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Abstract

The analysis of markets with indivisible goods and fixed exogenous prices has played an impor-

tant role in economic models, especially in relation to wage rigidity and unemployment. This paper

provides a novel mathematical programming based approach to study pure exchange economies

where discrete amounts of commodities are exchanged at fixed prices. Barter processes, consist-

ing in sequences of elementary reallocations of couple of commodities among couples of agents,

are formalized as local searches converging to equilibrium allocations. A direct application of the

analysed processes in the context of computational economics is provided, along with a Java

implementation of the described approaches.
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1. Introduction

Since the very beginning of the Economic Theory (Edgeworth, 1881; Jevons, 1888), the

bargaining problem has generally be adopted as the basic mathematical framework for

the study of markets of excludable and rivalrous goods. It concerns the allocation of

a fixed quantity among a set of self-interested agents. The characterizing element of a

bargaining problem is that many allocations might be simultaneously suitable for all the

agents.

Definition 1 Let V ⊂ Rn be the space of allocations of an n agents bargaining prob-

lem. Points in V can be compared by saying that v∗ ∈ V strictly dominates v ∈ V if

each component of v∗ is not less than the corresponding component of v and at least
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one component is strictly greater, that is, vi ≤ v∗i for each i and vi < v∗i for some i. This

is written as v ≺ v∗. Then, the Pareto frontier is the set of points of V that are not strictly

dominated by others.

A long-standing line of research focused on axiomatic approaches for the determi-

nation of a uniquely allocation, satisfying agents’ interests (Nash, 1951; Rubinstein,

1983).

More recently, an increasing attention has been devoted to the cases where the quan-

tity to be allocated is not infinitesimally divisible. The technical difficulties associated to

those markets have been often pointed (Kaneko, 1982; Quinzii, 1984; Scarf, 1994) and

the equilibria of markets of indivisible goods have been characterized only under strong

assumptions (Shapley and Shubik, 1972). In the general case, main focus was to address

the question of existence of market clearing prices in the cases of not infinitesimally

divisible allocations (Danilov, Koshevoy and Murota, 2001; Caplin and Leahy, 2010).

Another subclass of the family of bargaining problems is associated to markets with

fixed prices (Dreze, 1975; Auman and Dreze, 1986), which have played an important

role in macroeconomic models, especially on those models related to wage rigidities and

unemployment. Dreze described price rigidity as inequality constraints on individual

prices (Dreze, 1975).

Efficient algorithms to find non-dominated Pareto allocations of bargaining problems

associated to markets with not infinitesimally divisible goods and fixed exogenous

prices have been recently studied (Vazirani et al., 2007; Ozlen, Azizoglu and Burton,

2012). Our goal is to provide novel mathematical-programming based approaches to

analyse barter processes, which are commonly used in everyday life by economic

agents to solve bargaining problems associated to n-consumer-m-commodity markets

of not infinitesimally divisible goods and fixed exogenous prices. These processes

are based on elementary reallocations (ER) of two commodities among two agents,

sequentially selected from the m(m−1)n(n−1)/4 possible combinations. Under fixed

prices, markets do not clear and the imbalance between supply and demand is resolved

by some kind of quantity rationing (Dreze, 1975). In our analysis this quantity rationing

is implicit in the process and not explicitly taken into account.

Based on this multi-agent approach, many economical systems might be simulated

(Wooldridge, 2002). For instance, some studies (Bell, 1998; Wilhite, 2001) have taken

into account the effect of network structures on the performance of a barter process,

for the case of endogenous prices and continuous commodity space, showing that

centralized network structures, such as a stars, exhibit a faster convergence to an

equilibrium allocation. Our multi-agent approach is instead devoted to the analysis of

the network structures generated by the sequences of bilateral trades, namely the set of

couples of agents interacting along the processes. Such a structure might be statistically

analysed in term of its topological properties, as it is done in Section 5.

Section 2 illustrates the fundamental properties of the allocation space, associated

to n-consumer-m-commodity markets of not infinitesimally divisible goods and fixed
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exogenous prices. Section 3 provides a general mathematical programming formulation

and derives an analytical expression for the Pareto frontier of the elementary reallo-

cation problem (ERP). It will be shown that the sequence of elementary reallocations

(SER) (the chain of ERP performed by agents along the interaction process) follows the

algorithmic steps of a local search in the integer allocation space with exogenous prices.

Section 4 introduce the case of network structures restricting agents interactions to be

performed only among adjacent agents. In Section 5 the performance of these barter

processes is compared with the one of a global optimization algorithm (branch and cut).

2. The integer allocation space with exogenous prices

The key characteristic of an economy is: a collection A of n agents, a collection C of

m types of commodities, a commodity space X (usually represented by the nonnegative

orthant in Rm), the initial endowments ei
j ∈ X for i ∈ A, j ∈ C (representing a budget

of initial amount of commodities owned by each agent), a preference relation �i on

X for each agent i ∈ A. It has been shown (Arrow and Debreu, 1983) that if the set

{(x,y) ∈ X × X : x �i y} is closed relative to X × X the preference relation can be

represented by a real-valued function ui : X 7−→ R, such that, for each a and b belonging

to X, ui(a)6 ui(b) if and only if a � b.

When agents attempt to simultaneously maximize their respective utilities, condi-

tioned to balance constraints, the resulting problems are maxui(x) s.to ∑i∈A xi
j =∑i∈A ei

j

for j ∈ C, where xi
j ∈ X , is the amount of commodity j demanded by agent i (from now

on the superindex shall denote the agent and the subindex shall denote the commodity).

Under certain economic conditions (convex preferences, perfect competition and

demand independence) there must be a vector of prices P̂ = (p̂1, p̂2, p̂3, . . . , p̂m)
T, such

that aggregate supplies will equal aggregate demands for every commodity in the

economy (Arrow and Debreu, 1983).

As studied by Dreze (1975) and by Auman and Dreze (1986), when prices are re-

garded as fixed, markets do not clear and the imbalance between supply and demand

is resolved by some kind of quantity rationing. The system of linear constraints asso-

ciated to a n-consumer-m-commodity market with fixed prices exhibits a block angular

structure with rank m+n−1:




p1 p2 . . . pm

p1 p2 . . . pm

. . .

p1 p2 . . . pm

I I . . . I




x =




p1e1
1 + · · ·+ pme1

m

p1e2
1 + · · ·+ pme2

m

...

p1en
1 + · · ·+ pmen

m

e1 + · · ·+ en




, (1)
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where p1, . . . , pm are relative prices between commodities, ei = (ei
1, . . . ,e

i
m)

T, and x =

(x1
1, . . . , x1

m, . . . ,x
n
1, . . . ,x

n
m)

T. The constraints matrix of (1) could also be written as(
I ⊗P

1⊗ I

)
, where P = (p1, p2, p3, . . . , pm) and ⊗ is the Kronecker product between

two matrices. Note that the linking constrains (i.e., the conservation of commodities

(1⊗ I)x = e1 + · · ·+ en) are implied by the balance equations of a network flow among

the agents. This fact will be analysed in Section 5, where we introduced costs associated

to the flow.

All the feasible allocations lay in a (m+ n− 1) dimensional hyperplane defined by

the prices (always containing at least one solution, which is represented by the vector of

initial endowments e), and restricted to the fact that agents are rational: ui(x) ≥ ui(e),

for i ∈A.

Proposition 1 below shows that an asymptotic approximation of an upper bound of

the number of nonnegative solutions of (1) is O( n(mb)

bm ), where b is the average amount of

commodities available, i.e., b =
∑m

j=1(∑
n
h=1 eh

j )

m
.

Proposition 1 Let Λ be the set of nonnegative solutions of (1), i.e., the allocation space

of a problem of bargaining integer amounts of m commodities among n agents with fixed

prices. If the allocation space satisfies the mild conditions b j = ∑
n
h=1 eh

j ≥ n (where b j

is the overall amount of commodity j in the system, which is a fix quantity, associated to

the rhs of (1)), then |Λ| ∈ O( n(mb)

bm ).

Proof. The set of nonnegative solutions of (1) is a subset of the union of bounded sets,

as Λ ⊂
⋃m

j=1{(x
1
j . . .x

n
j) ∈ R

n : x1
j + · · ·+ xn

j = e1
j + · · ·+ en

j ;x1
j . . .x

n
j ≥ 0}. Therefore,

Λ is a finite set, as it is the intersection between Z and a bounded subset of Rmn. Let

Λ′ be the set of nonnegative solutions of (1), without considering the price constraints,

i.e., the n diagonal blocks p1xh
1 + p2xh

2 + · · ·+ pmxh
m = p1eh

1 + p2eh
2 + · · ·+ pmeh

m, for

h = 1, . . . ,n. We know that |Λ′| ≥ |Λ|. However, |Λ′| can be easily calculated, as the

number of solutions of m independent Diophantine equations with unitary coefficients.

The number of nonnegative integer solutions of any equation of the form ∑
n
h=1 xh

j =

b j, j = 1, . . . ,m, might be seen as the number of distributions of b j balls among m

boxes:
(n+b j−1)!

(n−1)!b j!
. Since we have m independent Diophantine equations of this form,

then the number of possible solutions for all of them is ∏
m
j=1

(n+b j−1)!

(n−1)!b j!
. Thus, we know

that |Λ| ≤ ∏
m
j=1

(n+b j−1)(n+b j−2)...n

b j!
≤ ∏

m
j=1

(n+b j−1)
b j

b j!
≤

∏m
j=1(n+b j−1)

b j

bm , where the last

inequality holds because b j ≥ n ≥ 2. Finally, we conclude that

∏
m
j=1(n+b j −1)b j

bm
≤

O(n)bm

bm
≤ O(

n(mb)

bm
).
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In the next section we define a barter process of integer quantities of m commodities

among n agents as a local search in the allocation space Λ (obtained as a sequence

of elementary reallocations) and show that the Pareto frontier of the ERP might be

analytically obtained without the use of any iterative procedure.

3. The sequence of elementary reallocations

As previously seen, the linear system characterizing the space of possible allocations is

(1). Here the conservation of commodity (i.e., the overall amount of commodity of each

type must be preserved) is generalized to include arbitrary weights in the last m rows of

(1). Based on this observation consider the following multi-objective integer non-linear

optimization problem (MINOP)

max{ui(x), i = 1, . . . ,n} (2a)

subject to




P

P

. . .

P

d1I d2I . . . dnI




x =




b1

b2

...

bn

b0




(2b)

ui(x)≥ ui(e) i = 1 . . . ,n

x ∈ Zmn ≥ 0,
(2c)

where ui : Rmn → R, P ∈ Q1×m, di ∈ Q, bi ∈ Q, i = 1, . . . ,n, and b0 ∈ Qm. The con-

ditions ui(x) ≥ ui(e), i = 1, . . . ,n, guarantee that no agent gets worse under a feasi-

ble reallocation, which is known in general bargaining literature as the disagreement

point. The constraint matrix has a primal block-angular structure with n identical diag-

onal blocks involving m decision variables. Problem (1) is a particular case of (2) for

di = 1, i = 1, . . . ,n.

From a multi-objective optimization point of view, a suitable technique to generate

the Pareto frontier of (2) is the ǫ-constraint method (Haimes et al., 1971). Recently, a

general approach to generate all nondominated objective vectors has been developed

(Ozlen and Azizoglu, 2009), by recursively identifying upper bounds on individual

objectives using problems with fewer objectives.
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3.1. The elementary reallocation problem

In everyday life, barter processes among people tend to achieve the Pareto frontier of

problem (2) by a sequence of reallocations. We consider a process based on a sequence

of two-commodity-two-agent reallocations, denoted as SER. Any step of this sequence

requires the solution of a MINOP involving 4 variables and 4 constraints of problem (2).

Let e be a feasible solution of (2b) and (2c) and suppose we want to produce a

feasible change of 4 variables, such that 2 of them belong to the ith and jth position

of the diagonal block h and the other belong to the ith and jth position of the diagonal

block k.

It can be easily shown that a feasibility condition of any affine change of these 4

variables eh
i +∆h

i ,e
k
i +∆k

i ,e
h
j +∆h

j ,e
k
j+∆k

j is that ∆h
i ,∆

k
i ,∆

h
j ,∆

k
j must be an integer solution

of the following system of equations




pi p j 0 0

0 0 pi p j

dh 0 dk 0

0 dh 0 dk







∆h
i

∆h
j

∆k
i

∆k
j


=




0

0

0

0


 . (3)

The solution set are the integer points in the null space of the matrix of system (3),

which will be named A. A is a two-agent-two-commodity constraint matrix, and its rank

is three (just note that the first column is a linear combination of the other three using

coefficients α2 =
pi

p j
, α3 =

dh

dk and α4 =− pid
h

p jd
k ). Therefore the null space has dimension

one, and its integer solutions are found on the line




∆h
i

∆h
j

∆k
i

∆k
j


= q




p jd
k

−pid
k

−p jd
h

pid
h


 , (4)

for some q = αF(pi, p j,d
k,dh), where α ∈ Z and F : Q4 → Q provides a factor

which transforms the null space direction into the nonzero integer null space direction

of smallest norm. We note that this factor can be computed as F(pi, p j,d
k,dh) =

G(p jd
k, pid

k, p jd
h, pid

h), where

G(vi =
ri

qi

, i = 1, . . . , l) =
lcm(qi, i = 1, . . . , l)

gcd(lcm(qi, i = 1, . . . , l) · vi, i = 1, . . . , l)
, (5)

ri and qi being the numerator and denominator of vi (qi = 1 if vi is integer), and lcm

and gcd being, respectively, the least common multiple and greatest common divisor

functions.
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Hence, given a feasible point e, one can choose 4 variables, such that 2 of them

belong to the ith and jth position of a diagonal block h and the others belong to

the ith and jth position of a diagonal block k, in m(m − 1)n(n − 1)/4 ways. Each

of them constitutes an ERP, whose Pareto frontier is in e + null(A). The SER is a

local search, which repeatedly explores a neighbourhood and chooses both a locally

improving direction among the m(m− 1)n(n− 1)/4 possible ERPs and a feasible step

length q = αF(pi, p j,d
k,dh), α ∈ Z. For problems of the form of (2) the SER might be

written as follows:

xt+1 = xt +αF(pi, p j,d
k,dh)




...

p jd
k

...

−pid
k

...

−p jd
h

...

pid
h

...




...

h, i
...

h, j
...

k, i
...

k, j
...

= xt +αF(pi, p j,d
k,dh)∆kh

i j , (6)

t being the iteration counter. In shorter notation, we write (6) as xt+1 = xt +αSkh
i j , where

Skh
i j = F(pi, p j,d

k,dh)∆kh
i j (7)

is a direction of integer components. Since the nonnegativity of x has to be kept along

the iterations, then we have that

−
max

{
xh

i /(p jd
k),xk

j/(pid
h)
}

F(pi, p j,dk,dh)
≤ α≤

min
{

xh
j/(pid

k),xk
i /(p jd

h)
}

F(pi, p j,dk,dh)
, (8)

or, equivalently,

−max
{

xh
i /(p jd

k),xk
j/(pid

h)
}
≤ q ≤ min

{
xh

j/(pid
k),xk

i /(p jd
h)
}
. (9)

(The step length is forced to be nonnegative when the direction is both feasible and

a descent direction; in our case the direction is only known to be feasible, and then

negative step lengths are also considered.)

An important property of an elementary reallocation is that under the assumptions

that
∂uk(x)

∂xk
i

: Rmn → R is (i) non increasing, (ii) nonnegative and (iii)
∂uk(x)

∂
x

j
i

= 0
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for j 6= k (i.e., uk only depends on xk ), which are quite reasonable requirements for

consumer utilities, then uk(x+αSkh
i j ) is a unimodal function with respect to α, as shown

by the next proposition.

Proposition 2 Under the definition of uk and Skh
i j , for every feasible point x ∈ Rmn,

uk(x+αSkh
i j ) is either a unimodal function with respect to α or locally constant beyond

a certain value of α in the interval defined by (8).

Proof. Let us define g(α) = uk(x+αSkh
i j ), differentiable with respect to α. It will be

shown that for all α in the interval (8), and 0 < τ ∈ R, g′(α)< 0 implies g′(α+τ)< 0,

which is a sufficient condition for the unimodality of g(α). By the chain rule, and using

(6) and (7), the derivative of g(α) can be written as

g′(α) = ∇xuk(x+αSkh
i j )S

kh
i j

= F(pi, p j,d
k,dh)

(
∂uk(x+αSkh

i j )

∂xk
i

(−p jd
h)+

∂uk(x+αSkh
i j )

∂xk
j

pid
h

)
.

(10)

If g′(α)< 0 then, from (10) and since F(pi, p j,d
k,dh)> 0, we have that

∂uk(x+αSkh
i j )

∂xk
i

p jd
h >

∂uk(x+αSkh
i j )

∂xk
j

pid
h. (11)

Since from (6) the component (k, i) of Skh
i j is F(pi, p j,d

k,dh)(−p jd
h) < 0, and

∂uk(x)

∂xk
i

is non increasing, we have that for τ> 0

∂uk(x+(α+τ)Skh
i j )

∂xk
i

≥
∂uk(x+αSkh

i j )

∂xk
i

. (12)

Similarly, since the component (k, j) of Skh
i j is F(pi, p j,d

k,dh)(pid
h)> 0, we have

∂uk(x+αSkh
i j )

∂xk
j

≥
∂uk(x+(α+τ)Skh

i j )

∂xk
j

. (13)

Multiplying both sides of (12) and (13) by, respectively, p jd
h and pid

h, and connecting

the resulting inequalities with (11) we have that
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∂uk(x+(α+τ)Skh
i j )

∂xk
i

p jd
h >

∂uk(x+(α+τ)Skh
i j )

∂xk
j

pid
h,

which proofs that g′(α+τ)< 0.

Using Proposition 2 and the characterization of the space of integer solutions of (3),

we are able to derive a closed expression of the Pareto frontier of the ERP, based on the

behaviour of u(x+αSkh
i j ) (see Corollary 1 below), as it is shown in this example:

Example 1 Consider the following ERP with initial endowments [40, 188, 142, 66].

max{2− e−0.051x1
1 − e−0.011x1

2 ,2− e−0.1x2
1 − e−0.031x2

2}

subject to

5x1
1 +10x1

2 = 2080

5x2
1 +10x2

2 = 1370

5x1
1 +6x2

1 = 1052

5x1
2 +6x2

2 = 1336

2− e−0.05x1
1 − e−0.01x1

2 ≥ 1.68

2− e−0.1x2
1 − e−0.031x2

2 ≥ 1.50

xi
j ≥ 0 ∈ Z i = 1,2; j = 1,2;

(14)

The utility functions g1(α) = u1(x+αS12
12) and g2(α) = u2(x+αS12

12) are

g1(α) = u1(x+αS12
12) = u1







40

188

142

66


+α




12

−6

−10

5





=

= 2− e−0.051(40+12α)− e−0.011(188−6α)

g2(α) = u2(x+αS12
12) = u2







40

188

142

66


+α




12

−6

−10

5





=

= 2− e−0.1(142−10α)− e−0.031(66+5α),
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Figure 1: Plots of g1(α) and g2(α), and interval of α associated to the Pareto frontier. The disagreement

point corresponds to g1(0) and g2(0), the utilities in the current iterate.

which are plotted in Fig. 1. The continuous optimal step lengths for the two respective

agents are argmax g1(α) = 3.33 and argmax g2(α) = 8.94. Due to the unimodality

of uk(x + αShk
i j ), all efficient solutions of (14) are given by integer step lengths α ∈

[3.33, 8.94] (see Fig. 1), i.e., for α ∈ {4,5,6,7,8} we have

g1(4) = 1.82412 g1(5) = 1.81803 g1(6) = 1.80882 g1(7) = 1.79752 g1(8) = 1.78465,

g2(4) = 1.93043 g2(5) = 1.94035 g2(6) = 1.94873 g2(7) = 1.95558 g2(8) = 1.96057.

Due to the unimodality of both utility functions with respect to α, no efficient solution

exists for an α outside the segment [3.33, 8.94].

The above example illustrates a case where the segment between argmax uh(x +

αSkh
i j ) and argmax uk(x+ Skh

i j ) contains five integer points, associated with the feasible

step lengths.

The following statements give a constructive characterization of the Pareto frontier of

an ERP for the case of a concave utility function and linear utility functions respectively.

Corollary 1 Let Γ be the set of integer points in the interval [adown,aup], where adown =

min{argmax
α
uk(x+αSkh

i j ), argmax
α
uh(x+αSkh

i j )} and aup =max{argmax
α
uk(x+αSkh

i j ),

argmax
α
uh(x+αSkh

i j )}, and let[αdown,αup] be the interval of feasible step lengths defined

in (8). Then, due to Proposition 2, the set V∗ of Pareto efficient solutions of an ERP can

be obtained as follows:

1. V∗ = {[uh(x+αSkh
i j ),u

k(x+αSkh
i j )] : α ∈ Γ} if Γ ⊆ [αdown,αup] is not empty and

does not contain the zero.
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2. If Γ is empty and there exists an integer point between 0 and adown but no

integer point between aup and αup then V
∗ contains the unique point given by

[uh(x+αSkh
i j , uk(x+αSkh

i j )]such that α is the greatest integer between 0 and adown.

3. If Γ is empty and there exists an integer point between aup and αup but no integer

point between 0 and adown then V
∗ contains either the unique point given by

[uh(x+αSkh
i j , uk(x+αSkh

i j )] such that α is the smallest integer between aup and

α
up, or α= 0, or both of them if they do not dominate each other. (In this case the

three possibilities must be checked, since if for only one of the utilities —let it be

h, for instance— uh(x) > uh(x+ ᾱSkh
i j ), ᾱ being the smallest integer between aup

and αup, then both values 0 and ᾱ are Pareto efficient.)

4. If Γ is empty and there are integer points both between aup and αup and between

0 and adown then V ∗ contains the points given by [uh(x+αSkh
i j , uk(x+αSkh

i j )] such

that α is either the smallest integer between aup and αup, or the greatest integer

between 0 and adown, or both points if they do not dominate each other.

5. In the case that Γ contains the zero, then no point dominates the initial endowment

x, so that the only point in the Pareto frontier is x.

Corollary 2 Consider the case of an economy where agents have linear utility func-

tions with gradients c1, . . . ,cn and let again Γ be the set of integer points in the inter-

val [adown,aup], where adown = min{argmax
α
αckSkh

i j , argmax
α
αchSkh

i j } and aup = max

{argmax
α
αckSkh

i j , argmax
α
αchSkh

i j }, and let [αdown,αup] be the interval of feasible step

lengths defined in (8). It might be easily seen that either Γ =Q or Γ = ∅. The set Γ =Q

in the case (ch
i p jd

k−ch
j pid

k) and (ck
j pid

h−ck
i p jd

h) have opposite signs, whereas Γ =∅

if (ch
i p jd

k −ch
j pid

k) and (ck
j pid

h−ck
i p jd

h) have the same sign. Then, due to Proposition

2, the set V∗ of Pareto efficient solutions of an ERP may contain at most one point:

1. if there is at least one non-null integer between −max{xh
i /(p jd

k), xk
j/(pid

h)}/

F(pi, p j,d
k,dh) and min{xh

j/(pid
k), xk

i /(p jd
h)}/F(pi, p j,d

k,dh) and Γ = ∅, then

V
∗ only contains the unique point corresponding to the allocation xt+1 = xt +

αSkh
i j for a step-length α which is either equal to −max{xh

i /(p jd
k), xk

j/(pid
h)}/

F(pi, p j,d
k,dh) (if (ch

i p jd
k - ch

j pid
k) and (ck

j pid
h - ck

i p jd
h) are negative) or equal

to min{xh
j/(pid

k), xk
i /(p jd

h)}/F(pi, p j,d
k,dh) (if (ch

i p jd
k - ch

j pid
k) and (ck

j pid
h -

ck
i p jd

h) are positive).

2. V
∗ only contains the disagreement point in the opposite case.

Having a characterization of the Pareto frontier for any ERP in the sequence allows

not just a higher efficiency in simulating the process but also the possibility of measuring

the number of non dominated endowments of each of the m(m− 1)n(n− 1)/4 ERPs,

which might be used as a measure of uncertainty of the process. Indeed, the uncertainty
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of a barter process of this type might come from different sides: i) how to choose the

couple of agents and commodities in each step? ii) which Pareto efficient solution of

each ERP to use to update the endowments of the system? In the next subsection we

shall study different criteria for answering these two questions.

Note that the set of non-dominated solutions of the ERP, obtained by the local search

movement (6) might give rise to imbalances between supply and demand (Dreze, 1975).

To resolve this imbalance Dreze introduced a quantity rationing, which can be also

extended to the ERP.

Consider a rationing scheme for the ERP as a pair of vectors l ∈ Zm, L ∈ Zm, with

L ≥ 0 ≥ l, such that the tth and (t +1)th ER verifies li ≤ xt+1
i −xt

i ≤ Li, for i = 1, . . . ,n,

where li and Li are the ith components of l and L respectively. Thus, for two given agents

h and k and two given commodities i and j we have

li ≤ αF(pi, p j,d
k,dh)




...

p jd
k

...

−p jd
h

...




≤ Li, and l j ≤ αF(pi, p j,d
k,dh)




...

−pid
k

...

pid
h

...




≤ L j.

An open problem, which is not investigated in this paper, is the formulation of equi-

librium conditions for this rationing scheme. One possibility might be the construction

of two intervals for l and L which minimize the overall imbalances, under the conditions

that (3.1) is verified in each ERP, as long as l and L are inside the respected intervals.

The integrality of the allocation space Λ forbids a straightforward application of the

equilibrium criteria proposed by Dreze to the markets we are considering in this work.

3.2. Taking a unique direction of movement

The sequence of elementary reallocations formalized in (3) requires the iterative choice

of couples of agents (h,k) and couples of commodities (i, j), i.e., directions of move-

ment among the m(m− 1)n(n− 1)/4 in the neighbourhood of the current solution. If

this choice is based on a welfare function (summarizing the utility functions of all the

agents), the selection of couples of agents and couples of commodities can be made

mainly in two different ways: first improving and best improving directions of move-

ment.

Noting that each direction of movement in the current neighbourhood constitutes

a particular ERP, a welfare criterion might be a norm of the objective vector (e.g.,

Euclidean, L1 or L∞ norms).
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The best improving direction requires an exhaustive exploration of the neighbour-

hood, whereas the first improving direction stops the exploration of when an improving

ERP has been found.

If at iteration t an improving direction exists the respective endowments are updated

in accordance with the solution of the selected ERP: for each couple of commodities

(i, j) and each couple of agents (h,k), agent k gives αF(pi, p j,d
k,dh)p jd

k units of i to

agent h and in return he/she gets αF(pi, p j,d
k,dh)pid

k units of j, for some α ∈ Z. At

iteration t +1, a second couple of commodities and agents is considered in accordance

with the defined criterion. If we use a first improving criterion, the process stops

when the endowments keep in status quo continuously during m(m − 1)n(n − 1)/4

explorations, i.e., when no improving direction is found in the current neighbourhood.

3.3. Observing the paths of all improving directions of movement

When simulating social systems it might be interesting to enumerate all possible stories

which are likely to be obtained starting from the known initial point. In this subsection

we introduce a method to enumerate possible paths exclusively based on the Pareto

efficiency of each elementary reallocation.

The idea is to solve m(m− 1)n(n− 1)/4 ERPs and keep all the efficient solutions

generated. If in a given iteration we have r non-dominated solutions, and observe li ≤

m(m−1)n(n−1)/4, for i = 1, . . . ,r, Pareto improving directions, with fi, j for j = 1 . . . li
efficient solutions for each of them, we would expect some of the r + ∑

r
i=1 ∑

li
j=1 fi, j

solutions to be non-dominated by some others and the incumbent should be updated

by adding to the r previous solutions those which are non-dominated and removing

those which are dominated by some other. From the point of view of a local search, the

incumbent solution of this process is not a unique point in the allocation space but a

collection of points which Pareto-dominate the initial endowment and do not dominate

each other.

This procedure requires a method to find Pareto-optimal vectors each time

m(m−1)n(n−1)/4 ERPs are solved. An efficient algorithms to find the set V∗ of Pareto

vectors among r given vectors V = {v1,v2, . . . ,vr}, where vi = (vi1,vi2, . . . ,vin) ∈ R
n,

i= 1,2, . . . ,r, has been described (Corley and Moon, 1985; Sastry and Mohideen, 1999).

In our implementation of the the best-improving barter process, we use the modified

Corley and Moon algorithm, shown below.

Step 0. Set V∗ = Ø.

Step 1. Set i = 1, j = 2.

Step 2. If i = r− 1, goto Step 6. For k = 1,2, . . . ,n, if v jk ≥ vik for some k, then go to

Step 3; else, if vik ≥ v jk for all k, then go to Step 4; otherwise, go to Step 5.

Step 3. Set i = i+1, j = i+1; go to Step 2.
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Step 4. If j = r, set V∗ = V
∗∪{vi} and v j = {∞,∞, . . . ,∞} go to Step 3; otherwise, set

v jk = vrk, where k = 1,2, . . . ,n. Set r = r−1 and go to Step 2.

Step 5. If j = r, set V∗ = V∗∪{vi} go to Step 3; otherwise, set j = j+1 and go to Step

2.

Step 6. For k = 1,2, . . . ,n, if v jk ≥ vik, then set V∗ =V∗∪{v j} and stop; else, if vik ≥ v jk,

then set V∗ = V
∗∪{vi} and stop. Otherwise, let V∗ = V

∗∪{vi,v j}. Return V
∗.

The nice property of the modified Corley and Moon algorithm is that it doesn’t

necessarily compare each of the r(r − 1)/2 couples of vectors for each of the n

components. This is actually what the algorithm does in the worst case, so that the

complexity could be written as O(nr2), which is linear with respect of the dimension of

the vectors and quadratic with respect to the number of vectors. For the case of linear

utilities, the next subsection provides a small numerical example and the pseudo-code

of the procedure used to enumerate the paths of all possible stories.

3.4. Linear utilities

In microeconomic theory the utility functions are rarely linear, however the case of

linear objectives appears particularly suitable from an optimization point of view and

allows a remarkable reduction of operations, as the ERPs cannot have more than one

Pareto-efficient solution (see Corollary 1).

Consider a given direction of movement Skh
i j . We know that a feasible step length

α belongs to the interval defined by (8). Since in the case of one linear objective the

gradient is constant, for any direction of movement (i, j,k,h) the best Pareto improve-

ment (if there exists one) must happen in the endpoints of the feasible range of α (let

α
down(i, j,k,h) and αup(i, j,k,h) denote the left and right endpoints of the feasible range

of α, when the direction of movement is (i, j,k,h)). Therefore, the line search reduces to

decide either αdown(i, j,k,h), αup(i, j,k,h) or none of them. Then for every given point

x, we have a neighbourhood of at most m(m−1)n(n−1)/2 candidate solutions. The

pseudo-code to generate all sequences of elementary reallocations for n linear agents,

keeping the Pareto-improvement in each interaction, is shown in Algorithm 1.

The function CorleyMoon() applies the modified Corley and Moon algorithm to a

set of utility vectors and allocation vectors and returns the Pareto-efficient utility vectors

with the associated allocations.

Despite the idea behind the SER of a process among self-interested agents, which

are by definition local optimizers, this algorithm could also be applied to any integer

linear programming problem of the form of (2) with one linear objective: u(x) = cTx.

In this case however the branch and cut algorithm is much more efficient even for big

instances, as we will show in the next section.
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Algorithm 1 Generating paths of all improving directions of movement

1: Initialize the endowments E =< e1, . . . ,en > and utilities U =< u1, . . . ,un >.

2: Initialize the incumbent allocations Ẽt = {E} and the incumbent utilities Ũ t = {U}.
3: repeat

4: for x ∈ Ẽt do
5: Let < Sx,Gx > be the set of movements and utilities {(x+αSkh

i j , cT(x+αSkh
i j ))} for each couple

of commodities and agents (i, j,k,h) and α ∈ {αdown(i, j,k,h),αup(i, j,k,h)}
6: end for
7: Let < S,G >=

⋃
x∈Ẽ

< Sx,Ux >

8: Let < S,G >=CorleyMoon(< S,G >)

9: Let Ẽt+1 = Ẽt ∪S and Ũ t+1 = Ũ t ∪G

10: until Ẽt = Ẽt−1

If a first-improve method is applied, an order of commodities and agents is required

when exploring the neighbourhood and the equilibrium allocation might be highly

affected by this order (path-dependence). The pseudocode of algorithm 2 describes the

first improve search of the barter algorithm applied to the case of one linear objective

function.

Note that if the nonnegativity constraints are not taken into account, problem (2) is

unbounded for linear utility functions. This corresponds to the fact that without lower

bounds the linear version of this problem would make people infinitely get into debt.

As a consequence, the only possible stopping criterion, when the objective function

is linear, is the fulfillment of nonnegativity constraints, i.e. a given point x is a final

endowment (an equilibrium of the barter process) if we have that for any direction

of movement and for any given integer α if cT(x + αSkh
i j ) > cTx then x + αSkh

i j has

some negative component. In some sense the optimality condition is now only based

on feasibility.

Algorithm 2 First-improve SER with linear utility function

1: Initialize the endowments E =< e1, . . . ,en > and utilities U =< u1, . . . ,un >.
2: Let t = 0;
3: Let (i, j,k,h) be the tth direction in the order set of directions;

4: if cT(x+αdown(i, j,k,h)Skh
i j )> cT(x+αup(i, j,k,h)Skh

i j ) and cT(x+αdown(i, j,k,h)Skh
i j )> cT(x) then

5: Update the incumbent x = x+αdown(i, j,k,h)Skh
i j and GOTO 3;

6: else if cT(x+αup(i, j,k,h)Skh
i j )> cT(x+αdown(i, j,k,h)Skh

i j ) and cT(x+αup(i, j,k,h)Skh
i j )> cT(x) then

7: Update the incumbent x = x+αup(i, j,k,h)Skh
i j ) and GOTO 3;

8: else
9: t = t +1;

10: if t < m(m−1)n(n−1) then
11: GOTO 4;
12: else
13: RETURN
14: end if

15: end if
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3.5. The final allocation

For the case of a continuous commodity space and exogenous prices, pairwise optimality

implies global optimality, as long as all agents are initially endowed with some positive

amount of a commodity (Feldman, 1973). Unfortunately, the SER described in this

paper does not necessarily lead to Pareto efficient endowments. Let Tx(α) = x +

∑k 6=h ∑i6= jα(i, j,k,h)Skh
i j , representing a simultaneous reallocation of m commodities

among n agents, with step length αkh
i j for each couple of commodities i j and agents

hk, starting from x ∈ Λ. Whereas a SER is required to keep feasibility along the

process, a simultaneous reallocation Tx(α) of m commodities among n agents does not

consider the particular path and any feasibility condition on the paths leading from x

to Tx(α). Hence, remembering that all SERs described in this section stop when no

improving elementary reallocation exists in the current neighbourhood, we can conclude

that the non-existence of a feasible improving ER does not entail the non-existence

of an improving simultaneous reallocation of m commodities among n agents. In this

sense a SER provides a lower bound of any sequence of reallocations of more than two

commodities and two agents at a time.

4. Bartering on networks

An important extension of the problem of bargaining integer amounts of m commodities

among n agents with fixed prices is to define a network structure such that trades among

agents are allowed only for some couples of agents who are linked in this network. In this

case the conservation of commodities d1x1+d2x2+ · · ·+dnxn = d1e1+d2e2+ · · ·+dnen

is replaced by balance equations on a network, so that the final allocation of commodity

i must verify Ayi = D(xi − ei), where yi is the flow of commodity i in the system, A

is the incidence matrix, and D is a n× n diagonal matrix containing the weights of the

conservation of commodity i, that is D = diag(d1 . . .dn) (for more details on network

flows problems see Ahuja, Magnanti and Orlin (1991)).

It is also possible for the final allocation to have a given maximum capacity, that is,

an upper bound of the amount of commodity i that agent h may hold: xh
i ≤ x̄h

i .

The variables of the problem are now xh
i , which again represent the amount of

commodity i held by agent h, sh
i which are the slack variables for the upper bounds,

and y
h,k
i which denote the flow of commodity i from agent h to agent k.

The objective functions ũi(x,y) , i = 1 . . .n, might depend on both the final allocation

x and the interactions y, since the network topology could represent a structure of

geographical proximity and reachability.

The resulting mathematical programming formulation of the problem of bargaining

integer commodities with fixed prices among agents on a network with upper bounds on

the final allocations is as follows:
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max{ũi(x,y), i = 1, . . . ,n} (15a)

subject to




P
. . .

P

I I
. . .

. . .

I I

A

D
. . .

A







x

s

y


=




b1

...

bn

x̄1

...

x̄n

b0




(15b)

ui(x,y)≥ ui(e,0) i = 1 . . . ,n

x ∈ Zmn ≥ 0, y ∈ Zmn(n−1) ≥ 0, (15c)

where ũi : Rmn → R, P ∈ Q1×m, D ∈ Qmn×mn, bi ∈ Q, i = 1, . . . ,n, A ∈ Qn×n(n−1), and

b0 ∈ Qnm. Matrix D is an appropriate permutation of the diagonal matrix made of m

copies of the matrix D with the weights of the conservation of commodity and ũi(e,0)

is the utility function of agent i evaluated in the initial endowments e with null flow.

Problem (2) had mn variables and m + n constraints, whereas problem (15) has

mn(n+ 1) variables and n(1+ 2m) constraints. When a SER is applied, the definition

of a network structure and the application of upper bounds to the final allocation reduce

the number of feasible directions of movement in each iteration and the bound of the

interval of feasible step length, as for any incumbent allocation x, the step length αmust

be such that 0 ≤ x+αSkh
i j ≤ x̃.

An application of this problem is the transfer of workers among plants of the same

franchising company or chain store. When a change of demand requires a reorganization

of the production, laying workers off and contracting new workers might be costly

both for the company (severance pays and taxes) and for the workers (finding a new

job and experiencing a possible period of unemployment). Suppose that each plant is

independent and led by a different director, whose interest is to maximize the utility of

his/her particular plant and suppose the price per hour is fixed by law or the collective

labour agreement for each category of worker. In this case prices are exogenous and

each plant is interested in maximizing its benefit separately. The objective functions

ũi(x,y) , i = 1 . . .n, might depend on both the final allocation x and the interactions y,
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since the network structure could represent a structure of geographic proximity and

plants could wish to minimize the distance of displacement of their workers. The upper

bounds on the final endowments might be used to model the maximum capacity that

each plant has to accommodate and to employ a given type of worker. Also in this

particular application, the bargaining nature of the problem lays on the assumption that

the commodities we are considering are private goods, as the labour of one worker is

excludable and rivalrous.

The formulation (15) also allows the definition of arbitrary network structures, whose

topology is given in A. However, despite the absence of any prior definition of A, any

sequence of bilateral trades intrinsically gives rise to a network structure generated by

the set of couples of agents interacting along the process. Such a structure might be

statistically analysed in term of its topological properties, as it is done in the next section

with a battery of problems of different sizes. We shall study the assortativity of networks

generated by the set of couples of agents interacting along the SER. The assortativity is

the preference for an agent to interact with others that are similar or different in some

way, it is often operationalized as a correlation between adjacent node’s properties.

Two kinds of assortativities emerges in the best-improve barter algorithm: 1) couples

of agents with highly different marginal utilities are more often commercial partners, 2)

and also agents who are more sociable (trade more often) interact frequently with agents

who are not sociable. These results suggest that when the interactions are restricted to

be performed only among adjacent agents on a network, highly dissortative structure

would allow better performance of the process.

The effect of network structures on the performance of a barter process has been

already studied (Bell, 1998; Wilhite, 2001), for the case of endogenous prices and

continuous commodity space. In this case the process takes into account how agents

update prices each time they perform a bilateral trade. Reasonably, prices should be

updated based either on the current state of the only two interacting agents or on the

state of the overall population or also on the history of the system, such as previous

prices. Bell showed that centralized network structures, such as a stars, exhibit a faster

convergence to an equilibrium allocation.

5. Computational results

We have already seen that a SER can also be applied to any integer linear programming

problem of the form (2), where the individual utilities are aggregated in a single welfare

function. If this aggregated welfare is defined as a linear function of the endowments

of the form u(x) = cTx, the comparison of the SERs with the standard branch and

cut algorithm is easily carried out. Considering the ERP as the basic operation of a

SER and the simplex iteration as the basic operation of the branch and cut algorithm,

the comparison between the two methods is numerically shown in Table 1 for three

replications of 11 problems with the same number of agents and commodities, which
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Table 1: Numerical results of the SER and Branch and Cut for different instances of problem (2). The first

column shows the number of agents and commodities of the problem. Columns ’ERPs’ provide the number

of elementary reallocations and column ’neighbourhood’ shows the proportion of neighbourhood which

has been explored. Columns ’solution’ give the maximum total utility found. Column ’simplex’ gives the

number of simplex iterations performed by branch and cut.

size initial welfare
first-improve best-improve branch and cut

neighbourhood ERPs solution ERPs solution simplex solution

10 75.134 0.66 267 353.269 91 365.126 87 394.630

10 147.958 0.84 271 763.188 91 767.371 12 769.861

10 1.205.972 0.77 375 3.925.921 74 3.844.165 70 4.060.685

15 297.713 0.70 1.343 1.455.839 215 1.471.387 49 1.488.149

15 326.996 0.71 1.090 2.544.271 237 2.554.755 63 2.614.435

15 625.800 0.71 806 2.640.317 224 2.644.008 76 2.684.016

20 183.573 0.67 2.759 3.432.832 378 3.425.665 110 3.525.421

20 1.064.023 0.81 1.582 4.197.757 361 4.194.187 94 4.331.940

20 201.377 0.78 2.629 1.017.906 351 1.089.860 80 1.180.977

25 228.365 0.89 4.358 2.221.790 648 2.226.152 237 2.271.552

25 687.492 0.65 2.806 3.416.982 572 3.403.937 113 3.462.043

25 323.495 0.61 4.706 2.262.657 666 2.245.817 50 2.474.429

30 973.955 0.79 6.648 5.428.473 975 5.427.207 101 5.377.843

30 1.811.905 0.82 13.126 8.945.605 1.084 8.953.611 127 9.080.651

30 1.302.404 0.85 12.089 7.583.841 957 7.573.400 132 7.605.525

35 653.739 0.87 13.201 3.456.918 1.310 3.458.570 112 3.474.126

35 564.905 0.80 8.772 3.579.713 1.308 3.585.815 77 3.599.639

35 753.056 0.83 14.199 5.132.226 1.290 5.107.933 67 5.333.123

40 482.570 0.87 16.307 2.429.707 1.608 2.428.731 145 2.446.953

40 430.174 0.68 7.885 5.281.060 1.640 5.229.740 90 5.279.631

40 2.795.862 0.79 14.240 19.175.278 1.578 14.503.963 186 19.276.444

45 3.392.010 0.98 62.398 22.681.229 2.300 22.664.443 162 22.728.195

45 842.645 0.92 12.900 6.606.875 2.137 6.642.397 204 6.755.016

45 1.909.859 0.97 48.688 15.979.841 2.173 15.865.744 180 16.071.407

50 839.559 0.93 20.615 4.822.082 2.105 4.859.830 137 4.895.655

50 718.282 0.97 20.744 3.586.560 2.459 3.588.633 160 3.610.194

50 1.570.652 0.99 58.165 18.872.864 2.530 19.018.519 180 19.069.868

55 351.051 0.98 20.344 2.761.203 2.935 2.748.862 1.242 2.799.187

55 413.656 0.96 26.780 4.566.394 2.922 4.569.975 336 4.585.475

55 551.355 0.99 32.053 5.136.295 3.139 5.135.647 253 5.157.444

60 468.575 0.99 27.208 1.941.409 3.568 1.949.786 271 1.995.930

60 501.366 0.99 34.323 5.051.429 3.521 5.051.836 313 5.067.154

60 575.950 0.98 43.227 4.751.072 3.589 4.747.097 273 4.801.179

amounts to 33 instances. The branch and cut implementation of the state-of-the-art

optimization solver Cplex was used.

In the special case of a unique linear utility function a system of many local

optimizers (agents) could be highly inefficient if compared with a global optimizer,

who acts for the “goodness” of the system, as in the case of branch and cut. Also the

increase of elementary operations of the barter process is much higher than the one of
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the branch and cut, particularly when the direction of movement is selected in a best-

improve way, as it is shown in Table 1. Each point is averaged over the three instances

for each size (m,n). The economical interpretation suggests that if the time taken to

reach an equilibrium is too long, it is possible that this equilibrium is eventually never

achieved since in the meanwhile many perturbing events might happen.

5.1. Application in computational economics

From the point of view of computational economics, sequences of k-lateral trades of

fractional amounts of commodities with local Walrasian prices have also been studied

(Axtell, 2005), along with the convergence rate to the equilibrium. Some studies have

also taken into account the performance of the process under a variety of network

structures restricting the interactions to be performed only among adjacent agents (Bell,

1998; Wilhite, 2001). Populations of Cobb-Douglas’ agents trading continuous amount

of two commodities with local Walrasian prices have been considered, with the aim

of analysing the speed of convergence to an equilibrium price and allocation: more

centralized networks converged with fewer trades and had less residual price variation

than more diverse networks.

An important question when sequences of elementary reallocations in markets with

fixed prices are studied is to find factors which affect the number of non dominated

allocations related to improving paths of algorithm 1 and the number of neighbourhoods

explored. We consider a theoretical case where 2 agents with linear utility functions have

to trade 9 commodities. The following three factors are taken into account:

• Fact1: the variability of prices;
• Fact2: association between the initial endowment and the marginal utility of the

same agent;
• Fact3: association between the initial endowment and the marginal utility of the

other agent.

The aforementioned factors are measured at three levels and four randomized repli-

cates have been simulated for each combination of factors. A multivariate analysis of

variance (MANOVA) is performed, considering the two following response variables

• Resp1: the number of non dominated allocations related to improving paths of

algorithm 1;
• Resp2: the number of neighbourhoods explored.

The MANOVA table in Table 2 illustrates the effects and the significance of two

factors to the bivariate response: Fact1 and Fact3. The interaction between Fact2 and

Fact3 is significant, suggesting a higher increase in the response variables when they
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Table 2: MANOVA analysis of the paths of all improving directions

Pillai F p-value

Fact1 0.135084 2.9336 0.022435

Fact2 0.050411 1.0472 0.384650

Fact3 0.162063 3.5712 0.008055

Fact1 ×Fact2 0.057542 0.5999 0.777027

Fact1 ×Fact3 0.063816 0.6674 0.719612

Fact2 ×Fact3 0.195534 2.1943 0.030408

Fact1 ×Fact2 ×Fact3 0.291627 1.7284 0.046013

are both low. The correlation between the amounts of the initial endowments and the

coefficients of the objective function of the same agent does not appear by itself to have

a significant effect on the response variables.

The results of the MANOVA should be interpreted in accordance with the analysis of

the assortativity behaviour of the economical interaction network. Any SER intrinsically

gives rise to a network structure generated by the set of couples of agents interacting

along the process. Such a structure might be statistically analysed in term of its

topological properties. We consider two kind of assortativity measure (the preference

for an agent to interact with others that are similar or different in some way, often

operationalized as a correlation between adjacent node’s properties):

• Type1: couples of agents with highly different marginal utilities are more of-

ten commercial partners – Pearson correlation between the Euclidean distance

of marginal utilities and the number of interactions of each couple of agents,

cor(dist(ch, ck), interactions(h,k));

• Type2: agents who are more sociable (trade more often) interact frequently with

agents who are not sociable –Pearson correlation between the Euclidean distance

of couples of agents with respect to their number of interactions and the number

of joint interactions of each couple, cor(dist(degreeh, degreek),degree(h,k));

• Type3: the more two agents are different with respect to their marginal utilities,

the more they are different with respect to their number of interactions –Pearson

correlation between the Euclidean distance of marginal utilities and the Euclidean

distance of the number of interactions of each couple of agents, cor(dist(ch, ck),

dist(degreeh, degreek)).

The numerical values in Table 3 corresponds to the aforementioned assortativities,

associated to the same instances of Table 1.

The significant effect of Fact3 (the association between the initial endowment and the

marginal utility of the other agent) in the MANOVA of Table 2 seems coherent with the

Type1 and Type3 assortativity reported in Table 3, in the vague sense that assortativity

between nodes relates with the number of interactions.
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Table 3: Three types of network assortativity.

Size
First-improve Best-improve

Type1 Type2 Type3 Type1 Type2 Type3

10 0.40 0.48 0.63 0.70 0.67 0.74

10 0.46 0.66 0.61 0.85 0.63 0.74

10 0.60 0.48 0.75 0.71 0.70 0.75

15 0.49 0.28 0.64 0.74 0.48 0.56

15 0.44 0.52 0.59 0.58 0.44 0.67

15 0.37 0.60 0.54 0.56 0.74 0.66

20 0.22 0.36 0.49 0.39 0.62 0.54

20 0.33 0.53 0.48 0.54 0.48 0.55

20 0.053 0.30 0.47 0.48 0.45 0.42

25 0.37 0.53 0.56 0.55 0.66 0.53

25 0.33 0.63 0.40 0.65 0.56 0.66

25 0.32 0.43 0.56 0.48 0.70 0.49

30 0.10 0.28 0.33 0.42 0.55 0.53

30 0.07 0.30 0.39 0.56 0.62 0.68

30 0.33 0.42 0.59 0.61 0.63 0.65

35 0.27 0.41 0.43 0.44 0.59 0.43

35 0.26 0.33 0.56 0.46 0.55 0.48

35 0.13 0.40 0.47 0.46 0.58 0.53

40 0.20 0.37 0.36 0.44 0.64 0.38

40 0.48 0.48 0.52 0.68 0.52 0.64

40 0.40 0.44 0.59 0.64 0.64 0.60

45 0.10 0.13 0.45 0.62 0.60 0.54

45 0.29 0.45 0.51 0.57 0.59 0.58

45 0.20 0.23 0.52 0.58 0.57 0.68

50 0.17 0.26 0.37 0.35 0.55 0.32

50 0.21 0.28 0.50 0.45 0.62 0.42

50 0.15 0.30 0.42 0.51 0.50 0.65

55 0.14 0.53 0.17 0.39 0.52 0.38

55 0.17 0.33 0.38 0.29 0.53 0.44

55 0.19 0.37 0.38 0.47 0.56 0.43

60 0.35 0.45 0.60 0.54 0.57 0.62

60 0.20 0.30 0.43 0.34 0.50 0.52

60 0.16 0.38 0.29 0.39 0.51 0.48

What clearly emerges from these results is an interaction pattern which is far from

random. In the case the SER is forced to be performed only among agents adjacent

in a network, it suggests that highly dissortative structure match pretty well with the

best-improve directions of movement, so that no improving direction is penalized by

the presence of a predefined network structure.
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6. Summary and future directions

We studied the use of barter processes for solving problems of bargaining on a dis-

crete set, representing markets with indivisible goods and fixed exogenous prices. We

showed that the allocation space is characterized by a block diagonal system of linear

constraints, whose structural properties might be exploited in the construction and anal-

ysis of barter processes. Using Proposition 2 and the characterization of the space of

integer solutions of the ERP, we were able to derive a constructive procedure to approx-

imate its Pareto frontier, as shown by Corollary 1 and Corollary 2.

Further research on this topic should include the characterization of the integer points

in the null space of a general reallocation problem with fixed prices to obtain a closed

form solution of a general problem of reallocating integer amounts of m commodities

among n agents with fixed prices.

An open problem, which has not been investigated in this paper, is the formulation

of equilibrium conditions for this rationing scheme proposed in Section 3, as suggested

by Dreze (1975) for the case of continuous allocation space.

In Section 4 we proposed a mathematical programming model for the problem of

reallocating integer amounts of m commodities among n agents with fixed prices on

a sparse network structure with nodal capacities. Further research on this issue should

include the study of mathematical properties of a SER in dealing with markets with

sparsely connected agents, as formulated in (15).
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