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Global hypothesis test to compare the likelihood
ratios of multiple binary diagnostic tests with
ignorable missing data

Ana Eugenia Marin-Jiménez' and José Antonio Rolddn-Nofuentes'

Abstract

In this article, a global hypothesis test is studied to simultaneously compare the likelihood ratios
of multiple binary diagnostic tests when in the presence of partial disease verification the missing
data mechanism is ignorable. The hypothesis test is based on the chi-squared distribution.
Simulation experiments were carried out to study the type | error and the power of the global
hypothesis test when comparing the likelihood ratios of two and three diagnostic tests respectively.
The results obtained were applied to the diagnosis of coronary stenosis.

MSC: 62P10 (Applications to biology and medical science), 6207 (Data analysis)
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1. Introduction

The fundamental parameters to assess the accuracy of a binary diagnostic test are
the sensitivity and the specificity. Sensitivity (Se) is the probability of the diagnostic
test being positive when the individual has the disease, and specificity (Sp) is the
probability of the diagnostic test being negative when the individual does not have the
disease. Sensitivity and specificity depend on the intrinsic ability of the diagnostic test
to distinguish between individuals with and without the disease. Other parameters to
assess the accuracy of a binary diagnostic test are the likelihood ratios (LRs). When the
result of the diagnostic test is positive, the likelihood ratio, called positive likelihood
ratio (LR™), is the ratio between the probability of a positive test result in individuals
with the disease (Se) and the probability of a positive result in individuals without the
disease (1 — Sp). When the result of the diagnostic test is negative, the likelihood ratio,
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called negative likelihood ratio (LR ™), is the ratio between the probability of a negative
test result in individuals with the disease (1 — Se) and the probability of a negative test
result in individuals without the disease (Sp). The LRs only depend on the sensitivity and
specificity of the diagnostic test, and their values vary between zero and infinite. When
the diagnostic test and the gold standard are independent then LR™ = LR~ = 1, and if
the diagnostic test correctly classifies all of the individuals (with or without the disease)
then LRT = o and LR~ = 0. A value of LR" > 1 indicates that a positive test result
is more probable for an individual with the disease than for an individual without the
disease, and a value of LR~ < 1 indicates that a negative test result is more probable for
an individual who does not have the disease than for one who has the disease. The LRs
quantify the increase in knowledge of the disease presence through the application of
the diagnostic test. Let 7' be the random variable that models the result of the diagnostic
test (7= 1 when the result is positive and 7' = 0 when the result is negative), let D be the
random variable that models the result of the gold standard (D = 1 when the individual is
diseased and D = 0 when this is not the case), and p = P(D = 1) the disease prevalence
in the population which is subject to the study. The ratio between the probability that
an individual has the disease and the probability that an individual does not have the
disease before applying the diagnostic test is

Odds pre-test = P
l—p

After applying the diagnostic test the ratio is

P(D=1|T
Odds post-test(T) = ﬁ

The LRs relate the two previous odds, i.e.

Odds post-test(T = 1) = LR" x Odds pre-test
and

Odds post-test(7 = 0) = LR~ x Odds pre-test

Furthermore, the comparison of the LRs of diagnostic tests has been the subject
of different studies. In designs with independent samples, Luts et al (2011) studied a
hypothesis test to compare the LRs of two or more binary diagnostic tests studying the
effect of sample sizes on the asymptotic behaviour of the proposed test. The hypothesis
test proposed by these authors allows us to simultaneously compare the LRs of the
diagnostic tests subject to this type of sample design and is based on the chi-squared
distribution. For paired designs, Leisenring and Pepe (1998) proposed a GEE model



Ana Eugenia Marin-Jiménez and José Antonio Roldan-Nofuentes 307

to independently compare the positive LRs and the negative LRs of two diagnostic
tests; and Roldan Nofuentes and Luna del Castillo (2007) proposed a hypothesis test
to independently and jointly compare the positive LRs and the negative LRs of two
diagnostic tests through a likelihood-based approach. Nevertheless, in clinical practice
the gold standard is frequently not applied to all of the individuals in a sample, leading
to the problem known as partial disease verification (Begg and Greenes, 1983; Zhou,
1993). In this situation, the disease status (whether the disease is present or absent)
is unknown for a subset of individuals in the sample, and therefore if the previous
parameters are estimated only considering those individuals whose disease status are
known, the estimators are affected by what is known as verification bias. The same
problem occurs when, in the presence of partial disease verification, the parameters
of two (or more) binary diagnostic tests are compared in relation to the same gold
standard. When in the presence of partial verification the missing data mechanism is
MAR, Roldédn Nofuentes and Luna del Castillo (2005) studied a hypothesis test to
independently compare the LRs of two binary diagnostic tests. In this article, we extend
the results of these authors and we study a hypothesis test to simultaneously compare the
LRs of two or more binary diagnostic tests. In Section 2, we propose a global hypothesis
test based on the chi-squared distribution to simultaneously compare the LRs of multiple
binary diagnostic tests when, in the presence of partial disease verification, the missing
data is ignorable. In Section 3, we carry out simulation experiments to study the type
I error and the power of the global hypothesis test when simultaneously comparing the
LRs of two and of three binary diagnostic tests. In Section 4, the global test is applied to
an example and in Section 5 we discuss the results obtained.

2. Global hypothesis test

Let us consider J binary diagnostic tests (J > 2) that are applied independently to all
of the individuals in a random sample sized n, and a gold standard that is only applied
to a subset of the n individuals in the sample. Let 7; (j = 1,...,J), V and D be the
random variables defined as: 7; models the result of the jth binary test (7; = 1 when
the test result is positive and 7; = 0 when it is negative); V models the verification
process (V = 1 when the individual is verified with the gold standard and V = 0 when
the individual is not verified with the gold standard); and D models the result of the
gold standard (D = 1 when the individual has the disease and D = 0 when the individual
does not have the disease). Let s;, .. ;, be the number of individuals verified in which
i, the number of individuals

not verified in which Ty =iy, T, = ip,..., Ty = iy, with i; = 0,1 and j =1,...,J. Let
1
iy +u,.i,andn = _ Y. m,..;- Let the probabilities be

.....

n; )

Py = Siyeniy Ty
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(V=1,D=1,Ti=iy,....,Ty=1ij)
(V=1,D=0,Ti =iy,....,Ty=1ij)

and
Yl’],m,i] :P(Vzo,n :llngJ:ll)

with i; =0, 1, and it is verified that

Z Giy.iy + Z Piy.oiy + Z Yiroe.

..... ,ig=0 i1ye.,iy=0 i1y..0yiy=0

Let @ = (@11, +$0,..0: Ploulso--1 90,0, V1l s---,Y0,..0) | be a vector of size
3.2/ whose components are the previous probablhtles. As the disease status of all
the individuals in the sample is not verified with the gold standard, the verification
probabilities are defined as

Aiiyiy =PV=1D=kT1 =i, Th=i,...,T) = ij).

Therefore, Ay, ..., is the probability of selecting an individual to verify the disease sta-
tusin which D=k, T\ =iy, Tb = ip,... and Ty = iy, with k,i; =0, 1, j=1,...,J. If the ver-
ification process only depends on the results of the J binary tests and does not depend on
the disease status, that is to say when A;,, i, = A, i, =P(V=1T1 =i;, Th=1i,...,
T) = ij), this is equivalent to assuming that the verification process is missing at ran-
dom (MAR) (Rubin, 1976). Assuming that the verification process is MAR and that
the parameters of the data model and the parameters of the missingness mechanism
are different, the missing data mechanism is called to be ignorable (Schafer, 1997) and
all of the parameters of the model can be estimated applying the method of maximum
likelihood. Under this assumption, the LRs of the jth diagnostic test are written as

! iy oy My o,
i]5eig=0 ¢l| 1J+L*Dl|7
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and
1 Gir i Mir i
ity Mitseiy
(I-p)|p— ¥ =t
l]"_""l‘/]:O ¢ll~,"'7l.l + Qpll s
_ ij=
LR; = :
p 21: Pit iy Mg,y
i1y =0 ¢i1 ey T Piy iy
lj:()
1 b . .
AAAAA Nifrosiy .
where p = Y —qy”' ;”+"g “L is the disease prevalence and 7, _;, = ¢, i +
il,...ij o Pites iy ‘Pll,...,tj 7 e

Piy,.ip T Vi l, _he log-likelihood of the observed data is

1 1 1
[= Z si17~~~~,iJ log ((pilv"'ﬁi.]) + Z rilr"'>i1 log (Sailv"'vi.l) + Z ui1a~~~7i.l log (Yilr"'>i1)
i1,...,i7=0 i1ye..,0y=0 i1,y...,iy=0

Maximizing this function, the maximum likelihood estimators of the probabilities
¢i1,...,ij, Diy,...iy and Yiy,...,iy are

are

—+
LRj =
and
i Ti i Mg iy i SigyndyMiydy i
iy =0 Sig iy Trig iy i, =0 Sip iy iy iy iy
LRj =

1 o 1 e
Z Siy gy, iy Z Tig,igiy,..ig
iy T iy ; Sig iy Ty i

5
i1,..ij=0""1
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Letm = (LRT, ...,LR} LRy ,... ,LR])T be a vector of size 2J whose components are
the LRs of each diagnostic test. As the vector w is the vector of probabilities of a multi-
nomial distribution, the variance-covariance matrix of @ is } 4 = {diag () - wo' } / n,
and applying the delta method (Agresti, 2002) the asymptotic variance-covariance ma-

trix of 1 is
In ) ( an )T
(5 ) X5 (1)
Xﬁ" <8w g Jw
The positive and negative LRs of each one of the J diagnostic tests depend on the
same parameters (sensitivity and specificity of the jth diagnostic test) and, therefore,

these parameters can be compared simultaneously. The global hypothesis test to com-
pare simultaneously the LRs of the J diagnostic tests is

Ho: LR{ =LR} =---=LR} and LR, = LR, =---=LR;

Hj : at least one equality is not true.
This hypothesis test is equivalent to the hypothesis test
Hy:¢ypM=0vsH :¢pN+#0 (2)

where 1 is a full range matrix whose dimension is 2 (/ — 1) x 2J, and whose elements
are known values. For J = 2 the matrix 1 is

1 -1 0 0
1/’:(0 0 1—1)

and for J > 3 the matrix ¥ is

_ (¥ Yo >
o= b
where v, is a matrix (J — 1) x J with all of the elements equal to 0, and 7, is a matrix
(J —1) x J where the elements (i, i) are equal to 1, the elements (i, i+ 1) are equal to -1

fori=1,...,J —1, and the rest of the elements in this matrix are equal to 0. Applying
the multivariate central limit theorem it is verified that

\/ﬁ(ﬁ—ﬂ) n—;:NQ‘](O, ZTI)
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Then, the statistic 0* = (v ﬁ)T (’l/)i»f,”(/)-r) 11/) 1) is distributed according to Hotelling’s
T-squared distribution with a dimension 2(J-1) and n degrees of freedom, where
2(J — 1) is the dimension of the vector ¥ ). When n is large, the statistic Q? is dis-
tributed according to a central chi-squared distribution with 2(J-1) degrees of freedom
when the null hypothesis is true, i.e.

0= () (WY, 7)) Wi — 2y ©)

Alternative methods to the global hypothesis test based on the chi-squared distribu-
tion are the following:

1. Comparisons of the paired positive (negative) LRs of diagnostic tests to an error
rate of a. This method consists of solving the 2J marginal hypothesis tests given

by
Ho: LR, =LR} vs H, : LR} # LR} @
Hy:LR, =LR, vs H\ : LR, # LR,
when k,/ =1,...,J and k # [, each one of them to an error rate of a. Based on the
asymptotic normality of the estimators of the LRs, the statistic for hypothesis test
4)is
LR, LR
z= ! L N(0,1)

—~ o~ — o~ —_— o~ o~ —»00
\/ Var <LR J-) + Var (LRk> _2Cov (LR j,LRk> !

where LRis LR or LR and the variances-covariances are obtained from equation
(.

2. Another alternative method to the statistic (3) consists of solving the 2J marginal
hypothesis tests (4) by applying a method of multiple comparisons, such as the
Bonferroni method (1936), the Holm method (1979) or the Hochberg method
(1983), which are very easy to apply and which are frequently used in the field of
multiple comparisons. The Bonferroni method consists of solving each marginal
hypothesis test (4) to an error rate of a/{J(J— 1)} instead of to an error rate of
a. In the Appendix there is a summary of the Holm method and the Hochberg
method.
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3. Simulation experiments

Monte Carlo simulation experiments were carried out to study the type I error and the
power of the global hypothesis test based on the chi-squared distribution (3) and on the
alternative methods proposed in the previous section, when simultaneously comparing
the LRs of two and of three binary diagnostic tests respectively. The experiments
consisted of the generation of 5000 random multinomial samples of size 100, 200, 300,
400, 500, 1000 and 2000. The samples were generated in such a way that for all of them
it was possible to estimate the LRs and their variances-covariances. For all of the study
we set a = 0.05.

3.1. Two diagnostic tests

When simultaneously comparing the LRs of two binary diagnostic tests, as the sensi-
tivity and specificity of each diagnostic test we took the values {0.70, 0.75,...,0.95},
which are values that frequently appear in clinical practice; as values for the disease
prevalence we took {10%, 20%, 30%, 40%,50%}, and as the verification probabilities
we took the values

(211 =0.70, X190 = Ao1 = 0.40, Ag0 = 0.10)
and
(A11 =0.95, X190 = Ap1 = 0.60, Ag0 =0.30),

that can be considered to be low and high verification probabilities respectively. The
probabilities of the multinomial distributions were calculated applying Vacek’s condi-
tional dependence model (Vacek, 1985), i.e.

(]5,']' = )Lijp {Se’l(l —Sel)l_iS€£(1 —Sez)l_j+5ij€1},
Qpij = Aij(l_p) {Sp}_i(l—Spl)iSp;_j(l —sz)‘j+5ij80},
yij = (1= 2qj) p{ Sef (1= Se1)''sed(1 — Se2)' I+ 6e1 }

(1= 24j) (1= p) { 8P (1=Sp)'Sp} (1 = Spa) + 8560}

where §;; = 1 when i = j and 0;; = —1 when i # j, and &, is the dependence factor
(covariance) between the two diagnostic tests when D = 1 and ¢y is the dependence
factor (covariance) between the two diagnostic tests when D = 0. In general, in clinical
practice the two diagnostic tests are usually conditionally dependent on the disease and
it is verified that
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0 < &1 < Seq (1 —Sey) when Se; > Sey
0 < ey < Sey (1 —Se;) when Se; > Se,

and

0 <&y <Spi(1—Spy) when Sp, > Sp;
0 <& <Sp2(1—Sp1) when Sp; > Sp.

If the two diagnostic tests are conditionally independent on the disease then it is verified
that 6 = g9 = 0.

In Table 1, we show the results obtained for the type I error when comparing the
LRs of two diagnostic tests with sensitivities equal to 0.90 and specificities equal to
0.80, prevalence is equal to 10% and for intermediate and high dependence factors (&}
and gg). From the results, the following conclusions are obtained. The global hypothesis
test based on the chi-squared distribution has a type I error which, in general terms,
fluctuates around a nominal error of 5% especially when n > 1000, and the type I error
is lower than the nominal error for samples of a smaller size. Therefore, the global test
based on the chi-squared distribution show the classic performance of an asymptotic
tests (the type I error fluctuates around the nominal error starting from a certain sample
size). Moreover, the type I error increases when there is a rise in the disease prevalence
but without overwhelming the nominal error of 5%, whilst the verification probabilities
do not have an important effect upon the type I error (especially with large samples).
Regarding the type I error of the method based on the paired comparison to an error rate
of 5% (called Method 1 in the tables), its type I error clearly overwhelms the nominal
error, above all when n > 300 — 400 depending on the prevalence and the verification
probabilities, and therefore this method may lead to erroneous results. Regarding the
methods based on paired comparisons and the application of the Bonferroni method
(Method 2), the Holm method (Method 3) and the Hochberg method (Method 4), their
respective type I errors are almost identical and show a very similar performance to the
type I error of the global test based on the chi-squared distribution. Regarding power, in
Table 2 we show the results obtained when the sensitivities are equal to 0.90 and 0.85
and the specificities are equal to 0.80 and 0.75 respectively, prevalence is equal to 10%
and also for intermediate and high dependence factors. In general terms, with samples
of 500 individuals, the power of the global test is very high (higher than 80%-90%),
and the power is greater when the prevalence is greater and also when the verification
probabilities are greater. Regarding the power of Method 2, this is greater than that of
the global test because its type I error is also greater. As for the powers of Methods 2, 3
and 4, these are very similar to each other and these methods also have a power which
is slightly lower than that of the global test, especially when the samples are not very
large (in general terms, between 200 and 400 individuals).
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3.2. Three diagnostic tests

When simultaneously comparing the LRs of three binary diagnostic tests, as the sensi-
tivity and the specificity of each diagnostic test and the disease prevalence we took the
same values as in the case of the diagnostic tests, and as verification probabilities we
took the values

(A1 = 0.70, 4110 = 0.40, 4101 = 0.40, A109 = 0.25, Ao1; = 0.40, Agj0 = 0.25 ,
Aoo1 = 0.25, Ao = 0.05)

and

(1111 = 1,),110 = 0.80,%101 = 0.80,1100 = 0.40, )\011 = 0.80,1010 =0.40 R
7(,()01 = 0.40,7(,00() = 020)

which can also be considered to be low and high verification scenarios. When comparing
the LRs of three diagnostic tests, the probabilities of the multinomial distributions were
calculating applying the Torrance-Rynard and Walter model (1997). In this case, the
expressions of the probabilities are:

d)ilizlg szlzm {Hselj l—Se 1=ij + Z lj_ik‘ﬁjk}7

J Jik,j<k

wll’ZI%_qullzlq {HSle l/ ]—Sp] l]+ Z |l] tkek}

J Jik,j<k

Yitizi :p 111213) {HSej’f 1—S€J 1 17—|— Z |l/71k’6 k}

J.k.j<k

+<1—p><1—ai1i253){HSpﬁff(l—Sp,->ff+ y <—1>"‘ffk’s,~k},

j=1 ks j<k

withi; =0,1,4 =0, 1 and j, k= 1,2, 3, where 6 j; is the dependence factor (covari-
ance) between the jth and the kth diagnostic test when D = 1 and € is the dependence
factor (covariance) between the jth and the kth diagnostic test when D = 0. The depen-
dence factors 0 j; and ¢ verifies restrictions that depend on the values of the sensitivi-
ties and the specificities of the three diagnostic tests. In order to simplify things, in the
simulation experiments it was considered that 6;; = 0 and ¢;; = ¢, and therefore the
dependence factors verify the following restrictions:

6 < (1—Sep)(1—Sey)Ses, 6 < (1 —Sey)Sex(1—Sez), 6 < Sey(1—Sey)(1—Ses)
e < (1=Sp1)(1=S8p2)Sps;, & <(1=Sp1)Sp2(1=5p3), & <Sp1(1=Sp2) (1 -5p3).
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In clinical practice, factors & j; and/or €j; are greater than zero, and therefore the
diagnostic tests are conditionally dependent on the disease status. When 6 = g3 = 0
the three diagnostic tests are conditionally independent on the disease status.

In Table 3, we show the results obtained for the type I error when the three
sensitivities are equal to 0.90 and the three specificities are equal to 0.80, prevalence
is equal to 10% and for intermediate and high dependence factors (6 and €). From
the results it holds that, in general terms, the type I error of the global hypothesis test
performs in a similar way to that obtained when comparing two diagnostic tests (the
type I error fluctuates around the nominal error starting from a determined sample size).
Regarding the other methods, Method 1 has a type I error that clearly overwhelms the
nominal error, and Methods 2, 3 and 4 have a type I error that is slightly lower than that
of the global test.

In terms of power, in Table 4 we show the results obtained for sensitivities equal
to 0.90, 0.85 and 0.80, specificities equal to 0.85, 0.75 and 0.70 respectively, and
prevalence is equal to 10%. In general terms, the power of the global test increases
with an increase in the prevalence and/or the verification probabilities, and the power is
greater than 80%-90% with samples of 500. Furthermore, Method 1 has a greater power
than the global test because (as in the case of the two diagnostic tests) its type I error
is greater. Methods 2, 3 and 4 have a power which is slightly lower than the global test,
especially for samples of between 100 and 400 individuals.

3.3. Conclusions

From the results of the simulation experiments carried out to simultaneously compare
the LRs of two and three diagnostic tests respectively, it holds that in general terms
the best method to solve this problem of inference is the global test based on the chi-
squared distribution, since its type I error performs better around the nominal error than
the type I error of each one the other methods. From these results, the following method
is proposed to compare the likelihood ratios of J binary diagnostic tests: 1) Solving the
global hypothesis test based on the chi-squared distribution to an error rate of a; 2) If the
global hypothesis is significant to an error rate of a, the investigation of the causes of the
significance must be carried out comparing the positive (negative) likelihood ratios of
each pair of diagnostic tests applying a multiple comparison method (Bonferroni, Holm
or Hochberg) to an error a. Step 2 must be carried out applying a multiple comparison
method and not each marginal test to an error rate of a, since the latter has a type I error
that clearly overwhelms the nominal error.
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4. Application

The results obtained in previous Sections were applied to the diagnosis of coronary
stenosis, a disease that consists of the obstruction of the coronary artery and its diagno-
sis can be made through a dobutamine echocardiography, a stress echocardiography or
through a CT scan, and as the gold standard a coronary angiography is used. As the coro-
nary angiography can cause different reactions in individuals (thrombosis, heart attack,
infections, etc.), not all of the individuals are verified with the coronary angiography.
In Table 5, we show the results obtained when applying the three diagnostic tests and
the gold standard (7 : dobutamine ecocardiography; 75: stress echocardiography; 73: CT
scan) to a sample of 2455 spanish males over 45 and when applying the coronary an-
giography (D) only to a subset of these individuals. The data come from a study carried
out at the University Hospital in Granada. This study was carried out in two phases: in
the first phase, the three diagnostic tests were applied to all of the individuals; and in the
second phase, the coronary angiography was applied only to a subset of these individu-
als depending only on the results of the three diagnostic tests. Therefore, in this example
it can be assumed that the missing data mechanism is MAR and the model is ignorable,
and therefore the results of the previous sections can be applied. The values of the esti-
mators of the LRs are LR, = 5.31, LR, —3.04, LRy = 7.61, LR, = 0.13, LR, —0.33
and 121\3; = 0.09. Applying equation (3) it holds that Q*> = 126.20 (p-value = 0) and
therefore we reject the joint equality of the LRs. In order to investigate the causes of
the significance, the step is to solve the marginal hypothesis tests. In Table 6, we show
the results obtained for each one of the six hypothesis tests that compare the LRs. Then
a method of multiple comparisons (Bonferroni, Holm or Hochberg) is applied and it is
found that (with the three methods) the three positive likelihood ratios are different, and
the biggest one is that of the CT scan, followed by that of the dobutamine echocardiog-
raphy and finally that of the stress echocardiography. Regarding the negative likelihood
ratios, no significant differences were found between that of the dobutamine echocar-
diography and that of the CT scan; whilst the negative likelihood ratio of the stress
echocardiography is significantly larger than that of the dobutamine echocardiography
and that of the CT scan.

5. Discussion

Likelihood ratios are parameters that allow us to assess and compare the performance
of binary tests, and technically they are equivalent to a relative risk. In the presence of
partial disease verification, the disease status of a subset of individuals in the sample is
unknown, and therefore the estimation and comparison of the likelihood ratios of two or
more diagnostic tests cannot be made using the existing models (Leisenring and Pepe,
1998; Roldan Nofuentes and Luna del Castillo, 2007), since the results are affected by
verification bias. In this article, a global hypothesis test is proposed to simultaneously
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Table 5: Data from the study of coronary stenosis.

T =1 T, =0
=1 =0 =1 T,=0
T3:1 T3:0 T3:1 T3:0 T3:1 T3:0 T3:1 T3:0 Total

V=1

D=1 457 30 84 5 34 0 7 1 618
D=0 41 23 5 61 16 86 32 95 359
V=0 92 31 85 120 42 195 88 825 1478
Total 590 84 174 186 92 281 127 921 2455

Table 6: Results of the marginal hypothesis tests.

Hypothesis test z Two sided p-value
Hy:LR] =LRy vsHy : LR} #LR] 624 447 x10°13
Hy: LR} =LR§ vs H; : LR} #LR;  3.30 0.001
Ho:LRy =LRY vs Hy : LRy #LR]  7.29 3.06 x 10713
Hy:LR; =LR; vsHy:LR] #LR; 153 5.15x 101
Hy:LR| =LR; vs Hy : LR| # LR3 1.77 0.077
Hy:LRy; =LR; vsHy:LR; #LRy;  9.19 0

compare the likelihood ratios of two or more diagnostic tests assuming that the missing
data mechanism is ignorable. The assumption of ignorability (Schafer, 1997), which is
widely used in this field, means that the selection of an individual to verify the disease
status depends only on the results of the diagnostic tests and not on the disease status.
This assumption cannot be made from the data observed, but rather depends on how the
experiment is conducted. Thus, for example, in two phase studies, if in the second phase
the selection of the individuals is made depending on the results of the diagnostic tests,
then it can be assumed that the missing data mechanism is ignorable. If the verification
process depends on the disease status, the missing data mechanism is not ignorable and
the model proposed in this article cannot be applied.

Simulation experiments were carried out to study the type I error and the power
of the global test and of other alternative methods, from which the following method
was proposed to compare the likelihood ratios of two or more diagnostic tests in the
presence of ignorable missing data: 1) Apply the global hypothesis test based on the
chi-squared distribution to an error rate of a (equation (3)); 2) If the global hypothesis
test is significant to an error rate of a, investigating the causes of the significance solving
the marginal hypothesis tests (expression (4)) along with the a multiple comparison
method (Bonferroni, Holm or Hochberg). This procedure is similar to the one used in a
analysis of variance. Firstly, the global test is solved and then a multiple comparison
method is applied. The simulation experiments have also shown that the positive
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and negative likelihood ratios cannot be compared independently (Method 1 of the
simulation experiments), since the type I error clearly overwhelms the nominal error.

The problem posed in this article can also be solved using the natural log-likelihood
ratios. Simulation experiments (similar to those in Section 3 and from the same samples)
were carried out using this transformation and it was found that there is no important
difference between the results obtained, in terms of type I error and power, and those
obtained in Section 3. Therefore, it is recommendable to make the comparison without
using this transformation.
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Appendix

Let us suppose that we wish to check K hypothesis tests, Ho, vs Hix, withk=1,... K,
and let py be the p-value obtained by solving each hypothesis test. Let p;j) < ppj < -+ <
Pik) be the p-values in order from the lowest to the highest, so that py is the p-values
corresponding to the hypothesis test Hoj) vs Hyjy.-

The Holm method (1979) consists of the following steps:

Step 1. If p;y < @ / K then reject hypothesis Hyjj) and go to the next step; otherwise
finish.

Step 2. If pp < a / (K — 1) then reject hypothesis Hypy and go to the next step; other-
wise finish...

Step K. If px) < a then reject hypothesis Hyk) and finish.

The Hochberg method (1988) consists of the following steps:

Step 1. If pjx) < a then reject Hyyy with k = 1,...,K and finish; otherwise go to the
next step.

Step 2. If pjx_) < a/2 then reject Hyyy with k =1,...,K — 1 and finish; otherwise go
to the next step...

Step K. If pjjj < @ / K then reject hypothesis Hy() and finish.
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