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A test for normality based on the empirical
distribution function

Hamzeh Torabi!, Narges H. Montazeri! and Aurea Grané?

Abstract

In this paper, a goodness-of-fit test for normality based on the comparison of the theoretical and
empirical distributions is proposed. Critical values are obtained via Monte Carlo for several sample
sizes and different significance levels. We study and compare the power of forty selected normality
tests for a wide collection of alternative distributions. The new proposal is compared to some tradi-
tional test statistics, such as Kolmogorov-Smirnov, Kuiper, Cramér-von Mises, Anderson-Darling,
Pearson Chi-square, Shapiro-Wilk, Shapiro-Francia, Jarque-Bera, SJ, Robust Jarque-Bera, and
also to entropy-based test statistics. From the simulation study results it is concluded that the best
performance against asymmetric alternatives with support on the whole real line and alternative
distributions with support on the positive real line is achieved by the new test. Other findings de-
rived from the simulation study are that SJ and Robust Jarque-Bera tests are the most powerful
ones for symmetric alternatives with support on the whole real line, whereas entropy-based tests
are preferable for alternatives with support on the unit interval.
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1. Introduction

Let Xi,...,X, be a n independent an identically distributed (iid) random variables with
continuous cumulative distribution function (cdf) F(.) and probability density function
(pdf) f(.). All along the paper, we will denote the order statistic by (X1, ..., X))
Based on the observed sample x,...,x,, we are interested in the following goodness-
of-fit test for a location-scale family:
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{H()ZFE? (1)

H12F¢ﬁ

where .7 = {Fy(:0) =Fy (2) |6 =(p,0) €@}, @ =R x (0,0) and y and o are
unspecified. The family . is called location-scale family, where Fy(.) is the standard
case for Fy(.;0) for 8 = (0,1). Suppose that fo(x;0) = 1 fo (£) is the corresponding
pdf of Fy(x;0).

The goodness-of-fit test problem for location-scale family described in (1) has been
discussed by many authors. For instance, Zhao and Xu (2014) considered a random
distance between the sample order statistic and the quasi sample order statistic derived
from the null distribution as a measure of discrepancy. On the other hand, Alizadeh
and Arghami (2012) used a test based on the minimum Kullback-Leibler distance. The
Kullback-Leibler divergence measure is a special case of a ¢-divergence measure (2)
for ¢(x) = xlog(x) —x+1 (see p. 5 of Pardo, 2006 for details). Also ¢-divergence is a
special case of the ¢-disparity measure. The ¢-disparity measure between two pdf’s fj
and f is defined by

fo(x;0)
Dths) = [0 (250) ) an @
where ¢ : (0,00) — [0,00) is assumed to be continuous, decreasing on (0, 1) and increas-
ing on (1,00), with ¢(1) = 0 (see p. 29 of Pardo, 2006 for details). In ¢-divergence, ¢ is
a convex function.

Inspired by this idea, in this paper we propose a goodness-of-fit statistic to test (1) by
considering a new proximity measure between two continuous cdf’s. The organization
of the paper is as follows. In Section 2 we define the new measure H,, and study its prop-
erties as a goodness-of-fit statistic. In Section 3 we propose a normality test based on
H,, and find its critical values for several sample sizes and different significance levels.
In Section 4 we review forty normality tests, including the most traditional ones such as
Kolmogorov-Smirnov, Cramér-von Mises, Anderson-Darling, Shapiro-Wilk, Shapiro-
Francia, Pearson Chi-square, among others, and in Section 5 we compare their perfor-
mances to that of our proposal through a wide set of alternative distributions. We also
provide an application example where the Kolmogorov-Smirnov test fails to detect the
non normality of the sample.

2. A new discrepancy measure

In this section we define a discrepancy measure between two continuous cdf’s and study
its properties as a goodness-of-fit statistic.
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Definition 2.1 Let X and Y be two absolutely continuous random variables with cdf’s
Fy and F, respectively. We define

D F) = [ (LB gy [ (LRGSO

—o0

where Eg|.] is the expectation under F and h : (0,00) — R™ is assumed to be continuous,

decreasing on (0, 1) and increasing on (1,e0) with an absolute minimum at x = 1 such
that h(1) =

Lemma 2.2 D(Fy,F) > 0 and equality holds if and only if Fy = F, almost everywhere.

Proof. Using the non-negativity of function &, we have D(Fy, F) > 0. It is clear that Fy =
F implies D(Fy,F) = 0. Conversely, if D(Fy,F) = 0, since & has an absolute minimum
atx=1,then F, =F. n

Let us return to the goodness-of-fit test problem for a location-scale family described
in (1). Firstly, we estimate 1 and o by their maximum likelihood estimators (MLEs), i.e.,
i and &, respectively, and we take z; = (x; — 1) /8, i = 1,...,n. Note that in this family,
Fy(xi5f1,6) = Fp (z;). Secondly, consider the empirical distribution function (EDF) based
on data x;, that is

1 n
=D <,
j=1

where 14 denotes the indicator of an event A. Then, our proposal is based on the ratio
of the standard cdf under Hy and the EDF based on the x;’s. Using (3) with F = F,,
D(Fy, F,) can be written as

oo

H, :=D(F,F,) = /h (%) dF,(x)

—o0

n

1)
_‘i <1sz/n >

Under Hy, we expect that Fy(t;i,6) ~ F,(t), for every t € R and 1+ Fy(¢; {2,

)~
1 + F,(t). Note that, since i(1) = 0, we expect that h((1+ Fy(r)) /(14 F,(t))) a

&
0 and
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thus H,, will take values close to zero when Hy is true. Therefore, it seems justifiable
that Hy must be rejected for large values of H,,. Some standard choices for & are: h(x) =
(x—1)2/(x+ 1) xlog(x) —x+1,(x — 1)log(x), |x — 1] or (x — 1)? (for more examples,
see p. 6 of Pardo, 2006 for details).

Proposition 2.3 The support of H, is [0,max(h(1/2),h(2))].
Proof. Since Fy(.) and F, are cdf’s and take values in [0, 1], we have that

< 1+ F(y)

1/2< 1+ F,(y)

<2, yeR
Thus

0<h (%}?g;) < max(h(1/2),h(2))

Finally, since H, is the mean of 4(.) over the transformed data, the result is obtained. m

Proposition 2.4 The test statistic based on H,, is invariant under location-scale trans-
formations.

Proof. The location-scale family is invariant under the location-scale transformations of
the form g ,(Xi,...,X,) = (rXi +c,...,rX, +¢), c € R, r > 0, which induces similar
transformations on ®: g, .(8) = (rpi+c,ro) (See Shao, 2003). The estimator T (X1, . .., X;,)
for 4 is location-scale invariant if

T(rXi+c,....rX,+c)=rTh(Xy,...,X,) +¢, Vr>0,c€R,
and the estimator 7;(Xy,...,X,) for o is location-scale invariant if
Ti(rXi+c,...,rX,+¢)=rTi(X1,...,X,), Vr>0,ceR.
We know that MLE of i and o are location-scale invariant for p and o, respectively.

Therefore under Hy, the distribution of Z; = (X; — f1) /6 does not depend on p and o.
If G, is the EDF based on data z;, then

n

1o 1
Gn(zi) = Z ZI[ZJ'SZ,‘] = Z ZI[XJSM = Fn(xi)>
=1

j=1
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therefore

1< 1+F0(X(l~);ﬂ,5')> | — < 1+F0(Z(1))>
Hn = — h _— = - h o~ 7/ N .
n ; < 1+ F,(x(;)) n 12_1: 1+Gu(zp)

Since the statistic H,, is a function of z;, i = 1,...,n, is location-scale invariant. As a
consequence, the null distribution of H,, does not depend on the parameters ;o and 0. =

Proposition 2.5 Let F| be an arbitrary continuous cdf in H,. Then under the assumption
that the observed sample have cdf Fy, the test based on H,, is consistent.

Proof. Based on Glivenko-Cantelli theorem, for n large enough, we have that F,(x) ~
Fi(x), for all x € R. Also /i and & are MLEs of x and o, respectively, and hence are
consistent. Therefore

| — 1+ Fy(x(): f1,6) 1 & 1+ Fy(xi; f1,6)
H=-) h| ——2" 2 =-) p| —20~
nz< 1+Fn( ) nz 1+ F,(x;)

i=1 i=1

i=1

1+ Fy(X
HEFI h M :;D(FO’FI)’asnﬁoo,
1+F(X)

where Ep, [.] is the expectation under F7, and p and o are, respectively, the expectation
and variance of Fj. Note that the convergence holds by the law of large numbers and
D(Fy, Fy) is a divergence between Fj and Fj. So the test based on H,, is consistent. =

3. A normality test based on H,,

Many statistical procedures are based on the assumption that the observed data are nor-
mally distributed. Consequently, a variety of tests have been developed to check the
validity of this assumption. In this section, we propose a new normality test based on
H,.

Consider again the goodness of-fit testing problem described in (1), where now
folxsp,0) =1/V2mc2e= 1) /20 x € R, in which i € Rand o > 0 are both unknown,
and Fy(.; u,0) is the corresponding cdf, where Fy(.) is the standard case for Fy(.;0,1).

First we estimate u and a by their maximum likelihood estimators (MLEs), i.e., fi =
F=1/nd> 1 xiand 62 =5>=1/(n—1)>", (x; — X)?, respectively. Let z; = (x; — X) /s,
i=1,...,n. Then, the test statistic for normality is:
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1~ [ 1+ Fy(x),%,s) 1<~ (14 Folzp)
Hl’l:_ h e E——— = — h N7 , 4
”2—1: < 1+ Fy(x) n; 1+i/n X

where

W) = (i;)z 5)

Note that 4 : (0,00) — R is decreasing on (0, 1) and increasing on (1,c0) with an ab-
solute minimum at x = 1 such that 4(1) = 0 (see Figure 1). We selected this function
h, because based on simulation study, it is more powerful than other functions /. For
example, we considered &, (x) := xlog(x) — x + 1 for comparison with A;(x) := (%)2
(see Tables 6 and 7).

Corollary 3.1 The support of H, is [0,0.11].
Proof. From Proposition 2.3 and Figure 1, max(h(1/2),h(2))=0.11. [

Table 1 contains the upper critical values of H,,, which have obtained by Monte Carlo

from 100000 simulated samples for different sample sizes n and significance levels
o =0.01,0.05,0.1.

“ _ h(X)_(X—1)2 !

= h T (x+1)2 ,

0.4

\ - = h(x)=xlog(x) —x+1 !

0.3

0.2

0.1

0.0
L

Figure 1: Plot of function h.



Hamzeh Torabi, Narges H. Montazeri and Aurea Grané 61

Table 1: Critical values of Hy, for = 0.01,0.05,0.1.

n 5 6 7 8 9 10 15 20 25 30 40 50
o

0.01 .0039 .0035 .0030 .0026 .0023 .0021 .0014 .0011 .0008 .0007 .0005 .0004
0.05 .0030 .0026 .0022 .0019 .0017 .0016 .0010 .0007 .0006 .0005 .0004 .0003
0.10 .0026 .0022 .0019 .0016 .0015 .0013 .0009 .0006 .0005 .0004 .0003 .0002

Remember that, H,, is expected to take values close to zero when Hj, is true. Hence,
Hy will be rejected for large values of H,,. Also H,, is invariant under location-scale
transformations and consistent under the assumption H,, respectively, from Propositions
2.4 and 2.5.

4. Normality tests under evaluation

Comparison of the normality tests has received attention in the literature The goodness-
of-fit tests have been discussed by many authors including Shapiro et al. (1968), Poitras
(2006), Yazici and Yolacan (2007), Krauczi (2009), Romao et al. (2010), Yap and Sim
(2010) and Alizadeh and Arghami (2011).

In this section we consider a large number (forty) of recent and classical statistics that
have been used to test normality and in Section 5 we compare their performances with
that of H,,. In the following we prefer to keep the original notation for each statistic. Con-
cerning the notation, let xy,xy, . .. ,x, be a random sample of size n and x(1),X(2), - - -, X(n)
the corresponding order statistic. Also consider the sample mean, variance, skewness
and kurtosis, defined by

= 1 ¢ 2 1 -2 ms3 oy
XZZ;XI', § :—Z(xi*x), vbIZW, by =

respectively, where the j-th central moment m; is given by m; = %Z" | (xi — %)/ and
finally consider z(;y = (x(;) —X)/s,fori=1,...,n.

1. Vasicek’s entropy estimator (Vasicek, 1976):

where

1
HV, = = S {5 (X —Xm) | ©®)
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m < n/2 is a positive integer and X;) = X(y) if i < 1 and X;) = X, if i > n. Hy is
rejected for small values of KL. Vasicek (1976) showed that the maximum power
for KL was typically attained by choosing m = 2 for n = 10, m = 3 for n = 20 and
m = 4 for n = 50. The lower-tail 5%-significance values of KL for n = 10,20 and
50 are 2.15, 2.77 and 3.34, respectively.

. Ebrahimi’s entropy estimator (Ebrahimi, Pflughoeft and Soofi, 1994):

TE, — exp {HEmn}’
S
where
1 & n
HE,, = n zljln c,_m (X(H—m) _X(i—m)) ) (7

and ¢; = (14 )11 (D) + 20 g 1,y (i) + (1 + 2511, (i). Ebrahimi et al.
(1994) proved the linear relationship between their estimator and (6). Thus for
fixed values of n and m, the tests based on (6) and (7) have the same power.

. Nonparametric distribution function of Vasicek’s estimator:

TV, = log /2762 +0.5 — HV,,
where HV,,, was defined in (6), 62 = Var,, (X), and

0 x<£1 Orx>£n+1a
g&v(x) = . _
l m E<x<&p i=1,...,n,
where §; = (x(l-,m) +-- +X(,~+m,1)) /2m. Hy is rejected for large values of TV,
(See Park, 2003).

. Nonparametric distribution function of Ebrahimi estimator:

TE,,, =log /2762 + 0.5 —HE,,,,

where HE,,,, was defined in (7), 67 = Var,, (X) and

0 x<mp or X> Nyt
ge(x) =

1 .
aro M<X < i=1,.0m,
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with

St — ﬁ D ki (X (merk) — X (1)) 1<i<m,
= ﬁ(x(i—m)+"'+x(i+m—1)) m+1<i<n—-m+]1,
it T T Dokenmin () = Xm—1)) n—m+2<i<n+1,

and & = (X(j_m) + -+ X(ixm—1)) /2m. Hy is rejected for large values of TE,,. (See
Park, 2003).

5. Nonparametric distribution function of Alizadeh and Arghami estimator (Alizadeh Noughabi
and Arghami, 2010, 2013):

TAyy = log /2762 +0.5 — HA

where

1 & n
HA,,, = E ;m{a,—m (X(i+m) *X(ifm)) } )

with @; = Iy ) (i) + 2Lps 1) (0) + X1, (i), 62 = Varg, (X) and

0 X <M Or X > Mutd,
8alx) = 1 p <mu i=1
Wy <X SN t=1,..n,
with
§1n+l - %ka:i(x(m-q-k) —X(l)) 1<i< m,
M= 2w e ) ml<i<n—m+l,

Snmy1 T % Z;{:n—m+2('x(ﬂ) *x(kfmfl)) n—m+2<i<n+l,
and & = (X(j_m) + -+ X(izm—1)) /2m. Also m = [\/n+ 1]. H is rejected for large
values of TA,,,. The upper-tail 5%-significance values of TA for n = 10,20 and 50
are 0.4422, 0.2805 and 0.1805, respectively.

6. Dimitriev and Tarasenko’s entropy estimator (Dimitriev and Tarasenko, 1973):
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where

HD,, — — / In(f(x))f(x) dox,

where f(x) is the kernel density estimation of f(x) given by

n

. 1 Xi—X;
f(x) = n—hz;k (Tf> (8)
=

where k is a kernel function satisfying [~_k(x) dx = 1 and h is a bandwidth. The
kernel function k being the standard normal density function and the bandwidth
h=1.066n""75. H) is rejected for small values of TD,y,,.

. Corea’s entropy estimator (Corea, 1995):

TC, — exp {HCm,,},
s

where

_ 15 S (X —Xa) (G—1)
HCmn — *Z ;ln{

i+m > 2
n> o (X —Xw)

and X;) = Sk X(j)/(2m+1). Hy is rejected for small values of TC,,,.

Jj=i—m

. Van Es’s entropy estimator (Van Es, 1992):

exp {HEs,, }
s )

TEsy, =

HEs,,, = T —m Z {111 < " (X(i+m) _X(i))> } + Z A +In(m) —In(n+1).

i=1 k=m

H, is rejected for small values of TEs,,,,,.

9. Zamanzade and Arghami’s entropy estimator (Zamanzade and Arghami, 2012):

71, — exp{HZ1,,,} ’
s
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where HZ1,,, = 1 3" In(b;), with

i=1

X(ivm) — X(i—m)

b =
! ky(i)—1, 2 2
ijz(k)l(,-)(f(x(jﬂ))+f(X(j)))(X(j+1)*X(j))/z

(©))

where f is defined as in (8) with the kernel function k being the standard normal
density function and the bandwidth 4 = 1.066n~"/>. Hy is rejected for small values
of TZ1. For n = 10,20 and 50, the lower-tail 5%-significance critical values are
3.403, 3.648 and 3.867.

10. Zamanzade and Arghami’s entropy estimator (Zamanzade and Arghami, 2012):

11.

172, — exp{HZ2,,,} ’
S

where HZ2,,, = >""_, w;In(b;), being coefficients b;’s were defined in (9) and

(m4+i—1)/3_ wi 1<i<m,
wi=13 2m/> " wi m+1<i<n—-m, i=1,...,n,
(n—i+m)/> 7 wi n—m+1<i<n,
are weights proportional to the number of points used in computation of b;’s. Hy

is rejected for small values of TZ2. For n = 10,20 and 50, the lower-tail 5%-
significance critical values are 3.321, 3.520 and 3.721.

Zhang and Wu’s statistics (Zhang and Wu, 2005):

Zg = max [(iO.S)ln

1<i<n

i—0.5 n—i+0.5
— " t(n— i+0.5)ln—] :
nky(Z ;) n(1—Fo(Za))

RN (1/Fo(Z)) — 1) ?
Ze=), (log (7=05)/(i—075) = 1) :

i=1

and

- IOgF()(Z(i)) log(l - F()(Z(i))
Zn=—
A Z<ni+o.5+ i—0.5 ’

i=

The null hypothesis Hy is rejected for large values of the three test statistics.
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Classical test statistics for normality based skewness and kurtosis from D’ Agostino
and Pearson (D’ Agostino and Pearson, 1973):

T ns N niy
= (m)3/2” =

The null hypothesis Hy is rejected for both small and large values of the two test
statistics.

Transformed skewness and kurtosis statistic from D’ Agostino et al. (1990):

2

K2 = |Z(V/bn)| + [2(62)

where
Z(x/by) = log(Y/c —i—los/g((}v’v/)c)z—i- 1)’
(o2 s 12/ 24
z<b2>—[<1 9A> \/1+y TA@‘\E,
where

c1=64+8/c2(2/cr+1/1 +4/C%),

ey = (6(n* —5n+2)/(n+7)(n+9))\/6(n+3)(n+5)/n(n—2)(n—3),

c3=(by—3(n— 1)/(n+1))/\/24n(n72)(n73)/(n+1)2(n+3)(n+5).
and

3(n*+27n—170)(n+1)(n+3) o 2
(n=2)(n+5)(n+7)(n+9) ° (w2—1)

fr=

Transformed skewness Z(+/b;) and transformed kurtosis Z(b,) is obtained by
D’ Agostino (1970) and Anscombe and Glynn (1983), respectively. The null hy-
pothesis Hy is rejected for large values of K2.
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14. Transformed skewness and kurtosis statistic by Doornik and Hansen (1994):

pH = [2(v5)| +23

¢ 1/3 1
= e —1 e
“ [<2a> +9a

where

V9,

and
&= (by—1—Dby)2k,

(n+5)(n+7)(n*+37n> + 11n — 313)

T RGN 5n—4)

. (n+5)(n+7) ((n—2)(n*+27n—70) + by (n —7)(n* +2n —5))

6(n—3)(n+1)(n>+15n—4)

Transformed kurtosis z, is obtained by Shenton and Bowman (1977). The null
hypothesis Hy is rejected for large values of DH.

15. Bonett and Seier’s statistic (Bonett and Seier, 2002):

Vn+2(w—3)

Zy = )
3.54

where w = 13.29 (ln /my —log (n*' S —X|) ) H, is rejected for both small
and large values of Z,,.
16. D’ Agostino’s statistic (D’ Agostino, 1971):
D— > it (i—(n+1)/2)X;
" N2
”2\/21':1 (x) —X)

Y

Hy is rejected for both small and large values of D.
17. Chen and Shapiro’s statistic (Chen and Shapiro, 1995):

n—1
QH= ! T Xii+n = X
(n—1)s &= M1y — M)’

i=1
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19.

20.
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where M; = @~ !((i —0.375)/(n+0.25)), where @ is the cdf of a standard normal
random variable. Hj is rejected for small values of QH.

Filliben’s statistic (Filliben, 1975):

2 i1 XM
> it M(zi) (n—1)s

where M(i) = CI>_1 (m(l-)) and m) = 1 *0.51/", mp) = 0.51/" and mgy = (i—0.3175)/(n+

0.365) for i =2,...,n— 1. Hy is rejected for small values of r.

del Barrio et al.’s statistic (del Barrio et al., 1999):

Xo [ FNe) d ’

D1 Xy f(k o (1) dt

R,=1— ,
ny

where m;, is the sample standardized second moment. Hy is rejected for large val-
ues of R,,.

Epps and Pulley statistic (Epps and Pulley, 1983):

(X; —Xk) (X;—X)?
= e oo )—zexp< =),
where m;, is the sample standardized second moment. Hy is rejected for large val-

ues of Tgp.

Martinez and Iglewicz’s statistic (Martinez and Iglewicz, 1981):

Z?:] (Xi—M)2

In = )
(n—1)S;

where M is is the sample median and

@ nY iz (Xi—M)*(1-2Z3)*
2

(S -200-52))"

with Z; = (X; — M) /(9A) for |Z;| < 1 and Z; = 0 otherwise, and A is the median of
|X; — M|. Hy is rejected for large values of L.
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22. deWet and Venter statistic (de Wet and Venter, 1972):
n i 2
E, = Xy —X—s®' [ — 2,
2_1:< e <n+1>> /S
H is rejected for large values of E,,.

23. Optimal test (Csorgo and Révész, 1971):

M”:,ijx(”_x_@] <ni1>>2¢<®l <nil>> {q)l <ni1>]H'

H, is rejected for large values of M,,.

24. Pettitt statistic (Pettitt, 1977):

Q”:zn:<¢ <X(i)sx> _nj-1>2 [(b (q)l <ni1>>]2'

i=1

H, is rejected for large values of Q.

25. Three test statistics from LaRiccia (1986):
22 22 _
Tin =Ci,/(s"Bin), Ton =G5,/ (s°Bay), T3n = Tin+ Ton,

where

1 & i i
Cop = — 1% —Ap, @ ! X,
> \/ﬁzl:[ 2<n+1> 2 <n+1>} ®

i=

Also W (u) = [® 1 (u)]? — 1 and W5 (u) = [@ ! (u)]> — 3~ (u). The constants A,,,
Asy, By, and By, are given in Table 1 from LaRiccia (1986). For all three statistics
H, is rejected for large value.

26. Kolmogorov-Smirnov’s (Lilliefors) statistic (Kolmogorov, 1933):

KS = max{ max [1 —FO(Z(J-))] , max [Fo(z(j)) - 1] } :

I<j<n | n 1<j<n n
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28.

29.

30.
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Lilliefors (1967) computed estimated critical points for the Kolmogorov-Smirnov’s
test statistic for testing normality when mean and variance estimated.

Kuiper’s statistic (Kuiper, 1962):

1<j<n 1<j<n n

. i1
V = max [% _FO(Z(j)):| + max [FO(Z(J')) -1 ] :

Louter and Kort (1970) computed estimated critical points for the Kuiper test
statistic for testing normality when mean and variance estimated.

Cramér-von Mises’ statistic (Cramér, 1928 and von Mises, 1931):

W2 = ! +zn: Fo(Z ) 2j—1Y?
" 12n = =) on )

Watson’s statistic (Watson, 1961):

Anderson-Darling’s statistic (Anderson, 1954):
1 n
Al=—n— p > (2i—1) (log(Fo(Zy)) +1log (1= Fo(Zju-i11)))) -
i=1

These classical tests are based on the empirical distribution function and Hj is
rejected for large values of KS, V, W2, U? and A2.

Pearson’s chi-square statistic (D’ Agostino and Stephens, 1986):
P=> (Ci—E)*/E,
i

where C; is the number of counted and E; is the number of expected observations
(under Hp) in class i. The classes are build is such a way that they are equiprobable
under the null hypothesis of normality. The number of classes used for the test is
[2n?/°] where [.] is ceiling function.
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32. Shapiro-Wilk’s statistic (Shapiro and Wilk, 1965):

(Z, 1 A(n—i+1) (X(nfi+1)*X(i))>2

SW = - — ,
Zi:] (X(i) _X)

where coefficients g;’s are given by

m'v—1
(ala"'aan) = (mTV_lv_lm)l/za (10)
and m’ = (my,...,m,) and V are, respectively, the vector of expected values and

the covariance matrix of the order statistic of # iid random variables sampled from
the standard normal distribution. H is rejected for small values of SW.

33. Shapiro-Francia’s statistic (Shapiro and Francia, 1972) is a modification of SW. It
is defined as

(Z?:l biX(i))2

SF= ==l 0/
>im (X —X)?
where
T
m
(bl,...,bn) — W

and m is defined as in (10). Hy is rejected for small values of SF.

34. SJ statistic discussed in Gel, Miao and Gastwirth (2007). It is based on the ratio
of the classical standard deviation & and the robust standard deviation J,, (average
absolute deviation from the median (MAAD)) of the sample data

N

SI=— 11
7 (1)

where J, = \/g % % |Xi — M| and M is the sample median. Hy is rejected for
large values of SJ.

35. Jarque-Bera’s statistic (Jarque and Bera, 1980, 1987):

JB Z—b1+2

by—-3
6 2 )’

4(
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36.
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where /b and b, are the sample skewness and sample kurtosis, respectively. H,
is rejected for large values of JB.

Robust Jarque-Bera’s statistic (Gel and Gastwirth, 2008):

2 2
n [ ms n [ my
RIB= — | — — | —=-3
Ci <Jff> G <Jﬁ ) ’
where J,, is defined as in (11), C; and C; are positive constants. For a 5%-significance

level, C; = 6 and C, = 64 according to Monte Carlo simulations. H is rejected for
large values of RJB.

5. Simulation study

In this section we study the power of the normality test based on H;, and compare it
with a large number of recent and classical normality tests. To facilitate comparisons of
the power of the present test with the powers of the mentioned tests, we select two sets
of alternative distributions:

Set 1. Alternatives listed in in Esteban et al. (2001).
Set 2. Alternatives listed in Gan and Koehler (1990) and Krauczi (2009).

Set 1 of alternative distributions

Following Esteban et al. (2001) we consider the following alternative distributions, that
can be classified in four groups:

Group I: Symmetric distributions with support on (—eo,o0):

Standard Normal (N);

Student’s ¢ (t) with 1 and 3 degrees of freedoms;

Double Exponential (DE) with parameters p = 0 (location) and o = 1 (scale);
Logistic (L) with parameters 1 = 0 (location) and o = 1 (scale);

Group II: Asymmetric distributions with support on (—oo,c0):

e Gumbel (Gu) with parameters oo = 0 (location) and 3 = 1 (scale);
e Skew Normal (SN) with with parameters ;1 = 0 (location), o = 1 (scale) and
a =2 (shape);



Hamzeh Torabi, Narges H. Montazeri and Aurea Grané 73

Group III: Distributions with support on (0,e0):

e Exponential (Exp) with mean 1;

e Gamma (G) with parameters S = 1 (scale) and o = .5,2 (shape);
e Lognormal (LN) with parameters =0 and 0 = .5,1,2;

e Weibull (W) with parameters 3 = 1 (scale) and a = .5,2 (shape);

Group IV: Distributions with support on (0, 1):

e Uniform (Unif);
e Beta (B) with parameters (2,2), (.5,.5), (3,1.5) and (2,1).

Set 2 of alternative distributions

Gan and Koehler (1990) and Krauczi (2009) considered a battery of “difficult alterna-
tives” for comparing normality tests. We also consider them in order to evaluate the
sensitivity of the proposed test. Let U and Z denote a [0, 1]-Uniform and a Standard
Normal random variable, respectively.

Contaminated Normal distribution (CN) with parameters (A, u1,u2,0) given by
the cdf F(x) = (1 — A\)Fo(x, p1, 1) + AFo(x, 2, 0);

Half Normal (HN) distribution, that is, the distribution of |Z|.

Bounded Johnson’s distribution (SB) with parameters (+y, d) of the random variable
eZ=N/0 [ (1 4 Z=/%)

Unbounded Johnson’s distribution (UB) with parameters (-y, ) of the random vari-
able sinh((Z—~)/9);

Triangle type I (Tri) with density function f(x) =1— ¢, -1 <t < I;

Truncated Standard Normal distribution at a and b (TN);

Tukey’s distribution (Tu) with parameter A of the random variable U* — (1 —U)?.
Cauchy distribution with parameters . = 0 (location), o = 1 (scale).

Chi-squared distribution y* with k degrees of freedom.

Tables 2-3 contain the skewness (1/31) and kurtosis (3,) of the previous sets of alter-
native distributions. Alternatives in Set 2 are roughly ordered and grouped in five groups
according to their skewness and kurtosis values in Table 3. These groups correspond
to: symmetric short tailed, symmetric closed to normal, asymmetric short tailed, asym-
metric long tailed. Figure 2 illustrates some of the possible shapes of the pdf’s of the
alternatives in Ser I and Set 2.
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respectively. These tables show consistency of the test statistic H,,.
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Symmetric short-tailed
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—— Beta(1,1)
— Beta(2,2)

Figure 2: Plots of alternative distributions in Set 1 and Set 2.
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Tables 4-5 contain the estimated value of H,, (for 4(x) = (x—1)?/(x+1)? and h(x) =
xlog(x) —x+ 1, respectively), for each alternative distribution, computed as the average
value from 10000 simulated samples of sizes n = 10,20,50, 100, 1000. In the last row of
these tables (n = «)), we show the value of D(Fy,F}) computed with the the command
integrate in R Software, with (1) and (%) being the expectation and variance of Fi,

Tables 6-7 report the power of the 5% significance level of forty normality tests based
on the statistics considered in Section 4 for the Set I of alternatives.
Tables 8-9 contain the power of the 5% significance level test of normality based on
the most powerful statistics and the alternatives listed in Ser 2.
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Table 10: Ranking from first to the fifth of average powers computed from values in Tables 6-7 for
Set 1 of alternative distributions.

Group I Group II Group III Group IV
Symmetric (—co, o) Asymmetric (—oo,00) Asymmetric(0, o) 0,1)
Rank n=10 n=20 n=10 n=20 n=10 n=20 n=10 n=20
1 SJ SJ H, T, H, Za TV TV
2 RJB RJB T1n H, TV T, TE TE
3 T3, M, Tep Za A H, TV TA
4 M, TZ2 Vby R, T, SW Zc QH
5 E, E, R, SW Za QH QH Zc

Table 11: Ranking from first to the fifth of average powers computed from values in Tables 8-9 for
Set 2 of alternative distributions.

Symmetric Asymmetric

Rank Short tailed Close to Normal Long tailed Short tailed Long tailed
n=10 n=20 n=10 n=20 n=10 n=20 n=10 n=20 n=10 n=20

1 TV TV M, RIB SJ SJ H, H, Tin Tin
2 TA TA SJ M, RIB  RIB TA vV SW  SW
3 SW R, RIB SJ A2 SF TV TA R, R,
4 H, SW SF SF SF A? SW SW H, TA
5 A2 A? SW Tan Tan M, R, R, TA H,

Tables 10-11 contain the ranking from first to the fifth of the average powers com-
puted from the values in Tables 6-7 and 8-9, respectively. By average powers we can
select the tests that are, on average, most powerful against the alternatives from the
given groups.

Power against an alternative distribution has been estimated by the relative frequency
of values of the corresponding statistic in the critical region for 10000 simulated sam-
ples of size n = 10, 20. The maximum reached power is indicated in bold. For computing
the estimated powers of the new test, R software is used. We also use R software for
computing Pearson chi-square and Shapiro-Francia tests by the package (nortest), com-
mand pearson. test and sf. test, respectively, and also the package (lawstat), com-
mand sj.test and rjb. test for SJ and Robast Jarque-Bera tests, respectively. For the
entropy-based test statistics, powers are taken from Zamanzadeh and Arghami (2012)
and Alizadeh and Arghami (2011, 2013). In the case of the test base;l on H,, we also
x—1 )

consider /1 (x) := xlog(x) —x+ 1 for comparison with A, (x) := (45
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Results and recommendations

Based on these comparisons, the following recommendations can be formulated for the
application of the evaluated statistics for testing normality in practice.

Set 1 of alternative distributions (Tables 6-7 and 10): In Group I, for n = 10 and
20, it is seen that the tests based on SJ, RIB, T3, TZ2, M,, and E,, are the most powerful
whereas the tests based on I,,, TV, TC and KL are the least powerful. The difference
of powers between KL and the others is substantial. In Group II, for n = 10 and 20,
it is seen that the tests based on H,, Ty,, Tgp, R,, Z4 and /b; are the most powerful
whereas those based on Ty,, TV, TC, Kl and Z,, are the least powerful. In Group III,
the most powerful tests for n = 10 are those based on H,,, TV, TA and Ty,, and for
n = 20, those based on Z, Ty, H,, and SW are the most powerful. On the other hand,
the least powerful tests are those based on I, and Z, are the least powerful. Finally, in
group IV, the results are not in favour of the proposed tests. In this group, for n = 10 and
20, the most powerful tests are those based on TV, TE, TA, Z¢, Za and r, whereas the
tests based on TZ,, SJ and RJB are the least powerful. The SJ and RJB show very poor
sensitivity against symmetric distributions in [0, 1] such as Unif, B(2,2) or B(.5,.5). For
example, for n = 20, in the case of the [0, 1]-Unif alternative, the SJ test has a power
of .002 while even the H,, test has a power of .156. From Tables 6-7 one can see that
the proportion of times that the SJ and RJIB statistics lie below the 5% point of the null
distribution are greater than those of the H,, statistic.

Note that for the proposed test, the maximum power in Group II and III was typically
attained by choosing /;.

From the simulation study implemented for Set / of alternative distributions we can
lead to different conclusions from that existing in the literature. New and existing results
are reported in Table 12.

Table 12: Comparison of most powerful tests in Groups I-1V, according to
Alizadeh and Arghami (2011, 2013) and Zamanzade and Arghami (2012) with new simulation results.

Alizadeh and Arghami (2011) JB SW KL?r SW KL
Alizadeh and Arghami (2013) A2 SW TA A
Zamanzadeh and Arghami (2012) TZ2 TZ2 or TD TZ1, KL or TD KL or TC
New simulation study SJor RJIB Hyor Ty, Hy or Za TV or TE

4 Statistic based on Vasicek’s estimator
b Statistic using nonparametric distribution of Vasicek’s estimato

Set 2 of alternative distributions (Tables 8-9 and 11): For symmetric short-tailed
distributions, it is seen that the tests based on TV, TA and SW are the most powerful.
For symmetric close to normal and symmetric long tailed distributions, RIB, JB and M,,
are the most powerful. For asymmetric short tailed distributions, H,,, TV and TA are the
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contaminated normal density power of 5% for n=20
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Figure 3: Left panel: Probability density functions of Contaminated Normal distribution for several values
of the parameter \. Right panel: Power of the tests based on H,, KS, A% and R,, as a function of X against
alternative CN(\, 1 = =3, up = 3,0 =2).

most powerful. Finally, for asymmetric long tailed distributions, T;,,, SW and R,, are the
most powerful. It is also worth mentioning that the differences between the power of
tests based on TV and H,, in TN(—3, 3) alternative are not considerable.

In Figure 3 we compare the power of the tests based on H,,, KS, A? and R, against
a family of Contaminated Normal alternatives CN(\, pi; = —3,up = 3,0 = 2). The left
panel of Figure 3 contains the probability density functions of Contaminated Normal
alternatives CN(\, iy = —3,up = 3,0 = 1), for A = .2,.5,.8, whereas the right panel
contains the power comparisons for n = 20 and o = 0.05. We can see the good power
results of H,, for 0.2 < A < 0.6.

In general, we can conclude that the proposed test H,, has good performance and
therefore can be used in practice.

Numerical example

Finally, we illustrate the performance of the new proposal through the analysis of a
real data set. One of the most famous tests of normality among practitioners is the
Kolmogorov-Smirnov test, mostly because it is available in any statistical software.
However, one of its drawbacks is the low power against several alternatives (see also
Grané and Fortiana, 2003; Grané, 2012; Grané and Tchirina, 2013).We would like to
emphasize this fact through a numerical example.

Armitage and Berry (1987) provided the weights in ounces of 32 newborn babies(see
also data set 3 of Henry, 2002, p. 342). The approximate ML estimators of i = 111.75
and & = 1/331.03 = 18.19. Also sample skewness and kurtosis are \/b; = —.64 and
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Histogram and theoretical densities
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Figure 4: Histogram and theoretical (normal) distribution for ounces of 32 newborn babies data.

b, = 2.33, respectively. From the histogram of these data it can be observed that the
birth weights are skewed to the left and may be bimodal (see Figure 4).

When fitting the normal distribution to these data, we find that the KS (Kolmogorov-
Smirnov) test does not reject the null hypothesis providing a p-value of 0.093. How-
ever with the H,, statistic we are able to reject the null hypothesis of normality at a
5% significance level, since we obtain H,, = .0006 and the corresponding critical value
for n = 32 is .00047. Also associated p-values of the H,,, SW (Shapiro-Wilk) and SF
(Shapiro-Francia) tests are .015, .024 and .036, respectively. Thus, the non-normality is
more pronounced by the new test at 5% level. In Appendix, we provide an R software
program, to calculate the H,, statistics, the critical points and corresponding p-value.

6. Conclusions

In this paper we propose a statistic to test normality and compare its performance with
40 recent and classical tests for normality and a wide collection of alternative distribu-
tions. As expected (Janssen, 2000), the simulation study shows that none of the statistics
under evaluation can be considered to be the best one for all the alternative distributions
studied. However, the tests based on RIB or SJ have the best performance for symmetric
distributions with the support on (—oo,c0) and the same happens to TV or TA for distri-
butions with the support on (0, 1). Regarding our proposal, H,, and also Ty,, are the most
powerful for asymmetric distributions with the support on (—oo,00) and distributions
with the support on (0, ), mainly for small sample sizes.
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Appendix

h=function(x) (x-1)"2/(x+1)"2
Hn=function(x) {x=sort(x);n=length(x);
F=pnorm(x, mean(x), sd(x)*sqrt(n/(n-1)))+1;
Fn=1:n/n+1; mean(h(F/Fn))}

##weights in ounces of 32 newborn babies,
data=c(72,80,81,84,86,87,92,94,103,106,107,111,112,115,116,118,
119,122,123,123,114,125,126,126,126,127,118,128,128,132,133,142)
Hn(data) ## statistics

n=length(data); B=10000; x=matrix(rnorm(n*B, @, 1), nrow=B, ncol=n)
Ho=apply(x, 1, Hn); Q=quantile(HO, .95); Q ## critical point
length(HO[HO>HNn(data)])/B #i#tp-value
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