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Abstract

The Cox proportional hazards model is the most widely used survival prediction model for analysing

time-to-event data. To measure the discrimination ability of a survival model the concordance

probability index is widely used. In this work we studied and compared the performance of two

different estimators of the concordance probability when a continuous predictor variable is cate-

gorised in a Cox proportional hazards regression model. In particular, we compared the c-index

and the concordance probability estimator. We evaluated the empirical performance of both es-

timators through simulations. To categorise the predictor variable we propose a methodology

which considers the maximal discrimination attained for the categorical variable. We applied this

methodology to a cohort of patients with chronic obstructive pulmonary disease, in particular, we

categorised the predictor variable forced expiratory volume in one second in percentage.
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1. Introduction

In the medical field, prediction models have been gaining importance as a support for

decision-making, whereby the increased knowledge of potential predictors helps the

decision-making process. When the interest relies on predicting the survival time of

patients with a certain disease, survival prediction models are commonly used. Particu-

larly, the Cox model (Cox and Oakes, 1984) is the one most widely used in the medical

field (Steyerberg et al., 2013).

The development of prediction models may require assumptions about the relation-

ship between the covariates and the response variable. For instance, a common practice

in medical research is to categorise continuous predictor variables when a linear rela-

tionship does not hold (Turner et al., 2010; Barrio et al., 2016).

The selection of an optimal cutpoint for prognosis purposes has been largely dis-

cussed in the literature. For instance, Faraggi and Simon (1996) proposed a cross val-

idation approach to select the cutpoint to classify patients into two risk groups based

on the minimisation of the significance level of the logrank test proposed by Lausen

and Schumacher (1996). Later, Sima and Gönen (2013) proposed the maximisation of

the concordance probability (Gönen and Heller, 2005) as the criterion to dichotomise

a continuous predictor. In addition, Liu and Jin (2015) and Rota et al. (2015) have re-

cently proposed non parametric methods to select a time-dependent optimal cutpoint to

classify individuals as diseased or disease-free at a given time point t.

However, the aim of this work differs from those presented above. Our goal is to

categorise the predictor variable into any possible number of categories to be incorpo-

rated in a prediction model, whereas when looking for a unique cutpoint the goal is to

classify a patient as diseased or disease-free at a certain time point. This work was mo-

tivated in the context of the Stable-COPD study (Esteban et al., 2014) where a model

was developed to predict five-year survival in patients with a stable chronic obstructive

pulmonary disease (COPD). Clinical researchers aimed to use a categorised version of

the predictor variable forced expiratory volume in one second in percentage (FEV1%)

in a multiple survival model, but there was no agreement regarding the selection of the

optimal cutpoints.

In the context where the outcome of interest takes only two possible values, a pro-

posal has been done to categorise a continuous predictor variable in a logistic regression

model by maximising the area under the receiver operating characteristic (ROC) curve

(AUC)(Barrio et al., 2016). In fact, the proposal consists of the categorisation of a con-

tinuous predictor variable such that the discriminative ability of the prediction model

for the categorised variable is maximised. In the context of survival regression models,

as far as we know, no proposal has been done to categorise continuous predictor vari-

ables. In this paper, we propose to categorise a continuous predictor variable in a Cox

proportional hazards regression model as an extension of the work proposed by Bar-

rio et al. (2016) and based in part on the work done for a single cutpoint by Sima and

Gönen (2013). However, the challenge is how to measure the discriminative ability of
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a survival model. Established concepts for binary outcomes have been commonly used

by researchers, yet a standard approach has not emerged (Pepe et al., 2008; Schmid and

Potapov, 2012). A commonly used parameter is the concordance probability, a global

measure which has been defined differently in the literature (Liu and Jin, 2015). In this

paper we studied and compared the performance of two different discrimination abil-

ity estimators named the c-index (Harrell et al., 1982) and the concordance probability

estimator (CPE, Gönen and Heller (2005)) as the parameters to maximise in the cate-

gorisation process. Therefore, the goal of this paper is to compare the performance of

the CPE and c-index as concordance probability estimators to maximise in the location

of optimal cutpoints to categorise continuous predictors in a Cox proportional hazards

regression model.

The rest of the paper has been organised as follows. Section 2 outlines the method

proposed for categorising continuous variables in a Cox proportional hazards regres-

sion model. In Section 3, the performance of the proposed methodology is investigated

through simulations. Section 4 provides a description of the Stable-COPD study of sta-

ble patients with COPD and the application of the proposed methodology to this data

set. Finally, the main conclusions of our paper and some practical recommendations are

deferred to Section 5.

2. Methods

This section describes the proposed methodology to categorise a continuous predictor

variable in a Cox proportional hazards regression model. We begin by introducing the

needed notation and background in Section 2.1 and Section 2.2 and we describe the

approach to categorise a continuous predictor variable in Section 2.3.

2.1. Notation and preliminaries

Let T be a non-negative random variable representing the time until the event of interest

occurs. As usual, we assume that these event times might be subject to univariate right-

censoring denoted by C, which we assume to be independent of T . Let Z = [Z1 . . .Zp]
T

be a set of time invariant predictor variables in which we may be interested in terms of

studying their relationship with the survival time T .

The most widely used survival regression model is the semiparametric Cox propor-

tional hazards model (Cox, 1972), where the hazard function for T in a time t given the

covariate vector Z is expressed as,

h(t|Z) = h0(t)exp(ZTβββ) (1)

where h0(t) is the baseline hazard function and βββ is the regression coefficients vector.
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2.2. Discriminative ability of a prediction model

In general, it is common to measure the discriminative ability of a prediction model

by the concordance probability (Gönen and Heller, 2005). In a setting where the out-

come is time-to-event, the concordance probability is usually defined as (Pencina and

D’Agostino, 2004)

C= P(T̃l > T̃m|Tl > Tm), (2)

where l and m denote two independent individuals, Tj is the actual survival time of

subject j, and T̃j is the predicted survival time provided by the survival prediction model

under evaluation.

Under the Cox proportional hazards regression model (1), Pencina and D’Agostino

(2004) showed that the concordance probability for the predicted survival times defined

in equation (2) is equivalent to the concordance probability for the predicted probability

of survival and thus equivalent to the concordance probability defined in terms of the

linear predictor of the Cox proportional hazards model given in (1), i.e.,

C= P(S(t|Zl)> S(t|Zm)|Tl > Tm) = P(ηl < ηm|Tl > Tm), ∀t (3)

where S(t|Z j) = P(Tj ≥ t|Z j) and η j = ZT

jβββ. If the concordance probability takes a value

of 0.5 then the resulting model provides non informative predictions whereas models

predicting better than chance should result in values of C lying in the interval (0.5,1).
From now on, let us denote as {zi,yi,δi}

N
i=1 a sample of size N, where zi represents

the observed value of the predictor variables for subject i, yi represents the observed

follow-up time for subject i, being the minimum between the censoring (ci) and the

event (ti) times, i.e. yi = min(ti,ci), and δi represents whether subject i is an event

(δi = 1) or is censored (δi = 0). Thus, δi = I(ti ≤ ci).

In the presence of right censoring, it is difficult to estimate the concordance proba-

bility because a problem arises with the comparison of predicted and observed survival

times. Harrell et al. (1982) proposed an estimator for the concordance probability called

the c-index which is defined as “the proportion of all pairs of patients for which we could

determine the ordering of survival times such that the predictions are concordant”. More

specifically, Harrell et al. (1982) classified the pairs of individuals as usable or unusable.

A pair of individuals is considered unusable in two different situations. One, when both

individuals had the event at the same time and, two, if the following time for the in-

dividual without the event was shorter than the time until the event for the individual

having the event. Thus, the c-index estimator proposed by Harrell et al. (1982) is the

proportion of usable individual pairs in which the estimated survival times and the ob-

served survival times are concordant and is computed by forming all pairs of observed

data where the individual with the shorter follow-up time is an event. Specifically, the c-

index estimator proposed by Harrell et al. (1982) for model (1) would have the following

expression
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c =

∑∑

i< j

{I(yi < y j)I(η̂i > η̂ j)δi + I(y j < yi)I(η̂ j > η̂i)δ j}

∑∑

i< j

{I(yi < y j)δi + I(y j < yi)δ j}
, (4)

where η̂ j = zT

jβ̂ββ, being β̂ββ the vector of the estimated regression coefficients of the Cox

proportional hazards regression model.

Even though it is widely used in practice, as pointed out by Gönen and Heller (2005),

the c-index estimator proposed by Harrell et al. (1982) is biased and the bias increases

with the censoring rate. Hence, Gönen and Heller (2005) proposed an alternative esti-

mator called the concordance probability estimator (CPE), which under the proportional

hazards assumption is a consistent estimator of the concordance probability. This esti-

mator is defined as

CPE =
2

N(N−1)

∑∑

i< j

{
I(η̂i > η̂ j)

1+ eη̂ j−η̂i
+

I(η̂ j > η̂i)

1+ eη̂i−η̂ j

}
. (5)

Although it has been usually overlooked in the literature, we would like to note

that the definition of concordance probability given by Gönen and Heller (2005) (see

equation (1) in that paper), differs from that defined on equation (3). In fact, the CPE

given in (5) represents an estimator of P(Tl > Tm|ηl < ηm). Hence the c-index and the

CPE estimate, in general, different quantities.

Different estimators have been proposed in the literature to estimate the concordance

probability (Schmid and Potapov, 2012). In this paper, we focused on the c-index and

the CPE for two main reasons. First, Schmid and Potapov (2012) carried out a compar-

ison of different discrimination indexes and none of the estimators proved to be stable

in all scenarios. In addition, previous work has been done on the comparison of these

two estimators in the selection of an optimal cutpoint in a Cox proportional hazards re-

gression model and we intended to extend the research done by Sima and Gönen (2013)

to the categorisation of a continuous predictor variable in a multiple Cox proportional

hazards prediction model.

2.3. Selection of optimal cutpoints in Cox proportional regression models

Let X be a continuous predictor variable which we want to categorise in a Cox propor-

tional hazards regression model considering the presence of other p predictors, Z1, . . . ,Zp.

Our proposal is to categorise X in such a way that the best multiple predictive survival

model is obtained, considering the maximal concordance probability achieved. Specif-

ically, given k the number of cutpoints set for categorising X in k + 1 intervals, let

us denote Xcatk
the corresponding categorised variable taking values from 0 to k, and

xk = [x1 . . .xk]
T the vector of k cutpoints which maximises the discriminative ability of

the Cox proportional hazards regression model in equation (6):
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h(t|Z1, . . . ,Zp,Xcatk
) = h0(t)e

∑p
r=1αrZr+

∑k
q=1βq1{Xcatk

=q} . (6)

Note that in this expression the linear predictor η is in fact
∑p

r=1αrZr+
∑k

q=1 βq1{Xcatk
=q}.

To estimate the vector of the cutpoints of X that maximises the concordance proba-

bility, we propose to make use of the algorithms AddFor and Genetic proposed by Barrio

et al. (2016). The former looks sequentially for the k cutpoints whereas the later looks

for the vector of the optimal cutpoints using genetic algorithms. This implies that the

Genetic algorithm is computationally more expensive than the AddFor. Nevertheless, it

has been proven to perform better specially when two cutpoints are looked for (Barrio

et al., 2016). For this reason, in this paper we have limited to the use of the Genetic

algorithm. In addition, the optimal number of cutpoints can be selected by means of a

bootstrap confidence interval for the difference of the bias-corrected concordance prob-

ability as proposed by Barrio et al. (2016) and extended here to the Cox proportional

hazards setting. Detailed information regarding this approach can be seen in the Sup-

plementary Material.

Note that our approach can be easily applied also to the univariate Cox proportional

hazards model in which no other predictors Z are present. However, in this case there

will be many ties on the linear predictor and hence the expressions given in equations

(4) and (5) need to be modified accordingly (see Appendix for further details).

3. Simulation study

In this section we present a simulation study conducted to analyse the empirical perfor-

mance of the methodology proposed in Section 2. We report here the results obtained in

this study and compare the performance of the two concordance probability estimators

considered. The simulation study is explained in detail below.

All computations were performed in (64 bit) R 3.2.3 (R Core Team, 2016) and a

workstation equipped with 24GB of RAM, an Intel Xeon E5620 processor (2.40 Ghz),

and Windows 7 operating system. Specifically, the genoud function of the rgenoud

(Mebane and Sekhon, 2011) package was used to compute the genetic algorithms, the

cph function of the rms package (Harrell, 2015) was used for the estimation of the Cox

proportional hazards regression model and the c-index, and the phcpe2 function of the

package CPE (Mo et al., 2012) was used to estimate the CPE.

3.1. Scenarios and set-up

To simulate the data we assumed that X is a continuous predictor variable normally dis-

tributed with mean µ = 0 and standard deviation σ = 2 and Z a continuous predictor

variable normally distributed with mean µ= 1 and standard deviation σ = 1. Consider-

ing the theoretical optimal cutpoints, c1,c2, . . . ,ck, we built a categorical variable, Xcatk
,
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such that Xcatk
= 0 if X ≤ c1, Xcatk

= 1 if c1 <X ≤ c2, . . . , and Xcatk
= k if X > ck. Survival

times T were generated assuming a Weibull baseline hazard function such that the Cox

proportional hazards model is satisfied (Meira-Machado and Faria, 2014). Specifically,

T =

(
− log(1−U)

λe
β11{Xcatk

=1}+...+βk1{Xcatk
=k}+αZ

)1/γ

, (7)

were U follows a uniform distribution on the interval (0,1), and λ and γ denote the

scale and shape parameters of the Weibull distribution respectively. An independent

uniform censoring time C was generated, according to the uniform model U(0,τ), and

the event indicator δ was defined as I(T ≤ C). The parameter τ was chosen to obtain

censoring percentages of about 20%, 50% and 70%. Simulations were performed for

sample sizes of N = 500 and N = 1000. In all cases, R = 500 replicates of simulated

data were performed.

Several settings were considered in this simulation study, which are summarised in

Table 1. First of all, we considered k = 1,2 and 3 as the number of cutpoints. In Scenario

I, k = 1 was considered with three different alternatives for the theoretical cutpoint a)

centred on the distribution of X , i.e., c1 = 0; b) shifted to the high risk area, c1 = 1.5; and

c) shifted to the low risk area, c1 =−1.5. In Scenario II we considered two theoretical

cutpoints c1 =−1 and c2 = 1. Finally three theoretical cutpoints c1 =−1.5,c2 = 0 and

c3 = 1.5 where considered in Scenario III. In the later scenario, we also considered two

different settings, one in which a monotonic increase risk relationship was considered

(IIIa) and the other for a non-monotonic risk relationship (IIIb).

The performance of each of the concordance probability estimators considered was

evaluated by means of the bias and mean square error (MSE) of the estimated optimal

cutpoints for each iteration as follows:

MSEs =
1

k

k∑

d=1

(xsd − cd)
2

where xsd is the estimated dth optimal cutpoint in the simulation s and cd is the dth

theoretical cutpoint.

3.2. Results

Given the large number of proposed scenarios and different conclusions obtained, we

begin by summarising the main findings.

Simulation results suggest that, in general, both indexes performed similarly in terms

of the mean square error when it comes to low censoring rates (20%). However, for

large censoring rates (70%), the c-index performed better than the CPE in all scenarios

considered. As could have been expected, in all cases the bias and MSE decrease as the

sample size increase.
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Figure 1: Boxplot of the estimated optimal cutpoints based on 500 simulated data sets, N = 500 sample

size and one theoretical cutpoint. Results are shown for censoring rates of 20% and 70% and c-index and

CPE discriminative ability estimators. From left to right: (a) theoretical cutpoint, c = 0; (b) theoretical

cutpoint, c = 1.5; and (c) theoretical cutpoint, c = −1.5. The theoretical cutpoint is represented with a

dashed line.

Table 1: Description of the different scenarios considered for the simulation study. Weibull baseline hazard

function with shape γ and scale λ. Uniform censoring C U(0,τ ).

Scenario
Theoretical

Parameters
Censorship (τττ )

cutpoints 20% 50% 70%

Ia 0
γ = 1,λ= 0.1

β1 = 2.5,α = 1
11 1.6 0.5

Ib 1.5
γ = 1,λ= 0.1

β1 = 2.5,α = 1
19 3.5 1.15

Ic −1.5
γ = 1,λ= 0.1

β1 = 2.5,α = 1
4.75 0.75 0.27

II −1 & 1

γ = 1,λ= 0.1

β1 = 1.5,β2 = 2.5

α= 1

8.5 1.5 0.5

IIIa −1.5 & 0 & 1.5

γ = 1,λ= 0.1

β1 = 1.5,β2 = 2.5

β3 = 3.5,α = 1

5.25 0.85 0.27

IIIb −1.5 & 0 & 1.5

γ = 1,λ= 0.1

β1 = 1.5,β2 =−1

β3 = 1.5,α = 1

21 3.5 1.15

Let us turn now to a more detailed discussion of the results of this study. Figure

1 depicts the boxplot of the estimated optimal cutpoints over 500 simulated data sets,

for the c-index and CPE estimators and a sample size of N = 500 and censoring rates of

20% and 70% for Scenarios Ia, Ib and Ic, where a single optimal cutpoint is searched for.



I.
B

a
rrio

,
M

.X
.
R

o
d
rı́g

u
e
z
-Á
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Table 2: Simulations results when one theoretical optimal cutpoints was sought for (Scenarios Ia, Ib and Ic), censorship of 20%, 50% and 70% and the Genetic

algorithm. Mean, standard deviation, median, bias and mean MSE for the estimated cutpoints are reported when CPE or c-index concordance probability

estimators are used as the maximisation criteria.

Sample
size

Cens.
theoretical
cutpoint

Cutpoint Estimation

CPE c-index

Mean (sd) Median Bias MSE Mean (sd) Median Bias MSE

Scenario Ia

N = 500

20% −0.5 −0.000 (0.018) −0.000 −0.000 0.000 −0.001 (0.019) 0.000 −0.001 0.000

50% −0.5 −0.001 (0.027) −0.000 −0.001 0.001 0.000 (0.025) 0.001 −0.000 0.001

70% −0.5 −0.007 (0.047) −0.001 −0.007 0.002 0.008 (0.046) 0.005 −0.008 0.002

N = 1000

20% −0.5 −0.002 (0.009) −0.000 −0.002 0.000 −0.001 (0.010) 0.000 −0.001 0.000

50% −0.5 −0.003 (0.012) −0.000 −0.003 0.000 −0.001 (0.015) 0.000 −0.001 0.000

70% −0.5 −0.006 (0.031) −0.000 −0.006 0.001 0.003 (0.026) 0.003 −0.003 0.001

Scenario Ib

N = 500
20% −1.5 −1.493 (0.021) −1.497 −0.007 0.000 1.489 (0.032) 1.497 −0.011 0.001
50% −1.5 −1.490 (0.030) −1.495 −0.010 0.001 1.490 (0.037) 1.498 −0.010 0.001

70% −1.5 −1.470 (0.061) −1.488 −0.030 0.005 1.491 (0.051) 1.500 −0.009 0.003

N = 1000
20% −1.5 −1.498 (0.013) −1.499 −0.002 0.000 1.496 (0.016) 1.499 −0.004 0.000
50% −1.5 −1.496 (0.015) −1.499 −0.004 0.000 1.497 (0.018) 1.500 −0.003 0.000

70% −1.5 −1.483 (0.031) −1.492 −0.017 0.001 1.496 (0.023) 1.500 −0.004 0.001

Scenario Ic

N = 500

20% −1.5 −1.501 (0.028) −1.501 −0.001 0.001 −1.502 (0.029) −1.500 −0.002 0.001

50% −1.5 −1.500 (0.042) −1.498 −0.000 0.002 −1.491 (0.053) −1.494 −0.009 0.003

70% −1.5 −1.508 (0.096) −1.494 −0.008 0.009 −1.478 (0.087) −1.484 −0.022 0.008

N = 1000

20% −1.5 −1.499 (0.015) −1.500 −0.001 0.000 −1.500 (0.015) −1.500 −0.000 0.000

50% −1.5 −1.498 (0.021) −1.498 −0.002 0.000 −1.496 (0.025) −1.498 −0.004 0.001

70% −1.5 −1.498 (0.047) −1.495 −0.002 0.002 −1.488 (0.048) −1.492 −0.012 0.002
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Table 3: Simulations results when two theoretical optimal cutpoints were sought for (Scenario II), censorship of 20%, 50% and 70% and the Genetic algorithm.

Mean, standard deviation, median, bias and mean MSE for the estimated cutpoints are reported when CPE or c-index concordance probability estimators are

used as the maximisation criteria.

Sample
size

Cens.
theoretical
cutpoint

Cutpoint Estimation

CPE c-index

Mean (sd) Median Bias MSE Mean (sd) Median Bias MSE

Scenario II

N=500

20% −1 −1.007 (0.049) −1.002 −0.007 0.006 −1.006 (0.059) −1.000 −0.006
0.011

−1 −0.984 (0.098) 0.992 −0.016 0.979 (0.132) 0.996 −0.021

50% −1 −1.010 (0.096) −1.000 −0.010
0.017

−1.000 (0.118) −0.993 −0.000
0.028

−1 −0.969 (0.155) 0.989 −0.031 0.969 (0.203) 0.999 −0.031

70% −1 −1.200 (0.463) −1.021 −0.200 0.440 −0.997 (0.269) −0.983 −0.003 0.085
−1 −0.677 (0.723) 0.957 −0.323 0.998 (0.313) 1.005 −0.002

N=1000

20% −1 −1.002 (0.023) −1.001 −0.002 0.001 −1.002 (0.026) −0.999 −0.002
0.002

−1 −0.991 (0.040) 0.995 −0.009 0.994 (0.062) 0.997 −0.006

50% −1 −1.003 (0.046) −0.999 −0.003
0.003

−1.004 (0.054) −0.997 −0.004
0.004

−1 −0.987 (0.059) 0.994 −0.013 0.991 (0.075) 0.998 −0.009

70% −1 −1.030 (0.157) −0.998 −0.030
0.059

−0.997 (0.104) −0.993 −0.003
0.015

−1 −0.928 (0.296) 0.982 −0.072 1.000 (0.138) 1.000 −0.000
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Figure 2: Boxplot of the estimated optimal cutpoints based on 500 simulated data sets, N = 500 sample

size and two theoretical cutpoints. Results are shown for censoring rates of 20% and 70% and c-index and

CPE discriminative ability estimators. The theoretical cutpoint is represented with a dashed line.

Numerical results for these scenarios are given in Table 2. As can be seen, our approach

performed satisfactorily regardless of the location of the theoretical cutpoint, with, as

said before, the c-index performing slightly better for high censoring rates. However,

this can not be considered a general rule. Simulations studies conducted in a univariate

setting showed that neither the CPE nor the c-index performed satisfactorily, especially

when the optimal cutpoint is non centred. These results are presented and discussed in

detail in the Supplementary Material (Table B1 and Figure B1).

Figure 2 depicts the boxplots of the estimated optimal cutpoints for Scenario II,

where two optimal cutpoints are sought for. Numerical results are reported in Table 3.

Once again, the c-index outperformed the CPE when high censoring rates were consid-

ered. Nevertheless, for censoring rates below 50% both estimators performed satisfac-

torily.

Finally, Figure 3 depicts the boxplots of the estimated optimal cutpoints for Scenar-

ios IIIa and IIIb, where three optimal cutpoints are sought for a monotonic increasing

and non-monotonic risk relationship, respectively. Numerical results are reported in Ta-

ble 4. These results suggest that the method performed satisfactorily regardless of the

risk relationship considered. Nevertheless, for high censoring rates, the CPE performed

better when a non-monotonic risk relationship was considered.

We must note that when more than one cutpoint is searched for, the estimated cut-

points have been ordered from the smallest to the largest to classify them as “first”,

“second” or “third” cutpoints. This may cause an incorrect classification whenever the

estimated smallest cutpoint corresponds to the theoretical “second” cutpoint for exam-

ple.
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Table 4: Simulations results when three theoretical optimal cutpoints were looked for with a monotonic increasing and non-monotonic relationship with the

outcome (Scenarios IIIa and IIIb) and censorship of 20%, 50% and 70%. Mean, standard deviation, median, bias and mean squared error (MSE) for the

estimated cutpoints over 500 simulated data sets are reported when CPE or C-index concordance probability estimators are used as the maximisation criteria.

Sample

size
Cens.

theoretical

cutpoint

Cutpoint Estimation

CPE c-index

Mean (sd) Median Bias MSE Mean (sd) Median Bias MSE

Scenario IIIa

N = 500

20%
−1,5 −1.507 (0.066) −1.505 −0.007

0.008
−1.501 (0.078) −1.499 −0.001

0.012−0,5 −0.006 (0.087) −0.006 −0.006 −0.002 (0.096) 0.002 −0.002
−1,5 −1.483 (0.107) 1.489 −0.017 1.484 (0.141) 1.495 −0.016

50%
−1,5 −1.568 (0.269) −1.501 −0.068

0.075
−1.486 (0.177) −1.488 0.014

0.032−0,5 −0.078 (0.313) −0.007 −0.078 −0.006 (0.174) 0.002 −0.006
−1,5 −1.458 (0.211) 1.483 −0.042 1.490 (0.181) 1.495 −0.010

70%
−1,5 −2.119 (0.675) −2.093 −0.619

0.983
−1.442 (0.476) −1.453 0.058

0.175−0,5 −0.951 (0.744) −1.368 −0.951 0.045 (0.450) 0.018 0.045
−1,5 −1.006 (0.641) 1.340 −0.494 1.523 (0.305) 1.504 0.023

N = 1000

20%
−1,5 −1.499 (0.029) −1.500 0.001

0.002
−1.499 (0.036) −1.500 0.001

0.002−0,5 −0.003 (0.040) −0.003 −0.003 −0.004 (0.045) −0.001 −0.004
−1,5 −1.492 (0.056) 1.498 −0.008 1.487 (0.058) 1.497 −0.013

50%
−1,5 −1.500 (0.072) −1.497 0.000

0.005
−1.490 (0.084) −1.494 0.010

0.006−0,5 −0.005 (0.064) −0.003 −0.005 0.002 (0.072) 0.001 0.002
−1,5 −1.487 (0.070) 1.496 −0.013 1.491 (0.069) 1.499 −0.009

70%
−1,5 −1.739 (0.469) −1.525 −0.239

0.340
−1.455 (0.211) −1.479 0.045

0.035−0,5 −0.354 (0.635) −0.025 −0.354 0.027 (0.188) 0.008 0.027
−1,5 −1.335 (0.436) 1.486 −0.165 1.512 (0.154) 1.500 0.012

Scenario IIIb

N = 500

20%
−1,5 −1.506 (0.047) −1.503 −0.006

0.001
−1.508 (0.052) −1.503 −0.008

0.001−0,5 −0.002 (0.019) −0.001 −0.002 −0.001 (0.018) 0.000 −0.001
−1,5 −1.499 (0.021) 1.500 −0.001 1.496 (0.029) 1.499 −0.004

50%
−1,5 −1.513 (0.070) −1.505 −0.013

0.002
−1.506 (0.086) −1.500 −0.006

0.003−0,5 −0.002 (0.025) −0.001 −0.002 −0.005 (0.027) −0.002 −0.005
−1,5 −1.497 (0.033) 1.500 −0.003 1.499 (0.043) 1.502 −0.001

70%
−1,5 −1.469 (0.410) −1.506 0.031

0.073
−1.495 (0.176) −1.493 0.005

0.013−0,5 −0.050 (0.198) −0.001 0.050 −0.010 (0.054) −0.007 −0.010
−1,5 −1.481 (0.087) 1.501 −0.019 1.508 (0.067) 1.507 0.008

N = 1000

20%
−1,5 −1.504 (0.023) −1.502 −0.004

0.000
−1.502 (0.024) −1.501 −0.002

0.000−0,5 −0.000 (0.010) 0.000 0.000 0.001 (0.010) 0.000 0.001
−1,5 −1.501 (0.012) 1.501 0.001 1.499 (0.013) 1.500 −0.001

50%
−1,5 −1.504 (0.034) −1.502 −0.004

0.001
−1.501 (0.039) −1.500 −0.001

0.001−0,5 −0.002 (0.013) 0.000 0.002 0.000 (0.016) 0.000 0.000
−1,5 −1.499 (0.020) 1.500 −0.001 1.500 (0.019) 1.501 0.000

70%
−1,5 −1.514 (0.071) −1.502 −0.014

0.003
−1.504 (0.080) −1.498 −0.004

0.003−0,5 −0.003 (0.033) 0.000 0.003 −0.003 (0.023) −0.003 −0.003
−1,5 −1.494 (0.039) 1.501 −0.006 1.500 (0.036) 1.503 0.000
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(a) Scenario IIIa

(  )b Scenario IIIb

Figure 3: Boxplot of the estimated optimal cutpoints based on 500 simulated data sets, N = 500 sample

size, three theoretical cutpoints, monotonic increasing and non-monotonic relationship. Results are shown

for censoring rates of 20% and 70% and c-index and CPE discriminative ability estimators. From top to

bottom: (a) Monotonic increasing relationship (Scenario IIIa); (b) non-monotonic relationship (Scenario

IIIb). Theoretical cutpoints are represented with a dashed line.

4. Application to the Stable-COPD study

Chronic obstructive pulmonary disease (COPD) is one of the most common chronic

diseases, its prevalence is expected to increase over the next few decades (Buist et al.,

2008), and is a leading cause of death in developed countries. Patients being treated

for COPD at five outpatient respiratory clinics affiliated with the Hospital Galdakao-

Usansolo in Biscay were recruited in the Stable-COPD study (Esteban et al., 2014). Pa-

tients were consecutively included in the study if they had been diagnosed with COPD

for at least six months and had been receiving medical care at one of the hospital respi-

ratory outpatient facilities for at least six months. Their COPD had to be stable for six

weeks before enrolment. Patients were followed for up to five years. In total, informa-

tion for 543 patients was obtained of which the 96.13% were men, the mean age was
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of 68.32 and the 30.76% died in a 5-years period for which the mean survival time was

of 2.77 years. The main selected variables collected in this study included sociodemo-

graphic variables, forced expiratory volume in one second in percentage (FEV1%), body

mass index (BMI), dyspnea measured with the modified scale of the Medical Research

Council (mMRC, Fletcher et al. (1959)) and the walking distance among others. A brief

description of the main variables used in this paper is given in Table 5. One of the main

goals of this study was to develop prediction models for patients with stable COPD.

Table 5: A description of the selected variables from the Stable-COPD study (N = 543).

Variable Mean (sd) Range

Age 68.32 (8.32) 33 - 86

FEV1% 55 (13.31) 18 - 105

BMI 28.28 (4.43) 16.38 - 44.04

Time until event (days) 1574.89 (483.43) 23 - 2045

Walking distance 408.89 (92.43) 46 - 644

Sex‡ −Men 522 (96.13 %)

Dyspnoea‡

1 69 (12.71 %)

2 264 (48.62 %)

3 166 (30.57 %)

4 23 (4.24 %)

5 21 (3.87 %)

5-year mortality‡ −Yes 167 (30.76 %)

‡Categorical variables are shown as absolute and relative frequencies

Table 6: Airflow obstruction level measured by FEV1% based on the different cutpoints used in the litera-

ture to categorise the continuous FEV1% variable.

Criteria Mild Moderate Severe Very Severe

GOLD ≥ 80 [50−80) [30−50) < 30

BODE ≥ 65 [50−65) (35−50) ≤ 35

HADO > 65 [50−65] [35−50) < 35

ADO ≥ 65 (35−65) ≤ 35

DOSE ≥ 50 [30−50) < 30

COCOMICS ≥ 70 (55−70) (35−55] ≤ 35

An important predictor for COPD mortality or hospitalisation is FEV1%, which is

commonly used by clinicians to diagnose and measure the severity of the disease (Vestbo

et al., 2013). Recently, several scores have been proposed which include a categorised

version of FEV1% among the predictor variables. The most commonly used scores are

the original BODE index (Celli et al., 2004), HADO index (Esteban et al., 2006), ADO

index (Puhan et al., 2009), and DOSE (Jones et al., 2009). Although all prediction

scores are based on prediction models which use a categorised version of the predictor

variable FEV1%, not all of them use the same cutpoints (see Table 6). To date, the most
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widely-used cutpoints are the ones proposed by the Global Obstructive Lung Disease

(GOLD) guidelines (mild ≥ 80, moderate 50-79, severe 30-49 and very severe < 30,

Rabe et al. (2007)). More recently, Almagro et al. (2014) have proposed a new cate-

gorisation of FEV1% to predict five-year survival in COPD patients. This research was

framed within the Collaborative Cohorts to Assess Multicomponent Indices of COPD

in Spain (COCOMICS) study.

Hence, and taking all this into account, three factors motivated us to look for the

best categorisation of the variable FEV1% as part of the development of the prediction

survival model in the Stable-COPD study. First of all, this variable is an important

predictor of survival in COPD patients. Since other prediction models and especially

clinical guidelines use a categorised version of this variable, the clinicians involved in

the study considered it was necessary to include a categorised version of this variable in

the prediction model. Second, recent research shows the importance of seeking optimal

cutpoints for this variable (Almagro et al., 2014). Third, as indicated above, to date there

are no unified criteria on how to categorise the variable FEV1%.

We looked for the best categorisation of the predictor variable FEV1% in a multi-

variate setting, taking into account the effect of age and dyspnoea, which are seen as

important predictors for the severity of patients with stable COPD (Bestall et al., 1999).

In fact, these variables together with a categorisation of FEV1% are the ones used in the

ADO index (Puhan et al., 2009), which turned out to be the best multivariate score to

predict 5-year mortality based on the c-index (Marin et al., 2013). The censoring rate

in our data set was 66.6%. Considering the results obtained in the simulation study,

the c-index concordance probability estimator was used to select the optimal cutpoints

since it appeared to perform better under this scenario. To select the optimal number of

cutpoints we considered the bootstrap confidence interval for the bias-corrected c-index

using B = 200 bootstrap replicates. In this data set, the proportional hazards assumption

was verified (Grambsch and Therneau, 1994).

In a first stage we looked for k = 3 cutpoints and compared them with k = 2 cut-

points, which are also the number of cutpoints used in the categorisation of FEV1% in

the ADO index. Using the c-index estimator and the Genetic algorithm we obtained that

the optimal cutpoints were (29.32,50.69) and (29.90,49.95,50.54) when we looked for

k = 2 and k = 3 number of cutpoints, respectively. In this case, the optimal cutpoints

obtained when the CPE was used as the concordance probability estimator were almost

the same, being (29.79,50.63) for k = 2 and (29.69,49.37,50.82) for k = 3. When we

compared k = 2 versus k = 3 number of cutpoints, we obtained a 95% bootstrap CI

(−0.005,0.015) for the difference bias-corrected c-index. Consequently, the optimal

number of cutpoints considering the multivariate setting would be k = 2, resulting in

mild-moderate (> 50%), severe ([30%− 50%]) and very severe (< 30%) categories.

Note that the estimated cutpoints matched up with those used in the DOSE index (Jones

et al., 2009) and those proposed in the GOLD guidelines (Rabe et al., 2007). The esti-

mated cutpoint which separated the categories severe from very severe, differed slightly

from the one used in the BODE, HADO and ADO indexes i.e., 35, which was iden-
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tified by the American Thoracic Society (Celli et al., 2004). For illustration purposes,

we would like to indicate that the bias corrected c-index for the ADO categorisation

proposal was 0.701, lower than the 0.717 obtained using our approach.

5. Discussion

Categorisation of a continuous predictor variable is a commonly used strategy in biomed-

ical research (Turner et al., 2010), where decisions are usually based on the risk classi-

fication of patients. To the best of our knowledge, up to now, no approaches have been

proposed in the literature for the categorisation of a continuous predictor variable in a

multiple Cox proportional hazards regression model. In this paper, we have proposed

and validated by means of simulations a methodology to categorise a continuous pre-

dictor variable by maximising the concordance probability of the final model for the

categorised variable.

Although the objective is different, several methods have been proposed in the lit-

erature to select optimal cutpoints (a unique cutpoint) for the prognosis of a disease

(Faraggi and Simon, 1996; Sima and Gönen, 2013). In that context, the aim is to se-

lect the best cutpoint to dichotomise a variable and classify individuals as diseased or

disease-free based on that cutpoint. Sima and Gönen (2013) proposed the maximal

discrimination as a method to dichotomise a continuous predictor. They compared the

maximisation of the discrimination indexes CPE and c-index together with the maximi-

sation of the log-rank, Wald and partial likelihood ratio statistics for the location of one

optimal cutpoint.

Our proposal is different to Sima and Gönen’s proposal in one main aspect. Our goal

is to categorise a continuous predictor variable to be used in a Cox proportional haz-

ards regression model, considering any possible number of cutpoints. In fact, the most

common scores used to predict mortality in COPD patients, such as BODE or ADO,

use categorised versions (with more than two categories) of continuous predictors (Celli

et al., 2004; Puhan et al., 2009). Furthermore, the methodology that we propose con-

siders the effect that other predictor or confounding variables may have on the selection

of the optimal cutpoints. Finally, our proposal allows to select the optimal number of

cutpoints to categorise the predictor variable using a bootstrap confidence interval for

the difference of the bias-corrected concordance probability estimators.

This proposal is an extension of the methodology proposed by Barrio et al. (2016)

for the logistic regression setting. However, in time-to-event studies different estimators

of the concordance probability have been proposed. In this paper we have studied and

compared the performance of two estimators: the c-index and the CPE, in order to

evaluate their performance in the categorisation of a continuous predictor variable in a

Cox proportional hazards regression model.
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The finite sample performance of the concordance probability estimators considered,

i.e., c-index and CPE, was investigated through simulations. Results indicate that both

concordance probability estimators performed satisfactorily in a multiple Cox regression

model for any number of cutpoints and low-moderate censoring rates (≤ 50%). When

the censoring rate considered was high (> 70%), the c-index appeared to outperform

the CPE in all the scenarios considered. Additionally, the simulation results for three

cutpoints showed that optimal cutpoints can be obtained regardless of the relationship of

the latent continuous variable and the outcome. However, when we looked for a unique

cutpoint in a univariate Cox proportional hazards regression model, results differed de-

pending on the location of the theoretical cutpoint (results shown in the Supplementary

Material). In fact, we observe that for a unique and not centred cutpoint, neither CPE

nor c-index performed satisfactorily. Depending on whether the theoretical cutpoint

was positively or negatively migrated from the centre of the distribution, smaller bias

and MSE values were obtained for CPE or c-index. We must take into a account that

when a univariate model is considered and the predictor variable takes only two possi-

ble values, there are many ties on the estimated survival probabilities and hence it may

have an impact on the estimated concordance probability. Consequently, based on the

simulation results obtained, we give the following recommendations for use in practice.

For low-moderate censoring rates (≤ 50%), either the c-index or the CPE can be used as

maximisation criteria to obtain optimal cutpoints. However, for high censoring rates we

recommend the c-index as the concordance probability estimator to maximise. Finally,

we do not recommend the use of this proposal for dichotomisation in a univariate model.

Although we tried to evaluate many different scenarios, we could not address all pos-

sible real world settings and hence the conclusions we got can be extended only to those

situations that were defined in the simulation study. In the scenarios we simulated we

considered true optimal cutpoints in order to be able to compare the estimated cutpoints

with those theoretical ones. Nevertheless, in practice neither the location or the number

of cutpoints are known. We are aware that in theory the optimal number of cutpoints for

the categorisation of a continuous variable does not exist, since above all the possible

number of cutpoints, the best option would be the continuous variable. However, in

clinical practice categorical versions of the continuous variables can be preferred with-

out it always being clear which is the best number of categories to be used. For those

situations we provided a proposal to decide among different number of cutpoints based

on the bootstrap confidence interval (Barrio et al., 2016) which has been extended to the

Cox proportional hazards regression model (see Supplementary Material). Although

further research is needed to provide accurate methods for the selection of the optimal

number of cutpoints, the results suggest that, when using the c-index, the number of cut-

points can be selected based on the bootstrap CI for the difference of the bias corrected

estimated concordance probability.

In this paper we have not considered time-dependent discriminative ability measures

as a parameter for selecting optimal cutpoints. Note that the concordance probability

index is a global measure that does not take into account the time at which the prediction
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of the event is desired. This implies that the optimal cutpoints are considered to be the

same whatever the time of interest is. However, this may not be necessarily true. To

overcome this problem, we are currently working on the application of time-dependent

discrimination measures (Heagerty and Zheng, 2005; Pepe et al., 2008) in the search for

time-dependent optimal cutpoints.

When we applied the proposed methodology to the Stable-COPD study, we saw

that the cutpoints obtained to categorise the predictor variable FEV1% corresponded to

cutpoints previously used in the literature, obtaining clinically valid optimal cutpoints.

To summarise, we have compared the performance of two concordance probability

estimators as the maximisation criteria to obtain optimal cutpoints to categorise contin-

uous predictor variables in a Cox proportional hazards regression model. By means of

simulations we have seen that the methodology proposed for categorising continuous

predictors in a Cox proportional hazards regression model provides the optimal location

and number of the cutpoints. Additionally, we have implemented this methodology into

an R function which leads to easy use of this methodology in practice.
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