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Abstract

Motivated by three failure data sets (lifetime of patients, failure time of hard drives and failure time

of a product), we introduce three different three-parameter distributions, study basic mathematical

properties, address estimation by the method of maximum likelihood and investigate finite sample

performance of the estimators. We show that one of the new distributions provides a better fit to

each data set than eight other distributions each having three parameters and three distributions

each having two parameters.
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1. Introduction

Systems or components having linear failure rates are common in real life. Examples

include concrete under multiaxial states of stress (Donida and Mentrasti, 1982), com-

posite laminates with transverse shear (Reddy and Reddy, 1992) and load-sharing sys-

tems (Sutar and Naik-Nimbalkar, 2014). There are also many real data sets that exhibit

approximately linear failure rates at least in the upper tails. We present three examples.

The first data set, due to Dispenzieri et al. (2012), consists of the number of days from

visit to clinic until death of 100 patients. The data result from a study of the relationship

between serum free light chain and mortality. The 100 patients were selected randomly

from a total of 7874 patients, including patients who had not died. The patients who had

died were diagnosed with monoclonal gammapothy.
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Table 1: Summary statistics of the three data sets.

Statistic Data set 1 Data set 2 Data set 3

minimum 0.0054 0.0053 0.0035

first quartile 0.3368 0.3977 0.318

median 0.4774 0.7770 0.4211

third quartile 0.7412 0.9304 0.5581

maximum 0.9514 1.4040 0.6878
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Figure 1: Kaplan-Meier estimate of the failure rate function of the patient data

of Dispenzieri et al. (2012).

The second data set from https://www.backblaze.com/hard-drive-test-data.html is one hun-

dred failure times in days of hard drives. The data were selected randomly from a total

of 52422 hard drives, which included hard drives which had not failed. The data were

collected by a large backup storage provider over two years. On each day, the Self-

Monitoring, Analysis, and Reporting Technology (SMART) statistics of operational

drives were recorded. When a hard drive was no longer operational, it was marked as a

failure and removed.

The third data set due to Hong and Meeker (2013) is one hundred failure data in

weeks of a product called Product D2 that is used in offices or residences. Product D2

is “similar to a high-end copying machine connected to the Internet and installed with a
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Figure 2: Kaplan-Meier estimate of the failure rate function of the hard drive failure data.

smart chip to record the number of pages that have been printed, as a function of time”

(Hong and Meeker, 2013, page 136). The one hundred data were selected randomly

from a total of 1800 observations.

All three data sets are presented in the appendix.

Kaplan-Meier estimates of the failure rate function (FRF) of the three data sets are

shown in Figures 1, 2 and 3. We can see that the FRFs are approximately linear at least

in the upper tails. The histogram of the three data sets are shown in Figures 8, 9 and 10.

Some summary statistics of the three data sets are shown in Table 1.

We suppose that the patient’s body or the hard drive or the product D2 is made of a

number of components say N working independently in series. The assumption of the

series structure is more reasonable than a parallel structure because it is unlikely that

a patient’s body will fail if and only if all its components fail or that a hard drive will

break if and only if all its components break or that a product will fail if and only if all

its components fail. It is more likely that a patient’s body will fail if and only if any of

its components fails or that a hard drive will break if and only if any of its components

breaks or that a product will fail if and only if any of its components fails. However,

in practice the components may not work independently. The distribution of the failure
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Figure 3: Kaplan-Meier estimate of the failure rate function of the failure data

of Hong and Meeker (2013).

time may not have a closed form if we assume that the components are dependent, see

(2) below and its discussion. We shall suppose independence for simplicity.

The number N may vary from one patient to another or one hard drive to another or

one product to another. It may depend on the type of hard drive, type of patient, type of

product, weight, length, and so on. So, we may take N as a random variable. The failure

time can be written as X = min(Y1,Y2, . . . ,YN), where Y1,Y2, . . . ,YN denote the failure

times of the N components.

Standard models for N are the geometric, zero truncated Poisson, logarithmic, zero

truncated negative binomial and zero truncated binomial distributions. For simplicity,

we shall consider only the first three since each of them has one parameter. The last two

distributions have two parameters each. That is, we take N to have one of the following

probability mass functions (PMFs):

Pr(N = n) = (1−λ)λn−1

for 0 < λ< 1 and n = 1,2, . . .;

Pr(N = n) =
λn

(eλ−1)n!
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for λ> 0 and n = 1,2, . . .; or

Pr(N = n) =− 1

ln(1−λ)

λn

n

for 0 < λ< 1 and n = 1,2, . . ..
Since the failure rate for the three data sets is approximately linear at least in the

upper tail (see Figures 1, 2 and 3), we shall suppose Y1,Y2, . . . too follow a distribution

that has a linear FRF. The distribution characterized by a linear failure rate is actually

known as the linear failure rate (LFR) distribution due to Bain (1974). Its probability

density function (PDF) and cumulative distribution function (CDF) are specified by

fY (y;γ,β) = (β+γy)exp
(
−βy− γ

2
y2
)

and

FY (y;γ,β) = 1− exp
(
−βy− γ

2
y2
)
,

respectively, for y > 0, β ≥ 0, γ ≥ 0 and β+ γ > 0. It is easy to see that the FRF is

hY (y;γ,β) = β+γy, a linear function of y. Both parameters, β and γ, are referred to as

scale parameters.

The distribution of X =min (Y1,Y2, . . . ,YN) can now be derived given the assumptions

that N is either geometric, Poisson or logarithmic and Y1,Y2, . . . are independent LFR

random variables independent of N. In the general case, the CDF and the PDF of X can

be derived as

FX(x) = Pr [min (Y1,Y2, . . . ,YN)< x] = 1−Pr [min(Y1,Y2, . . . ,YN)> x]

= 1−
∞∑

n=1

Pr [min (Y1,Y2, . . . ,Yn)> x | N = n]Pr(N = n)

= 1−
∞∑

n=1

Pr [Y1 > x,Y2 > x, . . . ,Yn > x]Pr(N = n)

= 1−
∞∑

n=1

Prn [Y > x]Pr(N = n) = 1−
∞∑

n=1

[1−FY (x)]
n

Pr(N = n)

and

fX(x) = fY (x)
∞∑

n=1

n [1−FY(x)]
n−1

Pr(N = n),
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respectively. In the case N is geometric, we obtain

fX(x;λ,γ,β) =
(1−λ)(β+γx)exp

(
−βx− γ

2
x2
)

[
1−λexp

(
−βx− γ

2
x2
)]2

,

which we shall refer to as the linear failure rate geometric (LFRG) distribution and write

X ∼ LFRG(λ,γ,β) for 0 < λ < 1, β ≥ 0, γ ≥ 0 and β+ γ > 0. In the case N is zero

truncated Poisson, we obtain

fX(x;λ,γ,β)=λ
(

1− e−λ
)−1

(β+γx)exp
(
−λ−βx− γ

2
x2
)

exp
[
λexp

(
−βx− γ

2
x2
)]

,

(1)

which we shall refer to as the linear failure rate Poisson (LFRP) distribution and write

X ∼ LFRP(λ,γ,β) for λ> 0, β ≥ 0, γ ≥ 0 and β+γ > 0. In the case N is logarithmic,

we obtain

fX(x;λ,γ,β) =−
λ(β+γx)exp

(
−βx− γ

2
x2
)

ln(1−λ)
[
1−λexp

(
−βx− γ

2
x2
)] ,

which we shall refer to as the linear failure rate logarithmic (LFRL) distribution and

write X ∼ LFRL(λ,γ,β) for 0 < λ< 1, β ≥ 0, γ ≥ 0 and β+γ > 0. These distributions

do not have linear failure rates. But hX(y;λ,γ,β) ∼ hY (y;γ,β) ∼ γy as y → ∞. So, the

assumption of linear failure rate for Y1,Y2, . . . guarantees that linear failure rate holds for

X too at least in the upper tail.

The limiting cases of the LFRG, LFRP and LFRL distributions as λ ↓ 0 is the LFR

distribution. The LFRG and LFRL distributions limit to a degenerate distribution as

λ ↑ 1.

If Y1,Y2, . . . are dependent random variables then the CDF of X can only be expressed

as

FX(x) = 1−
∞∑

n=1

Pr [Y1 > x,Y2 > x, . . . ,Yn > x]Pr(N = n). (2)

This cannot be reduced to a closed form unless the joint dependence of (Y1,Y2, . . . ,Yn)

takes a very simple form.

In the rest of this section, Section 2 and Section 3, we shall focus on the LFRP

distribution. The details for the LRFG and LRFL distributions can be derived similarly.

One of the most popular models for counts is the zero truncated Poisson distribution.

Some of its recent applications can be found in van der Heijden et al. (2003), Elhai et

al. (2008), Ginebra and Puig (2010) and Xu and Hu (2011).
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Figure 4: Probability density function of the LFRP distribution for (a) γ = 0.5 and β = 1,

(b) γ = 1 and β = 0.5, (c) β = 0.05 and λ= 3, (d) γ = 2 and λ= 1.

Possible shapes of (1) are shown in Figure 4. We see that both monotonically de-

creasing and unimodal shapes are possible. The mode of (1) is the root of

γ

β+γx
−β−γx = λ(β+γx)exp

(
−βx− γ

2
x2
)
.

Furthermore, fX(0) = λβ/
(
1− e−λ

)
and

fX (x)∼ λγ
(

1− e−λ
)−1

xexp
(
−λ−βx− γ

2
x2
)

as x → ∞. The lower tail of the PDF has a fixed point while its upper tail decays expo-

nentially.

The CDF and FRF of X ∼ LFRP(λ,γ,β) are

FX(x) =
1

eλ−1

{
eλ− exp

[
λexp

(
−βx− γ

2
x2
)]}

and

hX(x) =
(β+γx)λexp

(
−βx− γ

2
x2
)

1− exp
[
−λexp

(
−βx− γ

2
x2
)] , (3)
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Figure 5: Failure rate function of the LFRP distribution for (a) γ = 0.5 and β = 1,

(b) γ = 1 and β = 0.5, (c) β = 0.05 and λ= 3, (d) λ= 3 and γ = 0.5.

respectively, for x> 0, λ> 0, β≥ 0, γ≥ 0 and β+γ> 0. Figure 5 shows possible shapes

of (3) for different parameter values. We see that the LFRP distribution can exhibit

increasing, decreasing and upside down bathtub shapes for the failure rate. The LFR

distribution can exhibit only increasing or constant failure rates.

Reliability and survival analysis often encounter upside down bathtub failure rates.

Examples can be found in redundancy allocations in systems (Singh and Misra, 1994)

and mortality modelling (Silva et al., 2010).

The mode or the anti-mode of (3) is the root of

γ

β+γx
−β−γx =−λ(β+γx)exp

(
−βx− γ

2
x2
){

exp
[
λexp

(
−βx− γ

2
x2
)]

−1
}−1

.

Furthermore, hX(0)=λβ/
(
1− e−λ

)
and hX(x)∼ γx as x→∞. The lower tail of the FRF

has a fixed point. As already noted, the upper tail of the FRF of the LFRP distribution

behaves in the same manner as that of the LFR distribution. Yet the former does exhibit

upside down bathtub failure rates while the latter does not.

The qth quantile of X ∼ LFRP(λ,γ,β) say xq defined by FX (xq) = q is

xq =−β

γ
+

√
β2

γ2
− 2

γ
ln
{

ln [eλ−q(eλ−1)]
1
λ

}
.
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In particular, the median of X is

Median(X) =−β

γ
+

√√√√β2

γ2
− 2

γ
ln

{
ln

[
eλ− 1

2
(eλ−1)

] 1
λ

}
.

Quantiles are useful for estimation and simulation.

Several other distributions have been introduced in the literature by taking X =
min(Y1,Y2, . . . ,YN), where N is a geometric, zero truncated Poisson or a logarithmic

random variable: By taking N to be a geometric random variable and Y1,Y2, . . . to be

independent and identical Weibull random variables, Barreto-Souza et al. (2011) intro-

duced the three-parameter Weibull geometric (WG) distribution given by the PDF

f (x) =
(1−λ)βγ−βxβ−1 exp

[
−(x/γ)β

]

{
1−λexp

[
−(x/γ)β

]}2

for x> 0, 0< λ< 1, β> 0 and γ > 0; By taking N to be a zero truncated Poisson random

variable and Y1,Y2, . . . to be independent and identical Weibull random variables, Lu and

Shi (2012) introduced the three-parameter Weibull Poisson (WP) distribution given by

the PDF

f (x) =
λβγ−βxβ−1 exp

{
−(x/γ)β+λexp

[
−(x/γ)β

]}

exp(λ)−1

for x > 0, λ> 0, β > 0 and γ > 0; By taking N to be a logarithmic random variable and

Y1,Y2, . . . to be independent and identical Weibull random variables, Ciumara and Preda

(2009) introduced the three-parameter Weibull logarithmic (WL) distribution given by

the PDF

f (x) =−
(1−λ)βγ−βxβ−1 exp

[
−(x/γ)β

]

lnλ
{

1− (1−λ)exp
[
−(x/γ)β

]}

for x > 0, 0 < λ< 1, β > 0 and γ > 0; By taking N to be a geometric random variable

and Y1,Y2, . . . to be independent and identical generalized exponential random variables,

Mahmoudi and Jafari (2012) introduced the three-parameter generalized exponential

geometric (GEG) distribution given by the PDF

f (x) =
(1−λ)βγ exp(−γx) [1− exp(−γx)]β−1

{
λ [1− exp(−γx)]β −1

}2
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for x > 0, 0 < λ < 1, β > 0 and γ > 0; By taking N to be a zero truncated Poisson

random variable and Y1,Y2, . . . to be independent and identical generalized exponential

random variables, Mahmoudi and Jafari (2012) introduced the three-parameter general-

ized exponential Poisson (GEP) distribution given by the PDF

f (x) =
λβγ exp(−γx) [1− exp(−γx)]β−1

exp
{
[1− exp(−γx)]β

}

exp(λ)−1

for x > 0, λ > 0, β > 0 and γ > 0; By taking N to be a logarithmic random variable

and Y1,Y2, . . . to be independent and identical generalized exponential random variables,

Mahmoudi and Jafari (2012) introduced the three-parameter generalized exponential

logarithmic (GEL) distribution given by the PDF

f (x) =
λβγ exp(−γx) [1− exp(−γx)]β−1

ln(1−λ)
{
λ [1− exp(−γx)]β −1

}

for x > 0, 0 < λ< 1, β > 0 and γ > 0.

A final motivation for the LFRP distribution is that it provides better fits for the three

data sets than at least eight other distributions each having three parameters and at least

three distributions each having two parameters. The eight distributions are the LFRG,

LFRL, WG, WP, WL, GEG, GEP and GEL distributions.

The rest of this paper is organized as follows: estimation of the parameters of the

LFRP distribution by the method of maximum likelihood is considered in Section 2;

finite sample performance of the maximum likelihood estimators is assessed by simula-

tion in Section 3; application of the LFRP distribution to the three data sets is illustrated

in Section 4; some conclusions are noted in Section 5.

We have given above simple expressions for the PDF, its shape, FRF, its shape, quan-

tiles and median of X ∼ LFRP(λ,γ,β). Simple expressions for further mathematical

properties of X ∼ LFRP(λ,γ,β) do not appear to be possible; for example, using the

series expansions

(1− z)−2 =
∞∑

k=0

(−2

k

)
(−z)k,

exp(z) =

∞∑

k=0

zk

k!
,

(1− z)−1 =
∞∑

k=0

zk,
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and equation (2.3.15.3) in Prudnikov et al. (1986), one can express the nth moments of

LFRG, LFRP and LFRL distributions as

E (Xn) = (1−λ)
∞∑

k=0

(−2

k

)
(−λ)kA(n,k),

E (Xn) =
λe−λ

1− e−λ

∞∑

k=0

λk

k!
A(n,k)

and

E (Xn) =− 1

ln(1−λ)

∞∑

k=0

λk+1A(n,k),

respectively, where

A(n,k) =
n!exp

[
(k+1)β2

4γ

]

γ
n+1

2 (k+1)
n+2

2

[
β
√

k+1D−n−1

(
β
√

k+1√
γ

)
+(n+1)

√
γD−n−2

(
β
√

k+1√
γ

)]
,

where Dν(·) denotes the parabolic cylinder function of order ν. These expressions are

not simple. They are infinite sums of terms involving a special function which is de-

fined in terms of an integral. So, the moments could be computed more efficiently by

numerical integration, i.e., by

E (Xn) =

∞∫

0

xn
(β+γx)exp

(
−βx− γ

2
x2
)

[
1− (1−λ)exp

(
−βx− γ

2
x2
)]2

dx,

E (Xn) = λe−λ
(

1− e−λ
)−1

∞∫

0

xn(β+γx)exp
(
−βx− γ

2
x2
)

exp
[
λexp

(
−βx− γ

2
x2
)]

dx

and

E (Xn) =− 1

ln(1−λ)

∞∫

0

xn
(β+γx)exp

(
−βx− γ

2
x2
)

1− (1−λ)exp
(
−βx− γ

2
x2
)dx.

Hence, we shall not consider further mathematical properties.
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2. Estimation

We suppose x1,x2, . . . ,xn is a random sample from LFRP(β,γ,λ) with β,γ,λ unknown.

Then the log-likelihood function of β,γ,λ can be expressed as

lnL = n lnλ−n ln
(

eλ−1
)
+

n∑

i=1

ln(β+γxi)−β

n∑

i=1

xi +
γ

2

n∑

i=1

x2
i +

+λ

n∑

i=1

exp
(
−βxi −

γ

2
x2

i

)
. (4)

The associated normal equations are

∂ lnL

∂λ
=

n

λ
− neλ

eλ−1
+

n∑

i=1

exp
(
−βxi −

γ

2
x2

i

)
,

∂ lnL

∂γ
=

n∑

i=1

xi

β+γxi

− 1

2

n∑

i=1

x2
i −λ

n∑

i=1

x2
i

2
exp

(
−βxi −

γ

2
x2

i

)
,

∂ lnL

∂β
=

n∑

i=1

1

β+γxi

−
n∑

i=1

xi +λ

n∑

i=1

xi exp
(
−βxi −

γ

2
x2

i

)
.

The maximum likelihood estimates of (λ,γ,β) say
(
λ̂, γ̂, β̂

)
are the simultaneous so-

lutions of ∂ lnL/∂λ= 0, ∂ lnL/∂γ = 0 and ∂ lnL/∂β = 0. These equations being non-

linear, some quasi-Newton algorithm will be needed to solve them simultaneously. An

alternative is to obtain
(
λ̂, γ̂, β̂

)
by direct numerical maximization of (4). We shall pur-

sue this simpler approach. Numerical maximization of (4) was performed by using op-

tim in R (R Development Core Team, 2014). Extensive numerical calculations showed

that the surface of (4) was reasonably smooth. optim was able to locate the maximum

for a wide range of starting values. The solution returned by optim was unique for all

starting values.

Reasonable starting values for the parameters are useful to ease optimization. The

method of moments can be used to obtain them. Equating the sample moments m1 =

(1/n)
n∑

i=1

xi, m2 = (1/n)
n∑

i=1

x2
i and m3 = (1/n)

n∑

i=1

x3
i with the theoretical versions given

by

E
(
X i
)
= λ

(
1− e−λ

)−1
∞∫

0

xi(β+γx)exp
(
−λ−βx− γ

2
x2
)

exp
[
λexp

(
−βx− γ

2
x2
)]

dx,

we have m1 = E(X), m2 = E
(
X2

)
and m3 = E

(
X3

)
. These equations were solved using

a quasi-Newton algorithm.
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The distribution of
(
λ̂, γ̂, β̂

)
as n → ∞, under certain regularity conditions (see, for

example, Ferguson, 1996 and pages 461-463 in Lehmann and Casella, 1998), is trivariate

normal with mean (λ,β,γ) and covariance given by the inverse of

I =




I11 I12 I13

I21 I22 I23

I31 I32 I33


=




E

(
−∂ 2 lnL

∂λ2

)
E

(
−∂ 2 lnL

∂λ∂γ

)
E

(
−∂ 2 lnL

∂λ∂β

)

E

(
−∂ 2 lnL

∂γ∂λ

)
E

(
−∂ 2 lnL

∂γ2

)
E

(
−∂ 2 lnL

∂γ∂β

)

E

(
−∂ 2 lnL

∂β∂λ

)
E

(
−∂ 2 lnL

∂β∂γ

)
E

(
−∂ 2 lnL

∂β2

)




.

I is referred to as the expected information matrix.

In practice, n is finite. Cox and Hinkley (1979) recommended that the distribution

of
(
λ̂, γ̂, β̂

)
be approximated by a trivariate normal distribution with mean (λ,β,γ) and

covariance taken to be the inverse of

J =




J11 J12 J13

J21 J22 J23

J31 J32 J33


=




−∂ 2 lnL

∂λ2
−∂ 2 lnL

∂λ∂γ
−∂ 2 lnL

∂λ∂β

−∂ 2 lnL

∂γ∂λ
−∂ 2 lnL

∂γ2
−∂ 2 lnL

∂γ∂β

−∂ 2 lnL

∂β∂λ
−∂ 2 lnL

∂β∂γ
−∂ 2 lnL

∂β2




∣∣∣∣∣∣∣∣∣∣∣∣∣
λ=λ̂,γ=γ̂,β=β̂

.

J is referred to as the observed information matrix. Cox and Hinkley (1979)’s approxi-

mation is known to be a better approximation than one based on the expected informa-

tion matrix.

The elements of the observed information matrix are

J11 =
n

λ̂2
− neλ̂

(
eλ̂−1

)2
,

J22 =
n∑

i=1

x2
i(

β̂+ γ̂xi

)2
− λ̂

4

n∑

i=1

x4
i exp

(
−β̂xi −

γ̂

2
x2

i

)
,

J33 =
n∑

i=1

1
(
β̂+ γ̂xi

)2
− λ̂

n∑

i=1

x2
i exp

(
−β̂xi −

γ̂

2
x2

i

)
,

J12 = J21 =
1

2

n∑

i=1

x2
i exp

(
−β̂xi −

γ̂

2
x2

i

)
,
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J13 = J31 =
n∑

i=1

xi exp

(
−β̂xi −

γ̂

2
x2

i

)
,

J23 = J32 =

n∑

i=1

xi(
β̂+ γ̂xi

)2
− λ̂

2

n∑

i=1

x3
i exp

(
−β̂xi −

γ̂

2
x2

i

)
.

The regularity conditions referred to hold as n → ∞. In practice, n is finite. So, it is

natural to ask: how large n should be for the maximum likelihood estimates to perform

well? We answer this question in Section 3.

3. Simulation

Here, we assess the performance of the maximum likelihood estimates with respect to

sample size n. The assessment is based on a simulation study:

1. generate ten thousand samples of size n from (1). The inversion method was used

to generate samples.

2. compute the maximum likelihood estimates for the ten thousand samples, say(
λ̂i, β̂i, γ̂i

)
for i = 1,2, . . . ,10000.

3. compute the biases and mean squared errors given by

biash(n) =
1

10000

10000∑

i=1

(
ĥi −h

)
,

and

MSEh(n) =
1

10000

10000∑

i=1

(
ĥi −h

)2

for h = λ,β,γ.

We repeated these steps for n = 10,11, . . . ,100 with λ = 1, β = 1 and γ = 1, so

computing biasλ(n), biasβ(n), biasγ(n) and MSEλ(n), MSEβ(n), MSEγ(n) for n =

10,11, . . . ,100.

Figures 6 and 7 show how the three biases and the three mean squared errors vary

with respect to n. The broken lines in Figure 6 correspond to the biases being zero.

The broken lines in Figure 7 correspond to the mean squared errors being zero. The

following observations can be made:
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Figure 6: From top to bottom and from left to right:

biasλ(n), biasβ(n) and biasγ(n) versus n = 10,11, . . . ,100.
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Figure 7: From top to bottom and from left to right:

MSEλ(n), MSEβ(n) and MSEγ(n) versus n = 10,11, . . . ,100.
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1. the biases for each parameter are generally positive;

2. the biases for each parameter decrease to zero as n → ∞;

3. the biases appear smallest for the parameter, λ;

4. the mean squared errors for each parameter decrease to zero as n → ∞;

5. the mean squared errors appear smallest for the parameter, λ;

6. the mean squared errors appear largest for the parameter, β;

7. the biases and mean squared errors for each parameter appear reasonably small for

all n ≥ 60.

We have presented results for only one choice for (λ,β,γ), namely that (λ,β,γ) =

(1,1,1). But the results were similar for a wide range of other choices. In particular, the

biases and mean squared errors for each parameter appeared reasonably small for all

n ≥ 60.

The three real data sets in Section 4 each has a sample size greater than or equal to

sixty. So, we can expect the estimates in Section 4 to be reasonable.

4. Real data applications

Here, we return to the three data sets to illustrate the applicability of the LFRP distribu-

tion. The following distributions were fitted to each data: the LFR, LFRG, LFRP, LFRL,

WG, WP, WL, GEG, GEP and GEL distributions. We also fitted the Weibull and gamma

distributions given by the PDFs

f (x) =
βxβ−1

γβ
exp

[
−
(

x

γ

)β
]

and

f (x) =
xβ−1

γβΓ(β)
exp

(
− x

γ

)
,

respectively, for x > 0, α > 0 and β > 0. Each distribution was fitted by the method

of maximum likelihood. The parameter estimates, standard errors, − lnL, AIC values

and BIC values are given in Tables 2, 3 and 4. The standard errors were computed by

inverted the observed information matrices.

We see that the LFRP distribution yields the smallest − lnL, the smallest AIC and

the smallest BIC for each data set. It provides a significantly better fit than the LFR

distribution for each data set, as judged by the likelihood ratio test. The standard errors

for the LFRP distribution appear reasonable, as they are smaller than the parameter

estimates.
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Table 2: Parameter estimates, standard errors, log-likelihood,

AIC and BIC for the twelve distributions fitted to the patient data of Dispenzieri et al. (2012).

Distribution λ̂ SE β̂ SE γ̂ SE − lnL AIC BIC

LFR 0.348 0.176 5.071 0.739 7.747 19.494 24.704

LFRG 0.001 0.000 0.348 0.176 5.069 0.738 7.751 21.503 29.318

LFRP 1.894 0.851 1.132 0.661 5.591 1.212 4.960 15.921 23.736

LFRL 0.001 0.000 0.342 0.173 5.063 0.734 7.750 21.500 29.315

WG 0.999 0.000 1.839 0.156 0.561 0.032 11.838 29.676 37.491

WP 2.230 0.910 1.434 0.204 0.394 0.065 8.818 23.637 31.452

WL 0.001 0.000 1.848 0.157 0.563 0.032 11.841 29.682 37.498

GEG 0.999 0.000 2.012 0.285 2.925 0.307 21.182 48.365 56.180

GEP 3.850 1.032 1.095 0.326 3.947 0.377 11.689 29.377 37.193

GEL 0.001 0.000 2.011 0.285 2.923 0.307 21.184 48.368 56.183

Weibull 1.839 0.156 0.561 0.032 11.837 27.674 32.885

Gamma 2.068 0.272 0.245 0.036 19.387 42.774 47.985

Table 3: Parameter estimates, standard errors, log-likelihood, AIC and BIC for the

twelve distributions fitted to the hard drive failure data.

Distribution λ̂ SE β̂ SE γ̂ SE − lnL AIC BIC

LFR 0.296 0.138 2.530 0.393 42.043 88.087 93.297

LFRG 0.000 0.000 0.292 0.135 2.465 0.384 42.072 90.143 97.959

LFRP 1.753 0.691 0.776 0.375 2.841 0.572 38.849 83.698 91.514

LFRL 0.000 0.000 0.296 0.138 2.530 0.393 42.044 90.088 97.904

WG 0.999 0.000 1.751 0.152 0.774 0.046 46.993 99.986 107.801

WP 1.831 0.738 1.484 0.189 0.584 0.079 43.848 93.695 101.511

WL 0.001 0.000 1.772 0.154 0.774 0.045 46.984 99.967 107.783

GEG 0.999 0.000 1.842 0.257 2.017 0.216 55.885 117.769 125.585

GEP 3.569 1.080 1.016 0.327 2.664 0.256 47.407 100.814 108.629

GEL 0.000 0.000 1.876 0.263 2.035 0.217 55.887 117.774 125.589

Weibull 1.772 0.154 0.775 0.045 46.982 97.964 103.174

Gamma 1.902 0.249 0.369 0.055 54.304 112.608 117.818

The parameter estimates and the log-likelihood values of the LFRG and LFRL dis-

tributions are very close for all three data sets. This suggests that the likelihood surfaces

for the LFRG and LFRL distributions attain their maximum points along the border cor-

responding to λ= 0. We noted earlier LFRG and LFRL distributions reduce to the LFR

distribution as λ ↓ 0. So, the fits of LFRG and LFRL distributions do not improve on the

fit of the LFR distribution for the three data sets.
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Table 4: Parameter estimates, standard errors, log-likelihood, AIC and BIC for the

twelve distributions fitted to the failure data of Hong and Meeker (2013).

Distribution λ̂ SE β̂ SE γ̂ SE − lnL AIC BIC

LFR 0.028 0.061 9.349 0.968 −32.148 −60.296 −55.086

LFRG 0.000 0.000 0.047 0.081 9.523 1.000 −32.069 −58.138 −50.323

LFRP 5.023 1.719 1.361 1.458 15.188 3.681 −48.555 −91.111 −83.295

LFRL 0.000 0.000 0.019 0.052 9.389 0.967 −32.133 −58.267 −50.451

WG 0.999 0.000 3.149 0.256 0.482 0.016 −44.743 −83.485 −75.670

WP 4.940 1.837 1.703 0.313 0.287 0.054 −46.938 −87.876 −80.061

WL 0.000 0.000 3.146 0.255 0.483 0.016 −44.745 −83.489 −75.674

GEG 0.003 0.000 4.552 0.476 0.753 0.133 −29.354 −52.708 −44.893

GEP 8.160 1.966 1.859 0.584 7.352 0.588 −42.532 −79.064 −71.249

GEL 2.082×10−5 0.000 5.546 0.918 5.304 0.442 −25.126 −44.253 −36.437

Weibull 3.146 0.255 0.483 0.016 −44.745 −85.489 −80.279

Gamma 5.371 0.735 0.081 0.012 −31.814 −59.629 −54.418
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Figure 8: Density plots for the twelve distributions fitted to the patient data of Dispenzieri et al. (2012).



Narjes Gitifar, Sadegh Rezaei and Saralees Nadarajah 195

Failure time / 1000

F
it
te

d
 P

D
F

s

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.5

1
.0

1
.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.5

1
.0

1
.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.5

1
.0

1
.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.5

1
.0

1
.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.5

1
.0

1
.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.5

1
.0

1
.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.5

1
.0

1
.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.5

1
.0

1
.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.5

1
.0

1
.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.5

1
.0

1
.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.5

1
.0

1
.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.5

1
.0

1
.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.5

1
.0

1
.5

LFR

LFRG

LFRP

LFRL

WG

WP

WL

GEG

GEP

GEL

Weibull

Gamma

Figure 9: Density plots for the twelve distributions fitted to the hard drive failure data.

The density plots for the fit of the distributions for the three data sets are shown

in Figures 8 to 10. The fitted PDFs of the LFRP distribution captures the observed

histograms better than others. Hence, we can say that the LFRP distribution provides

the best fit for at least three real data sets.

The parameter estimates of the best fitting LFRP distribution for the three data sets

can be interpreted as follows:

• the patient’s body can be modelled as a series system having an average of

λ̂/
[
1− e−λ̂

]
= 2.2 components with the 95 percent confidence interval (0.37,4.09),

where the failure rate of each component is linear with an intercept of 1.132 and

a slope of 5.591. That is, the failure rate of each component at time zero is 1.132

and the failure rate increases by 5.591 for every unit increase in time;

• the hard drive can be modelled as a series system having an average of

λ̂/
[
1− e−λ̂

]
= 2.1 components with the 95 percent confidence interval (1.26,2.98),

where the failure rate of each component is linear with an intercept of 0.776 and
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a slope of 2.841. That is, the failure rate of each component at time zero is 0.776

and the failure rate increases by 2.841 for every unit increase in time;

• the product D2 can be modelled as a series system having an average of

λ̂/
[
1− e−λ̂

]
= 5.1 components with the 95 percent confidence interval (−1.97,12.08),

where the failure rate of each component is linear with an intercept of 1.361 and a

slope of 15.188. That is, the failure rate of each component at time zero is 1.361

and the failure rate increases by 15.188 for every unit increase in time.

Note that λ/
[
1− e−λ

]
is the expected value of a zero truncated Poisson random

variable. The stated confidence intervals were obtained by the delta method.
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Figure 10: Density plots for the twelve distributions fitted to the failure data of Hong and Meeker (2013).

5. Conclusions

We have proposed three distributions motivated by three failure data sets: the linear

failure rate geometric, linear failure rate Poisson and linear failure rate logarithmic dis-

tributions. Each of these distributions has three parameters.
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We have studied mathematical properties and estimation issues for the linear failure

rate Poisson distribution. We have shown in particular that its failure rate function can

be decreasing, increasing and upside down bathtub shaped, more varied than the failure

rate function of the linear failure rate distribution.

Among the twelve distributions fitted to the three data sets, the linear failure rate

Poisson distribution gave the best fit. The adequacy of fits was assessed in terms AIC

values, BIC values and density plots.

A future work is to estimate the parameters of the linear failure rate Poisson dis-

tribution by the method of percentiles, the method of probability weighted moments,

the method of least squares, the method of weighted least squares, the method of gen-

eralized moments, and other methods. Another future work is to propose bivariate and

multivariate generalizations of the linear failure rate Poisson distribution.

Appendix: Three data sets

The first data is

0.1102 0.2390 0.4598 0.7146 0.2608 0.0838 0.8746 0.1578

0.3358 0.0198 0.7192 0.7916 0.4486 0.4080 0.6048 0.3686

0.4686 0.5418 0.3760 0.8684 0.1572 0.4860 0.0118 0.4732

0.5450 0.8982 0.5674 0.2602 0.4330 0.3608 0.3648 0.5124

0.1360 0.7548 0.8960 0.4816 0.0818 0.3268 0.9514 0.8650

0.3372 0.5438 0.5392 0.5750 0.3672 0.6694 0.3068 0.2536

0.3756 0.3962 0.4690 0.3416 0.6430 0.9104 0.4426 0.7280

0.7370 0.7666 0.6420 0.2000 0.3588 0.6632 0.8752 0.8934

0.6526 0.1370 0.5222 0.7746 0.9230 0.6422 0.3298 0.7286

0.0054 0.3754 0.2448 0.9466 0.3256 0.3726 0.0516 0.4496

0.7850 0.8670 0.0758 0.5174 0.7742 0.5464 0.6152 0.7594

0.8310 0.4036 0.8954 0.7970 0.3638 0.0142 0.7998 0.1658

0.4572 0.7540 0.9220 0.3688

For computational stability with fitting distributions, we have divided each observation

by 5000.

The second data is

1.293458333 0.251375000 1.265458333 1.404000000

1.280416667 1.201500000 1.193458333 0.340333333

1.101166667 1.059250000 1.360541667 1.245125000

1.098041667 1.049875000 1.167875000 1.271500000

1.182000000 0.925916667 0.963333333 1.119666667

0.867791667 0.845375000 0.803416667 0.323500000

1.165083333 1.065958333 1.103583333 1.035583333

1.173958333 0.886916667 0.789958333 0.671791667

0.782666667 0.534125000 0.691000000 0.813750000

0.773416667 0.629291667 0.520291667 0.635000000
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0.695041667 0.712625000 0.428000000 0.423208333

0.615541667 0.254416667 0.160791667 0.125083333

0.416791667 0.215416667 0.214958333 0.185375000

0.228458333 0.206958333 0.228833333 0.190083333

0.205000000 0.007458333 0.192750000 0.227666667

0.155916667 0.179791667 0.018625000 0.169458333

0.066416667 0.005333333 0.115416667 0.080375000

0.495833333 0.854916667 0.498750000 0.902875000

0.967958333 0.786916667 0.920583333 0.943875000

0.807666667 0.761708333 0.733583333 1.043833333

0.893583333 0.746500000 0.736583333 0.880500000

0.889708333 0.780666667 0.668041667 0.861291667

0.711916667 0.718500000 0.863041667 0.908000000

0.833791667 0.671416667 0.826083333 0.823000000

0.784375000 0.667833333 0.669750000 0.835750000

For computational stability with fitting distributions, we have divided each observation

by 1000.

The third data is

0.222673061 0.257639905 0.328155859 0.515672484

0.583401130 0.642256077 0.621521735 0.587506929

0.594755485 0.316753044 0.550884304 0.312962380

0.516646945 0.546445582 0.600493703 0.297813235

0.332441913 0.333245894 0.364800151 0.429097225

0.627439232 0.313363071 0.579554283 0.391397547

0.125167305 0.541816854 0.665764686 0.398880874

0.402492151 0.423982077 0.428143776 0.341767913

0.514537781 0.686683383 0.333088363 0.249962985

0.226748439 0.286643595 0.645490088 0.584664074

0.397377064 0.609634794 0.353187577 0.536304985

0.406031202 0.586163204 0.648786836 0.516497130

0.318475607 0.494774308 0.436782434 0.245923132

0.618409876 0.255245760 0.464312202 0.454133994

0.387982016 0.218311879 0.526363495 0.418258490

0.272839591 0.151997829 0.492728139 0.290973052

0.471553883 0.363069573 0.668371780 0.501805967

0.600306622 0.477109810 0.515188714 0.283784543

0.600625759 0.299420135 0.368553098 0.653382502

0.687845701 0.379423961 0.279504337 0.407995757

0.685695223 0.259685231 0.514854899 0.501119729

0.003522425 0.672089253 0.630145059 0.310811342

0.384073475 0.388312955 0.268080935 0.437408445

0.634243302 0.239656858 0.391844012 0.347107733

0.499160234 0.325770026 0.290634387 0.371908794

For computational stability with fitting distributions, we have divided each observation

by 100.
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