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The exponentiated discrete Weibull distribution
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Abstract

In this paper, the exponentiated discrete Weibull distribution is introduced. This new generalization

of the discrete Weibull distribution can also be considered as a discrete analog of the exponenti-

ated Weibull distribution. A special case of this exponentiated discrete Weibull distribution defines

a new generalization of the discrete Rayleigh distribution for the first time in the literature. In ad-

dition, discrete generalized exponential and geometric distributions are some special sub-models

of the new distribution. Here, some basic distributional properties, moments, and order statistics

of this new discrete distribution are studied. We will see that the hazard rate function can be in-

creasing, decreasing, bathtub, and upside-down bathtub shaped. Estimation of the parameters is

illustrated using the maximum likelihood method. The model with a real data set is also examined.
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1. Introduction

It is sometimes impossible or inconvenient to measure the life length of a device on a

continuous scale. In practice, we come across situations where lifetimes are recorded on

a discrete scale. For example, on/off switching devices, bulb of photocopier machine,

to and fro motion of spring devices, etc. (cf. Krishna and Singh, 2009) are some typical

situations.

The failure rate function of an object, when the failures are reported on a discrete

scale, may be bathtub-shaped or unimodal. Jiang (2010) investigated some discrete dis-

∗ Corresponding author: h.bidram@sci.ui.ac.ir (and hamid−bidram@yahoo.com)
1 Department of Statistics, University of Isfahan, Khansar Unit, Isfahan, Iran.
2 Department of Statistics, University of Isfahan, Isfahan, Iran.

Received: July 2014

Accepted: February 2015



128 The exponentiated discrete Weibull distribution

tributions and used the exponentiated Poisson distribution and the two-fold competing

risk model exhibiting bathtub-shaped or increasing failure rate functions to introduce

a model for bus-motor failure data. Nooghabi et al. (2011) introduced the discrete

modified Weibull distribution with increasing and bathtub-shaped failure rate function.

However, in application areas, the absence of a suitable discrete model whose hazard

rate function covers and contains different possible shapes, i.e., bathtub-shaped, upside-

down bathtub and monotonically increasing and decreasing, is perceived. On the other

hand, the traditional discrete distributions have limited applicability as models for

reliability, failure times, counts, etc.

In the last two decades some papers dealing with discrete distributions obtained

by discretizing a continuous distribution have appeared in the literature. Lisman and

van Zuylen (1972) proposed and Kemp (1997) studied the discrete normal distribu-

tion which is characterized by maximum entropy for specified mean and variance; see

also Dasgupta (1993) and Szablowski (2001). Roy (2003) introduced another discrete

analog of normal distribution. Kemp (2008) also considered the discrete half-normal

distribution as a maximum entropy distribution for given mean and variance. Inusah

and Kozubowski (2006) and Kozubowski and Inusah (2006) introduced Laplace and

skew-Laplace distributions on the lattice of integers, respectively. Barbiero (2014) con-

sidered an alternative discrete skew Laplace distribution. Krishna and Pundir (2007)

introduced the discrete Maxwell distribution. Krishna and Pundir (2009) introduced

the discrete Burr distribution and studied a special case of the distribution which led

to perform the discrete Pareto distribution. Jazi et al. (2010) studied the discrete in-

verse Weibull distribution and proposed some important properties of their discrete

model. Gómez-Déniz (2010) obtained a generalization of the geometric distribution

from a member of the Marshall and Olkin (1997) family of distributions. Gómez-Déniz

and Calderin-Ojeda (2011) considered the discrete Lindley distribution and investigated

some properties and applications of the model. Chakraborty and Chakravarty (2012)

studied discrete gamma distributions and discussed estimation of the parameters. In

addition, Chakraborty (2013) introduced a new discrete distribution related to gener-

alized gamma distribution. Chakraborty and Chakravarty (2013) introduced a new dis-

crete probability distribution on the lattice of integers. Nekoukhou et al. (2013a) stud-

ied the discrete beta exponential (DBE) distribution and illustrated that the hazard rate

function of this discrete analogue of the beta exponential distribution of Nadarajah and

Kotz (2006) is monotone. Moreover, Hussain and Ahmad (2014) and Chakraborty and

Chakravarty (2014) introduced the discrete inverse Rayleigh and discrete Gumbel dis-

tributions, respectively.

Recently, Nekoukhou et al. (2012) and (2013b) introduced two different discrete

counterparts of the well-known two-parameter generalized exponential (GE) distribu-

tion of Gupta and Kundu (1999, 2001 and 2007). The probability mass functions (pmfs)

of these distributions are

px = f (x; p,γ) = cpx−1(1− px)γ−1, x ∈ N= {1,2,3, . . .}, (1)
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where c is the norming constant, and

px = f (x; p,γ) = (1− px+1)γ− (1− px)γ, x ∈ N0 = {0,1,2, . . .}, (2)

respectively. Nekoukhou et al. (2012) and (2013b) introduced these discrete analogues

by using relations

px =
f (x)

∑
∞
x=1 f (x)

, x ∈ N (3)

and

px = S(x)−S(x+1), x ∈ N0, (4)

respectively, where f (.) and S(.) are the probability density function (pdf) and survival

function of the GE distribution. Discrete generalized exponential (DGE) distribution and

discrete generalized exponential distribution of a second type (DGE2) are introduced in

the literature via Eq.’s (1) and (2), respectively. The last authors denoted these two-

parameter discrete distributions by DGE(γ, p) and DGE2(γ, p). Eq. (2) yields that the

cumulative distribution function (cdf) of the DGE2(γ, p) distribution is given by

F(x; p,γ) = (1− p[x]+1)γ, x ≥ 0. (5)

It is interesting to note that the above cdf coincides with the exponentiated geometric

distribution which was mentioned in Jiang (2010), and investigated by Chakraborty and

Gupta (2012).

In this paper we will introduce the exponentiated discrete Weibull (EDW) distribu-

tion, which is really a generalization of the discrete Weibull (DW) distribution of Naka-

gawa and Osaki (1975) and also DGE2 distribution, and illustrate its important features

and properties. The failure rate function of the new model is found to be bathtub-shaped,

unimodal and also increasing and decreasing. In the application section we will see that

the new model provides a satisfactory fit and that is competitive with traditional and

also newly developed discrete models. The new discrete distribution also contains a

generalization of the discrete Rayleigh distribution of Roy (2004) which has not been

introduced in the literature yet.

The paper is organized as follows. Section 2 introduces the three-parameter EDW

distribution and discusses some of its important features and properties such as cumu-

lative distribution and hazard rate functions, moments, infinite divisibility and the order

statistics. In Section 3, the researchers will consider the maximum likelihood method

to estimate the parameters of EDW distribution. In addition, in this section, estimation

of the stress-strength parameter is discussed. Section 4 describes fitting of the proposed

model to a real data set. Finally, in Section 5 some concluding remarks are given.
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2. Three-parameter EDW distribution

When the cdf of the DW distribution, denoted by DW (p,α), of Nakagawa and Osaki

(1975), i.e.,

G(x; p,α) = 1− p([x]+1)α , x ≥ 0, (6)

where 0 < p < 1 and α > 0 are the model parameters, is inserted into the resilience

parameter family of distributions, the cdf of the resulting discrete distribution is given

by

F(x; p,α,γ) = {1− p([x]+1)α}γ, x ≥ 0 (7)

in which γ> 0 is the resilience parameter.

We call such a random variable X , with cdf (7), an exponentiated discrete Weibull

distribution with parameters 0 < p < 1, α> 0 and γ> 0 and denote it by EDW (p,α,γ).

It is evident that when γ> 0 is an integer value, the cdf given by (7) agrees with the

cdf of the maximum of γ independent and identical DW (p,α) random variables.

2.1. Probability mass, survival and hazard rate functions

The corresponding pmf of a random variable X following an EDW (p,α,γ) distribution

for x ∈ N0 is given by

px = P(X = x) = f (x; p,α,γ) = {1− p(x+1)α}γ−{1− pxα}γ (8)

=
∞

∑
j=1

(−1) j+1

(

γ

j

)

{p jxα− p j(x+1)α}, (9)

where
(

γ
j

)

= Γ(γ+1)
Γ(γ+1− j) j!

. For integer γ> 0, the sum in Eq. (9) stops at γ.

Nekoukhou et al. (2013b) indicated that ∑
∞
j=1(−1) j+1

(

γ
j

)

= 1. Hence, if 0 < γ < 1

the pmf (9) can be viewed as an infinite mixture of DW (p j,α) distributions, j = 1,2, . . .

It is interesting to note that the EDW distribution with pmf (8) or (9) may also

be viewed as a discrete analog of the exponentiated Weibull (EW) distribution of

Mudholkar and Srivastava (1993) via Eq. (4) and doing reparametrization 0 < e−β
α
=

p < 1 in the structure of EW distribution.

Nassar and Eissa (2003) obtained expressions for the mode of the EW pdf. They

stated that EW distribution is monotone decreasing for αγ ≤ 1 and for αγ > 1, it is

unimodal. Naturally, it follows that EDW (p,α,γ) distributions are also unimodal for all

values of parameters. Figure 1 illustrates the pmf of an EDW (p,α,γ) distribution for

different values of parameters.
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Figure 1: Illustrations of the pmf of EDW (p,α,γ) for possible values of p, α and γ.

The survival and hazard rate functions of EDW (p,α,γ) distribution are given by

S(x; p,α,γ) = 1−{1− p([x]+1)α}γ, x ≥ 0 (10)

and

h(x; p,α,γ) =
{1− p(x+1)α}γ−{1− pxα}γ

1−{1− p(x+1)α}γ
, x ∈ N0, (11)

respectively.

Discrete hazard rates arise in several common situations in reliability theory where

clock time is not the best scale on which to describe lifetime. For example, in weapons

reliability, the number of rounds fired until failure is more important than age in failure.

This is the case also when a piece of equipment operates in cycles and the observation is

the number of cycles successfully completed prior to failure. In other situations a device

is monitored only once per time period and the observation then is the number of time

periods successfully completed prior to the failure of the device (cf. Shaked et al., 1995).

Figure 2 illustrates the hazard rate function of EDW (p,α,γ) distribution for different

values of p, α and γ. As we see from the figure, a characteristic of the EDW distribution

is that its hazard rate function can be decreasing, increasing, bathtub-shaped, and upside-

down bathtub depending on its parameters values. Hence, EDW distributions are more

flexible than other discrete distributions such as the geometric, DGE, DGE2 and DBE

distributions, whose hazard rate functions are constant and monotone.
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Figure 2: Illustrations of the hazard rate function of EDW (p,α,γ) for possible values of p, α and γ.

2.2. Special sub-models

Some special discrete distributions are achieved from EDW distribution as follows:

(1) Discrete Weibull distribution of Nakagawa and Osaki (1975), with pmf

px = (1− p(x+1)α)− (1− pxα), (12)

is obtained when γ= 1. If, in addition,α= 1, the geometric distribution is achieved.

The discrete Weibull distribution is used for estimation of replicative senescence

via population dynamics models (Wein and Wu, 2001), stress-strength reliability

(Roy, 2002), evaluation of reliability of complex systems (Roy, 2002), wafer probe

operation in semiconductor manufacturing (e.g., Wang, 2009), minimal availabil-

ity variation design of repairable systems (e.g., Wang et al., 2010) and microbial

counts in water (Englehardt and Li, 2011). Since the EDW distribution is an ex-

tension of DW distribution, one may expect from EDW model to be more flexible

in such application areas.

(2) If α = 1, then the discrete generalized exponential distribution of a second type

(DGE2(γ, p)) of Nekoukhou et al. (2013b) with pmf given by Eq. (2) is obtained.

If, in addition, γ = 1, the geometric distribution will be obtained again from a

different point of view.
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(3) If α= 2, then the pmf of EDW (p,α,γ) distribution reduces to

px = f (x; p,γ) = {1− p(x+1)2

}γ−{1− px2

}γ (13)

=
∞

∑
j=1

(−1) j+1

(

γ

j

)

p jx2

(1− p j(2x+1)), (14)

which defines a generalized discrete Rayleigh distribution GDR(γ, p) for the first

time in the literature. Moreover, for γ = 1 in Eq. (13) the discrete Rayleigh (DR)

distribution of Roy (2004) is obtained.

2.3. Quantiles, mean and variance

The m-th quantile of an EDW distribution is obtained by solving the equation

F(qm; p,α,γ) = m,

where F(.) is the cdf of an EDW (p,α,γ) distribution and qm denotes the corresponding

quantile function which is given by

qm =

{

log(1−m)1/γ

log p

}1/α

−1. (15)

Particularly, the median is immediately achieved by setting m = 0.5 in the above

equation.

The mean and variance of a random variable X following an EDW (p,α,γ) distribu-

tion are given, respectively, by

E(X) =
∞

∑
j=1

(

γ

j

)

(−1) j+1 pα j

1− pα j
(16)

and

Var(X) = 2
∞

∑
j=1

(

γ

j

)

(−1) j+1 pα j

(1− pα j)2
+E(X)−{E(X)}2. (17)

Remark 2.1 For an integer value of γ > 0, ∑
∞
j=1 should be replaced by ∑

γ
j=1 in the

above equations.
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Remark 2.2 For α= 1, Eq. (16) reduces to

E(X) =
∞

∑
j=1

(

γ

j

)

(−1) j+1 p j

1− p j
, (18)

which is the mean of the DGE2(γ, p) distribution obtained by Nekoukhou et al. (2013b).

In addition, in this case, it is easy to show that the variance of an EDW distribution

reduces to the variance of a DGE2 distribution.

The mean and variance of an EDW (p,α,γ) distribution for different values of p,

α and γ, using Eq.’s (16) and (17), are calculated in Table 1 below. It appears that

depending on the values of the parameters, the mean of the distribution can be smaller

or greater than its variance. Hence, EDW models are appropriate for modeling both over

and under dispersed data since, in these models, the variance can be larger or smaller

than the mean which is not the case with some standard classical discrete distributions.

Table 1: Mean (Variance) of EDW (p,α,γ) for different values of p, α and γ.

γ= 0.50

α/p 0.25 0.5 0.75

0.50 0.3938 (2.6970) 2.0105 (46.7602) 12.7288 (1517.5424)

0.75 0.2253 (0.5441) 0.8322 (3.9644) 3.2749 (44.2522)

1.00 0.1761 (0.2573) 0.5546 (1.2777) 1.7437 (8.2081)

2.00 0.1359 (0.1213) 0.3256 (0.2856) 0.7168 (0.7357)

3.50 0.1339 (0.1160) 0.2930 (0.2075) 0.5194 (0.2885)

γ= 1.00

α/p 0.25 0.5 0.75

0.50 0.7598 (5.0596) 3.7882 (85.6990) 23.5837 (2743.1543)

0.75 0.4296 (0.9364) 1.5272 (6.6530) 5.8068 (71.5589)

1.00 0.3333 (0.4444) 1.0000 (1.9999) 2.9999 (11.9999)

2.00 0.2539 (0.1972) 0.5644 (0.3787) 1.1522 (0.8241)

3.50 0.2500 (0.1875) 0.5003 (0.2507) 0.7885 (0.2439)

γ= 3.00

α/p 0.25 0.5 0.75

0.50 2.0009 (12.1856) 9.3360 (197.0330) 56.1430 (6147.2083)

0.75 1.0828 (1.8981) 3.4610 (11.9090) 12.2932 (123.5352)

1.00 0.8158 (0.7907) 2.1428 (2.9251) 5.8725 (16.5319)

2.00 0.5898 (0.2653) 1.0569 (0.3155) 1.9058 (0.6676)

3.50 0.5781 (0.2438) 0.8761 (0.1108) 1.0957 (0.1178)

Remark 2.3 Remember that a random variable X with cdf G is stochastically smaller

than Y with cdf F , denoted by X ≤st Y , if for all x, G(x)≥ F(x). This is the most basic

and oldest stochastic order in Probability and Statistics. In this case, if G is simpler than

F , G(x) may provide a useful lower bound for F(x) (see, e.g., Shaked and Shanthikumar
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(2007) for more details). Now, let G and F denote the cdfs of the DW and EDW

distributions which are defined via Eq.’s (6) and (7), respectively. It is obvious that for

γ> 1, we have X ≤st Y because [G(x)]γ ≤ G(x) and if 0 < γ< 1, it follows that X ≥st Y .

Hence, For γ ≥ 1 it follows that E(X) ≤ E(Y ) and corresponding result holds if X is

stochastically larger than Y . One can consider the results of Table 1 again.

2.4. Infinite divisibility

The researchers here make the following note in regards to the famous structural

property of infinite divisibility of the distribution in question. Such a characteristic has

a close relation to the Central Limit Theorem and waiting time distributions. Thus, it

is a desirable question in modeling to know whether a given distribution is infinitely

divisible or not. To settle this question, we recall that according to Steutel and van Harn

(2004, pp. 56), if px, x ∈N0, is infinitely divisible, then px ≤ e−1 for all x ∈N. However,

e.g., in an EDW (0.9,3,1) distribution we see that p2 = 0.372 > e−1 = 0.367. Therefore,

in general, EDW (p,α,γ) distributions are not infinitely divisible. In addition, since the

classes of self-decomposable and stable distributions, in their discrete concepts, are

subclasses of infinitely divisible distributions, we conclude that an EDW distribution

can be neither self-decomposable nor stable in general.

2.5. Order statistics

Order statistics are among the most fundamental tools in non-parametric statistics and

inference. They enter the problems of estimation and hypothesis testing in a variety of

ways. The aim of the present section is to establish some general relations regarding the

EDW distributions. More precisely, let Fi(x; p,α,γ) and fi(x; p,α,γ) be the cdf and pmf

of the i-th order statistic of a random sample of size n from EDW (p,α,γ) distribution.

Since,

Fi(x; p,α,γ) =
n

∑
k=i

(

n

k

)

[F(x; p,α,γ)]k[1−F(x; p,α,γ)]n−k, (19)

using the binomial expansion for [1−F(x; p,α,γ)]n−k, we obtain the following result:

Fi(x; p,α,γ) =
n

∑
k=i

n−k

∑
j=0

(

n

k

)(

n− k

j

)

(−1) j[F(x; p,α,γ)]k+ j

=
n

∑
k=i

n−k

∑
j=0

(

n

k

)(

n− k

j

)

(−1) j[{1− p([x]+1)α}γ]k+ j

=
n

∑
k=i

n−k

∑
j=0

(

n

k

)(

n− k

j

)

(−1) jFEDW (x; p,α,γ(k+ j)), (20)
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where FEDW denotes the cdf of an EDW distribution. The corresponding pmf of the i-th

order statistic, fi(x; p,α,γ) = Fi(x; p,α,γ)−Fi(x− 1; p,α,γ) for an integer value of x,

then is given by

fi(x; p,α,γ) =
n

∑
k=i

n−k

∑
j=0

(

n

k

)(

n− k

j

)

(−1) j fEDW (x; p,α,γ(k+ j)), (21)

where fEDW denotes the pmf of an EDW distribution.

Remark 2.4 In view of the fact that fi(x; p,α,γ) is a linear combination of a finite

number of EDW (p,α,γ(k+ j)) distributions, we may obtain some properties of order

statistics, such as their moments, from the corresponding EDW distribution. For exam-

ple, the mean of the i-th order statistic is given by

µi:n =
∞

∑
t=1

n

∑
k=i

n−k

∑
j=0

(

n

k

)(

n− k

j

)(

γ(k+ j)

t

)

(−1) j+t+1 pαt

1− pαt
. (22)

3. Estimation

To apply the method of maximum likelihood for estimating the parameter vector

θθθ = (p,α,γ)T of EDW distribution, assume that x = (x1,x2, ...,xn)
T is a random sample

of size n from an EDW (p,α,γ) distribution. The log-likelihood function becomes

ℓ=
n

∑
i=1

log[(1− p(xi+1)α)γ− (1− pxαi )γ]. (23)

Hence, the likelihood equations are

∂ℓ

∂ p
=

n

∑
i=1

vα,γ(xi +1)− vα,γ(xi)

mα,γ(xi)
, (24)

∂ℓ

∂α
=

n

∑
i=1

γ log p[uα,γ(xi) logxi −uα,γ(xi +1) log(xi +1)]

mα,γ(xi)
(25)

and

∂ℓ

∂γ
=

n

∑
i=1

γ[uα,γ(xi)−uα,γ(xi +1)]

pmα,γ(xi)
, (26)
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where

mα,γ(x) = {1− p(x+1)α}γ−{1− pxα}γ,

vα,γ(x) = (1− pxα)γ log(1− pxα)

and

uα,γ(x) = (1− pxα)γ−1 pxαxα.

The solutions of likelihood equations (24)-(26) provide the maximum likelihood

estimators (MLEs) of θθθ = (p,α,γ)T, say θ̂θθ = (p̂, α̂, γ̂)T, which can be obtained by a

numerical method such as the three variable Newton-Raphson type procedure.

For interval estimation and hypothesis tests on the model parameters, we require the

information matrix. The 3×3 observed information matrix is

In(θ̂θθ ) =





















−
∂ 2ℓ

∂ p2
−

∂ 2ℓ

∂ p∂α
−

∂ 2ℓ

∂ p∂γ

−
∂ 2ℓ

∂α∂ p
−

∂ 2ℓ

∂α2
−

∂ 2ℓ

∂α∂γ

−
∂ 2ℓ

∂γ∂ p
−

∂ 2ℓ

∂γ∂α
−

∂ 2ℓ

∂γ2





















, (27)

whose elements are given in the Appendix.

One can show that the EDW family satisfies the regularity conditions which are ful-

filled for parameters in the interior of the parameter space but not on the boundary (see,

e.g., Cox and Hinkley, 1974). Hence, the MLE vector θ̂θθ is consistent and asymptoti-

cally normal. That is, I
1
2

n (θθθ )(θ̂θθ −θθθ) converges in distribution to trivariate normal with

the (vector) mean zero and the identity covariance matrix.

One can use the normal distribution of θ̂θθ to construct approximate confidence regions

for some parameters. Indeed, an asymptotic 100(1− ξ) confidence interval for each

parameter θi, is given by

(θ̂i − zξ/2

√

Ĵii, θ̂i + zξ/2

√

Ĵii), i = 1,2,3,

where Ĵii denotes the (i, i) diagonal element of I−1
n (θ̂θθ) and zξ/2 is the (1 − ξ/2)-th

quantile of the standard normal distribution.
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3.1. Simulation study

Let X be a random variable that follows an EW distribution with cdf

F(x;α,β ,γ) = {1− e−(βx)α}γ, x > 0,

where α > 0, β > 0 and γ > 0 (two shapes and one scale) are the model parameters. It

is easy to show that [X ] has an EDW (p,α,γ) distribution in which 0 < p = e−β
α
< 1.

Therefore, we can simulate an EDW random variable from the corresponding contin-

uous EW distribution. Table 2 below presents the maximum likelihood estimates of

θθθ = (p,α,γ)T of an EDW distribution and also contains their standard errors for differ-

ent values of n as a simulation study. Standard errors are attained by means of the asymp-

totic covariance matrix of the MLEs of EDW parameters when the Newton-Raphson

procedure converges in, e.g., MATLAB software.

Table 2: MLEs of EDW parameters for different values of n.

n α̂( ˆSE(α̂)) γ̂( ˆSE(γ̂)) p̂( ˆSE(p̂)) α̂( ˆSE(α̂)) γ̂( ˆSE(γ̂)) p̂( ˆSE(p̂))

(α,γ) (0.5,0.75) (0.75,0.5)

p 0.25 0.75

40 0.525(0.563) 1.113(2.987) 0.221(0.657) 0.822(0.427) 0.591(0.431) 0.784(0.322)

100 0.492(0.477) 0.984(2.764) 0.213(0.527) 0.812(0.396) 0.442(0.393) 0.753(0.297)

200 0.511(0.323) 0.788(1.347) 0.288(0.410) 0.730(0.268) 0.551(0.379) 0.719(0.237)

500 0.501(0.242) 0.792(1.099) 0.217(0.264) 0.745(0.158) 0.526(0.204) 0.751(0.129)

1000 0.568(0.175) 0.799(0.675) 0.257(0.185) 0.743(0.108) 0.534(0.144) 0.745(0.090)

(α,γ) (2,3) (3,2)

p 0.5 0.9

40 2.197(1.083) 2.536(2.931) 0.542(0.410) 2.857(1.453) 1.903(1.879) 0.927(0.194)

100 2.077(0.951) 2.656(2.652) 0.564(0.349) 2.912(1.197) 1.872(1.542) 0.897(0.156)

200 1.904(0.663) 2.941(2.352) 0.494(0.289) 2.937(0.818) 2.022(1.163) 0.888(0.113)

500 1.915(0.465) 3.290(1.880) 0.462(0.187) 3.153(0.605) 1.980(0.781) 0.914(0.065)

1000 2.004(0.321) 2.950(1.068) 0.511(0.124) 2.918(0.306) 1.981(0.427) 0.895(0.041)

(α,γ) (1,1) (1.5,0.5)

p 0.5 0.95

40 1.202(0.996) 1.183(1.210) 0.717(0.712) 1.139(0.611) 0.733(0.693) 0.896(0.206)

100 1.278(0.723) 0.864(1.005) 0.601(0.416) 1.257(0.436) 0.808(0.494) 0.867(0.150)

200 0.933(0.363) 0.974(0.850) 0.488(0.293) 1.443(0.393) 0.471(0.198) 0.947(0.060)

500 0.982(0.230) 1.043(0.553) 0.484(0.177) 1.521(0.233) 0.522(0.125) 0.957(0.023)

1000 1.058(0.172) 0.909(0.318) 0.542(0.122) 1.507(0.177) 0.481(0.087) 0.955(0.012)
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3.2. Stress-strength parameter

The stress-strength parameter R = P(X > Y ) is a measure of component reliability and

its estimation problem when X and Y are independent and follow a specified common

distribution has been discussed widely in the literature. Suppose that the random variable

X is the strength of a component which is subjected to a random stress Y . Estimation of

R when X and Y are independent and identically distributed following a well-known

distribution has been considered in the literature. Many applications of the stress-

strength model, for its own nature, are related to engineering or military problems. There

are also natural applications in Medicine or Psychology, which involve the comparison

of two random variables, representing for example the effect of a specific drug or

treatment administered to two groups, control and test. Almost all of these studies

consider continuous distributions for X and Y , because many practical applications of

the stress-strength model in engineering fields presuppose continuous quantitative data.

A complete review is available in Kotz et al. (2003). However, in this regard, a relatively

small amount of work is devoted to discrete or categorical data. Data may be discrete by

nature. For example, the stress pattern in a step-stress accelerated life test can be treated

as a discrete random variable of which the possible values can be obtained from all stress

levels, and the corresponding probabilities can be obtained from the acting times of each

stress levels. Moreover, the stress state of a component can be categorized based on the

characteristic of external loads. For instance, the stress state of a mechanical component

can be simply classified as state 1, state 2 and state 3, which correspond to low load,

moderate load and heavy load, respectively. More generally, according to the change of

external loads, the stress of a component can be categorized into arbitrary finite state:

state 1, state 2, . . . , state m.

The stress-strength parameter, in discrete case, is defined as

R = P(X > Y ) =
∞

∑
x=0

fX(x)FY (x),

where fX and FY denote the pmf and cdf of the independent discrete random variables

X and Y , respectively. Now, let X ∼ EDW (θθθ1) and Y ∼ EDW (θθθ2), where θθθ1 =

(p1,α1,γ1)
T and θθθ2 = (p2,α2,γ2)

T. Using Equations (7) and (8), we obtain

R =
∞

∑
x=0

[{1− p
(x+1)α1

1 }γ1 −{1− pxα1

1 }γ1 ]{1− p
(x+1)α2

2 }γ2 .

Using the binomial expansion, it is easy to show that

R =
∞

∑
j=1

∞

∑
t=1

∞

∑
x=0

(−1) j+t+1

(

γ1

j

)(

γ2

t

)

p
t(x+1)α2

2 {p
jxα1

1 − p
j(x+1)α1

1 }. (28)
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Now, assume that x1,x2, . . . ,xn and y1,y2, . . . ,ym are independent observations from

X ∼ EDW (θθθ1) and Y ∼ EDW (θθθ2), respectively. The total likelihood function is

ℓR(θθθ
∗) = ℓn(θθθ1)ℓm(θθθ2), where θθθ

∗ = (θθθ1,θθθ2). The score vector is given by

UR(θθθ
∗) = (∂ℓR/∂ p1,∂ℓR/∂α1,∂ℓR/∂γ1,∂ℓR/∂ p2,∂ℓR/∂α2,∂ℓR/∂γ2),

and the MLE of θθθ
∗

, say θ̂θθ
∗

, may be attained from the nonlinear equation UR(θ̂θθ
∗

) = 0.

Thus, by inserting the MLEs in equation (28) the stress-strength parameter R will be

estimated.

4. Application

In this section, the EDW model will be examined for a real data set which is given by

Karlis and Xekalaki (2001) on the numbers of fires in Greece for the period from 1 July

1998 to 31 August of the same year. This data set consists of 123 observation and are

presented in Table 3. Only fires in forest districts are considered. Bakouch et al. (2014)

considered these data to indicate the potentiality of discrete Lindley (DL) distribution

in data modeling and compared it with Poisson, geometric and discrete gamma (DG)

distributions. The pmf of the DG distribution, which has been used first by Yang (1994)

and recently considered by Chakraborty and Chakravarty (2012), for x ∈N0, is given by

px =
γ(α,β(x+1))−γ(α,βx)

Γ(α)
, α> 0, β > 0,

where γ(a,x) =
∫ x

0 ta−1e−tdt denotes the incomplete gamma function. Additionally, the

pmf of the DL distribution for x ∈ N0 is given by

px =
px

1+θ
{θ (1−2p)+(1− p)(1+θx)}, 0 < p < 1, θ > 0.

Here, we compare the EDW and GDR models with these discrete distributions. In

addition, because of the over dispersion phenomena in the data set, x = 5.3984 and

s2 = 30.0449, the negative binomial (NB) distribution is also compared with the others.

Maximum likelihood method is used to obtain the estimates of the parameters of the

proposed new distributions (EDW and GDR). Comparing the EDW model with its rival

models is performed by using the Akaike information criterion (AIC) and Kolmogrov-

Smirnov (K-S) test statistic. Table 4 indicates the MLEs, AICs and the values of the K-S

test statistics determined by the fitted models. The MLEs and K-S test statistic values of

the DL and DG distributions, given in this table, are directly reported from Table 7 of

Bakouch et al. (2014).
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Table 3: Numbers of fires in Greece.

Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 20 43

Frequency 16 13 14 9 11 13 8 4 9 6 3 4 6 4 1 1 1

Table 4: Summary.

Models MLEs AIC K-S statistic

EDW (α̂, γ̂, p̂) = (1.0809,1.0923,0.8599) 685.5859 0.1254

GDR (γ̂, p̂) = (0.3934,0.9924) 694.6178 0.1467

DGE2 (γ̂, p̂) = (1.2548,0.8225) 683.7049 0.1301

NB (r̂, p̂) = (1.3360,0.1984) 683.2989 0.3350

DL (θ̂ , p̂) = (0.3090,0.7343) 685.8067 0.1122

DG (α̂, β̂) = (0.7525,0.1543) 749.7162 0.2683

According to the values of the K-S test statistics and AICs in Table 4, it seems that

EDW model gives a satisfactory fit to this real data set.

To construct approximate confidence intervals for the parameters of EDW model

and also for evaluating accuracy of the estimated parameters, we use the corresponding

estimated standard errors. For instance, 95% asymptotic confidence intervals for EDW

parameters are obtained as α ∈ (1.081 ∓ 0.4531), γ ∈ (1.0923 ∓ 0.8554) and p ∈

(0.8599∓0.1895).

5. Conclusions and comments

In this paper, a new three-parameter generalization of the discrete Weibull distribution is

proposed, so-called exponentiated discrete Weibull (EDW) distribution which is, indeed,

a member of resilience parameter family of distributions. The hazard rate function of

the new model can be increasing, decreasing, upside-down bathtub and also bathtub-

shaped and hence presents a very flexible behavior. Fitting the EDW model to a real data

set indicates the flexibility and capacity of the proposed distribution in data modeling.

In addition, a special sub-model of EDW distribution, i.e., the generalized discrete

Rayleigh distribution is introduced for the first time in the literature.
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Appendix

The elements of the 3×3 information matrix in Eq. (27) are given by

∂ 2ℓ

∂ p2
=

n

∑
i=1

{
γ

p2mα,γ(xi)
{ (γ−1)uα,γ−1(xi +1)p(xi+1)α(xi +1)α

−uα,γ(xi +1)[(xi +1)α−1]

− (γ−1)uα,γ−1(xi)pxαi xαi +uα,γ(xi)(x
α
i −1) }−

γ2[uα,γ(xi)−uα,γ(xi +1)]2

p2m2
α,γ(xi)

},

∂ 2ℓ

∂α2
=

n

∑
i=1

{
γ

mα,γ(xi)
{ (γ−1)uα,γ−1(xi +1)p(xi+1)α(xi +1)α log2(xi +1) log2 p

− (γ−1)uα,γ−1(xi)pxαi xαi log2 xi log2 p+uα,γ(xi) log2 xi log p[xαi log p+1]

−uα,γ(xi +1) log2(xi +1) log p[(xi +1)α log p+1] }

−
{γ log p[uα,γ(xi) logxi −uα,γ(xi +1) log(xi +1)]}2

m2
α,γ(xi)

},

∂ 2ℓ

∂γ2
=

n

∑
i=1

{
vα,γ(xi +1) log(1− p(xi+1)α)− vα,γ(xi) log(1− pxαi )

mα,γ(xi)

−
{vα,γ(xi +1)− vα,γ(xi)}

2

m2
α,γ(xi)

},

∂ 2ℓ

∂ p∂α
=

n

∑
i=1

{
γ

pmα,γ(xi)
{ (γ−1)uα,γ−1(xi +1)p(xi+1)α(xi +1)α log(xi +1) log p

− (γ−1)uα,γ−1(xi)pxαi xαi logxi log p+uα,γ(xi) logxi[x
α
i log p+1]

−uα,γ(xi +1) log(xi +1)[(xi +1)α log p+1] }

−
γ2 log p

pm2
α,γ(xi)

{[uα,γ(xi) logxi −uα,γ(xi) log(xi +1)][uα,γ(xi)−uα,γ(xi +1)]}},

∂ 2ℓ

∂ p∂γ
=

n

∑
i=1

{
uα,γ(xi)[γ log(1− pxαi )+1]−uα,γ(xi +1)[γ log(1− p(xi+1)α)+1]

pmα,γ(xi)

−
γ[uα,γ(xi)−uα,γ(xi +1)][vα,γ(xi +1)− vα,γ(xi)]

pm2
α,γ(xi)

}
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and

∂ 2ℓ

∂α∂γ
=

n

∑
i=1

{
log p

mα,γ(xi)
{ uα,γ(xi) logxi[γ log(1− pxαi )+1]

−uα,γ(xi +1) log(xi +1)[γ log(1− p(xi+1)α)+1] }

−
γ log p{uα,γ(xi) logxi −uα,γ(xi +1) log(xi +1)}{vα,γ(xi +1)− vα,γ(xi)}

m2
α,γ(xi)

}.
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