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A probabilistic model for explaining the points
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Abstract

In the last decades, a lot of research papers applying statistical methods for analysing sports data

have been published. Football, also called soccer, is one of the most popular sports all over the

world organised in national championships in a round robin format in which the team reaching the

most points at the end of the tournament wins the competition. The aim of this work is to develop

a suitable probability model for studying the points achieved by a team in a football match. For this

purpose, we built a discrete probability distribution taking values, zero for losing, one for a draw

and three for a victory. We test its performance using data from the Spanish Football League (First

division) during the 2013-14 season. Furthermore, the model provides an attractive framework

for predicting points and incorporating covariates in order to study the factors affecting the points

achieved by the teams.
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1. Introduction

Football or soccer sparks interest not only among its supporters or fans, but has also

become one of the most profitable industries, with a significant economic impact in

infrastructure development, TV rights, sponsorships and transfers of players. Accord-

ing to Marian Otamendi, director of the World Football Summit, the international event

of the football industry, gathering the most influential professionals, football could be-

come the 17th largest world economy. Beyond the game, the growth in revenues and
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the worldwide interest in football prove a successful and lucrative industry in which the

aggregate revenue for the top 20 Money League clubs rose 6 percent to 7.9 billion e in

2016/17 (from Deloitte Football Money League 2018). Therefore, football and money

go hand in hand and it is also interesting to see, as a simple example, how the emergence

of the Chinese Super League and its financially and politically powerful clubs impact

on the established European football business order.

Focusing on the game itself, a football competition is played under two basic types of

tournaments around the world, the round robin and the knock-out. In the first one, each

team plays against each opponent twice in home and away. The possible outcomes are

win, draw or loss and the teams receive three, one or none points respectively depending

on the result. At the end of a season, the team with the largest number of points wins

the championship. This sport has become a multi-billion dollar business, where tactics

are basic to the game and with many styles and playing formations available (see for

example, (Brillinger, 2008)). Statisticians started to create models to analyse the several

aspects involved in a football match, from predicting the outcome of soccer games to

determine the best playing strategies, see Dı́az and Núñez (2010) and Louzada, Suzuki

and Salasar (2014), among others. According to Karlis and Ntzoufras (2000), research

in soccer statistics can be divided into three main categories. The first one models the

outcome of a game what can be used for ranking soccer teams and it may be extended to

quantify the home effect. The second one investigates models for predicting about the

number of goals scored by each team, and the third one concentrates in modelling other

characteristics of the game. As pointed out by Rue and Salvesen (2006), the outcome

of a soccer match depends on many factors, among these are: the home-away ground

effect, the effect of injured players, psychological effects, etc. A good knowledge about

these factors only determines the result up to significant, but not too dominant, random

components. Other papers have focused on modelling football outcomes through the

number of goals scored as Karlis and Ntzoufras (2003) who made use of the correlation

of the goals scored by the two teams. Also, Rue and Salvesen (2006) predicted the

outcome using a Bayesian methodology, whose predictive accuracy is better than other

techniques. Finally, Baio and Blangiado (2010) predicted football results making use of

a Bayesian hierarchical model.

The method for assigning three points for a win, no points awarded to the losing team

and one point assigned to each team if the game ends with a draw, is a standard scoring

system used in many sports leagues and tournaments, especially in football, field hockey,

the rugby union, ice hockey, among others. However, the scoring system has changed

over time. Many leagues and competitions originally awarded two points for a win and

one point for a draw, before switching to the three points for a win system. The increase

in rewards for a win from two to three points was adopted in 1995. Hon and Parinduri

(2016), using regression discontinuity design as the empirical strategy, did not find ev-

idence that the three-point rule makes games more decisive, increases the number of

goals, or decreases goal differences, they found some evidence that the three-point rule

increases the second-half goals of the losing first-half team. In this paper, far from pre-
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Figure 1: Index of dispersion for the different teams in the Spanish League.

dicting football results or analysing the effect of the scoring system in the results, we

consider soccer matches played in a league in which the teams play against each other

twice (home and away) where many explanatory variables may influence the result of a

forthcoming soccer match. In this context, we analyse the factors that could affect the

points achieved by a football team using data from the Spanish League during the 2013-

2014 season. A similar analysis could be done to other leagues and sports for which a

data base were available.

Empirical analysis shows that the sequence of points for teams with a lot of points,

and therefore fighting for the title of the competition, is characterized for being under-

dispersed (variance lower than the mean) while the teams with less points at the end

of the competition show over-dispersion (variance larger than the mean). Let X be

the random variable which gives us the sequence of points achieved by a team in a

competition. The index of dispersion is defined as ID = var(X)/E(X). This value is

represented in Figure 1 for the twenty teams of the Spanish Football League at the end

of the competition in 2013-14 season. As we can see, this index is lower than 1 for the

five best teams of the competition while is larger than 1 for the worst teams.

In this work, we present a probability model to analyse the points achieved by a

team in a football match competition. That is, we propose a probability model which

takes values in the set {0,1,2,3} and with zero mass probability in x = 2. Furthermore,

the model accommodates for over-dispersion and under-dispersion and it is suitable

for incorporating covariates. The proposed model is simple and the estimation of the
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parameters is easily obtained. Therefore, it is a candidate for fitting data sets of points

in football match competitions.

The rest of this paper is organised as follows. The main model together with some

of its most important properties are developed in Section 2. In Section 3, an applica-

tion to the Spanish Football League in 2013-14 season is given. Finally, summary and

discussion of the results are shown in the last Section.

2. Probabilistic model for points

The Poisson distribution represents a simple model as a starting point to construct a

probability mass function (pmf) in the scenario we are considering. In football sport the

number of goals scored by each team in a match has been assumed to follow a Poisson

distribution by numerous authors. Some examples in which the Poisson distribution has

been used to predict football results are Karlis and Ntzoufras (2000), Greenhough et al.

(2002) and Saraivaa et al. (2016). However, to our knowledge, the distribution of the

number of points, which is a discrete variable, has not been formally treated. Let us to

start with the classical Poisson distribution whose pmf is given by,

fθ(x) =
θx exp(−θ)

x!
, x = 0,1, . . . , θ > 0. (1)

We need a random variable X which takes only 4 values, to say 0,1,2 and 3 and with

the constraint that for x = 2 the mass of probability should be zero. Therefore, it has a

two-parameter pmf of the form: P(X = 0) = 1− p− q, P(X = 1) = q, P(X = 2) = 0

and P(X = 3) = p, with 0 < p < 1, 0 < q < 1, p+ q < 1. The “probability generating

function (pgf)” is g(t) = 1− p− q+ qt + pt3 and E(X) = q+ 3p. In order to simplify

the model, we attend to the particular case p = θ3κ(θ) and q = θκ(θ), where

κ(θ) =
6

24+ θ(6+ θ2)
. (2)

Thus, the expression

gθ(x) = κ(θ)(x−2)2θ
x

x!
, x = 0,1,3 (3)

defines a genuine pmf with support in X = {0,1,3}. Recall that for a distribution with

pmf fθ(x), X with support in X, depending on a vector of parameteres θ ∈ Θ, we can

construct a new distribution with pmf (see for instance Fisher, 1934, Patil and Rao, 1978

and Harandi and Alamtsaz, 2013) using a weighted function, w(x)> 0,

gθ(x) =
w(x)

E fθ(X)(w(X))
fθ(x), (4)
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Figure 2: Probabilities of victory, draw and defeat depending on θ.

where it is assumed that E fθ(X)(w(X))< ∞, and w is a weighted function depending on

X . Now, it is easy to see that the pmf given in (3) is a weighted version of the pmf given

in (1) by taking w(x) = (x−2)2 and restricting (truncating) its support to take only the

values 0, 1 and 3. Therefore we are using truncation and weighting, where the latter can

be viewed as a particular case of the first (see Johnson, Kemp and Kotz, 2005, p. 63 for

details).

Figure 2 shows the graph of the values of p, q and 1− p− q, i.e. the values of the

probability of victory, draw and defeat, in the definition domain of θ parameter.

It can be easily proved that the following chains of inequalities are satisfied among

the probabilities of the three events that are intended to be modelled through the pmf

given in (3):

0 < θ < 2.45 : Pr(X = 0)> Pr(X = 1)> Pr(X = 3),

2.45 < θ< 2.88 : Pr(X = 0)> Pr(X = 3)> Pr(X = 1),

2.88 < θ< 4 : Pr(X = 3)> Pr(X = 0)> Pr(X = 1),

θ> 4 : Pr(X = 3)> Pr(X = 1)> Pr(X = 0).

Therefore, the teams that have the expectation of playing Champions League will be

characterized by the achievement of points that make the θ parameter greater than 4. In

contrast, teams that only aspire to maintain the category are characterized by θ values

less than 2.45. Hence, the θ parameter can be interpreted as the value that will position

a team in the four areas in which a football competition can be divided: Champions,

Euroleague, no-relegation and relegation zones.
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2.1. Statistical properties

The moments can be obtained from the pgf. In particular, the mean and second order

moment about zero are given by

E(X) =
κ(θ)

2
θ(2+ θ2), (5)

E(X2) =
κ(θ)

2
θ(2+3θ2). (6)

Using (5) and (6) we get the variance, given by

var(X) =
κ(θ)2

3
2θ
[
6+ θ2(9+ θ)

]
(7)

and some computations provide the index of dispersion, which is

ID =
var(X)

E(X)
=

4κ(θ)
[
6+ θ2(9+ θ)

]

3(2+ θ2)
. (8)

Figure 3 shows the ID given in (8) for some values of the support of the parameter θ.
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Figure 3: Index of dispersion of the probability model depending on θ.
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Figure 4: Plot of the pmf in (3) for selected values of the parameter θ.

It is simple to verify that the pmf accommodates over-dispersion (variance larger than

the mean) when 0.250081 < θ< 3.54676 and under-dispersion when 0 < θ< 0.250081

and when θ > 3.54676. Furthermore, the maximum value of the ID is reached for θ =
1.68365, taking the value of 1.544.

Furthermore, the relation connecting the cumulants k[r] and the moments about the

origin µr can be obtained using expression (8) in Noack (1950). Relations between

factorial-cumulants and cumulants can also be given using results in Khatri (1959). See

also Johnson et al. (2005, p. 77).

Figure 4 shows the probability mass function of the proposed model for different

parameter values.

In view of this figure, a large value of the parameter θ gives more mass of probability

to the value x = 3, and then to the victory, which is consistent with the values that give

rise to an index of dispersion lower than one. For the teams that finally remain in the

leaderboard in the highest positions, the dispersion index is lower than one, as shown

in Figure 1. Additionally, for values of the parameter between 0.25 and 3.5 (such as

θ = 0.3 and θ = 1) the distribution assigns more weight to the values x = 0 and x = 1,

therefore it represents teams which have obtained few victories and, in consequence,

these teams will remain in the lagging positions at the end of the season.

The cumulative distribution function can be written in terms of the exponential inte-

gral function given by En(z) =
∫

∞

1
exp(−zt)/tn dt, and it results
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Pr(X ≤ x) =
κ(θ)

x!

[
θx+1(3− x− θ+(4+ θ(θ−3))exp(θ)Eθ(−x)

]
.

2.2. Parameter estimates

In this subsection, two estimation methods for estimating the parameter of the distri-

bution are analysed. First, the method of moments for which let x̃ = (x1,x2, . . . ,xn) be

a random sample obtained from model (3). Then, using (5) it is simple to see that the

estimator of θ is the real solution of the equation

θ3(3− x̄)+6θ(1− x̄)−24x̄ = 0, (9)

where x̄ is the sample mean.

Second, the maximum likelihood estimation that it will be used here and where the

θ estimator is easy to derive. The log-likelihood function is proportional to

ℓ(x̃;θ) ∝ n logκ(θ)+nx̄ logθ. (10)

The likelihood equation obtained from (10) results

θκ′(θ)+ x̄κ(θ) = 0,

and provides the unique maximum likelihood estimator of θ, which is the same solution

of the equation given in (9). Thus, the moment and the maximum likelihood estimators

of the parameter θ are the same.

A little algebra provides the Fisher’s information matrix, given by

I(θ̂) = E

[
−d2ℓ(θ; x̃)

dθ2

]

θ=θ̂

=
2nκ(θ̂)2

3θ̂

[
6+ θ̂2(9+ θ̂)

]
,

where var(θ̂) =
[
I(θ̂)

]−1/2

. The discrete distribution proposed in this work satisfies the

regularity conditions (see Lehmann and Casella, 1998, p. 449) under which the unique

maximum likelihood estimator θ̂ of θ is consistent and asymptotically normal. They are

simply verified in the following way. Firstly, the parameter space {0,1,3} is a subset

of the real line and the range of x is independent of θ. Additionally, the parameter θ is

identifiable, that is, if θ1 6= θ2 then ∃x ∈X such that gθ1
(x) 6= gθ2

(x). By using expression

(10) it is easy to show that E( ∂ loggθ(x)
∂θ

) = 0. Now, because,
∂ 2ℓ(x̃;θ)

∂θ2

∣∣∣
θ=θ̂

< 0, the Fisher’s

information is positive. Finally, by taking M(x) = ∂ 3 loggθ(x)

∂θ3 + 1, a function which may

depend on θ, we have that

∣∣∣ ∂ 3 loggθ(x)

∂θ3

∣∣∣ ≤ M(x) and E(M(x)) is finite. Therefore the

maximum likelihood estimator θ̂ of θ is consistent and asymptotically normal and
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√
n(θ̂− θ)

d−→ N(0,I−1(θ̂)),

where N(·, ·) represents the normal distribution. For details about this assert, the reader

can consult Corollary 3.11 in Lehmann and Casella (1998). Due to this, we conclude

that the maximum likelihood estimator of θ is asymptotically efficient.

2.3. Including covariates

In this section, we investigate the covariates that may affect the number of points achieved

by the teams playing in home (and later away). Let X be a response variable, and let yyy

be an associated k×1 vector of covariates. For the sake of convenience, we rewrite (3)

in another form, so that covariates may be introduced into the model. By equating (5)

to µ we get the same equation as the one given in (9). Now, by using Cardano’s method

of solution of the cubic polynomial equation we get θ=
∑2

i=1 Ri, where

Ri =
3

√√√√
(−1)i

√

4

(
µ

µ−3

)2

+

[
1−µ

3(3−µ)

]3

− 2µ

µ−3
.

The solution for the θ ≡ θ(µ) parameter given above can also be written in another

way.1 A common specification for the mean parameter µ is in terms of exponential

functions, ensuring the non-negativity of this parameter. That is,

µi =
3exp

(
βββ⊤yyy

)

1+ exp
(
βββ⊤yyy

) , (12)

where yyy is the vector of covariates and βββ= (β1, . . . ,βq)
⊤ is an unknown vector of regres-

sion coefficients. Expression (12) ensures that the mean is a positive-valued function

with support in [0,3]. Now, (3) is written as

gθi
(xi) = κ(θ(µi))(xi−2)2 θ(µi)

xi

yi!
, i = 1,2, . . . ,n,

1. The closed expression for the θ parameter results

θ ≡ θ(µ) =

3
√

2
[

3
√

2(3+µ(µ−4))−ψ(µ)2/3
]

(µ−3)ψ(µi)1/3
,

where

ψ(µ) = 6µ(µ−3)2 +
√

2(µ−3)3(µ(3+19µ(µ−3))−1). (11)
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where again κ(θ(µi)) is as in (2). The log-likelihood of the model with covariates is

proportional to

ℓ(x̃;βββ) ∝

n∑

i=1

[log(κ(θ(µi)))+ xi logθ(µi)] .

The normal equations which provide the maximum likelihood estimates of the pa-

rameters β j, j = 1, . . . ,q, are

∂ℓ(x̃;βββ)

∂β j

=
n∑

i=1

1

κ(θ(µi j))

∂

∂β j

κ(θ(µi j))+
n∑

i=1

xi j

θ(µi j)

∂

∂β j

θ(µi j) = 0, (13)

for j = 1,2, . . . ,q. The second partial derivatives can be seen in the Appendix Section.

Maximising the log-likelihood function (13) with respect to β j ( j = 1, . . . ,q) is sim-

ple via the scoring algorithm or Newton-Raphson iteration. The solutions of the nonlin-

ear equations shown in the Appendix provide the maximum likelihood estimates of these

parameters. However, these equations cannot be explicitly solved and the solutions may

be obtained either by maximising the log-likelihood function or by numerical methods.

Different initial values of the parametric space can be considered as a seed points. In

this study, the FindMaximum function of Mathematica software package v.11.0 (see for

instance, Wolfram, 2003 and Ruskeepaa, 2009) was used, although the same results can

be obtained by other methods, such as Newton, PrincipalAxis or QuasiNewton (all of

which are available in this package), or by other packages such as R, Matlab or Win-

Rats. Finally, the standard errors of the parameter estimates were obtained by inverting

the Hessian matrix.

2.4. Marginal effects

The marginal effect reflects the variation of the conditional mean of X due to a one-unit

change in the j-th covariate, and is calculated as

∂µi

∂β j

= y jµi

(
1− µi

3

)
,

for i = 1, . . . ,n and j = 1, . . . ,q. Thus, the marginal effect indicates that a one-unit

change in the j-th regressor increases or decreases the expectation of the points, pointing

out that it depends on the sign, positive or negative, of the regressor for each mean. For

indicator variables such as yk, which takes only the value 0 or 1, the marginal effect

in term of the odds-ratio is exp(β j). Therefore, the conditional mean is exp(β j) times

larger if the indicator variable is one rather than zero.
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3. Numerical application

In this section, we consider the data corresponding to the points obtained by the 20

teams participating in the First Division of the Spanish Football League in the 2013-14

season. This section is divided into two parts. First, we analyse the predictive capacity

of the proposed model without including covariates. So, we study the expected points

of the whole season and the expected points and positions based on the first 19 matches

of the season (the middle of the competition). Second, we try to identify the significant

factors which can explain the expected number of points of the home team by including

covariates in the analysis.

3.1. Number of points without covariates

1. Prediction of the final points for the home teams. Figure 5 shows the observed and

fitted accumulated points for home teams. The estimated value of the θ parameter

is 3.370 and the standard error is 0.131.

Observed Expected

050100150 50 100 150

0

1

3

Home

Figure 5: Observed (left) and fitted (right) home points.

2. Prediction of the final points based on the first 19 match-days (190 matches). Fig-

ure 6 shows the accumulated observed and expected points based on the first 19

match-days.
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3. Prediction of the position of the teams at the end of the competition based on the

first 19 match-days of the competition. Table 1 shows the estimated value of θ,

the standard error (SE), the value of the maximum of the log-likelihood and the

estimated µ parameter. Figure 7 illustrates the prediction of the positions of the

teams at the end of the competition. The maximum likelihood estimated value of

the θ parameter and the index of dispersion appears between parenthesis.
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Figure 7: Prediction based on the first 19 match-days and real final position of the teams at the end

of the competition.
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Table 1: Estimations based on first 19 match-days.

θ̂ S.E. ℓmax µ̂

3.269 0.179 −199.706 1.584

3.2. Number of points including covariates

First, we briefly describe all the variables that have been considered in the study in order

to analyse the factors involved in the total points achieved by a team in a competition,

we consider four groups of variables. Those related to the statistics of the game, one

group of variables directly associated to the match, non-sport variables, and finally those

related to the referee. Among all the considered variables in the different groups, the

following were chosen for the econometric models. In the game statistics category,

the shots on target, for both home and away teams were labeled as “HST” and “AST”,

respectively. It seems to be reasonable that the number of shots on goal are involved

in the result of a match. The number of fouls for both teams were “HF” and “AF”.

Finally, the yellow and red cards labelled as “HYR” and “AYR” for the home and away

team, were also considered. One match variable was introduced and was introduced and

defined as “DERBY”, which represents a match played between teams from the same

city or region, or between the strongest teams of the competition. This variable takes

the value 1 if the match respond to a derby and zero, otherwise.

Variables considered as non-sport were those concerning the team’s budgets, defined

as the logarithm value of the home team budget, “BUDH”, and “BUDA” the logarithm

of the away team budget. Finally, variables related to the referee were the international

referee experience, “INTERNATIONAL”, which was scored as 1 if the referee had such

experience, and 0 otherwise, and the logarithm of the number of years of experience in

the Spanish first division, namely as “AGEXP”. The logarithm of the referee’s age is

denoted by “AGEREF”. A brief description of these variables is shown in Table 2.

In order to check the goodness of the fitting, we have calculated the following in-

formation criterium and statistics. The Akaike information criterium (AIC), the mean

absolute error (MAE) and the root mean square error (RMSE) statistics are obtaining by

AIC = 2k−2ℓmax,

MAE =
1

n

n∑

i=1

|yi − ŷi|,

RMSE =

(
1

n

n∑

i=1

(yi− ŷi)
2

)1/2

,

Raw residuals = yi − ŷi,
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where k is the number of parameters of the model and ℓmax is the maximum value of the

log-likelihood function.

Table 2: Description of the variables.

Variable Description

Game statistics

HST Home team shots on target

AST Away team shots on target

HF Number of home team fouls.

AF Number of away team fouls.

HYR Home team yellow and red cards.

AYR Away team yellow and red cards.

Match variable

DERBY Match played between teams from the same city or region or between the

strongest teams in the league.

Extra games

BUDH Logarithm of home team budget

BUDA Logarithm of away team budget

Referee

INTERNATIONAL Scored as 0 if the referee has no international experience and 1 if he does.

AGEXP Logarithm of years of experience in the first division

AGEREF Logarithm of referee’s age

The results both under the standard linear regression model and under the proposed

regression model are shown in Table 3. As we expected, the home and away shots on

target are significant factors with the expected signs and at the 1% level of significance.

Furthermore, the OLS model only detects another significant factor, namely, the home

team’s budget at the 5% significance level. The AIC is equal to 1194.69 and the MAE

and RMSE statistics are 1.008 and 1.182, respectively. The estimations of the proposed

model, in addition to finding the same results as the previous one, detect an important

new factor concerning the referee subject: the fact that a referee is international reduces

the expected points of the home team at the 10% significance level. In this sense, we

can see that the “home effect” is lower in those matches in which there is an interna-

tional referee. The AIC for the proposed model is 691.218 and the MAE and RMSE

statistics are 0.921 and 1.115, respectively, i.e, these values are notably lower than the

ones obtained for the standard linear model.

Figure 8 shows the raw residuals of the OLS and the proposed models (left plot)

and box-and-whisker chart of the raw residuals (right plot). Both plots remark a greater

dispersion of the OLS residuals.
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Table 3: Estimation results for the OLS and the proposed regression models.

OLS Proposed model

Variables β̂ Standard Error p-value β̂ Standard Error p-value

Intercept 2.286∗∗ 1.156 0.049 2.153 1.822 0.238

DERBY 0.139 0.164 0.397 0.203 0.292 0.487

HST 0.130∗∗∗ 0.024 0.000 0.249∗∗∗ 0.047 0.000

AST −0.175∗∗∗ 0.028 0.000 −0.307∗∗∗ 0.052 0.000

HF 0.004 0.016 0.816 −0.012 0.028 0.657

AF 0.014 0.015 0.371 0.015 0.027 0.565

HYR −0.0652 0.045 0.151 −0.115 0.077 0.139

AYR −0.039 0.042 0.345 −0.059 0.072 0.409

BUDH 0.129∗∗ 0.072 0.075 0.235∗ 0.138 0.089

BUDA −0.111 0.069 0.109 −0.166 0.117 0.156

INTERNATIONAL −0.220 0.159 0.165 −0.519∗ 0.281 0.065

ACIENT 0.068 0.177 0.702 0.059 0.050 0.238

AGEREF −0.017 0.031 0.593 −0.047 0.043 0.276

AIC 1194.69 691.218

MAE 1.008 0.921

RMSE 1.182 1.115
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Figure 8: Raw residuals and the box-and-whisker chart of the OLS (right)

and proposed (left) raw residuals.

Figure 9 illustrates the normal probability plot of the OLS residuals. As we can

observe, the residuals plot is approximately linear supporting the condition that the error

terms are normally distributed.

4. Discussion of results

In this study, we propose a new pmf for modeling the number of points achieved by a

home or visitor team in a football match. In this context, we have analysed the number

of points, firstly, without including covariates and, secondly, including this information.
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Figure 9: Probability plot of the OLS residuals.

The first part of the study includes estimation and prediction of the points achieved

by the teams without using covariates. We can observe that this model provides good

results except for some of the worst teams, i.e., the model fails only for two teams, Elche

and Osasuna. While Elche finally remained in the First Division, Osasuna relegated. The

second part focuses on the introduction of covariates. Several variables are considered

from the Spanish Football League (First division) during the 2013-14 season and two

sets of models are analysed. First, the home linear (standard) regression model. And

second, the home regression model proposed in this paper. The results obtained indicate

that the latter model produces better fits than the other standard model. In view of the

good results obtained in this case and in the estimation without covariates previously

studied, we believe the distribution given in (3) is appropriate for this data set.

Several factors, proposed in earlier studies, were considered relevant to the expected

number of points. Karlis and Ntzoufras (2000) considered the number of goals as an

indicator for the strength of a team and it can be used to determine the performance of

a team. Rue and Salvesen (2006) ignored data as number of near goals, corners or free

kicks and focused on the defending and attacking skills of each team. With the pro-

posed model, home and away team shots on target, which are in some way the attacking

strength, are the most significant factors considering the game statistics variables. With

respect to the coefficients of the budgets, the large budgets home teams have more ex-

pected points. Finally, a significant factor appears regarding the referee variable which

has not been significant in the previous models, namely, the international issue. Inter-

national referees have a negative (positive) relationship with the home (away) teams

indicating that this kind of referee is not influenced by the “home effect” of the match.

Quite the opposite, if there is an international referee in the match, the expected num-

ber of points increases (decreases) for the away (home) team. These findings support

those obtained in Pérez-Sánchez, Gómez-Déniz and Dávila-Cárdenes (2018) in which

the authors proposed a skewed logistic model for estimating the probability of an away

victory.
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To conclude, in this work, significant variables are obtained not only related to the

game itself, but also to the referees or even the economic potential of the teams. This

fact may be used by others actors around the sport of football as coaches or even book-

makers, who analyse all the available information as part of their bets.

Appendix

Second partial derivatives to get the Fisher’s information matrix are:

∂ 2ℓ(x̃;βββ)

∂β2
j

=
n∑

i=1

∂ 2

∂β2
j

κ(θ(µi j))+
n∑

i=1

xi j

θ(µi j)

[
∂ 2

∂β2
j

θ(µi j)−
(

1

θ(µi j)

∂

∂β j

θ(µi j)

)2
]
,

∂ 2ℓ(x̃;βββ)

∂β j∂βl

=
n∑

i=1

∂ 2

∂β jβl

κ(θ(µi j))+
n∑

i=1

xi j

θ(µi j)

[
∂ 2

∂β jβl

θ(µi j)−
(

1

θ(µi j)

∂

∂β j

θ(µi j)

)2
]
,

for j = 1,2, . . . ,q, l = 1,2, . . . ,q and j 6= l and the derivatives needed are the followings,

dκ(ϕ(µ))

dϕ(µ)
=− 36+18ϕ(µ)2

24+ϕ(µ)(6+ϕ(µ)2)
,

∂µi

∂β j

=
1

3
x jµi exp

(
β⊤xxx
)
,

dϕ(µi)

dµi

= ϕ(µi)

[
3
√

2
(
4−2µi −2/3ψ(µi)

−1/3ψ′(µi)
)

3
√

2
(
3−µi(µi −4)−ψ(µi)2/3

) − ψ′(µi)

3ψ(µ)
− 1

µi −3

]
,

dψ(µi)

dµi

= µi

[
2(µi −3)+4µi+

√
2(µi −3)(µi −1)(2+19µi(µi −3))√

µi (3+19µi(µi −3)−1)

]
.
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