
Statistics & Operations Research Transactions

SORT 40 (1) January-June 2016, 31-54

Statistics &
Operations Research

Transactions
© Institut d’Estadı́stica de Catalunya

sort@idescat.catISSN: 1696-2281
eISSN: 2013-8830
www.idescat.cat/sort/

Two alternative estimation procedures for the

negative binomial cure rate model with a latent

activation scheme

Diego I. Gallardo1 and Heleno Bolfarine2

Abstract

In this paper two alternative estimation procedures based on the EM algorithm are proposed for

the flexible negative binomial cure rate model with a latent activation scheme. The Weibull model

as well as the log-normal and gamma distributions are also considered for the time-to-event data

for the non-destroyed cells. Simulation studies show the satisfactory performance of the proposed

methodology. The impact of misspecifying the survival function on both components of the model

(cured and susceptible) is also evaluated. The use of the new methodology is illustrated with a

real data set related to a clinical trial on Phase III cutaneous melanoma patients.
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1. Introduction

An implicit assumption with the ordinary survival model is that all individuals under

study are susceptible to the event of interest, which is not always true given the im-

provements in disease treatments experienced in the last decades. For some types of

cancer, for example, new treatments have significantly increased the probability that

an individual is considered with the disease under control (typically called cured). The

proportion of cured individuals after a treatment is usually known as the cure fraction.
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Berkson and Gage (1952) developed a model that became known in the literature

as the mixture model, which assumes that there is a proportion 1 − q0 of susceptible

individuals and, hence, a proportion q0 of cured individuals. An alternative route was

pursued by Yakovlev and Tsodikov (1996) and Chen et al. (1999). Their approach is

based on the assumption that each individual has an unobserved (latent) number M of

cells, each capable of triggering the event of interest. This model is known in the litera-

ture as the promotion time cure rate model and has been the subject of intense research

activity. Rodrigues et al. (2009) unify the two approaches considering the negative bi-

nomial distribution for the variable M, known in the literature as the negative binomial

cure rate model. Those models have a common element: both assume that the initial

cells will produce the event of interest. In order to relax this assumption, Rodrigues et

al. (2012) proposed the so-called destructive weighted Poisson cure rate model in which

it is assumed that each one of the initial cells has a probability p of being able to produce

the patient’s death, so that only D ≤ M cells (usually called activated or non-destroyed

cells) would remain in effect. Clearly, the case p = 1 (i.e., M = D) leads to the standard

models above. Both destructive and non-destructive models mentioned above assume

that one cell is sufficient to produce the event of interest, i.e., the time until the event

occurs is considered as the minimum of the times related to each activated cell. This

scheme is known as the first activation (FA) scheme.

R = 1

p = 1

φ→ 0

φ= 1

φ→−1

φ→ 0

φ= 1

Figure 1: Summary of some particular cases of the DNB model with a latent activation scheme.

Cooner et al. (2007) proposed a more general activation scheme in a non-destructive

context. This idea was used by Cancho et al. (2013) in the Destructive Negative Bino-



Diego I. Gallardo and Heleno Bolfarine 33

mial (DNB) cure rate model, where the negative binomial distribution with mean θ and

variance θ(1+φθ) is used for the initial number of cells. Accordingly, φ > 0(φ < 0)

provides over-dispersion (sub-dispersion), including the Poisson model as particular

case for φ= 0. The idea is that the event of interest may be considered as the maximum

of the times related to each one of the concurrent cells, i.e., all cells must be activated to

produce the event of interest. This scheme is called last activation (LA) scheme. A third

activation scheme is proposed assuming that a random number of factors (R) is needed

to produce the event of interest, i.e., the time to the event of interest is defined as the

R-th order statistics from the times related to the activated cells. A simple specification

is to assume the discrete uniform distribution for R on the set {1, . . . ,D}. This scheme is

known as the random activation (RA) scheme. Figure 1 depicts a summary of the DNB

in Cancho et al. (2013) and some particular cases of the model.

The main focus of this work is to develop two different ways of applying the EM

algorithm for maximum likelihood estimation (MLE) for the DNB with different acti-

vation schemes. The first way is to compute directly the expected value of M and D,

the number of initial and activated cells, respectively, and the second way is to write the

model as a mixture model and to use the EM algorithm for this alternative version Lu

(2010).

The paper is organized as follows. In Section 2 we describe the cutaneous melanoma

data set. In Section 3, the DNB model with different activation schemes and some propo-

sitions about this model are stated. In Section 4, two estimation procedures based on the

EM algorithm are proposed for the model in Section 3. Section 5 reveals results of two

simulation studies aiming at investigating parameters recovery and assessing the time-

to-event for the non-destroyed cells. Section 6 presents an application to a real data set

referring to a clinical trial for patients with melanoma. Finally, in Section 7, the main

conclusions and results obtained in this work are presented.

2. Cutaneous melanoma data set

The data set is related to a clinical trial on a Phase III cutaneous melanoma patients

available at http://merlot.stat.uconn.edu/˜mhchen/survbook/, labeled as E1690

data. The clinical trial was conducted by the Eastern Cooperative Oncology Group (see

Ibrahim et al. (2001) for details). The incidence of melanoma is one of the highest among

most types of cancer, with a high mortality rate even with early detection. The objective

of this study was to evaluate a postoperative treatment performance with a high dose of

the drug Interferon alpha-2b, in order to prevent recurrence. The study included patients

between 1991 to 1995 and follow-up was conducted until 1998.

A characteristic of the disease (as in many other types of cancers) is the presence

of a proportion of patients that can lead a normal life, comparable to patients without

the disease. In other words, a proportion commonly known as “cured”. After deleting

patients with incomplete data and missing observation times, the data set is composed of
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Figure 2: Kaplan-Meier curves stratified by covariate Nodule.

n = 408 individuals. The collected variables were: Observed time (in years, average =
2.31, median = 1.64, standard deviation = 1.93), treatment (0: control and 1: interferon

alfa-2b with 198 and 210 patients respectively), age (in years, average= 48.1, median=
47.2 and standard deviation = 13.1), nodal category (categorical variable with levels

1-4 with 110, 131, 86 and 81 patients in each group, respectively, where 1 indicates

the lower risk patients and 4 the higher risk patients) and tumour thickness (in mm,

average = 3.98, median = 3.18 and standard deviation = 3.22).

Figure 2 depicts the Kaplan-Meier curves by nodule category, confirming a well

pronounced plateau in all nodule categories. In the next Section, we present the model

addressed for this particular problem.

3. Model specification

Following Cancho et al. (2013), let M be an unobservable random variable denoting the

initial number of competing causes related to the occurrence of the event of interest. For

the cutaneous melanoma data set, M represents the number of carcinogenic cells. As-

sume that M has negative binomial distribution with probability mass function (p.m.f.)

given by

P(M = m;θ,φ) =
Γ(φ−1 +m)

Γ(φ−1)m!

(
φθ

1+φθ

)m

(1+φθ)−1/φ, m = 0,1,2, . . . , (1)
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where θ > 0, φ ≥ −1 and 1+φθ > 0. The distribution in (1) is denoted as M ∼ NB(
φ, φθ

1+φθ

)
. Under this parametrization, E(M) = θ and Var(M) = θ(1+ φθ). For this

reason, φ > 0 (φ< 0) corresponds to over (under)-dispersion in relation to the Poisson

distribution. For φ→ 0, the p.m.f. in (1) is reduced to the p.m.f. of the Poisson distribu-

tion and φ= 1 corresponds to the geometric distribution with parameter 1/(1+ θ).

Let ζ j, j = 1, . . . ,M be (conditionally) independent random variables given M = m,

with Bernoulli distribution and success probability p indicating whether the j-th concur-

rent cause can produce or not the event. Contextualizing to the medical problem under

study, ζ j = 1 (ζ j = 0) indicates that the j-th carcinogenic cell was (was not) activated or

non-destroyed (destroyed), and each activated carcinogenic cell can produce the metas-

tasis process. The (unobservable) total damaged D is defined as

D =

{
ζ1 + . . .+ ζM , if M > 0,

0 , if M = 0.

Note that D represents the total number of activated carcinogenic cells (among the M

initials) which are activated. It is immediate that D | M = m ∼ Bin(m, p) for m > 0 and

P(D = 0 | M = 0) = 1. Moreover, it is possible to show that D ∼ NB

(
φ, φθp

1+φθp

)
Ro-

drigues et al. (2011). Define Wj, j = 1, . . . ,D as the time to event for the j-th activated

cell produces the metastasis process. Assume that Wj, j = 1, . . . ,D, are conditionally

independent and identically distributed (i.i.d.) given D with common cumulative distri-

bution function F(·;λ) and survival function S(·;λ) = 1−F(·;λ). Further, assume that

W1,W2, . . . , are independent of D and M. As discussed in Cooner et al. (2007), cure rate

models with latent activation schemes assume that the failure time T ∗ is generated by the

activation times of D latent factors. Thus, D = 0 implies T ∗ = ∞ and then the individual

is considered cured. If D > 0 and it is assumed that R among the D cells are required

to produce the event of interest, so the failure time to event is defined by T ∗ = W(R),

where R depends (or not) on D and W(R) denotes the R-th order statistics corresponding

to W1, . . . ,WD.

Assume that the data can be censored to the right. Thus, the observed data can be

represented by T = min(T ∗,C) and δ = I(T ∗ ≤C), with T ∗ and C denoting failure and

censoring times, respectively, and I(·) the indicator function. Under this scheme and

following similar arguments in Cooner et al. (2007), we can write the joint distribution

of (T,δ,R,M,D) as

f (t,δ,r,m,d;θ,φ, p,λ) = f (t,δ | D = d,R = r,λ)P(R = r | D = d)×

×P(D = d | M = m; p)P(M = m,φ,θ), (2)

where D | M = m; p ∼ Bin(m, p), P(M = m;θ,φ) is given in (1) and
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f (t,δ | D = d,R = r,λ) =
{

I(d = 0)+ I(m ≥ d ≥ r ≥ 1)IB(S(t;λ),d− r+1,r)
}1−δ

×
{

d

(
d −1

r−1

)
f (t;λ)S(t;λ)d−rF(t;λ)r−1

}δ

(3)

with IB(z,a,b) denoting the incomplete beta function defined as IB(z,a,b)=
∫ z

0
ua−1(1−

u)b−1du. The population survival and density functions can be computed as

Spop(t;θ,φ, p,λ) = P(D = 0;θ,φ, p)+

∞∑

m=1

m∑

d=1

d∑

r=1

f (t,δ = 0,r,m,d;θ,φ, p,λ)

fpop(t;θ,φ, p,λ) =

∞∑

m=1

m∑

d=1

d∑

r=1

f (t,δ = 1,r,m,d;θ,φ, p,λ)

It is immediate that q0 = Spop(∞;θ,φ, p,λ) = (1+φθp)−1/φ, so that the cure rate does

not depend on the choice of the (conditional) distribution of R | D = d.

Moreover, to contour the identifiability problems in the sense of Li et al. (2001)

and Hanin and Huang (2014) and discussed in Rodrigues et al. (2011) in the context of

the destructive weighted Poisson cure rate models, it is necessary to introduce a set of

covariates z1i (of dimension r1) associated with the initial number of cells and z2i (of

dimension r2) related to the activation probabilities for non-destroyed cells by

logθi = z⊤1iβ1 and log

(
pi

1− pi

)
= z⊤2iβ2, i = 1, . . . ,n. (4)

In addition, z1 and z2 shall not simultaneously include intercepts nor share common

elements. Henceforth, in order to simplify the notation, define ψ = (β1,β2,φ,λ) as the

vector of parameters to be estimated. Three typically used activation schemes are the

random activation scheme (RA), first activation scheme (FA) and last activation scheme

(LA), for which the p.m.f. for the conditional distribution P(R = r | D = d) and the

population survival function for DNB are given in Table 1. Those models are denoted

by DNB-FA, DNB-LA and DNB-RA, respectively.

Table 1: Conditional distribution of R given D = d for three activation schemes with DNB.

Activation scheme P(R = r | D = d) Spop(t;ψ)

RA 1
d

I(1 ≤ r ≤ d) q0 +{1−q0}S(t;λ).

FA I(r = 1) {1+φθpF(t;λ)}−1/φ

LA I(r = d) 1+q0 −{1+φθpS(t;λ)}−1/φ
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Under the usual assumptions in survival analysis and right censoring (see Williams

and Lagarkos, 1977), the contribution to the (observed) log-likelihood by the i-th indi-

vidual is given by

f (ti,δi;ψ) = fpop(ti;ψ)
δiSpop(ti;ψ)

1−δi . (5)

Based on (2) and (5), the following propositions are now stated.

Proposition 1 For combinations DNB-FA and DNB-LA it follows that, given Dobs, the

conditional distribution of Ri degenerates in the distribution of Ri = 1 and Ri = Di re-

spectively. For the combination DNB-RA, that distribution is

P(Ri = ri | Dobs;ψ) =





∑ri−1

k=0 (
ri−1

k )(−1)k
E

[
S(ti;λ)

Di−ri+k+1

Di(Di−ri+k+1)
I(Di≥ri)

]

q0i+(1−q0i)S(ti;λ)
, if δi = 0

F(ti;λ)
ri−1

E

[
(Di−1

ri−1)S(ti;λ)
Di−ri I(Di≥ri)

]

1−q0i
, if δi = 1,

where Di ∼ NB

(
φ, φθi pi

1+φθi pi

)
, and ri = 1,2, . . ..

Proof of proposition 1 is presented in the Appendix A.

Proposition 2 For DNB in (2) and FA and LA schemes in Table 1, P(Di = di | Dobs;ψ),
i = 1, . . . ,n, have a closed form. Moreover, for the model DNB-FA,

Di − δi | Dobs;ψ ∼ NB

(
(φ−1 + δi)

−1,
φθi piS(ti;λ)

1+φθi pi

)
,

and for the DNB-LA

Di − δi | Dobs;ψ ∼





NB

(
(φ−1 +1)−1, φθi piF(ti;λ)

1+φθi pi

)
, if δi = 1,

aiNB

(
φ, φθi pi

1+φθi pi

)
+(1−ai)NB

(
φ, φθi piF(ti;λ)

1+φθi pi

)
, if δi = 0.

where ai = [1+q0i − (1+φθipiS(ti;λ))
−φ−1

]−1. For the DNB-RA combination, the con-

ditional distribution is
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P(Di = di | Dobs;ψ) =





∑di
ri=1

∑ri
k=0

(−1)k(ri−1
k ) S(ti;λ)

di−ri+k+1

di(di−ri+k+1)
Γ(φ−1+di)

Γ(φ−1)di!

(
φθi pi

1+φθi pi

)di

1+[(1−q0i)/q0i]S(ti;λ)
, if δi = 0

Γ(φ−1 +di)

Γ(φ−1)di!

(
φθi pi

1+φθi pi

)di

I(di ≥ 1) , if δi = 1,

Proposition 2 is proved in Appendix B.

Proposition 3 For DNB in (2) and FA and LA schemes in Table 1, P(Mi = mi | Dobs;ψ),

i = 1, . . . ,n, have a closed form. Moreover, for the DNB-FA combination, we have

Mi − δi;Dobs,ψ ∼ NB

(
(φ−1 + δi)

−1,
φθi(1− piF(ti;λ))

1+φθi

)
,

and for the DNB-LA,

Mi − δi | Dobs;ψ ∼





NB

(
(φ−1 +1)−1, φθi(1−piS(ti;λ))

1+φθi

)
, if δi = 1,

aiNB
(
φ, φθi

1+φθi

)
+(1−ai)NB

(
φ, φθi(1−piS(ti;λ))

1+φθi

)
, if δi = 0.

where ai = [1+q0i − (1+φθi piS(ti;λ))
−φ−1

]−1. For the DNB-RA and δi = 0 this condi-

tional distribution is

P(Mi = mi | Dobs,ψ) =

∑mi
di=0

∑di
ri=1

∑ri
k=0 vi

(
pi

1−pi

)di
(
φθi(1−pi)

1+φθi

)mi

1+[(1−q0i)/q0i]S(ti;λ)
,

where vi = (−1)k
(

ri−1
k

)
S(ti;λ)

di−ri+k+1

di(di−ri+k+1)
Γ(φ−1+mi)

Γ(φ−1)di!(mi−di)!
. On the other hand, for δi = 1 we

have that

P(Mi = mi | Dobs,ψ) =
[1− (1− pi)

mi ]Γ(φ−1+mi)

Γ(φ−1)mi!

(
φθi

1+φθi

)mi

(1+φθi)
−1/φI(mi ≥ 1)

1−q0i

,

Proof of proposition 3 is presented in Appendix C.

Propositions 1-3 are very useful because they allow predicting the initial number of

cells, the number of non-destroyed cells and the number of cells necessary to produce

the event of interest in each individual. Moreover, they are useful in implementing the

EM algorithm, to be discussed now.
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Note that the complete log-likelihood function is given by

ℓ(ψ | Dcomp) =
n∑

i=1

f (ti,δi,Ri,Mi,Di;ψ), (6)

with f (ti,δi,ri,mi,di;ψ) defined in (2). Specifically, for the DNB-FA the expression in

(6), unless to a constant, assumes the form

ℓ(ψ | Dcomp) =
n∑

i=1

[
(Di − δi) logS(ti;λ)+ δi log f (ti;λ)+Di log(pi)+Mi logθi

+(Mi−Di) log(1− pi)+(Mi−φ−1) log(1+φθi)

]
. (7)

From (7), it is simple to deduce that it is only necessary the expectations of Mi and Di

(given Dobs) to implement the E-step of the EM algorithm. Using Propositions 2 and 3,

these expectations are

E(Mi | Dobs;β1,β2,φ,λ) = δi +
(1+φδi)θi(1− piF(ti;λ))

1+φθi piF(ti;λ)
and (8)

E(Di | Dobs;β1,β2,φ,λ) = δi +
(1+φδi)θi piS(ti;λ)

1+φθi piF(ti;λ)
. (9)

On the other hand, the expression (6) for the DNB-LA assumes the form

ℓ(ψ | Dcomp) =

n∑

i=1

[
(1− δi) log

(
1− I(Di ≥ 1)F(ti;λ)

Di
)
+ δi

(
logDi + log f (ti;λ)

+(Di −1) logF(ti;λ)
)
+Di log pi +(Mi −Di) log(1− pi)

+Mi logθi +(Mi −φ−1) log(1+φθi)

]
. (10)

However, the expectation of log
(
1− I(Di ≥ 1)F(ti;λ)

Di
)

does not have a closed form,

hindering the application of the EM algorithm in this way. Finally, using a RA scheme

the log-likelihood function of the model is even more complex, making it difficult the

implementation of the EM algorithm in this form. For this reason, a second way is

proposed to perform the estimation procedure in those models.

Following Tsodikov et al. (2003) and Rodrigues et al. (2009), all cure rate models

can be expressed as a mixture model, i.e.,
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Spop(t;ψ) = q0 +(1−q0)S
∗(t;ψ), (11)

where S∗(t;ψ) represents the survival function for susceptible individuals and q0 is the

cure rate. Table 2 presents this function for the three activation schemes considered in

this work.

Table 2: Survival and hazard functions for susceptible individuals for the DNB mixture model

with three activation schemes.

Act. Scheme RA FA LA

S∗(t;ψ) S(t;λ)
(1+φθpF(t;λ))−1/φ−q0

1−q0

1− (1+φθpS(t;λ))−1/φ

1−q0

h∗(t;ψ) h(t;λ)
θp f (t;λ)(1+φθpF(t;λ))−1/φ−1

(1+φθpF(t;λ))−1/φ−q0

θp f (t;λ)(1+φθpS(t;λ))−1/φ−1

1− (1+φθpS(t;λ))−1/φ

Let Yi the binary variable that indicates whether the individual is susceptible or cured

(Yi = 1 and Yi = 0, respectively). Following Lu (2010), the complete log-likelihood func-

tion for this model is

ℓc(ψ) =
n∑

i=1

[
Yi log(1−q0i)+(1−Yi) logq0i +Yi logS∗(ti;ψ)+δiYi logh∗(ti;ψ)

]
, (12)

and the expected value for Yi given Dobs is

E(Yi | Dobs;ψ) = δi +(1− δi)
(1−q0i)S

∗(ti;ψ)

q0i +(1−q0i)S∗(ti;ψ)
. (13)

Equations (12) and (13) provides a second way to implement the EM algorithm in any

cure rate model, in particular, for the DNB with different activation schemes.

4. Estimation

In this Section it is discussed some inferential procedures for the parameters of the

DNB with the three activation schemes discussed in Section 3. Parameter estimation is

approached using the maximum likelihood method.

In Cancho et al. (2013), the estimation procedure was based on the direct maximiza-

tion of the observed likelihood function given by

ℓ(ψ | Dobs) =
n∑

i=1

[
logSpop(ti;ψ)+ δi loghpop(ti;ψ)

]
, (14)
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where Spop(·) and hpop(·) depend on the activation scheme used in Table 1. However,

maximization of (14) is not simple because it is a function that involves all parameters.

The EM algorithm Dempster et al. (1977) is a very popular maximization alternative

used to obtain the maximum likelihood estimators when the model has missing data. A

further discussion about the EM algorithm in comparison with the direct maximization

of the log-likelihood function is performed in MacDonald (2014). In the cure rate con-

text, we found many recent works using this algorithm. For instance, Balakrishnan and

Pal (2012, 2013, 2015) and Gallardo et al. (2016). Two different ways of applying this

algorithm in the model considered will be presented in next subsection.

4.1. EM algorithm: implementation 1

Consider initially only the combination DNB-FA, i.e., R = 1. Moreover, it is assumed

that φ is fixed. The first way to apply the EM algorithm in this model is to compute the

expected values for Mi and Di, i = 1, . . . ,n given Dobs and the parameters values in last

iteration, namely ψ(k−1). Those values are denoted by D̃
(k)
i and M̃

(k)
i , respectively, and

they can be computed using equations (8) and (9). Then, it is necessary to replace those

values in the complete log-likelihood function given in (7) and maximize it in relation

to ψ. The algorithm is summarized as follows.

• E-step: For i = 1, . . . ,n, compute

D̃
(k)
i = δi +

(1+φδi)θ
(k−1)
i p

(k−1)
i S(ti;λ

(k−1))

1+φθ
(k−1)
i p

(k−1)
i F(ti;λ(k−1))

and

M̃
(k)
i = δi +

(1+φδi)θ
(k−1)
i (1− p

(k−1)
i F(ti;λ

(k−1)))

1+φθ
(k−1)
i p

(k−1)
i F(ti;λ(k−1))

.

• M-step: Given D̃
(k)

= (D̃
(k)
1 , . . . ,D̃

(k)
n ) and M̃

(k)
= (M̃

(k)
1 , . . . ,M̃

(k)
n ), find β

(k)
1 , β

(k)
2

and λ(k) that maximize Q1(β1 |ψk), Q2(β2 |ψk) and Q3(λ |ψk) in relation to β1,β2

and λ, respectively, where

Q1(β1 | ψ(k)) =
n∑

i=1

{
M̃

(k)
i logθi − θi +

(
M̃

(k)
i −φ−1

)
log(1+φθi)

}
, (15)

Q2(β2 | ψ(k)) =
n∑

i=1

{
D̃

(k)
i log(pi)+

(
M̃

(k)
i − D̃

(k)
i

)
log(1− pi)

}
, (16)

Q3(λ | ψ(k)) =
n∑

i=1

{(
D̃

(k)
i − δi

)
logS(ti;λ)+ δi log f (ti;λ)

}
. (17)
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Then, define ψ(k) =
(
β
(k)
1 ,β

(k)
2 ,λ(k)

)
. The advantage of this approach is that func-

tions in (15), (16) and (17) can be maximized separately with respect to β1,β2 and λ, re-

spectively, instead of the joint maximization as occurs with the observed log-likelihood.

Steps M and E are repeated until a suitable convergence rule is satisfied. For instance,

||ψ(k)−ψ(k−1)|| < ǫ, where ||ψ(k)−ψ(k−1)|| represents the euclidian distance between

ψ(k) and ψ(k−1) and ǫ is a prefixed value. For instance, we use ǫ= 0.0001.

4.2. EM algorithm: implementation 2

For this approach, three activation schemes are considered in Table 1. As discussed in

Section 3, models DBN-FA, DBN-LA and DBN-RA can be expressed as the mixture

model with survival function for susceptible individuals given by S∗(· | ψ), according

to Table 2, and cure rate given by q0i = (1+φθi pi)
−1/φ that is common for the three

models.

Proceeding similarly as in the last procedure, the algorithm is summarized next.

• E-step: For i = 1, . . . ,n, compute

Ỹ
(k)

i = δi +(1− δi)
(1−q

(k−1)
0i )S∗ (ti;ψ(k−1)

)

q
(k−1)
0i +(1−q

(k−1)
0i )S∗ (ti;ψ(k−1)

) .

• M-step: Given Ỹ
(k)

= (Ỹ
(k)

1 , . . . ,Ỹ
(k)

n ), find ψ(k) that maximizes

Q(ψ) =
n∑

i=1

[
Ỹ
(k)

i log(1−q
(k)
0i )+(1− Ỹ

(k)
i ) logq

(k)
0i + Ỹ

(k)
i logS∗(ti;ψ

(k))

+ δiỸ
(k)
i logh∗(ti;ψ

(k))

]
.

Then, steps M and E are repeated until a suitable convergence rule is satisfied. The ad-

vantage of this approach in relation to directly maximizing the observed log-likelihood

in (14) is that the latent variables Yi are completely observed for individuals with failure

times because δi = 1 implies Yi = 1 (i.e., a failure time guarantees that the individual

is susceptible). This information is lost when an approach based on the observed log-

likelihood is used because the vector Y = (Y1, . . . ,Yn) is removed when summing over

{0,1}n. Consequently, implementing the M-step, for fixed β1 and β2, which consists in

maximizing the function Q(·) with respect to λ is easier than maximizing the observed

log-likelihood function in (14). Thus, it seems more advantageous to use the EM al-

gorithm over than a direct maximization of the observed log-likelihood function. Note



Diego I. Gallardo and Heleno Bolfarine 43

Table 3: Distributions used for modelling the survival function of the non-destroyed cells.

Distribution S(w;λ) f (w;λ)

Weibull exp(−eαwν) νwν−1 exp(α−eαwν)

LN 1−Φ

(
log(w)−α

ν

)
1
νwφ

(
log(w)−α

ν

)

Gamma 1− γ(α,νw)
Γ(α)

να

Γ(α)
wα−1e−νw

NOTE: φ(·) and Φ(·) represent the density and the cumulative function of standard

normal distribution. γ(·, ·) represents the lower incomplete gamma function.

that the EM procedures does not depend on a specific survival function considered for

non-destroyed cells. In this work, it is used the Weibull, log-normal (LN) and gamma

distributions with parametrizations in Table 3, where λ= (α,ν).
Henceforth, the distribution of S(· | λ) will be specified jointly with the activation

mechanism. For instance, DNB-FA/Weibull, DNB-LA/LN, DNB-RA/gamma, etc. Note

that the asymptotic variances for the MLEs could be estimated using the inverse of

the Hessian matrix (matrix of second derivatives of the log-likelihood function). The

observed information matrix is then obtained from the Hessian matrix evaluated in the

MLEs. The elements of the Hessian matrix are presented in the Appendix of Cancho et

al. (2013) with the Weibull model considered for the times of the non-destroyed cells.

Expressions relatives for the LN and gamma models will not be presented because they

are slight modifications for the Weibull model.

Remark 1

1. In the first version of the EM algorithm, it is assumed that φ is fixed. However, it

is possible to relax this assumption by constructing a profile log-likelihood for φ

and picking the value that maximize that function. On the other hand, the standard

error for the estimator of φ can be estimated via Jackknife (Miller, 1974).

2. To avoid maximization problems with the constraint 1+φθ> 0 (presented after eq.

(1)), we use the same approach used by Cancho et al. (2013) considering φ ≥ 0,

i.e., the over-dispersed case.

3. The maximization involved in the M-steps can be performed using software R (R

Development Core Team, 2015), among others. The computational programs used

in this work are available from the authors upon request.

4. Differently from the direct maximization of the log-likelihood function, the EM

algorithm allows to obtain predictions for the number of initial cells and activated

cells for each individual (Mi and Di, i = 1, . . . ,n, respectively) in the version 1 and

to the chance for cure for each individual (Yi, i = 1, . . . ,n), in the version 2.
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5. Simulation studies

In this Section, two simulation studies are presented. The first study assess the perfor-

mance of the two procedures through different elements as bias and coverage proba-

bilities. The second study is designed to evaluate whether the AIC and BIC (Akaike’s

and Bayesian information) criteria are able to correctly pick the distribution for the non-

destroyed cells, given the correct activation scheme.

5.1. Parameters recovery

For simulation purposes, the covariates z1 and z2 were drawn from the Bernoulli distri-

bution with success probability 0.5. As discussed in Section 3, both vectors should not

Table 4: Average of parameter estimates, standard errors (se), root of mean squared errors (
√

MSE) and

coverage probability of 95% (CP) using the way 2 of defining the EM algorithm for DNB-FA, DNB-LA and

DNB-RA models considering Weibull distribution for time-to-event of the non-destroyed cells. (CA denotes

censoring average with their respective standard errors).

DNB-FA

n = 200 n = 400

Parameter True average se
√

MSE CP average se
√

MSE CP

β1 1.0 1.021 0.287 0.240 0.943 1.008 0.202 0.165 0.943

β20 −0.5 −0.473 0.453 0.381 0.954 −0.484 0.304 0.259 0.947

β21 0.5 0.577 0.519 0.489 0.970 0.524 0.386 0.309 0.961

φ 1.0 1.078 0.254 0.227 0.935 1.042 0.152 0.134 0.941

α −1.3 −1.333 0.177 0.167 0.905 −1.317 0.124 0.114 0.914

ν 1.5 1.530 0.191 0.125 0.986 1.517 0.133 0.086 0.986

CA 0.636 0.039 0.612 0.024

DNB-LA

β1 1.0 1.040 0.288 0.307 0.914 1.022 0.222 0.207 0.940

β20 −0.5 −0.460 0.514 0.446 0.931 −0.496 0.307 0.295 0.947

β21 0.5 0.646 0.801 0.694 0.923 0.542 0.420 0.402 0.950

φ 1.0 1.081 0.267 0.239 0.937 1.032 0.131 0.129 0.943

α −1.3 −1.308 0.226 0.189 0.938 −1.305 0.158 0.132 0.942

ν 1.5 1.523 0.222 0.152 0.975 1.513 0.155 0.105 0.971

CA 0.660 0.034 0.659 0.024

DNB-RA

β1 1.0 1.025 0.302 0.274 0.916 1.010 0.212 0.191 0.920

β20 −0.5 −0.469 0.491 0.418 0.946 −0.485 0.315 0.276 0.937

β21 0.5 0.615 0.654 0.590 0.960 0.530 0.429 0.360 0.950

φ 1.0 1.064 0.297 0.276 0.939 1.037 0.142 0.131 0.945

α −1.3 −1.320 0.187 0.158 0.940 −1.313 0.132 0.111 0.939

ν 1.5 1.526 0.202 0.134 0.984 1.513 0.142 0.092 0.985

CA 0.632 0.034 0.632 0.024
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incorporate intercept at the same time. Thus, only z2 has an intercept term. It is chosen

β1 = 1,β20 = −0.5 and β21 = 0.5, implying cure rates 0.73, 0.67, 0.49 and 0.42 for

profiles (0,0), (0,1), (1,0) and (1,1) respectively. Parameters related to the time-to-

event for non-destroyed cells where chosen as α=−1.3,ν = 1.5 for the Weibull model,

α= 0.8,ν = 0.4 for the Log-Normal model and α= 3.5,ν = 1.5 for the gamma model.

Those parameters were used with FA, LA and RA schemes. We assume φ = 1 in all

cases.

For scheme FA, the two methods exposed in Section 4 were used with sample sizes

n = 200 and n = 400. For schemes LA and RA, the second method exposed in Section

4 was used with sample sizes n = 200 and n = 400. In each case, 10,000 replicates were

considered. Tables 4 shows part of the results for the simulations. We report the average

of the estimates obtained (average), the mean of the asymptotic standard errors (se), the

root of the mean squared error (
√

MSE) and the asymptotic coverage probability with

95% (CP). Main conclusions are that the two ways of implementing the EM algorithm

provide close results relation to average, se,
√

MSE and CP for the three activation

schemes. Results also reveals that the estimates are closer to the true values and
√

MSE

is decreased as n increases, suggesting that estimators are consistent. On the other hand,

the se is greater than
√

MSE, suggesting that the standard errors are overestimated.

Despite this, the CP are closer to the nominal value.

5.2. Misspecification of the distribution for the non-destroyed

concurrent cells

In the survival analysis literature, it is common to consider the Weibull distribution

as the survival model for the time-to-event for the non-destroyed cells because of its

appropriateness in many medical and biological contexts. However, to the best of our

knowledge, we were unable to trace studies on the effects on both susceptible and cured

parts of the model, of an incorrect specification of the survival function for the time-to-

event for the non-destroyed cells.

Bearing this in mind, a simulation study is conducted using the same specification

for parameters used in the last subsection. The three activation schemes mentioned in

Section 3 and the Weibull, LN and gamma distributions for the time-to-event for non-

destroyed cells were used. For each activation scheme/distribution combination, 10,000

samples were simulated and, for each sample, parameter estimates were computed (in-

cluding S(· | λ)). Then, the mean and MSE of the estimates were computed for each

parameter and for the cure rate. Additionally, the mean and MSE for the expected times

for the non-destroyed cells were also computed. Furthermore, the AIC and BIC criteria

were computed for the three distribution and which was the model choice based on those

criteria. Since they provide similar results, data on AIC was presented. Results for FA

scheme are shown in Table 5. It is expected that a wrong choice for S(· | λ) increases

the bias and the MSE for the expected activation time for non-destroyed cells. However,
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Table 5: Estimated bias and MSE for cure rate and expected values for the non-destroyed cells in DNB-FA

with different activation schemes.

Cure rate E(W )

True First Activation Scheme

n Distribution Distribution bias MSE bias MSE % AIC

200 Weibull Weibull 0.001 0.004 −0.049 0.129 0.912

Log-Normal 0.087 0.014 −7.909 195.7 0.080

Gamma 0.008 0.902 0.689 0.902 0.008

Log-Normal Weibull 0.005 0.004 0.337 0.138 0.025

Log-Normal 0.000 0.004 0.294 0.118 0.932

Gamma 0.294 0.004 −24.1 689.0 0.043

Gamma Weibull 0.000 0.004 2.974 8.886 0.083

Log-Normal 0.019 0.005 2.321 5.857 0.086

Gamma 0.001 0.004 −0.722 6.089 0.831

400 Weibull Weibull 0.002 0.002 −0.030 0.084 0.920

Log-Normal 0.094 0.012 −6.908 88.6 0.038

Gamma 0.008 0.002 0.782 0.787 0.042

Log-Normal Weibull 0.005 0.002 0.336 0.125 0.001

Log-Normal 0.000 0.002 0.301 0.106 0.923

Gamma 0.000 0.002 −22.5 549.7 0.075

Gamma Weibull 0.000 0.002 2.974 8.865 0.074

Log-Normal 0.019 0.002 2.363 5.754 0.074

Gamma 0.000 0.002 −0.313 2.371 0.852

the wrong choice also impacts on the cure rate estimates. Except for the gamma model,

the AIC and BIC criteria chose the correct model for more than 90% of generate sam-

ples, suggesting that those criteria are appropriate to this purpose. For other activation

schemes, similar results are obtained.

6. Application

In this section we analyze the cutaneous melanoma data set described in Section 2.

Models DNB-FA, DNB-LA and DNB-RA were fitted to the data, with the survival func-

tions from the Weibull, LN and gamma distributions used as survival functions for the

time-to-event for the non-destroyed cells. To avoid identifiability problems, the covari-

ates treatment, age, nodule and thickness were incorporated into the model through the

θ and p parameters. All possible combinations of covariates preserving identifiability

were considered and the combination that provided the least AIC and BIC criteria was
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Table 6: AIC/BIC criteria for E1690 data set using the DNB with different activation schemes.

Activation Scheme

S(· | λ) FA LA RA

Weibull 827.6/863.7 854.3/890.4 842.7/878.8

LN 834.6/870.7 851.8/888.0 842.0/878.1

gamma 828.0/864.1 854.5/890.6 841.8/877.9

selected, leading to the one assigning nodule and tumour thickness to θ and treatment

to p (see equation (4)). Given that all considered patients have cutaneous melanoma, it

is reasonable to assume that the nodule category is related to the number of initial cells

(most advance stage, more initial cells) and the same with tumour thickness (greater

tumour, more initial cells). On the other hand, treatment can be interpreted as an element

that determines the chance of such cells be activated (patients receiving the treatment

have reduced their probability of initial activation of the initial cells). Table 6 shows

the AIC and BIC vales for those combinations of covariates. Based on those criteria, the

DNB-FA/Weibull model was chosen as the one presenting the best fit. On the other hand,

it makes sense to use this activation scheme in a biological context, because just one cell

can trigger the metastasis process. The estimates for this model are presented in Table 7.

Table 7: Parameter estimates for the DNB-FA/Weibull model.

Parameter est se |est|/se

β1,nodule1 0.4690 0.4565 1.03

β1,nodule2 1.5143 0.3661 4.14

β1,nodule3 2.1539 0.4044 5.32

β1,nodule4 3.0702 0.4210 7.29

β1,thickness 0.0858 0.0473 1.81

β2,treatment −0.7965 0.4064 1.96

φ 3.1807 0.0785

α −1.3142 0.1977

ν 1.5372 0.0273

The estimated means of the initial number of cells are 1.60× 1.09thickness (nodule

1), 4.55×1.09thickness (nodule 2), 8.62×1.09thickness (nodule 3) and 21.55×1.09thickness

(nodule 4) and the probability of activation of those cells is 0.5 for patients in control

group and 0.31 for patients in the treatment group.

Finally Figure 3 shows the estimated mean of non-destroyed cells (D) for each pa-

tients stratified by control and treatment group. Note that the estimated means of D vary

on both group, agreeing with the fact that the treatment is effective. On the other hand,

it is possible to conclude that patients with nodule 4 have more estimated non-destroyed
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Figure 3: Predicted means of the conditional distributions for all patients under the DNB-FA/Weibull

model for the number of activated cells (D), stratified by nodule categories and belonging to the control

group (left panel) and to the treatment group (right panel), respectively.

cells. This is expected because patients in this stage of disease are more susceptible to

die faster than patients in others stages of disease.

7. Final discussion

In this paper, an alternative estimation procedure based on the EM algorithm is pro-

posed for the destructive Negative Binomial cure rate model introduced in Cancho et

al. (2013). Two different ways of implementing the algorithm are investigated. Simula-

tion studies indicate that those procedures work satisfactorily. It also investigated other

alternatives (besides the Weibull distribution) for the survival function for the time for

non-destroyed cells S(· | λ), and through the use of simulation studies evaluating the

performances of the AIC/BIC criteria to correctly choose the model that provides the

best fit to the data. Using simulation studies we assess the performances of the AIC/BIC

criteria to correctly choose the model that provides the best fit to the data. However, a

wrong choice for S(· | λ) can lead to incorrect estimates in both, the parameters related

to the cure rate and the ones related to the survival function of the time-to-event for non-

destroyed cells. Thus, precision loss is incurred if the wrong model is selected, that is,

one has to be careful when selecting the working model. For this reason, it will be pro-

posed non-parametric frameworks to estimate S(· | λ). Finally, the proposed approach

was illustrated using real data related to a clinical trial on Phase III cutaneous melanoma

patients.
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8. Appendix: Proofs of propositions

8.1. Appendix A: Proposition 1

For DNB-FA and DNB-LA the result is trivial. On the other hand, note it is possible to

show that the marginal distribution of Di | θi, pi,φ is NB(θi pi,φ). Thus, for the DNB-RA

we have that for r1 ∈ {1,2, . . . ,}

P(Ri = ri | Dobs,ψ) =

∑
∞

di=ri
f (ti,δi | Di = di,Ri = ri)

[(1−q0i) f (ti;λ)]δi [q0i +(1−q0i)S(ti;λ)]1−δi
,

where f (ti,δi |Di = di,Ri = ri) is defined in (3). For δi = 1, the expression takes the form

P(Ri = ri | Dobs,ψ) =
1

(1−q0i)

∞∑

di=ri

di

(
di −1

ri −1

)
S(ti;λ)

di−riF(ti;λ)
ri−1P(Di = di;θi, pi,φ)

=
F(ti;λ)

ri−1

(1−q0i)
E

[
Di

(
Di −1

ri −1

)
S(ti;λ)

Di−riI(Di ≥ ri)

]
.

For δi = 0,

P(Ri = ri | Dobs,ψ) =

∑
∞

di=ri
IB(S(ti;λ),di − ri +1,ri)P(Di = di;θi, pi,φ)

q0i +(1−q0i)S(ti;λ)
.

On the other hand, by using the binomial theorem, it can be shown that IB(S(ti;λ),di −
ri +1,ri) =

∑ri−1
k=0

(
ri−1

k

)
(−1)k S(ti;λ)

di−ri+k+1

di−ri+k+1
. In other words,

P(Ri = ri | Dobs,ψ) =

∑ri−1
k=0

(
ri−1

k

)
(−1)k

E

[
S(ti;λ)

Di−ri+k+1

Di−ri+k+1
I(Di ≥ ri)

]

q0i +(1−q0i)S(ti;λ)
.



50 Two alternative estimation procedures for the negative binomial cure rate model with...

8.2. Appendix B: proposition 2

Consider now the DNB-FA model (Ri = 1, i = 1, . . . ,n). Thus, by (2) and (5) the expres-

sion P(Di = di | Dobs,ψ) assumes the following form

P(Di = di | Dobs,ψ) =
S(ti;λ)

di−δi [di f (ti;λ)]
δi Γ(φ−1+di)

Γ(φ−1)di!

(
φθi pi

1+φθi pi

)di

(1+φθipi)
−φ−1

(θi pi f (ti;λ))δi (1+φθi piF(ti;λ))
−(φ−1+δi)

=
Γ((φ−1 + δi)+di− δi)

Γ(φ−1 + δi)(di − δi)!
θdi−δi

1i (1− θ1i)
(φ−1+δi) ,

i.e., Di−δi | Dobs | ψ ∼ NB
(
(φ−1 + δi)

−1,θ1i

)
, where θ1i =

φθi piS(ti;λ)
1+φθi pi

. For the DNB-LA,

Ri = Di, i = 1, . . . ,n and then

P(Di = di | Dobs,ψ) =

{
diF(ti;λ)

di−1 f (ti;λ)
}δi

{
1−F(ti;λ)

di
}1−δi

{
θi pi f (ti;λ)(1+φθi piS(ti;λ))

−(φ−1+1)
}δi

×

×
Γ(φ−1+di)

Γ(φ−1)di!

(
φθi pi

1+φθi pi

)di

(1+φθipi)
−φ−1

{
1+q0i − (1+φθi piS(ti;λ))

−φ−1
}1−δi

.

For δi = 1, this expression takes the form

P(Di = di | Dobs,ψ) =
Γ((φ−1 +1)+(di−1))

Γ(φ−1 +1)(di−1)!
θdi−1

2i (1− θ2i)
−(φ−1+1) ,

i.e., (Di − 1) | Dobs,ψ ∼ NB
(
(φ−1 +1)−1,θ2i

)
, where θ2i =

φθi piF(ti;λ)
1+φθi pi

. For δi = 0, this

expression is reduced to

P(Di = di | Dobs,ψ) = ai

Γ(φ−1 +di)

Γ(φ−1)di!

(
φθi pi

1+φθi pi

)di

(1+φθi pi)
−φ−1

+(1−ai)
Γ(φ−1 +di)

Γ(φ−1)di!
θdi

2i (1− θ2i)
φ−1

,

where ai = (1+q0i− (1+φθi piS(ti;λ))
−φ−1

)−1, i.e., Di | Dobs,ψ ∼ aiNB
(
φ, φθi pi

1+φθi pi

)
+

(1−ai)NB(φ,θ2i). Finally, for DNB-RA we have that
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P(Di = di | Dobs,ψ) =

∑di
ri=1

{
di

(
di−1
ri−1

)
f (ti;λ)S(ti;λ)

di−riF(ti;λ)
ri−1

}δi
1
di

[q0i f (ti;λ)]δi [q0i +(1−q0iS(ti;λ))]1−δi

×{IB(S(ti;λ),di − ri +1,ri)}1−δi

Γ(φ−1 +di)

Γ(φ−1)di!

(
φθi pi

1+φθi pi

)di

(1+φθipi)
−φ−1

.

For δi = 1, it is immediate that

P(Di = di | Dobs,ψ) =
Γ(φ−1 +di)

Γ(φ−1)di!

(
φθi pi

1+φθi pi

)di

I(di ≥ 1),

i.e., (Di −1) | Dobs,ψ ∼ NB(φ, φθi pi
1+φθi pi

). Finally, for δi = 0, using the binomial theorem,

the expression is reduced to

P(Di = di | Dobs,ψ) =

∑di
ri=1

∑ri
k=0(−1)k

(
ri−1

k

)
S(ti;λ)

di−ri+k+1

di(di−ri+k+1)
Γ(φ−1+di)

Γ(φ−1)di!

(
φθi pi

1+φθi pi

)di

1+[(1−q0i)/q0i]S(ti;λ)
.

8.3. Appendix C: proposition 3

Considering the DNB-FA model (Ri = 1, i = 1, . . . ,n), and by (2) and (5) the expression

P(Mi = mi | Dobs,ψ) assume the following form

P(Mi = mi | Dobs,ψ) =

∑mi

di=δi
S(ti;λ)

di−δi [di f (ti;λ)]
δi
(

mi
di

)
p

di
i (1− pi)

mi−di

(θi pi f (ti;λ))δi (1+φθi piF(ti;λ))
−(φ−1+δi)

×

× Γ(φ−1 +mi)

Γ(φ−1)mi!

(
φθi

1+φθi

)mi

(1+φθi)
−φ−1

=
Γ((φ−1 + δi)+mi− δi)

Γ(φ−1 + δi)(mi − δi)!
θmi−δi

3i (1− θ3i)
(φ−1+δi) ,

i.e., Mi−δi | Dobs |ψ ∼NB
(
(φ−1 + δi)

−1,θ3i

)
, where θ3i =

φθi(1−piF(ti;λ))
1+φθi

. For the DNB-

LA, Ri = Di, i = 1, . . . ,n and then
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P(Mi = mi | Dobs,ψ) =

mi∑

di=δi

[{
diF(ti;λ)

di−1 f (ti;λ)
}δi

{
1−F(ti;λ)

di
}1−δi

{
θi pi f (ti;λ)(1+φθi piS(ti;λ))

−(φ−1+1)
}δi

×

×
(

mi
di

)
p

di
i (1− pi)

mi−di Γ(φ−1+mi)

Γ(φ−1)mi!

(
φθi

1+φθi

)mi

(1+φθi)
−φ−1

{
1+q0i − (1+φθi piS(ti;λ))

−φ−1
}1−δi

]

For δi = 1, this expression is reduced to

P(Mi = mi | Dobs,ψ) =
Γ((φ−1 +1)+mi−1)

Γ(φ−1 +1)(mi−1)!
θmi−1

4i (1− θ4i)
(φ−1+1) ,

i.e., (Mi − 1) | Dobs,ψ ∼ NB
(
(φ−1 +1)−1,θ4i

)
, where θ4i =

φθi(1−piS(ti;λ))
1+φθi

. For δi = 0,

this expression takes the form

P(Mi = mi | Dobs,ψ) = ai

Γ(φ−1 +mi)

Γ(φ−1)mi!

(
φθi

1+φθi

)mi

(1+φθi)
−φ−1

+(1−ai)
Γ(φ−1 +mi)

Γ(φ−1)mi!
θmi

4i (1− θ4i)
φ−1

,

where ai = (1+ q0i − (1+φθipiS(ti;λ))
−φ−1

)−1, i.e., Mi | Dobs,ψ ∼ aiNB

(
φ, φθi

1+φθi

)
+

(1−ai)NB(φ,θ4i). Finally, for DNB-RA we have that

P(Mi = mi | Dobs,ψ) =

∑mi

di=δi

∑di
ri=1

{
di

(
di−1
ri−1

)
f (ti;λ)S(ti;λ)

di−riF(ti;λ)
ri−1

}δi × 1
di

[q0i f (ti;λ)]δi [q0i +(1−q0iS(ti;λ))]1−δi

×{IB(S(ti;λ),di − ri +1,ri)}1−δi ×

×
(

mi

di

)
p

di
i (1− pi)

mi−di
Γ(φ−1 +mi)

Γ(φ−1)mi!

(
φθi

1+φθi

)mi

(1+φθi)
−φ−1

.

For δi = 1, the expression is reduced to

P(Mi = mi | Dobs,ψ) = [1− (1− pi)
mi ]

Γ(φ−1 +mi)

Γ(φ−1)mi!

(
φθi

1+φθi

)mi

I(mi ≥ 1).
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Finally, for δi = 0,

P(Mi = mi | Dobs,ψ) =

∑mi
di=0

∑di
ri=1

∑ri
k=0 vi

(
pi

1−pi

)di
(
φθi(1−pi)

1+φθi

)mi

1+[(1−q0i)/q0i]S(ti;λ)
.
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