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Abstract

In this paper we propose a Bayesian hierarchical spatio-temporal model for the joint analysis of

multiple diseases which includes specific and shared spatial and temporal effects. Dependence

on shared terms is controlled by disease-specific weights so that their posterior distribution can

be used to identify diseases with similar spatial and temporal patterns.

The model proposed here has been used to study three different causes of death (oral cavity,

esophagus and stomach cancer) in Spain at the province level. Shared and specific spatial and

temporal effects have been estimated and mapped in order to study similarities and differences

among these causes. Furthermore, estimates using Markov chain Monte Carlo and the integrated

nested Laplace approximation are compared.
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1. Introduction

Bayesian hierarchical models are a popular approach to analyse public health spatio-

temporal data. These data often come as counts of cases of disease at different adminis-

trative levels and time periods. Hierarchical models for these data are based on a Poisson

regression model that includes different types of spatial, temporal and spatio-temporal

effects in the linear predictor of the model (see, for example, Lawson, 2013, for a re-

view). Spatial effects are often modelled using a conditionally autoregressive (CAR)

specification (Besag, York and Mollié, 1991). Temporal effects often rely on smooth

terms, such as random walks or splines. For non-separable space-time models, Knorr-
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Held (2000) describes different interactions for spatial and temporal effects. When

studying spatio-temporal trends in disease mapping, several authors have proposed dif-

ferent models to detect specific patterns in particular areas. For example, Abellan,

Richardson and Best (2008) and Guangquan et al. (2012) propose models that can iden-

tify areas that follow a spatio-temporal trend with similar structure or that show a spe-

cific spatio-temporal pattern.

The spatial analysis of several diseases often relies on multivariate models with

shared spatial effects to capture similar patterns. For example, Knorr-Held and Best

(2001) use this approach to model two diseases by considering a shared spatial term

in the model with a different weight for each disease. Downing et al. (2008) propose

a model with several spatial effects to model six cancers jointly. Botella-Rocamora,

Martı́nez-Beneito and Banerjee (2015) and Martı́nez-Beneito, Botella-Rocamora and

Banerjee (2016) propose a general approach for multivariate disease mapping that can

help to identify diseases with similar spatial distributions. Marı́-Dell’Olmo et al. (2014)

use a smoothed analysis of the variance for the analysis of several diseases in ecological

models.

We have developed a novel Bayesian spatio-temporal joint model for several diseases

with specific and shared spatial and temporal effects. The shared spatial and temporal

terms would account for common spatial and temporal patterns. The effect of these

common patterns on specific diseases is controlled by specific-weights that measure

the dependence of a given disease on these patterns. By considering specific spatial and

temporal patterns we allow for departures from the shared patterns for different diseases.

Finally, the posterior distribution of the weights is able to capture dependence between

diseases with similar spatial or temporal patterns.

Bayesian model fitting has been tackled by using Markov chain Monte Carlo

(MCMC) methods (Gilks et al., 1996), which can be slow for complex spatio-temporal

models. For this reason, we have also fit the models presented using the approximation

provided by the integrated nested Laplace approximation (INLA) method (Rue, Mar-

tino and Chopin, 2009). INLA is able to fit the proposed models in a fraction of the

time required by MCMC and provide an approximation to the posterior marginals of the

model parameters. Given that INLA focuses on approximating the posterior marginals

of the model parameters, multivariate posterior inference on several parameters may be

difficult to do with INLA and we will still rely on MCMC for this.

The structure of this paper is as follows. First, we give an introduction to spatio-

temporal disease mapping in Section 2. In Section 3 several models for the joint analysis

of several diseases are described. Next, our new spatio-temporal model is fully described

in Section 4. An example on three death causes in Spain is discussed in Section 5.

Finally, a summary of the paper and discussion of the main results is given in Section 6.
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2. Spatio-temporal disease mapping

Disease mapping (Lawson, 2013, Elliot et al., 2000, Banerjee, Carlin and Gelfand, 2014)

is commonly employed in public health and epidemiology in order to describe the spatial

(and temporal) variation of disease. In the analysis of public health data, we often

find the number of cases at different n administrative areas and T time periods. We

will denote by Oi,t the number of cases in area i and time period t. As studying the

distribution of the cases alone is misleading, expected number of cases Ei,t are also

computed using the population structure and direct or indirect standardization (Elliot

et al., 2000). In addition, area-level covariates Xi,t may be available and these can be

incorporated into the models to account for socio-economic inequalities, risk exposure

and other relevant risk factors.

In order to model the observed number of cases, a Poisson distribution is often used:

Oi,t |Ei,t ,θi,t ∼ Po(Ei,tθi,t) (1)

Here, θi,t is the relative risk. Values of the relative risk higher that one indicate an area

of increased risk because, in that case, the mean µi,t = Ei,tθi,t is higher than the expected

number of cases according to the population in the area. As stated above, it is more

informative to map the relative risk θi,t than the observed cases.

The relative risk can be modelled using a Poisson log-linear model. For example, if

the relative risk is thought to be dependent of area-level covariates it can be modelled

as:

log(θi,t) = α+βXi,t , (2)

with α an intercept and β a vector of coefficients of covariates Xi,t . Other fixed and

random effects or smooth terms can be added on the right-hand side of the previous

equation, as discussed below.

Bayesian hierarchical models for disease mapping have been widely used since the

seminal paper by Besag et al. (1991) was published. In this paper, the relative risk

depends on area level covariates, spatially correlated random effects vi and independent

random effects ui. This model can be extended to the spatio-temporal case as follows:

log(θi,t) = α+βXi,t + vi +ui +wt (3)

Here, vi is a spatial random effect, ui is an independent random effect and wt is a tem-

poral effect.

Independent random effects ui are assigned a Gaussian prior with zero mean and

precision τu. Spatially correlated random effects follow an intrinsic conditionally au-

toregressive (CAR) specification. In this case, the conditional distribution of vi given all

the other spatial effects v−i is Gaussian with mean
∑

j 6=i wi jv j/
∑

j 6=i wi j and precision

τv
∑

j 6=i wi j. In the previous expressions, wi j are spatial weights and τv is the precision

of the spatial random effect.
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Spatial weights wi j are often taken as 1 if areas i and j are neighbors and 0 otherwise.

In this case, if by i ∼ j we denote that regions i and j are neighbors and by ni the

number of neighbors of region i, the conditional distribution of vi under an intrinsic

CAR specification is

vi|v−i ∼ N





∑

j∼i

v j

ni

,τvni



 (4)

When a vector of random effects v = (v1, . . . ,vn) has a prior that is an intrinsic CAR

specification with weight matrix W and precision τv, we will write that as v ∼ CAR

(W,τv).

Temporal effects wt are often assigned a random walk prior with precision τw or a

CAR prior in one dimension, with a temporal adjacency defined so that consecutive time

periods are neighbors. Knorr-Held (2000) describes a number of space-time interactions

that could be added to the model in Equation (3).

Regarding models that specifically try to identify differential spatial or temporal pat-

terns, Richardson, Abellan and Best (2006) propose a joint model for two diseases with

specific space and temporal terms for the second disease which allows for the identifica-

tion of disease-specific patterns. Abellan et al. (2008) propose a spatio-temporal model

with a spatio-temporal term that is a mixture of terms. Each term is Normally distributed

with zero mean and one has a smaller variance than the other. This allows the model to

classify areas according to small or large variation. Areas with large variance indicate a

strong departure from the common separable spatio-temporal pattern.

Similarly, Guangquan et al. (2012) propose a Bayesian hierarchical spatio-temporal

model in which the log-relative risk is modelled on a mixture of two linear predictors

with different effects. The first one is the sum of an intercept, a spatial effect and a

temporal effect and, the second one is the sum of an area-specific intercept and an space-

time non-separable random effect.

Both Abellan et al. (2008) and Guangquan et al. (2012) propose models that include

terms to highlight areas with patterns that differ from the overall spatio-temporal pattern

by using a mixture of terms. These models are aimed at targeting areas which depart

from the shared spatial and temporal patterns. In Section 4 we propose a new multivari-

ate model to identify diseases with specific spatial or temporal patterns that are different

from the shared spatio-temporal pattern.

3. Joint modelling of multiple diseases

The models described in the previous section can be applied to different diseases to

produce space-time risk estimates that can be mapped and analysed to identify particular

patterns of high risk. Diseases with similar etiologies may show similar patterns, i.e.,

similar spatial or temporal variation, and a multivariate analysis could be performed to
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obtain better estimates of these shared patterns. At the same time, the model must allow

for specific departures from the shared pattern in certain areas.

In order to build joint models for D different diseases, we will denote by O
(d)
i,t and

E
(d)
i,t the observed and expected cases, respectively, of disease d in area i and time period

t. Hence, the distribution of the number of cases O
(d)
i,t is a Poisson with mean E

(d)
i,t θ

(d)
i,t ,

where θ
(d)
i,t is the relative risk.

In a joint model, relative risks include terms that are shared by several diseases. The

effect of the shared effects may be weighted, so that these weights measure the depen-

dence of the geographic or temporal distribution of the disease on the shared pattern.

For example, Knorr-Held and Best (2001) consider a model for two diseases in which

the shared spatial effect has weight δ for one disease and 1/δ for the second disease. δ

is a parameter that is estimated and it measures the dependence of each disease on the

shared pattern.

For example, this joint model for two diseases could be written down as:

O
(d)
i |E

(d)
i ,θ

(d)
i ∼ Po(E

(d)
i θ

(d)
i ), d = 1,2

log(θ
(1)
i ) = α(1)+ δSi +D

(1)
i

log(θ
(2)
i ) = α(2)+

1

δ
Si +D

(2)
i (5)

Here, α(d) is a disease-specific intercept, Si is the shared spatial pattern, and D
(d)
i are

disease-specific (spatial) patterns.

The model by Knorr-Held and Best (2001) can be extended to consider more than

two diseases. For instance, Downing et al. (2008) develop a joint model for six smoking

related cancers in the Yorkshire region of England. They used a Bayesian model with

shared effects to explore the patterns of spatial correlation and to estimate the relative

weight of some covariates like smoking and other shared risk factors.

Several authors have generalized the univariate spatial models to the multivariate

case in a number of ways, such as the spatial factor modelling proposed by Wang

and Wall (2003) or the smoothed analysis of variance proposed by Zhang, Hodges and

Banerjee (2009). Other multivariate disease mapping proposals are based on Gaussian

Markov random fields (Rue and Held, 2005) and multivariate conditional autoregressive

distributions.

A multivariate conditional autoregressive distribution is a generalization of the con-

ditional autoregressive distribution (Mardia, 1988). Gelfand and Vounatsou (2003) gen-

eralized the proper conditional autoregressive distribution to the multivariate setting. In

Jin, Carlin and Banerjee (2005), the authors propose a conditional approach to the mul-

tivariate problem too. MacNab (2011) proposed a multivariate generalization of spatial

structures beyond conditional autoregressive distributions, where the well-known con-

volution prior (Besag et al., 1991) is generalized. Martı́nez-Beneito (2013) proposed

a novel framework that encompasses most of the models already proposed by reorga-
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nizing the Kronecker products of covariance matrices as simple matrix products. This

allows the combination of several different spatial structures with different multivariate

dependence structures and avoid computations with Kronecker products and large co-

variance matrices. This last work has been reformulated in order to be more efficient

in computational terms (Botella-Rocamora et al., 2015). Other recent approaches for

the analysis of multivariate data in disease mapping include the smoothed analysis of

variance (Marı́-Dell’Olmo et al., 2014) in ecological studies.

Regarding the analysis of multivariate disease mapping models with several compo-

nents in the linear predictor, different authors have already tackled this problem. Cor-

berán-Vallet (2012) apply the shared components approach to the detection of disease

outbreaks proposing a multivariate model in which spatial shared components are mul-

tiplied by indicator variables to select one of the components. Carroll et al. (2016)

propose a space-time mixture model that includes in the linear predictor a purely spa-

tial term, a spatio-temporal term or a mixture of the two. Carroll et al. (2017) apply

these ideas to the spatio-temporal analysis of two types of respiratory cancers and allow

for the temporal variation of the coefficients of the covariates. In Carroll et al. (2017),

three different types of cancer are analysed jointly and they propose mixture models to

choose among different spatial, temporal and spatio-temporal terms in the linear pre-

dictor. Finally, Lawson et al. (2017) present similar mixture models with spatially and

spatio-temporally varying mixture parameters.

In the next section we develop a joint spatio-temporal model for multiple diseases.

This model includes two types of spatial and temporal effects, to account for the shared

pattern and allow for disease-specific patterns. In addition, the weights associated to

the shared spatial and temporal effects retain the associations between different diseases

with similar spatial or temporal variation. It is worth noting that our model provides

a simpler and more modular specification of the different spatial and temporal effects

in the model than the models discussed above and it is still able to find diseases with

similar spatial and temporal patterns.

Our approach differs from previous literature in a number of ways. First of all, our

goal is to detect similar spatial or temporal behaviors of different diseases in a simple

way. The structure of our model is different as well, as it is not based on mixture

models but on spatial and temporal shared components. The application is also different,

because our aim is not to detect changes at the area level in space and time but to identify

shared and specific spatial and temporal patterns that can lead to the identification of

diseases with a similar aetiology.

4. Spatio-temporal joint modelling of multiple diseases

When modelling spatio-temporal data our aim is to identify shared and specific patterns

of disease both in space and time. For this reason, our model will combine several ideas

from the models outlined in Sections 2 and 3. In particular, our model is as follows:
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O
(d)
i,t |E

(d)
i,t ,θ

(d)
i,t ∼ Po(E

(d)
i,t θ

(d)
i,t )

log(θ
(d)
i,t ) = α

(d)+Φ
(d)
i +Ψ

(d)
t

(6)

Now, α(d) are disease-specific intercepts, and Φ
(d)
i and Ψ

(d)
t are spatial and temporal

effects for disease d in area i and time period t, respectively. These two effects are

defined by including disease-specific and shared patterns in the following way:

Φ
(d)
i = u

(d)
i + δSdUi

Ψ
(d)
t = v

(d)
t + δTd Vt

(7)

In the previous equation we can find shared and disease specific effects. The effect of the

shared spatial effect Ui on the relative risk is modulated through weights δSd . Similarly,

the effect of the shared temporal pattern on the relative risk is controlled via weights δTd .

The vectors of disease-specific and shared effects are defined using an intrinsic CAR

specification:

u(d) ∼CAR(W,τSd) d = 1,2,3; U ∼CAR(W,τS0)

v(d) ∼CAR(Q,τTd ) d = 1,2,3; V ∼CAR(Q,τT0 )
(8)

Here, W is the spatial adjacency matrix and Q defines a temporal adjacency structure.

Finally, τSd , τTd , τS0 and τT0 are the precisions of the different effects.

Note that the previous model does not account for space-time interactions. These

could be included but additional constraints would be needed (Knorr-Held, 2000, Ri-

chardson et al., 2006, Goicoa et al., 2018), making the model more complex. By adding

disease-specific spatial and temporal effects we are already allowing for departures from

any shared spatial and temporal trends. This means that the diseases under study may

have different spatial or temporal behavior. Furthermore, uncorrelated random effects

have not been considered for the same reason.

Regarding the priors for the remainder of the parameters, several options can be

considered. Disease specific intercepts α(d) are assigned improper flat priors. Spatial and

temporal weights have been assigned a log-Normal prior with zero mean and precision

1/5.9 (similarly as in Downing et al., 2008).

This assumes that weights are positive, but the prior 0.25 and 0.975 quantiles are

0.0086 and 116.8319, which allows for ample variation in the values of the weights. This

will also imply that the weights can take very small values. Small weights will produce a

negligible effect of the shared spatial or temporal terms in the linear predictor even if the

weights are not exactly zero. Hence, it is not necessary that the diseases in the model

are correlated in advance as the model can produce very small weights in this case.

Constraining the weights to be positive also means that high values of the shared

effects will indicate a similar higher mortality pattern for all the diseases with non-
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negligible weights. This is important in order to interpret the results and the role of the

shared spatial and temporal terms.

τS
d τS

0 τT
d τT

0

v
(d)
tu

(d)
i

VtUi δ S
d δ T

d

α(d)Φ
(d)
i Ψ

(d)
t

θ
(d)
i,t

O
(d)
i,t

E
(d)
i,t

Spatial effects Temporal effects

Figure 1: Graphical representation of the joint spatio-temporal model.

For the scale parameters of the random effects in the model we suggest trying dif-

ferent priors in order to conduct a sensitivity analysis on the results and investigate how

different priors impact on the estimates of the relative risks and other parameters in the

model. We propose fitting three different models in which all scale parameters have

the same priors. First of all, we propose a uniform distribution between 0 and 10 on

the standard deviations, which seems to be less informative than inverted Gammas on

the precisions (Gelman, 2006). Following Gelman (2006), a half-Cauchy (with scale

parameter equal to 25) as a prior for all standard deviations in the model could also be

used. Finally, as an inverted Gamma is a common choice for the precision priors, a

third model could be considered in which all precisions have an inverted Gamma with

parameters 0.01 and 0.01 as prior.

In this model, terms Ui and Vi in the model are multiplied by disease specific weights.

This may cause an identifiability problem between weights δSd and δTd , and the scale of

the effects, i.e., precisions τS0 and τT0 . For this reason, improper priors on these param-

eters are not recommended. Furthermore, precisions τS0 and τT0 can be set to 1 so that

the scale of spatial and temporal shared effects is incorporated into weights δSd and δTd .



Virgilio Gómez-Rubio, Francisco Palmı́-Perales, Gonzalo López-Abente... 59

Having said this, we have not observed any identifiability problem of effects Φ
(d)
i and

Ψ
(d)
t in the models fitted in the example in Section 5.

Spatial dependence between two or more diseases can be assessed by looking for

correlation of weights {δSd}
D
d=1 in the posterior joint distribution. Similarly, temporal

dependence can be assessed with the joint posterior correlation of weights {δTd }
D
d=1. For

this reason, we will produce plots of the bivariate posterior distributions of (δSk ,δ
S
l )k 6=l

and (δTk ,δ
T
l )k 6=l for all pairs of diseases to assess any posterior correlation between the

weights. Furthermore, for a single disease, spatio-temporal interactions can also be

inspected by considering correlations in the joint posterior distribution of (δSd ,δ
T
d ). This

analysis based on the bivariate joint posterior distributions is shown in the example

developed in Section 5 using the MCMC output given that INLA focuses on marginal

inference.

5. Example: Joint spatio-temporal disease mapping in Spain

In order to assess the qualities and properties of the model presented in the previous sec-

tion, we develop here an example on the analysis of three causes of death in Spain. We

have considered oral cavity (which includes lip, bucal cavity and pharynx), esophagus

and stomach cancer. The International Classification of Disease (ICD-10) codes for the

three causes that we are studying are C00-C14 for the oral cavity cancer, C15 for the

esophagus cancer and C16 for the stomach cancer. All these are cancers of the upper

gastrointestinal tract and are relatively frequent. Ferlay et al. (2012) has pointed out that

gastric cancers were estimated to be the fourth most common cancer and the second

leading cause of death in both sexes in 2008. Furthermore, oral cavity and pharyngeal

cancers ranked eighth in number of new cancer cases and deaths. Also, esophageal

cancer ranked sixth in terms of the number of deaths and ninth in terms of cases.

In Spain, López-Abente et al. (2007, 2014) and Aragonés et al. (2007) have studied

the spatial and temporal trends of these cancers. They have provided evidence of the

similarities among the spatial and temporal trends of these cancers. In particular, their

analysis of oral cavity, pharynx and esophagus supported the hypothesis of shared risk

factors (which could be preventable factors), such as alcohol consumption and smoking

(Seoane-Mato et al., 2014). These tumors also share a South-North geographical pattern

in Spain.

Population and mortality data have been obtained from the Spanish Office for Na-

tional Statistics (INE). Population data contains records by age group and gender from

1996 to 2014. Mortality data comprises all deaths in Spain from 1985 to 2014, for which

cause of death, age, gender and other relevant information is available.

In this analysis, the number of deaths per province in peninsular Spain in the period

1996 to 2014 has been considered. The expected number of cases per province and sex

has been computed using as reference the age-specific mortality rates and the population

from years 1996 to 2014. The analysis has been carried out at the province level for both
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Figure 2: Standardized mortality ratios O
(d)
i,t /E

(d)
i,t .
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sexes together. See López-Abente et al. (2014) for a discussion on the importance of the

criteria for computing the expected number of cases in a spatio-temporal analysis.

Figure 2 shows the standardized mortality ratios for the three causes of death. Oral

cavity and esophagus cancers seem to have a similar spatio-temporal pattern, whilst

stomach cancer shows a different pattern. However, the three causes seem to have a

region of high risk in the north of the country. These spatial patterns have already

been described by Aragonés et al. (2009); López-Abente et al. (2014a,b) for stomach

cancer and by Aragonés et al. (2007) for esophageal cancer for slightly different time

periods to the one considered now. Furthermore, López-Abente et al. (2014); Seoane-

Mato et al. (2014) also describe a decreasing temporal pattern of the risk for stomach

and esophageal cancers. Finally, López-Abente et al. (2007) provide a spatial analysis

of a number of types of cancer from 1989 to 1998 in Spain at the municipality level.

Although our analysis has been conducted at different spatial and temporal levels, we

observe a very similar pattern and we expect these patterns to show up in the analysis

and to be picked up by the different effects in our model.

The model that we have fitted to the data is the one described in Section 4. The

results that we show here correspond to the model with uniform priors on the standard

deviations of the spatial and temporal random effects. We have also fitted the same

model using half-Cauchy on the standard deviations and inverted Gamma priors on the

precision parameters. A summary is provided in the sensitivity analysis in Section 5.4.

Models have been fitted using the WinBUGS software (Lunn et al., 2000) using the

R2WinBUGS package (Sturtz, Ligges and Gelman, 2005) for the R software (R Core

Team, 2016). Regarding the MCMC simulations, we have used 4 different chains with

200,000 simulations each, of which 10% (i.e., 20,000) were used as a burn-in and we

have kept one in 200 simulations to reduce autocorrelation.

In addition, INLA has been used to estimate the posterior marginals of the parameters

of the models presented above. However, given the way in which INLA computes the

approximations, a uniform between zero and infinity has been used instead of a uniform

between 0 and 10 on the standard deviations. Details on the construction of the priors

for INLA as provided in Appendix A, and computational details and R code to fit the

models using MCMC and INLA are provided in the supplementary materials provided

with this paper available from https://github.com/becarioprecario/joint st disease map-

ping INLA.

5.1. Spatial analysis

First of all, we will consider the analysis of the different spatial effects in the model. Fig-

ure 3 shows the posterior means of the total spatial effect Φ
(d)
i (i.e., sum of shared plus

specific effects). MCMC and INLA provide very close estimates of the posterior means.

Oral cavity and esophagus cancer show very similar spatial patterns, with areas of high

risk in the north-west and southwest. This pattern is similar to the spatial distribution of

https://github.com/becarioprecario/joint_st_disease_mapping_INLA
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Figure 4: Posterior means of shared spatial effect Ui (top maps) and disease specific

spatial effects u
(d)
i for MCMC (left) and INLA (right).
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Table 1: Summary statistics of the weights for shared spatial and temporal effects

for MCMC (left) and INLA (right).

MCMC INLA

Parameter Mean Median 2.5% q. 97.5% q. Mean Median 2.5% q. 97.5% q.

δS1 1.455 1.425 0.854 2.263 0.716 0.371 0.022 3.501

δS2 1.555 1.538 0.864 2.469 0.766 0.399 0.024 3.735

δS3 0.551 0.546 0.332 0.914 0.062 0.031 0.001 0.297

δT1 0.867 0.807 0.434 1.484 0.204 0.088 0.006 1.122

δT2 0.943 0.892 0.515 1.483 0.270 0.109 0.007 1.530

δT3 1.279 1.220 0.659 2.148 0.395 0.164 0.120 2.210

esophageal cancer between 1989 and 1998 described in Aragonés et al. (2007). Stomach

cancer shows a different spatial pattern with some areas of high risk in the north. These

findings are similar to the spatial patterns described by Aragonés et al. (2009) in the

period 1994-2003, and López-Abente et al. (2014a,b) in the period 1989-2008.

Posterior means of the shared and disease specific spatial effects are displayed in

Figure 4, and Table 1 shows summaries of the posterior distribution of the weights

δSd of the shared spatial effect for each disease. The estimates of the different spatial

effects with MCMC and INLA are very similar but for the shared spatial term, which

seems to show a very similar pattern but at different scales. This is probably due to a

mild identifiability problem between the spatial weights and the precision of the shared

spatial term. However, as stated above, total spatial effects are very similar between

MCMC and INLA.

In all maps in Figure 4, a few areas of high risk can be found in the north part of

the country. Also, the specific spatial pattern for stomach cancer seems to show more

extreme values than those for oral cavity and esophagus cancer. This may be due to the

lower dependence of stomach cancer on the shared spatial pattern (as seen in Table 1)

which makes the specific pattern to account for most of its spatial pattern.

Table 1 shows the differences in the estimation of the weights between MCMC and

INLA. This is due to the fact that INLA is not able to identify well the weights and

the precision of the effects. However, as seen in Figure 3 and Figure 4 the estimates of

the spatial effects are very close between MCMC and INLA. Furthermore, the results

obtained with INLA also support a stronger dependence on the spatial shared term for

oral cavity and esophagus cancers, and a similar dependence on the temporal shared

term for all three cancers. As stated earlier, a simple way to have a better identification

of the weights is by fixing the precisions of the shared terms.

Regarding the weights on the shared spatial component Ui, oral cavity and esopha-

gus cancers seem to have a very similar weight which is significantly higher than one.

Stomach cancer has a lower weight, which is significantly lower than one. This means

that oral cavity and esophagus cancer have a higher dependence on the shared spatial

effect, i.e., the spatial pattern is very similar to the shared pattern.
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2000 2005 2010

−
0

.2
0

.0
0

.2
Shared effect

2000 2005 2010

−
1

.0
0

.0
0

.5
1

.0 Shared effect

2000 2005 2010

−
0

.2
0

.0
0

.2

Oral Cavity

Esophagus

Stomach

2000 2005 2010

−
0

.2
0

.0
0

.2

Oral Cavity

Esophagus

Stomach

2000 2005 2010

−
0

.2
0

.0
0

.2

Oral Cavity

Esophagus

Stomach

2000 2005 2010

−
0

.2
0

.0
0

.2

Oral Cavity

Esophagus

Stomach

Figure 5: Posterior means of shared temporal effect Vt (top), specific temporal effect v
(d)
t (middle)

and total temporal effect Ψ
(d)
t = v

(d)
t +δTj Vt (bottom) for MCMC (left) and INLA (right).

Finally, the dependence between oral cavity and esophagus cancers is confirmed

in the analysis of weights δSi on the shared spatial component shown in Section 5.3

using the MCMC output. As seen in Figure 8 (bottom row), the bivariate distribution

of weights associated to oral cavity and esophagus cancers shows a strong correlation.

This correlation is inexistent in the plots of each one of these causes against esophagus

cancer.

5.2. Temporal analysis

Similarly, posterior means of shared and specific temporal effects are shown in Figure 5.

The shared temporal effect clearly indicates a decrease in risk over time and MCMC and
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INLA provide similar estimates but on different scales. Now, all three cancers show a

very similar temporal pattern. The disease-specific and total temporal trends estimated

by MCMC and INLA are very close.

The specific temporal effects of the three cancers do not indicate a strong departure

from the shared temporal pattern and these three specific temporal patterns have an

effect very close to zero for all the years. It is worth noting that the shared temporal

effect captures the overall decreasing trend in time whilst the disease-specific effects are

negligible, with estimates very close to zero for all years. Seoane-Mato et al. (2014)

describe temporal trends for different types of tumors in the period 1952-2006. For all

the causes analysed in this paper, they report a decreasing trend from 1996 to 2006,

which is consistent with our findings.

Summary statistics of weights δTd for the shared temporal trend are shown in Table 1.

As in the spatial case, MCMC and INLA provide estimates in different scales due to

the different identifiability between the temporal weights and the precision of the shared

temporal term. However, the estimates of the total temporal trends are very similar

between MCMC and INLA.

Oral cavity and esophagus cancers have very similar weights, with stomach cancer

having a slightly higher weight. In this case, all three diseases seem to have a strong

dependance on the shared temporal pattern as the weights are very close to one, which

also explains the weak disease-specific temporal trends.

A joint analysis of weights δTd could be done using the MCMC output to assess

temporal dependence between diseases. Figure 8 (top row) shows bivariate plots of

these weights. Oral cavity and esophagus cancer clearly show some correlation. Now,

stomach cancer also shows a positive correlation with the other two types of cancer.

5.3. Joint spatio-temporal analysis

So far, we have analysed the results with a focus on the spatial or temporal patterns.

Figure 6 shows the smoothed spatio-temporal relative risks obtained with our model.

The three types of cancers considered in this study show correlation of the temporal

weights. However, stomach cancer shows a different spatio-temporal pattern.

Figure 7 shows the probability of having a relative risk higher than one. Looking at

the areas of high probability we can find areas of increased risk. Again, oral cavity and

esophagus cancers show a very similar spatio-temporal pattern, which also seems to be

persistent over time. Furthermore, the areas of high risk in our analysis are very similar

to the ones reported by Aragonés et al. (2007) in the 1989-1998 period for esophageal

cancer, where regions of high risk were found in the northwest and southwest of Spain.

Stomach cancer shows a persistent spatial pattern at the beginning of our study period

that changes at the end, as seen in Figure 7. The areas of high risk are similar to those

found by Aragonés et al. (2009) in the period from 1994 to 2003, and López-Abente

et al. (2014) in the 1989-2008 period.
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Figure 6: Posterior means of spatio-temporal relative risks θ
(d)
i,t .
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Figure 7: Probabilities of having an estimation of the relative risk

θ
(d)
i,t greater than 1 to identify areas of high risk.
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Figure 8: Bivariate posterior distributions of weights δTd (top row) and δS
d

(middle row), and bivariate

posterior distribution of the spatial and temporal weights for a given type of cancer (bottom row).

The analysis of the posterior bivariate distribution of weights on the spatial and tem-

poral shared effects can help to assess dependence between the different causes of death

considered. Figure 8 shows the posterior bivariate distribution of each pair of weights

δTt (top row) and δSi (middle row). In this case, spatial and temporal weights appear to

be independent from each other and no correlation can be observed in the plots.

Figure 6 and Figure 7 have been produced using the MCMC output, but INLA pro-

vided similar estimates. Figure 8 has been created from the MCMC output given that

it requires the bivariate joint posterior distributions of each pair of weights. These joint
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distributions can be approximated with INLA, but we have preferred to use the MCMC

output instead.

5.4. Sensitivity analysis

The results shown so far correspond to the model described in Section 4 with uniform

priors on the standard deviations of the random effects. We have decided to use these

priors because several authors (see, for example, Gelman, 2006) have questioned the

use of the inverted Gamma as a prior for the precisions in the model. For this reason,

we have conducted a sensitivity analysis by considering different priors for the scale

parameters of the random effects in the model. We have fitted three versions of the joint

spatio-temporal models where each of three options for the priors of the variances are

used, as explained at the end of Section 4.

Our results show that the estimates of the relative risks do not differ when different

priors for the variances of the random effects are used. Spatial and temporal effects are

very similar too, as well as the estimates of the spatial and temporal weights.

6. Discussion

We have presented a Bayesian hierarchical model for the joint analysis of spatio-temporal

public health data. It combines ideas from other models for spatio-temporal disease

mapping (Richardson et al., 2006; Abellan et al., 2008; Guangquan et al., 2012) and the

joint analysis of several diseases (Downing et al., 2008). In this way, our new model

allows us to define common and specific spatial patterns of disease that are able to

identify similarities and differences in the distribution of the relative risks associated to

each disease. Dependence on the common spatial and temporal patterns are governed

by disease-specific weights, which can help to identify diseases with shared spatial and

temporal patterns. The model has been fitted using MCMC and INLA, and both methods

provide similar estimates of the main effects in the model.

The analysis of the specific spatial effects can be used to detect areas with a different

trend for a given disease. Similarly, by inspecting disease-specific temporal effects it

is possible to highlight diseases with a different temporal variation. Furthermore, this

model can help to highlight areas of high risk by looking at the posterior probabilities of

the relative risk. These probabilities can also be used to detect shared patterns of high

risk among several diseases.

In the example shown in this paper, we have studied oral cavity, esophagus and stom-

ach cancers in Spain from 1996 to 2014. Our model has been able to identify a common

spatial pattern between oral cavity and esophagus cancers, and a different spatial pattern

for stomach cancer. It has also been able to identify that all these three types of can-

cer have a very similar temporal variation. All these findings are consistent with other
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similar studies (Aragonés et al., 2007, Seoane-Mato et al., 2014, López-Abente et al.,

2014a,b, Aragonés et al., 2009) and they support the hypothesis of a strong relationship

between the spatio-temporal distribution of oral cavity and esophagus cancers.

Finding diseases with similar spatial and temporal patterns is important in public

health because these patterns are often caused by similar risk factors. Hence, by identi-

fying diseases with similar patterns it is also likely that some shared risk factors will be

discovered as well. This can clearly be seen in our example as oral cavity and esopha-

gus cancers show strong similar patterns and incidence of these cancers depends of pre-

ventable factors such as alcohol consumption and smoking (Seoane-Mato et al., 2014).

Finally, compared to other recent developments for multivariate disease mapping

(see, for example, Botella-Rocamora et al., 2015, and the references therein) our model

provides a simple and modular specification of different shared and specific patterns

that can be explored to identify trends in the geographical and temporal distribution of

disease. In the example presented in this paper we have only considered three different

causes of death, but the model can be easily extended to a larger number of diseases

simply by including the corresponding spatial and temporal effects.

In the future, we plan to extend this model in a number of ways. First of all, an au-

tomatic procedure could be implemented to assess for the need of the different disease-

specific terms in the model. For example, in our example the disease-specific temporal

trends can probably be removed given that all diseases have a very similar temporal vari-

ation. For this, being able to fit the models with INLA quickly will allow us to explore

different models faster. Furthermore, model assessment criteria implemented in INLA

can play an important role here to select the best model for the data.

Another way to extend this model is by clustering diseases into groups so that only

diseases within the same group share spatial and temporal terms. This would involve

creating a new indicator parameter for each disease to identify to which group it belongs.

By computing the posterior probabilities of these indicator variables it is possible to

assess what diseases have a shared spatial and temporal variation. Given that this will

require exploring a large number of models, INLA will be an important asset in the

implementation of this method.

A User-defined priors in INLA

INLA provides a simple way to define priors using the muparser library. For com-

putational reasons, INLA works with an internal representation of the parameters and

instead of dealing with the precision parameter of the random effects τ, it works with

θ = log(τ). Hence, the prior must be specified on θ. Here, we will follow Ugarte, Adin

and Goicoa (2016) to derive the two non-implemented priors on the standard deviation

σ of the random effects.
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First of all, note that σ= (1/τ1/2) = 1/exp(θ/2) = exp(−θ/2). Hence, the prior on

θ is defined as

π(θ) = π(σ)|
∂σ

∂θ
|

Also, note that

|
∂σ

∂θ
|=

1

2
exp(−θ/2)

For the uniform prior on σ, this must be a uniform between 0 and infinity (for com-

putational reasons), i.e., π(σ) ∝ 1. Hence,

π(θ) ∝ 1 · (
1

2
exp(−θ/2))

Similarly, the half-Cauchy prior with scale parameter γ on σ is defined as

π(σ|γ) =
2

πγ(1+(σ/γ)2)

Hence, the prior on θ is defined as

π(θ|γ) =
2

πγ[1+(exp(−θ/2)/γ)2]
· (

1

2
exp(−θ/2))

Priors must be passed to INLA in the log-scale and constants can be dropped (but

this will change the estimate of the marginal likelihood). Hence, the uniform prior can

be set in INLA as

log(π(θ))≡−θ/2

and the half-Cauchy prior can be set using

log(π(θ|γ))≡ log(1+ exp(−θ)/γ2)− θ/2

Implementation details can be found at

https://github.com/becarioprecario/joint st disease mapping INLA.
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References

Abellan, J., Richardson, S. and Best, N. (2008). Use of space-time to investigate the stability of patterns of

disease. Enviromental Health Perspectives, 116, 1111–1119.
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