i = 1, . . . ,J − 1, and the rest of the elements in this matrix are equal to 0. Applying

the multivariate central limit theorem it is verified that

√
n
(
η̂−η

)
−−−→
n→∞

N2J (0, ∑η) .
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Then, the statistic Q2 =
(
ψη̂

)T
(
ψ∑̂η̂ψ

T
)−1

ψη̂ is distributed according to Hotelling’s

T-squared distribution with a dimension 2(J-1) and n degrees of freedom, where

2(J − 1) is the dimension of the vector ψη̂. When n is large, the statistic Q2 is dis-

tributed according to a central chi-squared distribution with 2(J-1) degrees of freedom

when the null hypothesis is true, i.e.

Q2 =
(
ψη̂

)T
(
ψ ˆ

∑η̂ψ
T
)−1

ψη̂−−−→
n→∞

χ2
2(J−1) (3)

Alternative methods to the global hypothesis test based on the chi-squared distribu-

tion are the following:

1. Comparisons of the paired positive (negative) LRs of diagnostic tests to an error

rate of α. This method consists of solving the 2J marginal hypothesis tests given

by

H0 : LR+
k = LR+

l vs H1 : LR+
k 6= LR+

l

H0 : LR−
k = LR−

l vs H1 : LR−
k 6= LR−

l

(4)

when k, l = 1, . . . ,J and k 6= l, each one of them to an error rate of α. Based on the

asymptotic normality of the estimators of the LRs, the statistic for hypothesis test

(4) is

z =
L̂R j − L̂Rk√

V̂ar
(

L̂R j

)
+ V̂ar

(
L̂Rk

)
−2Ĉov

(
L̂R j, L̂Rk

) −−−→
n→∞

N (0,1)

where L̂R is L̂R
+

or L̂R
−

and the variances-covariances are obtained from equation

(1).

2. Another alternative method to the statistic (3) consists of solving the 2J marginal

hypothesis tests (4) by applying a method of multiple comparisons, such as the

Bonferroni method (1936), the Holm method (1979) or the Hochberg method

(1983), which are very easy to apply and which are frequently used in the field of

multiple comparisons. The Bonferroni method consists of solving each marginal

hypothesis test (4) to an error rate of α
/
{J (J−1)} instead of to an error rate of

α. In the Appendix there is a summary of the Holm method and the Hochberg

method.
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3. Simulation experiments

Monte Carlo simulation experiments were carried out to study the type I error and the

power of the global hypothesis test based on the chi-squared distribution (3) and on the

alternative methods proposed in the previous section, when simultaneously comparing

the LRs of two and of three binary diagnostic tests respectively. The experiments

consisted of the generation of 5000 random multinomial samples of size 100, 200, 300,

400, 500, 1000 and 2000. The samples were generated in such a way that for all of them

it was possible to estimate the LRs and their variances-covariances. For all of the study

we set α= 0.05.

3.1. Two diagnostic tests

When simultaneously comparing the LRs of two binary diagnostic tests, as the sensi-

tivity and specificity of each diagnostic test we took the values {0.70, 0.75, . . . ,0.95},

which are values that frequently appear in clinical practice; as values for the disease

prevalence we took {10%, 20%, 30%, 40%,50%}, and as the verification probabilities

we took the values

(λ11 = 0.70, λ10 = λ01 = 0.40, λ00 = 0.10)

and

(λ11 = 0.95, λ10 = λ01 = 0.60, λ00 = 0.30) ,

that can be considered to be low and high verification probabilities respectively. The

probabilities of the multinomial distributions were calculated applying Vacek’s condi-

tional dependence model (Vacek, 1985), i.e.

φi j = λi j p
{

Sei
1(1−Se1)

1−i
Se

j
2(1−Se2)

1− j +δi jǫ1

}
,

ϕi j = λi j (1− p)
{

Sp1−i
1 (1−Sp1)

i
Sp

1− j
2 (1−Sp2)

j +δi jǫ0

}
,

γi j = (1−λi j) p
{

Sei
1(1−Se1)

1−i
Se

j
2(1−Se2)

1− j +δi jǫ1

}

+ (1−λi j)(1− p)
{

Sp1−i
1 (1−Sp1)

i
Sp

1− j
2 (1−Sp2)

j +δi jǫ0

}
,

where δi j = 1 when i = j and δi j = −1 when i 6= j, and ǫ1 is the dependence factor

(covariance) between the two diagnostic tests when D = 1 and ǫ0 is the dependence

factor (covariance) between the two diagnostic tests when D = 0. In general, in clinical

practice the two diagnostic tests are usually conditionally dependent on the disease and

it is verified that
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0 < ǫ1 < Se1 (1−Se2) when Se2 > Se1

0 < ǫ1 < Se2 (1−Se1) when Se1 > Se2

and

0 < ǫ0 < Sp1 (1−Sp2) when Sp2 > Sp1

0 < ǫ0 < Sp2 (1−Sp1) when Sp1 > Sp2.

If the two diagnostic tests are conditionally independent on the disease then it is verified

that ǫ1 = ǫ0 = 0.

In Table 1, we show the results obtained for the type I error when comparing the

LRs of two diagnostic tests with sensitivities equal to 0.90 and specificities equal to

0.80, prevalence is equal to 10% and for intermediate and high dependence factors (ǫ1

and ǫ0). From the results, the following conclusions are obtained. The global hypothesis

test based on the chi-squared distribution has a type I error which, in general terms,

fluctuates around a nominal error of 5% especially when n > 1000, and the type I error

is lower than the nominal error for samples of a smaller size. Therefore, the global test

based on the chi-squared distribution show the classic performance of an asymptotic

tests (the type I error fluctuates around the nominal error starting from a certain sample

size). Moreover, the type I error increases when there is a rise in the disease prevalence

but without overwhelming the nominal error of 5%, whilst the verification probabilities

do not have an important effect upon the type I error (especially with large samples).

Regarding the type I error of the method based on the paired comparison to an error rate

of 5% (called Method 1 in the tables), its type I error clearly overwhelms the nominal

error, above all when n > 300− 400 depending on the prevalence and the verification

probabilities, and therefore this method may lead to erroneous results. Regarding the

methods based on paired comparisons and the application of the Bonferroni method

(Method 2), the Holm method (Method 3) and the Hochberg method (Method 4), their

respective type I errors are almost identical and show a very similar performance to the

type I error of the global test based on the chi-squared distribution. Regarding power, in

Table 2 we show the results obtained when the sensitivities are equal to 0.90 and 0.85

and the specificities are equal to 0.80 and 0.75 respectively, prevalence is equal to 10%

and also for intermediate and high dependence factors. In general terms, with samples

of 500 individuals, the power of the global test is very high (higher than 80%-90%),

and the power is greater when the prevalence is greater and also when the verification

probabilities are greater. Regarding the power of Method 2, this is greater than that of

the global test because its type I error is also greater. As for the powers of Methods 2, 3

and 4, these are very similar to each other and these methods also have a power which

is slightly lower than that of the global test, especially when the samples are not very

large (in general terms, between 200 and 400 individuals).
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3.2. Three diagnostic tests

When simultaneously comparing the LRs of three binary diagnostic tests, as the sensi-

tivity and the specificity of each diagnostic test and the disease prevalence we took the

same values as in the case of the diagnostic tests, and as verification probabilities we

took the values

(λ111 = 0.70,λ110 = 0.40,λ101 = 0.40,λ100 = 0.25,λ011 = 0.40,λ010 = 0.25 ,

λ001 = 0.25,λ000 = 0.05)

and

(λ111 = 1,λ110 = 0.80,λ101 = 0.80,λ100 = 0.40,λ011 = 0.80,λ010 = 0.40 ,

λ001 = 0.40,λ000 = 0.20)

which can also be considered to be low and high verification scenarios. When comparing

the LRs of three diagnostic tests, the probabilities of the multinomial distributions were

calculating applying the Torrance-Rynard and Walter model (1997). In this case, the

expressions of the probabilities are:

φi1i2i3 = pλi1i2i3

{
3

∏
j=1

Se
i j

j (1−Se j)
1−i j +

3

∑
j,k, j<k

(−1)|i j−ik|δ jk

}
,

ϕi1i2i3 = qλi1i2i3

{
3

∏
j=1

Sp j
1−i j(1−Sp j)

i j +
3

∑
j,k, j<k

(−1)|i j−ik|ǫ jk

}
,

γi1i2i3 = p
(
1−λi1i2i3

)
{

3

∏
j=1

Se j
i j(1−Se j)

1−i j +
3

∑
j,k, j<k

(−1)|i j−ik|δ jk

}

+(1− p)
(
1−λi1i2i3

)
{

3

∏
j=1

Sp j
1−i j(1−Sp j)

i j +
3

∑
j,k, j<k

(−1)|i j−ik|ǫ jk

}
,

with i j = 0, 1, ik = 0, 1 and j, k = 1, 2, 3, where δ jk is the dependence factor (covari-

ance) between the jth and the kth diagnostic test when D = 1 and ǫ jk is the dependence

factor (covariance) between the jth and the kth diagnostic test when D = 0. The depen-

dence factors δ jk and ǫ jk verifies restrictions that depend on the values of the sensitivi-

ties and the specificities of the three diagnostic tests. In order to simplify things, in the

simulation experiments it was considered that δi j = δ and ǫi j = ǫ, and therefore the

dependence factors verify the following restrictions:

δ 6 (1−Se1)(1−Se2)Se3, δ 6 (1−Se1)Se2 (1−Se3) , δ 6 Se1 (1−Se2)(1−Se3)

ǫ 6 (1−Sp1)(1−Sp2)Sp3, ǫ 6 (1−Sp1)Sp2 (1−Sp3) , ǫ 6 Sp1 (1−Sp2)(1−Sp3) .
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In clinical practice, factors δ jk and/or ǫ jk are greater than zero, and therefore the

diagnostic tests are conditionally dependent on the disease status. When δ jk = ǫ jk = 0

the three diagnostic tests are conditionally independent on the disease status.

In Table 3, we show the results obtained for the type I error when the three

sensitivities are equal to 0.90 and the three specificities are equal to 0.80, prevalence

is equal to 10% and for intermediate and high dependence factors (δ and ǫ). From

the results it holds that, in general terms, the type I error of the global hypothesis test

performs in a similar way to that obtained when comparing two diagnostic tests (the

type I error fluctuates around the nominal error starting from a determined sample size).

Regarding the other methods, Method 1 has a type I error that clearly overwhelms the

nominal error, and Methods 2, 3 and 4 have a type I error that is slightly lower than that

of the global test.

In terms of power, in Table 4 we show the results obtained for sensitivities equal

to 0.90, 0.85 and 0.80, specificities equal to 0.85, 0.75 and 0.70 respectively, and

prevalence is equal to 10%. In general terms, the power of the global test increases

with an increase in the prevalence and/or the verification probabilities, and the power is

greater than 80%-90% with samples of 500. Furthermore, Method 1 has a greater power

than the global test because (as in the case of the two diagnostic tests) its type I error

is greater. Methods 2, 3 and 4 have a power which is slightly lower than the global test,

especially for samples of between 100 and 400 individuals.

3.3. Conclusions

From the results of the simulation experiments carried out to simultaneously compare

the LRs of two and three diagnostic tests respectively, it holds that in general terms

the best method to solve this problem of inference is the global test based on the chi-

squared distribution, since its type I error performs better around the nominal error than

the type I error of each one the other methods. From these results, the following method

is proposed to compare the likelihood ratios of J binary diagnostic tests: 1) Solving the

global hypothesis test based on the chi-squared distribution to an error rate of α; 2) If the

global hypothesis is significant to an error rate of α, the investigation of the causes of the

significance must be carried out comparing the positive (negative) likelihood ratios of

each pair of diagnostic tests applying a multiple comparison method (Bonferroni, Holm

or Hochberg) to an error α. Step 2 must be carried out applying a multiple comparison

method and not each marginal test to an error rate of α, since the latter has a type I error

that clearly overwhelms the nominal error.
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4. Application

The results obtained in previous Sections were applied to the diagnosis of coronary

stenosis, a disease that consists of the obstruction of the coronary artery and its diagno-

sis can be made through a dobutamine echocardiography, a stress echocardiography or

through a CT scan, and as the gold standard a coronary angiography is used. As the coro-

nary angiography can cause different reactions in individuals (thrombosis, heart attack,

infections, etc.), not all of the individuals are verified with the coronary angiography.

In Table 5, we show the results obtained when applying the three diagnostic tests and

the gold standard (T1: dobutamine ecocardiography; T2: stress echocardiography; T3: CT

scan) to a sample of 2455 spanish males over 45 and when applying the coronary an-

giography (D) only to a subset of these individuals. The data come from a study carried

out at the University Hospital in Granada. This study was carried out in two phases: in

the first phase, the three diagnostic tests were applied to all of the individuals; and in the

second phase, the coronary angiography was applied only to a subset of these individu-

als depending only on the results of the three diagnostic tests. Therefore, in this example

it can be assumed that the missing data mechanism is MAR and the model is ignorable,

and therefore the results of the previous sections can be applied. The values of the esti-

mators of the LRs are L̂R
+

1 = 5.31, L̂R
+

2 = 3.04, L̂R
+

3 = 7.61, L̂R
−
1 = 0.13, L̂R

−
2 = 0.33

and L̂R
−
3 = 0.09. Applying equation (3) it holds that Q2 = 126.20 (p-value = 0) and

therefore we reject the joint equality of the LRs. In order to investigate the causes of

the significance, the step is to solve the marginal hypothesis tests. In Table 6, we show

the results obtained for each one of the six hypothesis tests that compare the LRs. Then

a method of multiple comparisons (Bonferroni, Holm or Hochberg) is applied and it is

found that (with the three methods) the three positive likelihood ratios are different, and

the biggest one is that of the CT scan, followed by that of the dobutamine echocardiog-

raphy and finally that of the stress echocardiography. Regarding the negative likelihood

ratios, no significant differences were found between that of the dobutamine echocar-

diography and that of the CT scan; whilst the negative likelihood ratio of the stress

echocardiography is significantly larger than that of the dobutamine echocardiography

and that of the CT scan.

5. Discussion

Likelihood ratios are parameters that allow us to assess and compare the performance

of binary tests, and technically they are equivalent to a relative risk. In the presence of

partial disease verification, the disease status of a subset of individuals in the sample is

unknown, and therefore the estimation and comparison of the likelihood ratios of two or

more diagnostic tests cannot be made using the existing models (Leisenring and Pepe,

1998; Roldán Nofuentes and Luna del Castillo, 2007), since the results are affected by

verification bias. In this article, a global hypothesis test is proposed to simultaneously
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Table 5: Data from the study of coronary stenosis.

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0

T3 = 1 T3 = 0 T3 = 1 T3 = 0 T3 = 1 T3 = 0 T3 = 1 T3 = 0 Total

V = 1

D = 1 457 30 84 5 34 0 7 1 618

D = 0 41 23 5 61 16 86 32 95 359

V = 0 92 31 85 120 42 195 88 825 1478

Total 590 84 174 186 92 281 127 921 2455

Table 6: Results of the marginal hypothesis tests.

Hypothesis test z Two sided p-value

H0 : LR+
1 = LR+

2 vs H1 : LR+
1 6= LR+

2 6.24 4.47×10−13

H0 : LR+
1 = LR+

3 vs H1 : LR+
1 6= LR+

3 3.30 0.001

H0 : LR+
2 = LR+

3 vs H1 : LR+
2 6= LR+

3 7.29 3.06×10−13

H0 : LR−
1 = LR−

2 vs H1 : LR−
1 6= LR−

2 7.53 5.15×10−14

H0 : LR−
1 = LR−

3 vs H1 : LR−
1 6= LR−

3 1.77 0.077

H0 : LR−
2 = LR−

3 vs H1 : LR−
2 6= LR−

3 9.19 0

compare the likelihood ratios of two or more diagnostic tests assuming that the missing

data mechanism is ignorable. The assumption of ignorability (Schafer, 1997), which is

widely used in this field, means that the selection of an individual to verify the disease

status depends only on the results of the diagnostic tests and not on the disease status.

This assumption cannot be made from the data observed, but rather depends on how the

experiment is conducted. Thus, for example, in two phase studies, if in the second phase

the selection of the individuals is made depending on the results of the diagnostic tests,

then it can be assumed that the missing data mechanism is ignorable. If the verification

process depends on the disease status, the missing data mechanism is not ignorable and

the model proposed in this article cannot be applied.

Simulation experiments were carried out to study the type I error and the power

of the global test and of other alternative methods, from which the following method

was proposed to compare the likelihood ratios of two or more diagnostic tests in the

presence of ignorable missing data: 1) Apply the global hypothesis test based on the

chi-squared distribution to an error rate of α (equation (3)); 2) If the global hypothesis

test is significant to an error rate of α, investigating the causes of the significance solving

the marginal hypothesis tests (expression (4)) along with the a multiple comparison

method (Bonferroni, Holm or Hochberg). This procedure is similar to the one used in a

analysis of variance. Firstly, the global test is solved and then a multiple comparison

method is applied. The simulation experiments have also shown that the positive



322 Global hypothesis test to compare the likelihood ratios of multiple binary diagnostic tests...

and negative likelihood ratios cannot be compared independently (Method 1 of the

simulation experiments), since the type I error clearly overwhelms the nominal error.

The problem posed in this article can also be solved using the natural log-likelihood

ratios. Simulation experiments (similar to those in Section 3 and from the same samples)

were carried out using this transformation and it was found that there is no important

difference between the results obtained, in terms of type I error and power, and those

obtained in Section 3. Therefore, it is recommendable to make the comparison without

using this transformation.
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Appendix

Let us suppose that we wish to check K hypothesis tests, H0k vs H1k, with k = 1, . . . ,K,

and let pk be the p-value obtained by solving each hypothesis test. Let p[1] 6 p[2] 6 · · ·6
p[K] be the p-values in order from the lowest to the highest, so that p[k] is the p-values

corresponding to the hypothesis test H0[k] vs H1[k].

The Holm method (1979) consists of the following steps:

Step 1. If p[1] 6 α
/

K then reject hypothesis H0[1] and go to the next step; otherwise

finish.

Step 2. If p[2] 6 α
/
(K −1) then reject hypothesis H0[2] and go to the next step; other-

wise finish...

Step K. If p[K] 6 α then reject hypothesis H0[K] and finish.

The Hochberg method (1988) consists of the following steps:

Step 1. If p[K] 6 α then reject H0[k] with k = 1, . . . ,K and finish; otherwise go to the

next step.

Step 2. If p[K−1] 6 α
/

2 then reject H0[k] with k = 1, . . . ,K −1 and finish; otherwise go

to the next step...

Step K. If p[1] 6 α
/

K then reject hypothesis H0[1] and finish.
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