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Preliminary test and Stein-type shrinkage
LASSO-based estimators

M. Norouzirad and M. Arashi∗

Abstract

Suppose the regression vector-parameter is subjected to lie in a subspace hypothesis in a linear
regression model. In situations where the use of least absolute and shrinkage selection opera-
tor (LASSO) is desired, we propose a restricted LASSO estimator. To improve its performance,
LASSO-type shrinkage estimators are also developed and their asymptotic performance is stud-
ied. For numerical analysis, we used relative efficiency and mean prediction error to compare the
estimators which resulted in the shrinkage estimators to have better performance compared to
the LASSO.
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Keywords: Double shrinking, LASSO, preliminary test LASSO, restricted LASSO, Stein-type shrink-
age LASSO.

1. Introduction

Consider the linear regression model with form

Y = Xβββ+ εεε, (1)

where Y = (y1, . . . ,yn)
T is a vector of responses, X is an n× p non-stochastic design

matrix, βββ = (β1, . . . ,βp)
T is an unknown vector of parameters, εεε = (ε1, . . . , εn)

T is the
vector of random errors, with E(εεεn) = 0 and E(εεεnεεε

T
n) = σ2In(σ2 < ∞), In the identity

matrix of order n.
In general, the main goal of the linear regression model (1) is the estimation of pa-

rameters and prediction of response for a given design matrix. The estimation problem is
usually solved through the ordinary least squares (OLS) method. Provided Cn = X

TX is
well-conditioned, we use the OLS estimator given by β̃ββn = C

−1
n X

TY. The corresponding
estimator of σ2 is s2e = (Y−Xβ̃ββn)T(Y−Xβ̃ββn)/m, m= n− p.
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Assume the following regularity conditions:

A1: max1≤i≤n xT
iC

−1
n xi → 0 as n→ ∞ where xT

i is the ith row of design matrix X.

A2: limn→∞ n−1Cn = C, where C is finite and positive-definite matrix.
Then, asymptotically β̃ββn ∼ Np(βββ,σ

2C−1), which is independent of (ms2e)/σ2 ∼ χ2m
(asymptotically).

Now, suppose that we are provided with some prior information about the whole or
subset of covariates. This prior information can be utilized to improve the overall esti-
mation of the regression coefficients using shrinkage estimation (Ahmed and Raheem,
2012).
There are many notable studies incorporating prior information, in the form of re-

strictions, to improve estimation in the sense that the restricted and shrinkage estimators
have lesser risk and prediction error values.
Saleh (2006) gives extensive overviews on preliminary test and shrinkage estima-

tors using the OLS, ridge and maximum likelihood (ML) estimators as starting points.
Fallahpour et al. (2012) developed shrinkage estimators by using the weighted semi-
parametric OLS estimator. Hossain and Ahmed (2014) start by maximum partial likeli-
hood estimator and propose shrinkage and positive shrinkage estimators, while Roozbeh
(2015, 2016) develops shrinkage estimators in a ridge regression. Other related studies
include Hossain et al. (2015), Hossain and Howlader (2016), Hossain et al. (2016),
Yuzbasi and Ahmed (2016) and Yuzbasi et al. (2017), to mention a few.
However, in this study, we have different concerns. As a prelude, Tibshirani (1996)

proposed a new method for variable selection that produces an accurate, stable, and
parsimonious model, called least absolute shrinkage and selection operator (LASSO)
that is obtained by

β̂ββ
L
n = argmin

βββ

⎧⎪⎨
⎪⎩

n∑
i=1

⎛
⎝yi− p∑

j=1

β jxi j

⎞
⎠
2

+λn

p∑
j=1

|β j|

⎫⎪⎬
⎪⎭ , λn ≥ 0, (2)

where λn is the tuning parameter, controlling the level of sparsity in β̂ββ
L
.

Now, the questions are as follows:

1. How can we build the theory if we start with the LASSO instead of using the
OLS/ML estimator?

2. What will the form of shrinkage estimators be under restriction, when LASSO is
used as the starting point?

3. Is it possible to derive asymptotic properties of the preliminary test and shrinkage
estimators based on the LASSO?
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In this paper, we cover the above issues. Hence, we organize the paper as follows:
In Section 2, the restricted LASSO estimator is defined for inference under restriction
and the concept of double shrinking is introduced (covering questions 1 and 2 above).
Section 3 contains the asymptotic distributions of the proposed estimators (covering
question 3 above). An extensive numerical study is carried out in Section 4 and we
conclude our study in Section 5.

2. Restricted LASSO and double shrinking

The LASSO estimator has been denoted as β̂ββ
L
n and termed as unrestricted LASSO esti-

mator (ULE). Now, suppose that some non-sample information (a priori restriction on
the parameters) about the covariates is available. A set of q linear restrictions on the
vector βββ can be written as Hβββ = h. Or, we can suppose that our model is subjected to
lie in the linear subspace restriction,

Hβββ = h, (3)

whereH is a q× p (q≤ p)matrix of known elements, and h is a q vector of known com-
ponents. The rank ofH is q, which implies that the restrictions are linearly independent.
This restriction may be (i) a fact known from theoretical or experimental considerations,
(ii) a hypothesis that may have to be tested or (iii) an artificially imposed condition to
reduce or eliminate redundancy in the description of model (Sengupta and Jammala-
madaka, 2003).
Our proposal is to consider the following estimator as the restricted LASSO estima-

tor (RLE),

β̂ββ
RL
n = β̂ββ

L
n −C−1

n H
T(HC−1

n H
T)−1(Hβ̂ββ

L
n −h). (4)

The above closed form RLE cannot be achieved via routine optimization techniques.
Indeed, we proposed it by the analogy of OLS estimator of βββ subject to the restriction
Hβββ = h.
When (3) is satisfied, β̂ββ

RL
n has smaller asymptotic risk than β̂ββ

L
n . However, for Hβββ �=

h, β̂ββ
RL
n may be biased and inconsistent in many cases. Now, how can we decide on ULE

or RLE, since we do not knowwhether the restriction holds? To solve this, it is plausible
to follow Fisher’s recipe and define the preliminary test LASSO estimator (PTLE) by

taking β̂ββ
L
n or β̂ββ

RL
n according to the acceptance or rejection of the null hypothesis, Ho :

Hβββ = h.
This estimator will have the form

β̂ββ
PTL
n = β̂ββ

L
n − (β̂ββ

L
n − β̂ββ

RL
n )I(Ln ≤ Ln,α), (5)
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whereLn,α is the upper α-level critical value of the exact distribution of the test statistic
Ln underHo. We will propose a relevant test statistic later in Section 3.
The PTLE is highly dependent on the level of significance α and has discrete nature

which is simplified to one of the extremes β̂ββ
L
n or β̂ββ

RL
n according to the output of the

test. In this respect, making use of a continuous and α-free estimator may make more
sense. Now, we propose a double shrinking idea which reflects a relevant estimator. It is
well-known that the LASSO estimator shrinks coefficients toward the origin. However,
when the restriction Hβββ = h is subjected to the model, it is of major importance that the
estimator be shrunken toward the restricted one as well. Hence, there must be shrinking
toward two directions or double shrinking concept, say. Consequently, we combine the
idea of James and Stein (1961) shrinkage and LASSO to propose the following Stein-
type shrinkage LASSO estimator (SSLE)

β̂ββ
SSL
n = β̂ββ

L
n − kn(β̂ββ

L
n − β̂ββ

RL
n )L −1

n , kn =
m(q−2)
m+2

, (6)

where kn is the shrinkage constant.

The estimator β̂ββ
SSL
n may go past the estimator β̂ββ

RL
n . So, we define the positive-rule

Stein-type shrinkage LASSO estimator (PRSSLE) given by

β̂ββ
PRSSL
n = β̂ββ

RL
n +(1− knL

−1
n )I(Ln > kn)(β̂ββ

L
n− β̂ββ

RL
n ),

= β̂ββ
SSL
n − (1− knL

−1
n )I(Ln ≤ kn)(β̂ββ

L
n − β̂ββ

RL
n ). (7)

We note that, as the test based on Ln is consistent against fixed βββ such that Hβββ �=
h, the PTLE, SSLE and PRSSLE are asymptotically equivalent to the ULE for fixed
alternative. Hence, we will investigate the asymptotic risks under local alternatives and
compare the performance of the estimators.

3. Some asymptotic results

For the purpose of this section, we consider the class of local alternatives,K(n) defined
by

K(n) :Hβββ = h+n−
1
2 ξξξ, ξξξ = (ξ1, . . . ,ξq)

T ∈ R
q.

Let β̂ββ
∗
n be any estimator of βββ. We define the asymptotic cumulative distribution function

(c.d.f.) of β̂ββ
∗
n, underK(n), as

Gp(x) = lim
n→∞

PK(n)

{√
ns−1e (β̂ββ

∗
n−βββ)≤ x

}
.
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If the asymptotic c.d.f. exists, then the asymptotic distributional bias (ADB) and quadratic
bias (ADQB) are given by

b(β̂ββ
∗
n) = lim

n→∞
E
[√

n(β̂ββ
∗
n−βββ)

]
=

∫
xdGp(x),

B(β̂ββ
∗
n) = σ−2[b(β̂ββ

∗
n)]

TC[b(β̂ββ
∗
n)],

respectively, where σ2C−1 is the mean squared error (MSE)-matrix of β̃ββn as n → ∞.
Defining

M(β̂ββ
∗
n) =

∫
xxTdGp(x) = lim

n→∞
E
[
n(β̂ββ

∗
n−βββ)(β̂ββ

∗
n−βββ)T

]
,

as the asymptotic distributional MSE (ADMSE), we have the weighted risk of β̂ββ
∗
n given

by
R(β̂ββ

∗
n) = tr[M(β̂ββ

∗
n)] = lim

n→∞
E[n(β̂ββ

∗
n−βββ)T(β̂ββ

∗
n−βββ)]

as the asymptotic distributional quadratic risk (ADQR).
Suppose the LASSO is weakly consistent, i.e., λn = o(n1/2). Up to this point, we

implemented a test statistic based on the OLS estimator, however, constructing a test
based on the LASSO estimator will give the same asymptotic behaviour under weak
consistency. A test statistic based on the ULE will have form

Ln =
(Hβ̂ββ

L
n −h)T(HC−1

n H
T)−1(Hβ̂ββ

L
n −h)

s2L
, (8)

where

s2L =
1
m
(Y−Xβ̂ββLn)T(Y−Xβ̂ββLn) (9)

Using Theorem 2 of Knight and Fu (2000), Theorem 7.8.2.3 of Saleh (2006), and√
n-consistency, we have the following important result.

Theorem 1 Under the assumptions of Theorem 2 and λn = o(n1/2), we have

(i) W (1)
n =

√
n(β̂ββ

L
n −βββ)

D
=W =

√
n(β̃ββn−βββ).

(ii) W (2)
n =

√
n(β̂ββ

RL
n − βββ)

D→ Np(−δδδ,σ2A) where δδδ = C−1HT(HC−1HT)−1ξξξ and A =
C−1−C−1HT(HC−1HT)−1HC−1.

(iii) W (3)
n =

√
n(β̂ββ

L
n − β̂ββ

RL
n )

D→ Np(δ,σ
2(C−1−A)).

(iv) W (4)
n =Hβ̂ββ

L
n −h D→ Nq(Hβββ−h,σ2(HC−1HT)).

(v)

[
W (1)
n

W (3)
n

]
D→ N2p

([
0

δδδ

]
,σ2

[
C−1 C−1−A

C−1−A C−1−A
])

.
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(vi)

[
W (2)
n

W (3)
n

]
D→ N2p

([
δδδ

−δδδ

]
,σ2

[
A 0

0 C−1−A
])

.

(vii)

[
W (1)
n

W (4)
n

]
D→ Np+q

([
0

Hβββ−h
]
,σ2

[
C−1 C−1HT

HC−1 HC−1HT

])
.

(viii)
√
n(β̂ββ

SSL
n −βββ)

D
=W− k

{
C−1HT(HC−1HT)−1(HW+ ξξξ)

σ−2(HW+ ξξξ)T (HC−1HT)−1(HW+ ξξξ)

}
.

(ix)
√
n(β̂ββ

PRSSL
n −βββ)

D
= W− k

{
C−1HT(HC−1HT)−1(HW+ ξξξ)

σ−2(HW+ ξξξ)T(HC−1HT)−1(HW+ ξξξ)

}

+C−1HT(HC−1HT)−1(HW+ ξξξ)

×
{
1− k

σ−2(HW+ ξξξ)T(HC−1HT)−1(HW+ ξξξ)

}

×I(L < k).

whereW D→ Np(0,σ
2C−1).

Based on the part (a) of Theorem 1, the distribution of the test statistics is obtained
by Theorem 2.

Theorem 2 Under the foregoing regularity conditions and local alternatives K(n), if
the LASSO satisfies the weakly consistent condition, i.e., λn = o(n1/2), the test statis-
tics Ln defined in Eq. 8 converges in distribution to L , which has the non cen-
tral chi-square distribution with q degrees of freedom, non centrally parameter Δ2 =
σ−2ξξξT

(HC−1HT)−1ξξξ = σ−2δδδTCδδδ where δδδ = C−1HT(HC−1HT)−1ξξξ, and

L =
(HW+ ξξξ)T(HC−1HT)−1(HW+ ξξξ)

σ2
.

Proof. Rewrite the numerator of test statistics in Eq. (8) as

(
H
(√

n(β̂ββ
L
n −βββ)

)
+
√
n(Hβββ−h)

)T(
H(nC−1

n )HT
)−1

×
(
H
(√

n(β̂ββ
L
n −βββ)

)
+
√
n(Hβββ−h)

)
(10)

Using part (i) of Theorem 1,
√
n
(
β̂ββ
L
n −βββ

)
has the same asymptotic distribution as W.

Hence, under K(n) and the regularity condition A2, Eq. (10) has the same distribution
as

(HW+ ξξξ)
T(HC−1HT

)−1
(HW+ ξξξ) (11)

On the other hand, by (i) of Theorem 1, it is obvious that s2L → σ2. Using this fact
together with Eq. (11), the result follows by Slutsky’s theorem.



M. Norouzirad and M. Arashi 51

The results of Theorems 1 and 2 can be used to derive ADB, ADQB, and ADQR.
To verify the consistency of the estimators, we have the following theorem and sub-

sequent remarks.

Theorem 3 Under the foregoing regularity conditions and local alternatives K(n), we
have the following as n→ ∞,

(i) β̂ββ
RL
n

P→ argmin(Z)−C−1HT(HC−1HT)−1(Hargmin(Z)−h).
(ii) β̂ββ

L
n − β̂ββ

RL
n

P→ C−1HT(HC−1HT)−1(Hargmin(Z)−h).
(iii) β̂ββ

PTL
n

P→ argmin(Z)−C−1HT(HC−1HT)−1(Hargmin(Z)−h)I(L < Lα).

(iv) β̂ββ
SSL
n

D→ argmin(Z)− kC−1HT(HC−1HT)−1(Hargmin(Z)−h)L −1.

(v) β̂ββ
PRSSL
n

D→ argmin(Z)− (kL−1+(1− kL−1)I(L ≤ k))C−1HT(HC−1HT)−1

×(Hargmin(Z)−h).

where Lα is the upper critical value of chi-squared distribution with q d.f., k = q− 2,
and Z(φφφ) = (φ−βββ)TC(φ−βββ)+λ0

∑p
j=1 |φ j|.

Proof. According to Theorem 2 of Knight and Fu (2000), if C is a nonsingular matrix

and λn/n→ λ0 ≥ 0, then β̂ββLn D→ argmin(Z). To prove (i), by Slutsky’s theorem, Eq. (4),
and regularity condition (A2), we have

β̂ββ
L
n −C−1

n H
T(HC−1

n H
T)−1(Hβ̂ββ

L
n −h) P→ argmin(Z)−C−1HT(HC−1HT)−1

×(Hargmin(Z)−h).

(ii) By Eq. (4), we have β̂ββ
L
n − β̂ββ

RL
n = CnH

T(HC−1
n H

T)−1(Hβ̂ββ
L
n − h), which converges

to C−1HT(HC−1HT)−1(Hargmin(Z)−h). the result follows by Slutsky’s theorem and

regularity condition (A2). (iv) From Theorem 2, I(Ln ≤ Ln,α)
D→ I(L ≤Lα). Making

use of Eq. (5), (iii), and Slutsky’s theorem, we have

β̂ββ
PTL
n

P→ argmin(Z)−C−1HT(HC−1HT)−1(Hargmin(Z)−h)I(L < Lα)

To prove (iv) and (v), since kn → k = q−2, the result is obvious using Eq. (6), (iii), and
Slutsky’s theorem.

Similar results as in Theorem 3 can be obtained using Theorem 2 of Knight and Fu
(2000).

Remark 1 Under the assumptions of Theorem 3 and λn = o(n), we have the following
results,
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(i) β̂ββ
RL
n

P→ βββ− δδδ; δδδ = C−1HT(HC−1HT)−1(Hβββ−h).

(ii) β̂ββ
PTL
n

P→ βββ− δδδI(L < Lα).

(iii) β̂ββ
SSL
n

P→ βββ− δδδL −1.

(iv) β̂ββ
PRSSL
n

P→ βββ−{
kL −1+(1− kL−1)I(L < k)

}
δδδ.

Remark 2 UnderH0, all estimators are consistent for βββ.

4. Numerical analysis

In this section, we evaluate performance of the proposed estimators using a simulation
study along with a real example.

4.1. Simulation

In this section, we conduct a Monte Carlo simulation to analyse relative efficiencies with

respect to different levels of sparsity. In particular, we use RE(β̂ββ∗; β̂ββ
L
) = R(β̂ββ

L
)/R(β̂ββ

∗
),

where β̂ββ
∗
is one of the proposed estimators in this paper.

We generate a matrix X from a multivariate normal distribution with mean vector
μμμ = 0 and covariance matrix Σ. The off-diagonal elements of the covariance matrix
are considered to be equal to r with r = 0,0.2,0.9. We consider n = 100 and various p
ranging 10, 15, and 20.
One of the most applicable H and h is to select variables. Sometimes, an expert

claims that some variables do not affect regression model. If we suppose βββ = (βββ
T

1,βββ
T

2)
T,

then βββ2 = 0 is equivalent to the variables that may be ignored for predicting model.
Let us consider βββ =

(
βββ

T

1,βββ
T

2

)T
=
(
1T
p−q,0

T
q

)T
, where 1p−q and 0q stand for the vectors

of 1 and 0 with dimensions p− q and q, respectively. In order to investigate the be-
haviour of the proposed estimators, we define Δ∗ = ‖βββ−βββ0‖, where βββ0 =

(
1T
p−q,0

T
q

)T

and ‖·‖ is the Euclidean norm. If Δ∗ = 0, then βββ = βββ0 while βββ = (1T
p−q,Δ

T)T when
Δ∗ > 0, where Δ = (Δ, . . . ,Δ)T is the q-dimensional vector of Δ values. When we in-
crease the number of Δ∗, it indicates the degree of violation of the null hypothesis.
In our simulation study, without loss of generality, we assume βββ is a p-vector in

which the first s components of βββ are 1 and other (p− s) components are zero. The
responses were simulated from the following model:

yi =
p∑
i=1

xiβi+ ei, ei ∼ N (0,1)
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Each realization was repeated 1000 times to obtain risk of the estimated regression pa-
rameters. Thus, risks are calculated for the ULE, RLE, PTLE, SSLE and PRSSLE. The
results are tabulated in Tables 1-3.
The findings of Tables 1-3 may be summarized as:

a) When the null hypothesis is true (Δ2 = 0), RLE behaves better than other esti-
mator. As we depart from the null hypothesis, the performance of this estimator
decreases.

b) For large Δ2, the performance of estimators decreases; even, when the correlation
is low, the unrestricted LASSO performs better.

c) Neither PTLE nor Stein-type shrinkage LASSO estimator dominates each other.

d) The positive rule Stein-type shrinkage LASSO uniformly dominates Stein-type
LASSO estimator.

e) It is well - known that shrinkage and positive-rule shrinkage estimators are always
better than unrestricted estimator. Here, the results confirm that also.

Table 1: Relative efficiencies (standard errors) of the estimators for fixed Δ2, r = 0, s = 6 different values
of p.

ULE RLE PTLE SSLE PRSSLE

p Δ2 = 0

10 1 (0.003) 1.63 (0.011) 1.52 (0.011) 1.23 (0.008) 1.35 (0.009)
15 1 (0.002) 2.32 (0.013) 2.19 (0.013) 1.75 (0.007) 2.05 (0.010)
20 1 (0.001) 3.51 (0.007) 2.98 (0.007) 2.44 (0.004) 2.99 (0.006)

p Δ2 = 0.1

10 1 (0.001) 1.57 (0.003) 1.46 (0.003) 1.21 (0.003) 1.32 (0.003)
15 1 (0.001) 2.18 (0.007) 2.02 (0.007) 1.66 (0.005) 1.95 (0.006)
20 1 (0.001) 3.48 (0.015) 2.92 (0.015) 2.40 (0.008) 2.98 (0.011)

p Δ2 = 0.5

10 1 (0.001) 0.85 (0.000) 0.86 (0.001) 1.05 (0.001) 1.07 (0.001)
15 1 (0.002) 1.57 (0.002) 1.42 (0.003) 1.37 (0.003) 1.54 (0.003)
20 1 (0.001) 2.86 (0.004) 2.34 (0.004) 2.19 (0.004) 2.58 (0.004)

p Δ2 = 1

10 1 (0.001) 0.36 (0.000) 0.90 (0.001) 1.00 (0.001) 1.00 (0.001)
15 1 (0.000) 0.82 (0.000) 0.86 (0.000) 1.12 (0.000) 1.14 (0.000)
20 1 (0.003) 1.81 (0.002) 1.43 (0.004) 1.81 (0.005) 1.90 (0.005)

p Δ2 = 5

10 1 (0.001) 0.02 (0.007) 1.00 (0.007) 0.94 (0.004) 0.94 (0.006)
15 1 (0.001) 0.06 (0.000) 1.00 (0.000) 0.98 (0.000) 0.98 (0.000)
20 1 (0.001) 0.13 (0.000) 1.00 (0.001) 1.00 (0.001) 1.00 (0.001)
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Table 2: Relative efficiencies (standard errors) of the estimators for fixed Δ2, r= 0.2, s= 6 different values
of p.

ULE RLE PTLE SSLE PRSSLE

p Δ2 = 0

10 1 (0.003) 1.95 (0.014) 1.71 (0.014) 1.34 (0.008) 1.44 (0.011)
15 1 (0.002) 2.70 (0.015) 2.37 (0.016) 1.90 (0.012) 2.28 (0.014)
20 1 (0.000) 4.77 (0.010) 3.55 (0.009) 2.98 (0.006) 3.63 (0.008)

p Δ2 = 0.1

10 1 (0.001) 1.93 (0.004) 1.61 (0.004) 1.33 (0.002) 1.40 (0.003)
15 1 (0.001) 2.69 (0.009) 2.30 (0.010) 1.92 (0.006) 2.21 (0.008)
20 1 (0.001) 4.72 (0.010) 3.39 (0.009) 2.96 (0.006) 3.62 (0.008)

p Δ2 = 0.5

10 1 (0.001) 0.97 (0.000) 0.91 (0.001) 1.17 (0.002) 1.17 (0.002)
15 1 (0.002) 1.87 (0.003) 1.30 (0.004) 1.70 (0.004) 1.74 (0.004)
20 1 (0.001) 3.74 (0.005) 1.93 (0.006) 2.75 (0.005) 2.91 (0.005)

p Δ2 = 1

10 1 (0.001) 0.37 (0.000) 0.99 (0.001) 1.08 (0.001) 1.08 (0.001)
15 1 (0.000) 0.85 (0.000) 0.97 (0.000) 1.37 (0.000) 1.37 (0.000)
20 1 (0.003) 1.85 (0.000) 1.07 (0.003) 2.10 (0.007) 2.10 (0.007)

p Δ2 = 5

10 1 (0.001) 0.01 (0.001) 1.00 (0.001) 0.99 (0.001) 0.99 (0.001)
15 1 (0.001) 0.04 (0.000) 1.00 (0.000) 1.02 (0.001) 1.02 (0.001)
20 1 (0.001) 0.85 (0.000) 1.00 (0.001) 1.13 (0.001) 1.13 (0.001)

The linear regression model is fitted to this dataset in order to predict the response
variable. The LASSO of Tibshirani (1996) (the UL in our study), restricted LASSO
(RL), preliminary test LASSO (PTL), Stein-type shrinkage LASSO (SSL), and positive
rule Stein-type shrinkage (PRSSL) estimators are used to estimate the unknown regres-
sion coefficients.
Since one of the biggest problems in estimation is to determineH and h, we suppose

that H = I7. This choice is just for simplicity and also to avoid errors obtained by
incorrect selection of parameters.
In order to show the impact of correctness or incorrectness of hypothesis, we con-

sider the following two cases:

Case I. Let h= (0,0,10,0.2,0.7,0.06,0)T. The null hypothesis changes intoHo : βββ = h
and thus, the variables POPULATION, INCOME, and AREA are insignificant.

Case II. Let h = (0,0,0,0,0,0,0)T. The null hypothesis changes into Ho : βββ = 0 and
thus, all variables are insignificant.
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Table 3: Relative efficiencies (standard errors) of the estimators for fixed Δ2, r= 0.9, s= 6 different values
of p.

ULE RLE PTLE SSLE PRSSLE

p Δ2 = 0

10 1 (0.002) 6.76 (0.051) 3.34 (0.052) 1.86 (0.019) 1.86 (0.019)
15 1 (0.001) 8.46 (0.006) 5.76 (0.061) 4.28 (0.036) 4.68 (0.042)
20 1 (0.000) 14.74 (0.064) 14.48 (0.064) 6.13 (0.065) 11.31 (0.057)

p Δ2 = 0.1

10 1 (0.001) 6.35 (0.062) 2.95 (0.017) 1.81 (0.004) 1.82 (0.004)
15 1 (0.001) 8.31 (0.004) 5.77 (0.041) 4.28 (0.024) 4.68 (0.031)
20 1 (0.001) 14.11 (0.085) 12.56 (0.085) 5.96 (0.052) 10.68 (0.082)

p Δ2 = 0.5

10 1 (0.001) 3.28 (0.003) 1.39 (0.005) 1.69 (0.005) 1.69 (0.005)
15 1 (0.002) 5.41 (0.017) 2.71 (0.020) 3.85 (0.028) 3.92 (0.028)
20 1 (0.001) 10.40 (0.020) 7.10 (0.021) 6.77 (0.032) 8.68 (0.031)

p Δ2 = 1

10 1 (0.002) 1.18 (0.000) 0.96 (0.001) 1.55 (0.005) 1.55 (0.005)
15 1 (0.000) 2.50 (0.000) 1.26 (0.001) 3.14 (0.003) 3.14 (0.003)
20 1 (0.002) 5.28 (0.012) 2.57 (0.019) 5.33 (0.053) 6.58 (0.053)

p Δ2 = 5

10 1 (0.005) 0.02 (0.000) 1.00 (0.005) 0.87 (0.004) 0.87 (0.004)
15 1 (0.002) 0.06 (0.000) 1.00 (0.002) 1.58 (0.004) 1.58 (0.004)
20 1 (0.001) 0.19 (0.000) 1.00 (0.001) 2.68 (0.006) 2.68 (0.006)

Table 4: Description of the variables of state.x77.

Variables Description Role

LifeExp Average years of life expectancy at birth Response
Population in thousands Predictor
Income dollars per capita Independent
Illiteracy Percentage of those unable to read and write Independent
Murder number of murders and non-negligent manslaughters per 100000 people Independent
HS Grad percentage of adults who were high-school graduates Independent
Frost mean number of days per year with low temperatures below freezing Independent
Area in square miles Independent

4.2. Real data

In this section, we study the performance of proposed LASSO-based shrinkage estima-
tors using state.x77 dataset (available by default in R software). Descriptions of the
variables in this dataset are given in Table 4.
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Table 5: 5-fold cross validation relative average prediction errors for state data.

RLE PTLE SSLE PRSSLE
0.01 0.05 0.10

Case I 22.2615 1.0009 1.0004 1.0004 1.0200 1.0208
Case II 1.0017 1.0000 1.0000 1.0000 1.0000 1.0008

The performance of the estimators are evaluated using average five-fold cross val-
idation error. By choosing 1000 as a large enough number for repeating process in a
bootstrap simulation scheme, Table 5 shows the relative average prediction errors in the
two cases.
Based on Table 5, RLE is the best estimator because the hypothesisHβββ = h is nearly

true, but PRSSLE has lower prediction error than other estimators in case I. This estima-
tor is followed by SSLE. Indeed, by departing from the null hypothesis, these estimators
will behave similar to the LASSO in case II. If the level of significance α for construct-
ing PTLE increases, then the prediction error decreases.

5. Conclusion

In this paper, we proposed improved LASSO-based estimators by imposing a subspace
restriction to the linear regression model. Particularly, we introduced preliminary-test
LASSO, Stein-type shrinkage LASSO, and positive-rule shrinkage LASSO estimators.
Asymptotic performance of the proposed estimators studied in case n> p. The proposed
methodology for improving the LASSO can also be applied to the high-dimensional case
p> n. Indeed the test statistic forHo :Hβββ = h plays a determining role.
In addition to the given theorems for the asymptotic behaviour of the proposed esti-

mators, using a simulation study, we compared the performance of estimators numeri-
cally for various configurations of p, correlation coefficient between the predictors (r),
and the error in variance (σ2). For different non-centrality parameter Δ, degree of model
misspecification, the number of non-zero βs varied, and then the performance of esti-
mators evaluated. We found that the positive-rule shrinkage LASSO estimator has the
best performance among all. When we deviated from the null model, neither PTLE
nor SSLE dominated one another and the PTLE performed better as α became large.
Relative efficiency of the proposed estimators increased when there were more near-
zero parameters in the model. As an application, a real dataset was analysed, where a
five-fold cross-validation averages and standard deviations of the prediction errors were
evaluated for the LASSO and its other four variants. The new estimators dominated the
LASSO in average prediction error sense.
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