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Summary. The aim of this paper is to show how grammar systems and concur-

rent programs might be viewed as related models for distributed and cooperating

computation. We argue that it is possible to translate a grammar system into a

concurrent program, where the Owicki-Gries theory and other tools available in the

programming framework can be used. The converse translation is also possible and

this turns out to be useful when we are looking for a grammar system that can

generate a given language.

In order to show this we use tools from concurrent programming theory to prove

that Lcd = {anbmcndm | n,m ≥ 1} can be generated by a non-returning Parallel

Communicating grammar system with three regular components. We show that

this strategy can be helpful in the construction of grammar systems that generate

strings in less time and more e�ciently. We also discuss the absence of strategies

in the concurrent programming theory to prove that Lcd can be generated by any

Parallel Communicating grammar system with two regular components.
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1 Introduction

At the beginning of computation theory, classic computing devices were cen-

tralized: that is, the computation was accomplished by one central processor.

But in contemporary computer science distributed computing systems that

consist of multiple communicating processors play a major role because they

have various advantages: e�ciency, fault tolerance, scalability in the relation

between price and performance, etc.

Since 1960, when the concept of concurrent programming [6] was intro-

duced, a huge variety of topics related to parallelism and concurrency have

been de�ned and investigated: for example, operating systems, machine ar-

chitectures, communication networks, circuit design, protocols for commu-

nication and synchronization, distributed algorithms, logics for concurrency,

automatic veri�cation and model checking. The same trend has been observed

in classic formal language and automata theory as well. At �rst, grammars

and automata modelled classic computing devices of one agent or processor,

so a language was generated by one grammar or recognized by one automaton.

Inspired by di�erent models of distributed systems in Arti�cial Intelligence,

grammar systems theory [4] has been developed as a grammatical theory for

distributed and parallel computation. More recently, similar approaches have

been reported for systems of automata [12].

In the concurrent programming framework Owicki-Gries theory [13], the

�rst complete programming logic for the formal development of concurrent

programs and other programming strategies was developed to help program-

mers analyse and design multiprograms. We argue that grammar system the-

ory can bene�t from these tools. For example: given a grammar system one can

prove that it generates a speci�c language by direct reasoning or one can trans-

late the grammar system into a multiprogram and prove the same statement

by some strategies of programming developed in the Owicki-Gries theory. We

exemplify this with the language {anbncn | n ≥ 0}. Furthermore, we propose

another approach to solve problems of the following type: given a language

speci�cation �nd a grammar system that generates the given language. The

strategy widely used so far is as follows: �rst, propose a grammar system and

then prove by means of language theory that the proposed grammar system

does indeed generate the given language. We give three examples of how the

Owicki-Gries logic of programming could help us to simultaneously obtain a

grammar system that generates the given language and the proof that it really

generates it. This new approach might be of great bene�t for the grammar
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systems theory. The strategy consists of translating the problem of �nding

grammar system Γ of a certain type that generates a language L, into the

problem of �nding a multiprogram P. P will have as many programs Progi as

the grammar system Γ has grammars and will have to be correct with respect

to the speci�cation:

{(w1 = S1) ∧ (w2 = S2) ∧ ... ∧ (wn = Sn) ∧ n ≥ 1} P {w1 ∈ L}.

Then this multiprogram will be translated back into the grammar system Γ ,

the whole behavior of Γ being similar to that of P. Actually, the language

generated by Γ is included in L, but for the examples we present here equality

is reached, as detailed reasonings prove.

Here we show how to apply this strategy for a well-known non-context-

free language, namely Lcd = {anbmcndm | n,m ≥ 1}. In [2] it was proved that

Lcd can be generated by a Nonreturning Centralized Parallel Communicating

grammar system with four context free components (Lcd ∈ CPC4(CF )). In
[8] we improved this result showing that Lcd ∈ NPC3(REG), based on a

similar strategy. Here we show the proof of this result. We also exemplify with

the language {xcxc | x ∈ {a, b}∗} the use of the Owicki-Gries strategy to get

more e�cient grammar systems when combined with some other programming

techniques used to improve parallelism.

Finally we show how the concurrent programming framework can bene�t

from grammar system theory to get negative results; in the �rst one we have

no strategy to deal with negative results of the type: a given language cannot

be generated by any grammar system of a speci�ed type. This kind of problems

has to be analyzed in the grammar system framework, with the tools available

there.

2 Grammar System Theory: Models

2.1 Cooperative Distributed (CD) grammar systems

Grammar System theory started in 1988 by introducing CD grammar systems

for modelling syntactic aspects of the blackboard model of problem solving [3].

It is a �nite set of (usually generative) grammars which cooperate in deriving

words of a common language. At any moment in time there is exactly one

sentential form in generation. The component grammars generate the string

by turns, under a cooperation protocol, called the derivation mode. In this
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model the cooperating grammars represent independent cooperating problem

solving agents which jointly solve a problem. They modify the contents of a

global database, called the blackboard, which is used for storing information

on the problem solving process. In blackboard architectures the agents com-

municate with each other only through the blackboard: that is, there is no

direct communication among them.

We do not give here the formal de�nition of this model, but the reader

is referred to [4] for all the formal concepts related to all grammar systems

models mentioned in this paper.

We �x the notation for the class of languages generated by homogeneous

Cooperative Distributed grammar systems. We denote them as CDn(f) where
n ∈ N is the maximun number of grammar components with context free

productions and f ∈ {t, ∗}∪{≤ k,= k,≥ k | k ≥ 1} is the mode of derivation.

2.2 Networks of language processors

Networks of language processors form an essential area in the theory of gram-

mar systems. Language processors, that is grammars or other language de-

termining devices, are located in nodes of a network (a virtual graph). Each

processor works on its own sentential form (on its own collection of senten-

tial forms) and informs the others about its activity by communicating strings

which can be data and/or programs. Rewriting and communication take place

alternately, and the system functions (usually) in a synchronized manner.

The di�erence between CD grammar systems and these architectures is

that while in the �rst case the grammars generate a common string, in the sec-

ond case each of them operates on its own string. There are several important

models in the area, of which we are interested in two: Parallel Communicating

(PC) grammar systems and Parallel Communicating grammar systems with

Communication by Command (CCPC).

Parallel communicating grammar systems were introduced in [15] as a

grammatical representation of the so-called �classroom model� of problem

solving, which is a modi�cation of the blackboard model.

We denote by PCn(Y ) the class of languages generated by non-centralized

Parallel Communicating grammar systems with at most n components, each

component with productions of type Y, where: n ∈ N and Y ∈ {FIN,REG,
CF,CS,RE}. When the PC grammar system is centralized, non-returning

non-centralized and non-returning centralized the pre�xes C, N and NC,

respectively, are added.
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We denote by CCPCn(Y ) the class of languages generated by Parallel

Communicating grammar systems with Communication by Command with

at most n components, each component with productions of type Y, where

n ∈ N and Y ∈ {FIN,REG,CF,CS,RE}.

3 Programming

3.1 Sequential programming

A sequential program consists of a number of declarations and a sequence of

instructions or actions. The actions take place one after another. That is, an

action does not begin until the preceding one has ended. Because a sequential

program has a sequence of actions we consider a program as a transformer of

states or predicates [9], where a state {P} describes the relationships between
the variables of the systems and their values by the predicate P . Each action

S transforms the current state of the system, called precondition of S, to the

state {Q} which is called postcondition.

A Hoare triple is a sequence {P} S {Q} , where:
� S is an action or instruction,

� {P} is a state representing the precondition of S,
� {Q} is a state representing the postcondition of S.

Its operational interpretation is as follows: {P} S {Q} is a correct Hoare triple
if and only if it is true that each terminating execution of S that starts from

a state satisfying P is guaranteed to end up in a state satisfying Q. More

precisely, if {P} S {Q} holds and S starts in a state satisfying P , we can be

sure that S either terminates in a state satisfying Q or does not terminate

at all. Consequently, a program ought to be annotated in such a way that

each action carries a precondition. In other words, from a logical perspective

a sequential program may be viewed as a sequence of Hoare triples.

We can now formulate the concept of local correctness of a predicate Q in

a program. We distinguish two cases:

� If Q is the initial predicate of the program, it is locally correct whenever

it is implied by the precondition of the program as a whole. We may also say

that Q satis�es the hypothesis of the problem which is to be solved.

� If Q is preceded by {P} S, i.e. by atomic action S with precondition P ,

it is locally correct whenever {P} S {Q} is a correct Hoare-triple.
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A sequential program is partially locally correct if all its predicates are locally

correct and the last predicate satis�es the requirements of the problem solved,

provided that it halts. A sequential program is totally locally correct if it is

partially correct and always halts.

3.2 Concurrent programming

Concurrent execution or multiprogramming means that various sequential

programs run simultaneously. Actions change the state of the multiprogram,

so the critical question now is what happens if two overlapping actions change

the same state of the multiprogram in a con�icting manner.

Now we are ready to formulate what we call the core of the Owicki-

Gries theory. We consider a multiprogram annotated in such a way that

the annotation provides a precondition for the multiprogram as a whole and

a precondition for each action in each individual program. Then, by Owicki

and Gries, a multiprogram is correct whenever each individual predicate is

correct, i.e.:

� locally correct as described above and

� globally correct : a predicate Q in a multiprogramM is globally correct

whenever for each {P} S, i.e. for each action S with precondition P , taken

from a program ofM, {P ∨Q} S {Q} is a correct Hoare-triple.

4 How to Relate Grammar Systems with Programming

4.1 How can grammar systems bene�t from programming?

In this section we exemplify possible ways in which grammar systems can

bene�t from the Owicki-Gries theory and from some strategies of proof used

in the formal analysis of concurrent programs.

Example 1. We introduce the grammar system Γ1 ∈ CD2(= 2) de�ned in this

way:

Γ1 = ({a, b, c}, ({S,A,A', B,B'}, ∅, P1,= 2),
({S,A,A', B,B'}, {a, b, c}, P2,= 2), S)

where:
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P1 = {S → S, S → AB,A'→ A,B'→ B},
P2 = {A→ aA'b, B → cB',A→ ab,B → c}.
We transcribe the proof taken from [5] that all the derivations in Γ1 are

of the form:

S =⇒
P1

S =⇒
P1

AB =⇒
P2

aA′bB =⇒
P2

aA′bcB′ =⇒
P2

aAbcB =⇒
P2

............

............ =⇒
P2

anA′bncnB′ =⇒
P2

anAbncnB =⇒
P2

an+1bn+1cn+1

for some n ≥ 0. Hence L=2(Γ ) = {anbncn | n ≥ 0}

To show that the previous sequence of derivation is correct, and that it

is the only possible sequence of derivation, we analyze all possible cases by

applying the technique of analysis by cases.

We have to start from S. Only P1 can be used. Applying the rule S → S

twice changes nothing, so eventually we shall perform the step

S =⇒
P1

S =⇒
P1

AB

From now on, S will never appear again. Only P2 can be applied to AB.

If we use the nonterminal rules, we get: AB =⇒
P2

aA'bB =⇒
P2

aA'bcB'

In general, from a string of the form aiAbjckB (initially we have i = j =
k = 0), we can obtain aiAbjckB =⇒

P2
ai+1A'bj+1ck+1B'

To such a string we have to apply P1 again so we get:

ai+1A′bj+1ck+1B′ =⇒
P2

ai+1Abj+1ck+1B

This is the only possibility of using P1. However, P2 can be applied to a

string aiAbjckB in the = 2 mode also using only one nonterminal rule (replac-

ing either A or B by A' or B', respectively), and one terminal rule (removing

the remaining symbol A or B). To a string containing only one nonterminal

(which is di�erent from S), none of the two components can be applied. Con-

sequently, we have to use, in turn, the �rst component and the nonterminal

rules of the second one, and we have to �nish the derivation by using the

terminal rules of P2.
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Now we present another alternative to solve the problem introduced above.

We show that it is possible to automatically translate a grammar system to a

concurrent program, and we use the Owicki-Gries theory to give our proofs.

We use the CD grammar system given above to exemplify this. So �rst we

make the automatic translation of Γ1 to a concurrent program:

P : {Begin Main Program}
{declaration of variables}
w := S;

P : {w = S}
do belong(w, non_terminals)→
Prog1 ‖ Prog2

od

Q : {w ∈ {anbncn | n ≥ 0}}
{End Main Program}

For this example the translation generates programs Prog1 and Prog2,

one program Progi for each grammar Gi, and a global variable w whose ini-

tial value is S has been introduced to represent the current sentential form

that all programs Progi can access and modify. The fact that in the grammar

system Γ1 derivation �nishes when a string of terminals is generated is mod-

elled here by the cyclic instruction �do Condition → Instructions od� that

iterates while the Condition is satis�ed, in this case while string w contains

non terminals. The set of productions Pi of each Gi are represented by the

alternative construction called �if� that executes an assignment to the right

of one arrow if one of the predicates to the left of the arrow is true. More

than one predicate to the left of the arrows can be true, and in this case one

is chosen non deterministically.

And the = 2-mode of derivation of G1 and G2 is preserved by adding the

variable cont, to count the number of derivations performed on the sentential

form. If the number of derivations is di�erent from two, the programs abort.

Also the symbols < and > enclose programs Prog1 and Prog2 to denote that

these programs are considered atomic instructions. This means that once the

processor is assigned to the program, it can not be released or reassigned to

another program before its execution �nishes.
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Prog1 : {program for G1}
cont : int;

< cont := 0;

do (w = xSy ∨ w = xA'y ∨ w = xB'y) ∧ cont 6= 2→
if w = xSy → w := xSy; cont := cont+ 1;

w = xSy → w := xABy; cont := cont+ 1;

w = xA'y → w := xAy; cont := cont+ 1;

w = xBy → w := xB'y; cont := cont+ 1;

fi

od;

if (cont 6= 2) −→ abort >

{end program Prog1}

Prog2 : {program for G2}
cont : int;

< cont := 0;

do (w = xAy ∨ w = xBy) ∧ cont 6= 2→
if w = xAy → w := xaA'by; cont := cont+ 1;

w = xBy → w := xcB'y; cont := cont+ 1;

w = xAy → w := xaby; cont := cont+ 1;

w = xBy → w := xcy; cont := cont+ 1;

fi

od;

if (cont 6= 2) −→ abort >

{end program Prog2}

So we have automatically generated each program Progi for each grammar

Gi where each program Progi modi�es the global variable w in the same way

as each grammar Gi modi�es the current sentential form and preserves the

mode of derivation of Gi.

What remains to be done is to prove that when the programs Prog1 and

Prog2 that we have de�ned run concurrently, they behave like Γ1.According to

the Owicki-Gries theory that we have introduced, this is equivalent to proving

the global correctness of the multiprogram with respect to the precondition

{w = S} and postcondition {w ∈ {anbncn | n ≥ 0}}.
The analysis needed for this proof is similar to the one we showed above

but in the programming framework. But for some problems, like this one, the

Owicki-Gries theory also contemplates the possibility of using the so-called

System Invariant strategy. To apply this strategy we need to �nd a predicate

that remains invariant throughout all the computation and that synthesizes

the behavior of the multiprogram and in case we �nd it we reduce the number

of proofs to a linear size.
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De�nition 1. By de�nition a relation I is a system invariant whenever:

- it holds initially, i.e. is implied by the precondition of the multiprogram

as a whole,

- it is maintained by each individual atomic statement {Q}S of each indi-

vidual component, i.e. whenever for each such {Q}S, {I∧Q}S{I} is a correct

Hoare-triple.

For the previous program P we can give this system invariant:

Inv I : [w = S ∨ (w = anA'bncnB' ∧ n ≥ 0) ∨ (w = anAbncnB ∧ n ≥ 1)∨
∨(w = anA'bncn ∧ n ≥ 1) ∨ (w = anbncnB' ∧ n ≥ 1)∨
∨(w = anbncn ∧ n ≥ 1)]

And proving that the predicate I is invariant is equivalent to proving that:

1. (w = S)→ I,

2. {I}Prog1{I},
3. {I}Prog2 {I} ,
4. I ∧ (P terminates)−→ (w = anbncn ∧ n ≥ 1).

While the proof of 1 and 4 is trivial, the proof of 2 and 3 requires an analysis

by cases checking that Prog1 and Prog2 always rewrite strings satisfying the

invariant in new strings that satisfy the invariant. For reasons of space we do

not provide the proof here.

With this example we have shown that it is possible to automatically

translate a CD grammar system Γ to a concurrent program P. In this way

the problem of proving that Γ generates a language L is transformed into the

problem of proving that the program P obtained from the translation is cor-

rect with respect to the precondition {w = S} and the postcondition {w ∈ L}.
So since as well as analysis by cases we now have the global correctness strat-

egy from the Owicki-Gries theory to prove that a grammar system generates

a language. And for some problems, like this example, it is also possible to

prove global correctness through the system invariant strategy.

From this example we can point out some advantages of the system in-

variant strategy over the analysis by cases technique:

• Once the invariant predicate has been proposed the number of proofs to

be made is linear, instead of the exponential number of proofs needed with

analysis by cases.
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• With analysis by cases we can capture the overall behavior of a system by

a general sequence of derivations including detailed information, such as

how grammars interact, which productions they apply, how they change

the sentential form, etc. When we apply the system invariant technique we

capture the overall behavior of the system by an invariant that shows all

the possible values of the sentential form and hides information that the

previous technique gives. So we can say that the invariant system captures

the overall behavior in a more abstract way.

• With analysis by cases, apart from showing the shape that any sequence

of derivation should have, we need to prove that this is the only possi-

ble sequence of derivations, and add an explanation in natural language.

Like the system invariant technique we need to prove in the framework of

predicate calculus that each program Progi preserves the invariant. This

is done by formal proofs.

Another bene�t of the Owicki-Gries logic of programming is that it can be

used to prove certain matters related to dynamic aspects of a grammar such

as: reachability of a con�guration, absence of progress because of circularity

(in the case of PC grammar systems with communication by query), deadlock,

etc.

Another advantage of the Owicki-Gries logic of programming is that it

can help us to simultaneously construct the grammar systems that a given

language speci�cation generates and the proof that it generates (see [1]). This

is a great improvement, because we did not have any techniques in the frame-

work of grammar systems, to help us to solve this kind of problem. We give

two examples of the use of this strategy. The �rst example is taken from [8]:

Theorem 1. Lcd ∈ NPC3(REG)

Proof. We want to �nd a non-returning, non-centralized grammar system Γ

with regular components that generates Lcd. This problem is transformed into

the equivalent problem of �nding a multiprogram P that behaves like Γ and

is correct with respect to the speci�cation:

{(w1 = S1) ∧ (w2 = S2) ∧ ...... ∧ (wn = Sn) | n ≥ 1} P {w1 ∈ Lcd}.

The problem remains the same, but we use di�erent tools to solve it: in-

stead of induction and analysis by cases available in the framework of gram-

mar systems we use Logic, the Owicki-Gries theory and programming strategies

from the programming framework.
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The strategy we followed for this proof is frequently used for the devel-

opment of programs. It is called re�nement of the problem and consists of:

(I) First, start with an outline of the solution, which identi�es the basic prin-

ciple by which the input can be transformed into the output. De�ne pre- and

post- conditions for each of the subproblems that are identi�ed as part of the

solution for the whole problem.

For our problem we propose this idea:

{(w1 = S1) ∧ (w2 = S2) ∧ ...... ∧ (wn = Sn)}
Subproblem 1: (Rewrite)p, with p ≥ 1

{(w1 = S1) ∧ .... ∧ (wi = apSi) ∧ .... ∧ (wj = cpSj) ∧ .... ∧ (wn = Sn) ∧ (p ≥ 1)}
Subproblem 2: (Rewrite; Communication)+

Find a way to stop the productions of a's and c's, through synchronization

by communication.

{(w1 = arN1)∧ .......∧(wk = crN2)∧ ......∧(wn = Sn)∧(r ≥ 1)∧(N1, N2 ∈
N)}

Subproblem 3: (Rewrite)m, with m ≥ 1{
(w1 = arbmQk) ∧ ....... ∧ (wk = crdm−1N3) ∧ ...... ∧ (wn = Sn)∧
(r,m ≥ 1) ∧ (Qk ∈ K) ∧ (N3 ∈ N)

}
Subproblem 4: Communication{
(w1 = arbmcrdm−1N3) ∧ (r,m ≥ 1) ∧ (N3 ∈ N)

}
Subproblem 5: Rewrite

{(w1 = arbmcrdm) ∧ (r,m ≥ 1)}
or equivalently

{w1 ∈ {arbmcrdm ∧ r ≥ 1 | m ≥ 1}}
(II) Now we make the outline indicated more precise, re�ne the subproblems

by trying to simultaneously �nd the instructions that solve the subproblems

and the proof of its local correctness. We also discuss the di�culties we might

have when proving overall correctness.

In the re�nement of subproblems 1, 2, 3, 4 and 5 we proposed three pro-

grams Prog1, Prog2 and Prog3. These programs make up the multiprogram

P , run simultaneously and behave like a non-returning, non-centralized gram-

mar system with regular productions. With the subproblems we have identi-

�ed in the step above, they behave locally correctly.

In the case of Subproblem 1 we propose this re�nement:

{(w1 = S1) ∧ (w2 = S2) ∧ (w3 = S3)}
Subproblem 1: Rewriten, with n ≥ 1
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Prog1 rewrites n− 1 times S1 to aS1 and then rewrites S1 to aA, Prog2
rewrites n− 1 times S2 to cS2 and then rewrites S2 to cB and Prog3 rewrites

n − 1 times S3 to S3, until it decides to �nish the production of a's and c's,

rewriting S3 to Q2.

To be sure that w2 = cnB when Prog3 introduces Q2, P rog3 should not

be able to rewrite S2, and after Prog2 introduces B it should rewrite it for

another nonterminal and not introduce B any more.

The reason why w1 = anA and w1 6= anS1 is that this is the only possibility

that does not lead to deadlock, as the states of the next subproblem show.

{(w1 = anA) ∧ (w2 = cnB) ∧ (w3 = Q2) ∧ (n ≥ 1)}
For Subproblem 2 we propose this sequence of rewriting and communications

as a re�nement:

{(w1 = anA) ∧ (w2 = cnB) ∧ (w3 = Q2) ∧ (n ≥ 1)}
Subproblem 2:

Communication

{w1 = anA ∧ w2 = cnB ∧ w3 = cnB ∧ n ≥ 1}
Rewrite

Prog1 rewrites A to A', P rog2 rewrites B to Q1 and Prog3 rewrites

B to D

We do not allow any possibility other than w1 = anA' ∧ w2 = cnQ1∧
w3 = cnD.

To be sure that w1 = anA' after the rewriting step, we need Prog2 to

be de�ned only for A', and after Prog1 introduces A' it should rewrite

it to another nonterminal and not introduce A' anymore.

{w1 = anA' ∧ w2 = cnQ1 ∧ w3 = cnD ∧ n ≥ 1}
Communication

{(w1 = anA') ∧ (w2 = cnanA') ∧ (w3 = cnD) ∧ (n ≥ 1)}
In the case of Subproblem 3 this is a possible re�nement:

{(w1 = anA') ∧ (w2 = cnanA') ∧ (w3 = cnD) ∧ (n ≥ 1)}
Subproblem 3: Rewritem+1 , with m ≥ 1
Prog1 rewrites A' to A� and rewrites m − 1 times A� to bA�, and then

rewrites A� to bQ3, P rog2 always rewrites A' to A' and Prog3 rewrites D to

D', then D' to D� and rewrites m− 1 times D� to dD�{
(w1 = anbmQ3) ∧ (w2 = cnanA') ∧ (w3 = cndm−1D�) ∧ (n,m ≥ 1)

}
Re�nement for Subproblem 4 and Subproblem 5 is very simple:{

(w1 = anbmQ3) ∧ (w2 = cnanA') ∧ (w3 = cndm−1D�) ∧ (n,m ≥ 1)
}

Subproblem 4: Communication{
(w1 = anbmcndm−1D�) ∧ (w2 = cnanA') ∧ (w3 = cndm−1D�) ∧ (n,m ≥ 1)

}
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Subproblem 5: Rewrite

Prog1 rewrites D� to d

{(w1 ∈ {anbmcndm) ∧ (n,m ≥ 1)}}
Equivalently we propose a non-returning, non-centralized grammar system Γ

with three regular components, de�ned in this way:

Γ = (N,K, {a, b, c, d}, (P1, S1), (P2, S2), (P3, S3))

where:

N = {S1, S2, S3, A,A', A�, B,D,D', D�}
K = {Q1, Q2, Q3}
P1 = {S1 −→ aS1, S1 −→ aA,A −→ A', A'−→ A”, A” −→ bA”, A” −→

bQ3,

D” −→ d}
P2 = {S2 −→ cS2, S2 −→ cB,B −→ Q1, A'−→ A'}
P3 = {S3 −→ S3, S3 −→ Q2, B −→ D,D −→ D', D'−→ D�, D�−→ dD�}

(III) The last and most di�cult step is to prove overall correctness.

In this case this means that we have to use the Owicki-Gries theory to

show that the multiprogram P we constructed satis�es the next speci�cation:

{(w1 = S1) ∧ (w2 = S2) ∧ (w3 = S3)} P {w1 ∈ Lcd}

Furthermore, P outputs the word anbmcndn for any input formed by the pair

of positive integers n,m. This is equivalent to proving that L(Γ ) = Lcd.

According to the de�nition Prog1, Prog2 and Prog3, which behave like

G1, G2 and G3, respectively, we propose the following invariant:

InvV :




(w1 = anS1 ∧ n ≥ 0) ∨ (w1 = anA ∧ n ≥ 1) ∨ (w1 = anA' ∧ n ≥ 1)∨
∨(w1 = avbnA� ∧ v ≥ 1 ∧ n ≥ 0) ∨ (w1 = avbnQ3 ∧ v ≥ 1 ∧ n ≥ 1)∨
∨(w1 = avbncgdhD� ∧ v, n, g ≥ 1 ∧ h ≥ 0)∨
∨(w1 = aebfcgdh ∧ e, f, g, h ≥ 1)

∧
∧
[

(w2 = cqS2 ∧ q ≥ 0) ∨ (w2 = cqB ∧ q ≥ 1)∨
∨(w2 = cqQ1 ∧ q ≥ 1) ∨ (w2 = cqarA' ∧ q, r ≥ 1)

]
∧

∧

 (w3 = S3) ∨ (w3 = Q2) ∨ (w3 = cnB ∧ n ≥ 1)∨
∨(w3 = cnD ∧ n ≥ 1) ∨ (w3 = cnD' ∧ n ≥ 1)∨
∨(w3 = cndmD� ∧ n ≥ 1 ∧m ≥ 0)




But the Owicki-Gries theory of global correctness can be used to prove

that after n rewriting, with n ≥ 1, the only possible combination of values for
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the sentential forms w1, w2 and w3 that does not lead to a deadlock, is the

one expressed by the state:

{(w1 = anA) ∧ (w2 = cnB) ∧ (w3 = Q2) ∧ (n ≥ 1)}
From this state it can be proved that the only valid continuation is the se-

quence of rewriting and communications described in step 2 of the re�nement

process, which reaches the state containing {w1 ∈ {anbmcndm | n,m ≥}}

The strategy we have presented above di�ers from the traditional approach

not in complexity, because the number of cases considered in the proofs are the

same, but in the way the problem is approached. We suggest that the Owicki-

Gries methodology could provide more possibilities for reasoning about prob-

lems than the strategies commonly used in the grammar system framework

because:

1. It makes it possible to reason in a forward or data-driven way, as does

case analysis, but also in a backward or goal-directed way. The notion of

backward reasoning comes from psychology, as is pointed in [11] where this

description of problem solving is given: We may have a choice between

starting with where we wish to end, or starting with where we are at the

moment. In the �rst instance we start by analyzing the goal. We ask,

�Suppose we did achieve the goal, how would things be di�erent- what

subproblems would we have solved, etc.?�. This in turn would determine

the sequence of problems, and we would work back to the beginning. In

the second instance we start by analyzing the present situation, see the

implications of the given conditions and lay-out, and attack the various

subproblems in a �forward direction�.

2. Problems can be divided into subproblems because of the theorem: for

any Q {P}S0; S1{R} ⇐= {P}S0{Q} ∧ {Q}S1{R}, where P ,R are pred-

icates and S0,S1 are instructions. Also goals and subgoals are discussed

in the psychology text mentioned above ([11]): The person perceives in

his surrounding goals capable of removing his needs and ful�lling his de-

sires... And there is the important phenomenon of emergence of subgoals.

The pathways to goals are often perceived as organized into a number of

subparts, each of which constitutes and intermediate subgoal to be attained

on the way to the ultimate goal. These characteristics suggest that Owicki-

Gries strategies are closer to how humans reason.

We give another example showing the combined use of the Owicki-Gries

strategy and the so-called technique of re�nement of problems.
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Example 2. We are looking for a CCPC grammar system that generates this

language: {xcxc | x ∈ {a, b}∗}

A possible division into subproblems could be:

{w1 = S1 ∧ w2 = S2 ∧ w3 = S3 ∧ w4 = S4}
Subproblem 1: (Rewrite)n+1, n ≥ 0
Prog4 generates xX , x ∈ {a, b}∗, | x |= n.

{w1 = S1'∧w2 = S2'∧w3 = S3'∧w4 = xX∧x ∈ {a, b}∗∧ | x |= n∧X ∈ N}
Subproblem 2: Communication

Prog4 communicates with Prog2 and Prog3 sending two copies of w4.

{w1 = S1'∧w2 = xX∧w3 = xX∧w4 = S4∧x ∈ {a, b}∗∧ | x |= n∧X ∈ N}
Subproblem 3: (Rewrite)p , p ≥ 0
Prog2 and Prog3 replace X by c.

{w1 = S1'∧w2 = xc ∧ w3 = xc ∧ w4 = yX ∧ x ∈ {a, b}∗∧ | x |= n∧
∧X ∈ N ∧ y ∈ {a, b}∗∧ | y |= p}
Subproblem 4: Communication

Prog1 receives the content of w2 and w3 from Prog2 and Prog3.

{w1 = xcxc ∧ w2 = yX ∧ w3 = yX ∧ w4 = S4 ∧ x ∈ {a, b}∗∧ | x |= n∧
∧X ∈ N ∧ y ∈ {a, b}∗∧ | y |= p}

As we can see, with the Owicki-Gries theory we can simultaneously propose

a multiprogram P with programs Prog1, Prog2, Prog3 and Prog4 and prove

its correctness with respect to the precondition {w1 = S1 ∧ w2 = S2 ∧ w3 =
S3 ∧ w4 = S4} and postcondition {w1 ∈ {xcxc | x ∈ {a, b}∗}}.

Equivalently we simultaneously de�ne a grammar system Γ3 ∈ CCPC4(CF )
and the proof that L(Γ3) = {xcxc | x ∈ {a, b}∗}, where Γ3 is de�ned in this

way:

Γ3 = ({S1, S2, S3, S4, S1', S2', S3', S4', X}, {a, b, c},
(S1, P1, R1), (S2, P2, R2), (S3, P3, R3), (S4, P4, R4))

where:

P1 = {S1 → S1'}, R1 = {a, b}∗c,
P2 = {S2 → S2', X → c}, R2 = {a, b}∗X,
P3 = {S3 → S3', X → c}, R3 = {a, b}∗X,
P4 = {S1 → aS4, S4 → bS4, S4 → X}, R4 = ∅.
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We do not include here the proof of global correctness of the program

proposed, but encourage the reader to do it.

So far the main e�ort in grammar system theory has focused on �nding

grammar systems with the fewest possible number of grammars and more re-

stricted productions, to show how distribution and communication can make

simple components very powerful when they work together. Some studies on

the computational complexity measure of PC grammar systems that consid-

ers the number of communications between grammars have been presented

in [10] and [14]. This apart, the most investigated complexity measure is the

number of grammars that a PC grammar system consists of, which is clearly

a descriptional complexity measure. So a very important matter has been

forgotten: the e�cient use of time. The opposite has happened in the pro-

gramming area (see [7]), where research has focused on looking for techniques

to parallelize algorithms and to help programmers to design more e�cient

concurrent algorithms.

Although there are no recipes to follow, in some cases we can construct

e�cient grammar systems using some of the methodical approaches developed

in the programming framework that maximize the range of options considered

and that provide mechanisms for evaluating alternatives.

For example if we calculate the time that the grammar system Γ3 de�ned

above spends to generate a string xcxc with x ∈ {a, b}∗ and | x |= n, it is

O(n) in the best case. If we want to improve the e�ciency of Γ3 in terms of

time taken to produce a string, we can try to apply some of the strategies

developed in the programming framework to design parallel algorithms. For

this example we can apply so-called functional decomposition.

De�nition 2. (Functional decomposition) Functional decomposition is a strat-

egy of partitioning used to the design concurrent algorithms. This approach

uses computation to expose opportunities for parallel execution. Hence, the

idea is to de�ne a large number of small tasks in order to yield a �ne-grained

decomposition of a problem.

Example 3. We can apply the functional decomposition strategy over Γ3 to

generate another grammar system Γ4 that solves this problem in less time.

We focus on the computation of the string x ∈ {a, b}∗ and we discover

that this task can be done by m grammars working simultaneously instead

of only one grammar. Thus, we can reduce the time to O(n/m), in the best

case.
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For de�ning Γ3 we propose this re�nement of Subproblem 1 :

{w1 = S1 ∧ w2 = S2 ∧ w3 = S3 ∧ w4 = S4}
Subproblem 1: (Rewrite)n+1, n ≥ 0
Prog4 generates xX , x ∈ {a, b}∗, | x |= n.

{w1 = S1'∧w2 = S2'∧w3 = S3'∧w4 = xX ∧ x ∈ {a, b}∗∧ | x |= n}

To improve e�ciency we propose this other re�nement of the same subprob-

lem:
{w1 = S1 ∧ w2 = S2 ∧ w3 = S3 ∧ w4 = S4 ∧ .... ∧ wi+4 = Si+4 ∧ ...
... ∧ wm+3 = Sm+3 ∧ wm+4 = Sm+4 ∧ 1 ≤ i ≤ m− 1 ∧ 1 ≤ m}
Subproblem 1:

(Rewrite)t+1
, t ≥ 0

Progi+4, ..., P rogm+3 generates xi, ..., xm−1 ∈ {a, b}∗, 1 ≤ i ≤ m− 1,
1 ≤ m and Progm+4 generates xmY, xm ∈ {a, b}∗
{w1 = S1' ∧ w2 = S2' ∧ w3 = S3' ∧ w4 = S4' ∧ ... ∧ wi+4 = xi∧
∧... ∧ wm+3 = xm−1 ∧ wm+4 = xmY ∧ 1 ≤ i ≤ m− 1 ∧ 1 ≤ m∧
∧x1, ..., xm ∈ {a, b}∗ ∧ Y ∈ N}
Communication

Prog4 receives the x1, ..., xm−1 ∈ {a, b}∗ produced by Prog5, ..., P rogm+3

followed by xmY, xm ∈ {a, b}∗ produced by Progm+4

{w1 = S1' ∧ w2 = S2' ∧ w3 = S3' ∧ w4 = x1...xmY ∧ ...∧
∧wi+4 = Si+4 ∧ ... ∧ wm+3 = Sm+3 ∧ wm+4 = Sm+4∧
∧1 ≤ i ≤ m− 1 ∧ 1 ≤ m ∧ x1...xm ∈ {a, b}∗ ∧ Y ∈ N}
(Rewrite)s+1

, s ≥ 0
Prog4 replaces Y by X.

{w1 = S1′ ∧ w2 = S2′ ∧ w3 = S3′ ∧ w4 = x1...xmX ∧ ... ∧ wi+4 = yi∧
∧... ∧ wm+3 = ym−1 ∧ wm+4 = ymY ∧ 1 ≤ i ≤ m− 1 ∧ 1 ≤ m∧
∧x1...xm ∈ {a, b}∗ ∧ y1, ..., ym ∈ {a, b}∗ ∧ Y ∈ N}
The rest is analogous to the analysis we made for Γ3, and according to our

previous analysis we get Γ4 ∈ CCPCm+4(CF ), m ≥ 1 de�ned in this way:

Γ4 = ({S1, S2, S3, ..., Sm+4, S1', S2', S3', ..., Sm+4', X, Y }, {a, b, c},
(S1, P1, R1), (S2, P2, R2), ..., (Sm+4, Pm+4, Rm+4))

where:

P1 = {S1 → S1'}, R1 = {a, b}∗c,
P2 = {S2 → S2', X → c}, R2 = {a, b}∗X,
P3 = {S3 → S3', X → c}, R3 = {a, b}∗X,
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P4 = {S4 → S4', Y → X}, R4 = {a, b}∗Y ∪ {a, b}∗,
Pi+4 = {Si+4 → aSi+4, Si+4 → bSi+4, Si+4 → a, Si+4 → b, Si+4 → λ},

Ri+4 = ∅, 1 ≤ i ≤ m− 1
Pm+4 = {Sm+4 → aSm+4, Sm+4 → bSm+4, Sm+4 → Y }, Rm+4 = ∅, 1 ≤ m

The proof of global correctness of the multiprogram proposed is left as an

exercise for the reader.

We improve e�ciency, because Γ4 generates strings xcxc with x ∈ {a, b}∗
and | x |= n in O(n/m), in the best case. And we show with this example

that we can use strategies available in the programming framework to design

grammar systems that derive strings in less time.

4.2 How can programming bene�t from grammar systems?

If, for example, we want to prove in the grammar system theory that there

is no grammar system with n components with a certain protocol of commu-

nication that generates a language L, we use analysis by cases and induction

strategies. If we translate this problem to the programming framework, we

have to prove that it is not possible to �nd a multiprogram P with n pro-

grams running concurrently, that communicate with the same protocol and

which is correct with respect to this speci�cation:

{(w1 = S1) ∧ (w2 = S2) ∧ ... ∧ (wn = Sn) ∧ n ≥ 1} P {w1 ∈ L}

But in the programming framework we have no strategies for reasoning in

the negative way. The only strategies available in this framework are veri�ca-

tion, which consists of a given multiprogram that proves its correctness with

respect to a speci�cation (example 4), and the constructive approach, which

we have exempli�ed with theorem 6, examples 7 and 9 that consist of simulta-

neously constructing a program and the proof of its correctness with respect

to a speci�cation. Both strategies are useful for getting positive results.

The lack of strategies that can prove this kind of negative result in the

programming framework makes us think of the possibility of translating them

to the grammar system framework and using the tools available there to solve

them.

For example, let us the take the problem of proving that there is no

grammar system of any type with two regular components that can gener-

ate Lcd. If we get a solution for this we prove that Lcd ∈ NPC3(REG) is
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the most economical solution with respect to the number of components. If

we translate this problem into the programming framework, we want to prove

that it is not possible to �nd a multiprogram P with two programs Prog1
and Prog2 running concurrently, modifying w1 and w2 in a right-linear way,

which is correct with respect to this speci�cation: {(w1 = S1) ∧ (w2 = S2)}
P {w1 ∈ {anbmcndm | n,m ≥}}. But because there is no strategy in the pro-

gramming framework to solve this kind of problems, we solve it with the tools

available in the grammar system framework: namely analysis by cases. The

proof of the theorem Lcd /∈ X2(REG), for X ∈ {PC,CPC,NPC,NCPC},
can be read from [8].

Now if we go back to the topic of e�ciency that we pointed out above, the

grammar system framework concentrates on agglomerate tasks as much as

possible. The aim is to get grammar systems with fewer grammars, to prove

the power of communication. The opposite is the case in the programming

framework where programmers try to partition programs into as many tasks

as necessary to improve e�ciency in time, looking for strategies to parallelize

programs. So it looks like researchers are working in di�erent directions.

But some results of the grammar system theory can bene�t the concurrent

programming framework. For example, this theorem that makes it possible to

transform a grammar system of m grammars into a grammar system of n

grammars that generate the same language:

CF = CD1,∗CF (t) = CD2,∗CF (t) ⊂ CD3,∗CF (t) and (1)

CD3,∗CF (t) = CD∗,∗CF (t) = ET0L (2)

There are many theorems of this kind in the grammar system theory that

translated to the programming framework speak about the number of pro-

grams needed to generate a certain language (refer to [4]). This is a contribu-

tion by grammar system theory to the programming framework, where there

are no results about the number of programs needed to solve a problem. It

would be very interesting for the design of concurrent programs if some of

these transformations were also to consider e�ciency. Any results about how

to transform a program P that has m multiprograms running concurrently

into a program with n multiprograms that solves the same problem more e�-

ciently would be a great contribution to the concurrent programming theory.
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5 Conclusions and Future Work

In this paper we brie�y outline and illustrate the strong relationship between

two mechanisms of distributed and cooperating computations: grammar sys-

tems and concurrent programming. We show that it is possible to automati-

cally translate a grammar system into a concurrent program and make proofs

using the tools available in the programming framework. The problem used

to show the translation from a grammar system to a concurrent program was

a homogenous CD grammar system with = k-mode of derivation. But this

automatic translation can also be done for all the other models of grammar

systems: homogeneous CD grammar systems with the other modes of deriva-

tions, hybrid CD grammar systems and networks of language processors.

The traditional approach to the problem of �nding a grammar system

generating a given language is: �rst propose a grammar system and then �nd a

proof that it generates the language. In this paper we present a new approach,

taken from the programming framework. It consists of simultaneously �nding

the grammar system that generates a given language and a proof that the

grammar system found generates it. We think that it would be interesting to

study this approach in more detail, and try to apply it to other well-known

languages. We could even try to �nd other programming strategies, apart

from the strategy of re�nement of problems shown here, that could be useful

in solving problems related to grammar system theory.

Until now not much attention has been paid to the time taken to generate

a language with a grammar system, while in the programming framework the

e�ciency issue has been the main topic of research in recent years. We propose

to follow some of the methodical approaches developed in the programming

framework to construct more e�cient grammar systems.

Moreover we can think about how programming theory can bene�t from

grammar system theory. The lack of strategies in the programming frame-

work to prove negative results of the type: L 6= L(Γ ) for a language L and

any grammar system Γ , makes us think that such problems might be solved

by translating them into the grammar system framework where they can be

solved using the tools available there.

It is our opinion that this work opens up possibilities for further research

and that it seems worthwhile to continue in this direction.
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