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Summary. This paper is a summary of my seminars given in the Research Group

on Mathematical Linguistics in the year 2005. It is a short survey on automata

theory, including �nite state automata and tree automata. The transformations

(transductions) induced by �nite state automata and tree automata are given.

1 Preliminaries and Notations

In this section, some basic notations about formal language theory and au-

tomata theory are given. Other concepts can be found in the references

[1, 2, 5, 7].

A set is a collection of objects, we use |S| to denote the cardinality of S,

i.e., the number of elements of S. If |S| < ∞, then S is called a �nite set;

otherwise, S is called an in�nite set. An alphabet is a �nite set of symbols.

A (formal) language is a set of strings of symbols from some alphabet. An

element x in a language L is called a word, written x ∈ L.
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A semigroup consists of a set M and a binary associative operation on

M , denoted by (M, ∗). For ∀m1,m2,m3 ∈ M, we have (m1 ∗ m2) ∗ m3 =
m1 ∗ (m2 ∗m3). A semigroup which has a neutral element, denoted by 1M , is

a monoid. Given two subsets A,B of a monoid M , the product AB is de�ned

by

AB = {c ∈M |∃a ∈ a,∃b ∈ B : c = ab}. (1)

Recognizable sets and rational sets are two important language families.

They are of distinct nature and Kleene's Theorem precisely asserts that they

coincide in �nitely generated free monoids. Some properties of regular lan-

guages like closure properties can be proved for recognizable subsets, others

for the rational subsets of a monoid. Here we give the formal de�nition of

recognizable sets and rational sets.

De�nition 1. Let M be a monoid. A subset A of M is recognizable if there

exist a �nite monoid N , a morphism α from M into N and a subset P of N

such that A = α−1(P ).

The set of all recognizable subsets of M is denoted by Rec(M).

Example 1. Let M be any monoid, N = {1}. Let α be the unique morphism

from M onto N . Then M, ∅ ∈ Rec(M).

Example 2. If M is a �nite monoid, then any subset of M is recognizable.

Example 3. If M = X∗ and X is an alphabet, then A ∈ Rec(X∗) i� A is

recognized by a �nite automaton.

De�nition 2. Let M be a monoid. The family Rat(M) of rational subsets of

M is the least family R of M satisfying the following conditions:

(i) ∅ ∈ R; {m} ∈ R for all m ∈M ,

(ii) if A,B ∈ R,then A ∪B,AB ∈ R,
(iii) if A ∈ R,then

A∗ =
⋃
n>0

An ∈ R

Remark 1. A rational subset ofM is either empty or can be expressed, starting

with singletons, by a �nite number of unions, products, and plus or stars

(Rational expression).

De�nition 3. Let X and Y be alphabets. A rational (resp. recognizable) re-

lation over X and Y is a rational (resp. recognizable) subset of the monoid

X∗ × Y ∗.
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De�nition 4. Let M and M ′ be monoids. A rational relation over M and

M ′ is a rational subsets of M ×M ′

The �dynamic" notion of rational relation is a rational transduction. A

transduction τ from X∗ into Y ∗ is a function from X∗ into the power set

P(Y ∗). For convenience, we write τ : X∗ → Y ∗.

Theorem 1 (Nivat's, 1968). Let X and Y be alphabets. The following con-

ditions are equivalent:

(i) A ∈ Rat(X∗ × Y ∗),
(ii) There exist an alphabet Z, two morphisms ϕ : Z∗ → X∗, ψ : Z∗ → Y ∗

and a regular language K ⊂ Z∗ such that

A = {(ϕh, ψh) : h ∈ K}

(iii) There exist an alphabet Z, two alphabetic morphisms α : Z∗ → X∗, β :
Z∗ → Y ∗ and a regular language K ⊂ Z∗ such that

A = {(αh, βh) : h ∈ K}

(iv) There exist an alphabet Z, two alphabetic morphisms α : Z∗ → X∗,β :
Z∗ → Y ∗ and a local regular language K ⊂ Z∗ such that

A = {(αh, βh) : h ∈ K}

2 Transformations Induced by FSTs

The machines realizing rational transductions are called transducers. The au-

tomaton reads input words over alphabet X, and emits output words over

alphabet Y . Thus, the automaton realizes a rational transduction. The fol-

lowing is the mathematical de�nition of a transducer.

2.1 Finite transducer

De�nition 5. A �nite transducer is a 6-tuple T = (Q,Σ,∆, δ, s, F ), where

1. Q is the �nite set of states,

2. Σ is the input alphabet,

3. ∆ is the output alphabet,
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4. δ is the transition-and-output function from a �nite subset of Q × Σ∗ to
�nite subset of Q×∆∗,

5. s ∈ Q is the starting state,

6. F ⊆ Q is the set of �nal states.

Example 4. Figure 1 is the graph representation of the transducer T =
({0, 1, 2}, {a, b}, {0, 1}, δ, 0, {2}). Where the transition-and-output function

consists of the following transition rules: δ(0, aa) = (0, 0), δ(0, b) = (1, 101),
δ(1, λ) = (2, 11), δ(1, b) = {(1, λ), (1, 101)}, δ(2, a) = (2, 0).

a / 0

b / 101

b / 101

b /

/ 11

a / 0λ

λ

0 1 2

a

Fig. 1. Finite-state transducer

For a given word u ∈ Σ∗, we say that v ∈ ∆∗ is an output of T for u

if there exists a state transition sequence of T , (q1, v1) ∈ δ(s, u1), (q2, v2) ∈
δ(q1, u2), . . . , (qn, vn) ∈ δ(qn−1, un), and qn ∈ F , i.e.,

s
u1/v1−→ q1

u2/v2−→ . . . . . .
un/vn−→ qn ∈ F

such that u = u1 · · ·un, u1, . . . , un ∈ Σ∗, and v = v1 · · · vn, v1, . . . , vn ∈ ∆∗.
We write v ∈ T (u), where T (u) denotes the set of all outputs of T for the

input word u.

De�nition 6. A �nite transducer T = (Q,Σ,∆, δ, s, F ) is called a generalized

sequential machine(GSM) if δ is a function from Q × Σ to �nite subsets of

Q×∆∗, i.e., T reads exactly one symbol at each transition.

2.2 Finite transduction

For each �nite transducer T = (Q,Σ,∆, δ, s, F ), the transduction induced by

T is T : Σ∗ −→ 2∆
∗
. For a language L ⊆ Σ∗,

T (L) =
⋃
w∈L

T (w)
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Example 5. Consider the transducer in Example 4, the following relations are

in the transductions induced by transducer T = ({0, 1, 2}, {a, b}, {0, 1}, δ, 0, {2}):
1. T (aabb) = {010111, 010110111},
2. T (bbba) = {101110, 101101110, 101101101110},
3. T (λ) = ∅, T (aaab) = ∅,
4. T ({b, ba}) = {10111, 101110}.

2.3 Rational relation (transduction)

Transductions induced by �nite transducers can be viewed as a relation RT ⊆
Σ∗ ×∆∗ de�ned by

RT = {(u, v)|v ∈ T (u)}
De�nition 7. A transduction τ : X∗ → Y ∗ is rational i� τ is realized by a

transducer.

Corollary 1. Any rational transduction τ : X∗ → Y ∗ can be realized by a

transducer T = (Q,Σ,∆, δ, s, F ) such that

δ ⊂ Q× (X ∪ {λ})× (Y ∪ {λ})×Q (2)

and further F consists of a single state q+ 6= s, and (p, u, v, q) ∈ δ implies

p 6= q+ and q 6= s.

Theorem 2 (Nivat's, 1968). Let Σ and ∆ be �nite alphabets. R ⊆ Σ∗×∆∗
is a rational relation i� there are a �nite alphabet Γ , a regular language L ⊆
Γ ∗ and a morphisms g : Γ ∗ → Σ∗ and h : Γ ∗ → ∆∗ such that

R = {(g(w), h(w))|w ∈ L}

De�nition 8. Two �nite transducers are said to be equivalent if they de�ne

exactly the same �nite transduction.

Remark 2. Equivalence problem of �nite transducers is undecidable, equiva-

lence problem for single-valued �nite transducers is decidable.

Inverse transduction: Let T : Σ∗ → 2∆
∗
be a �nite transduction. Then

the inverse of T , i.e. T−1 : ∆∗ → 2Σ
∗
, is also a �nite transduction.

De�nition 9. A �nite transducer T = (Q,Σ,∆, δ, s, F ) is in the standard

form if δ : Q× (Σ∪{λ})→ 2Q×(∆∪{λ}). Intuitively, the standard restricts the

input and output of each transition to be only a single letter or λ.
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Theorem 3. Each �nite transducer can be transformed into an equivalent

�nite transducer in the standard form.

The transformation of an arbitrary �nite transducer to an equivalent one

in the standard form consists of two steps: First, each transition that reads

more than one letter is transformed into several transitions reading exactly

one letter. Secondly, each transition that has a string of more than one letter

as output is transformed into several transitions such that each of them has

exactly one letter as output.

The two transformation steps can be represented as follows:

p q
1

a a  / β
j

⇓

p qr
1

λ
1

a a a a
2 j-1 j

/ β / λ λ/ /

j-1
r

p, q ∈ Q, a1, . . . , aj ∈ Σ, j > 2, β ∈ ∆∗, r1, . . . , rj−1 new states.

p q
a / b

1 k
b

⇓

p
a / b

1
λ / b λ / b

2
qr

1
r
k-1

λ
k-1

/ b
k

p, q ∈ Q, a ∈ Σ ∪ {λ}, b1, . . . , bk ∈ ∆, k > 2, r1, . . . , rk−1 new states.

3 Tree Automata and Tree Transducers

Tree automata were �rst introduced by J.W. Thatcher and J.B. Wright, and

independently by J. Doner around 1965.

The trees can be regarded as ΣX-terms over ranked alphabet Σ and fron-

tier alphabet X. Forest is the set of ΣX-terms. Here just some basic de�ni-

tions and theorems will be given. Some details can be checked in the book

Tree Automa and some related references.
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The ranked alphabet will be denoted by Σ,∆, Γ , etc., in which every

element has a rank (arity) m ≥ 0. And the frontier alphabet (or variables)

will be denoted by X,Y, Z, etc.

3.1 Tree automata

De�nition 10. A Σ − algebra A is a pair consisting of a nonempty set A

(of elements of A) and a mapping that assigns to every operator σ ∈ Σ an

m− ary operation

σA : Am → A.

where m is the arity of σ. The operation σA is called the realization of σ in

A.

De�nition 11. A homomorphism from a Σ-algebra A to a Σ-algebra B is a

mapping ϕ : A→ B such that for all m ≥ 0, σ ∈ Σm and a1, . . . , am ∈ A,

σA(a1, . . . , am)ϕ = σB(a1ϕ, . . . , amϕ).

and then write ϕ : A → B.

De�nition 12. The set TΣ(X) of ΣX-terms in X, or ΣX-terms for short,

is de�ned as follows:

1. X ⊆ TΣ(X);
2. σ(t1, . . . , tm) ∈ TΣ(X) whenever m ≥ 0, σ ∈ Σm and t1, . . . , tm ∈ TΣ(X);
3. every ΣX-term can be obtained by applying the rules (1) and (2) a �nite

number of times.

Example 6. Let Σ = Σ0 ∪ Σ1 ∪ Σ2 be a ranked alphabet, where Σ0 = {γ},
Σ1 = {ω} and Σ2 = {σ}. The frontier alphabet X = {x, y}. Then t =
ω(σ(y, σ(γ, x))) is a ΣX-tree.

Tree automata (or tree recognizers) de�ne forests. There are four basic

types of these recognizers. A frontier-to-root tree recognizer (or F-recognizer)

reads its input trees from the frontier towards the root. A root-to-frontier tree

recognizer (or R-recognizer) reads the trees starting at the root towards the

frontier.

De�nition 13. A frontier-to-root ΣX-recognizer A consists of

1. a �nite Σ-algebra A = (A,Σ);
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2. an initial assignment α : X → A;

3. a set A′ ⊆ A of �nal states.

We can write A = (A, α,A′) or A = (A,Σ,X, α,A′). The forest recognized

by A is the ΣX-forest

T (A) = {t ∈ TΣ(X)|tA(α) ∈ A′}.

De�nition 14. A nondeterministic frontier-to-root ΣX-recognizer A consists

of

1. a �nite ND Σ-algebra A = (A,Σ);
2. an initial assignment α : X → PA;
3. a set A′ ⊆ A of �nal states.

we write A = (A, α,A′) or A = (A,Σ,X, α,A′). The forest recognized by A
is the ΣX-forest

T (A) = {t ∈ TΣ(X)|tα̂ ∩A′ 6= ∅}

De�nition 15. A nondeterministic root-to-frontier (NDR) ΣX-recognizer A
consists of

1. a �nite NDR Σ-algebra A = (A,Σ);
2. a set A′ ⊆ A of initial states;

3. a �nal assignment α : X → PA.
we write A = (A, A′, α) or A = (A,Σ,X,A′, α). The forest recognized by A
is the ΣX-forest

T (A) = {t ∈ TΣ(X)|tα̂ ∩A′ 6= ∅}.

A deterministic root-to-frontier ΣX-recognizer (DR) is an NDR ΣX-

recognizer A = (A, A′, α) such that A′ and all of the sets σA(a) (σ ∈ Σm,m ≥
1, a ∈ A) and σA with σ ∈ Σ0 contain exactly one element.

Deterministic and nondeterministic frontier-to-root ΣX-recognizers and

nondeterministic root-to-frontier ΣX-recognizers are of the same power, the

forests by these three types of recognizers are exactly the recognizable forests.

But the deterministic root-to-frontier recognizers are weaker and they de�ne

a proper subfamily of Rec.

For a recognizable forest, some operations can be de�ned on it. The most

common operations are:

1. forest product: T (x ← Tx|x ∈ X) = ∪(t(x ← Tx|x ∈ X)|t ∈ T ). Where T

is a ΣX-forest and (Tx|x ∈ X) is an X-indexed family of ΣX-forests;
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2. z-product: S ·z T = T (x ← Tx|x ∈ X), where S and T are ΣX-forests,

Tz = S, Tx = x for all x ∈ X, x 6= z;

3. x-quotient: S−xT = {p ∈ TΣ(X)|S ·x {p} ∩ T 6= ∅}, where S and T are

ΣX-forests;

4. σ-product: σ(T1, . . . , Tm) = {σ(t1, . . . , tm)|t1 ∈ T1, . . . , tm ∈ Tm}, where
σ ∈ Σ is an m-ary operator and T1, . . . , Tm are m ΣX-forests;

3.2 Tree transducers

Tree transformation is de�ned as a binary relation τ ⊆ TΣ(X) × TΩ(Y ), in
which TΣ(X) and TΩ(Y ) are the set of trees as de�ned in the previous section.
An inclusion (p, q) ∈ τ means that τ transforms p into q. Denote a countably

in�nite set of auxiliary variables by Ξ = {ξ1, ξ2, . . .}. Its role is to indicate an
occurrence of a subtree in a tree.

There are two main kinds of tree transducers, named frontier-to-root tree

transducers which process a tree from the leaves to the root and root-to-

frontier tree transducers which work in the opposite direction.

De�nition 16. A frontier-to-root tree transducer (F-transducer) is a system

A = (Σ,X,A,Ω, Y, P,A′), where Σ,Ω are ranked alphabet, X,Y are the fron-

tier alphabet, A is a ranked alphabet consisting of unary operators (the state

set of A), A′ ⊆ A is the set of �nal states and P is a �nite set of productions

of the following two types:

1. x→ a(q) (x ∈ X, a ∈ A, q ∈ TΩ(Y ));
2. σ(a1(ξ1), . . . , am(ξm)) → a(q(ξ1, . . . , ξm)) (σ ∈ Σm,m ≥ 0, a1, . . . , am,

a ∈ A, q(ξ1, . . . , ξm) ∈ TΩ(Y ∪Ξm)).

Given an F -transducer A = (Σ,X,A,Ω, Y, P,A′), the transformation in-

duced by A is the relation

τA = {(p, q)|p ∈ TΣ(X), q ∈ TΩ(Y ), aq ∈ pτ∗A for some a ∈ A′} (3)

For every p ∈ TΣ [X ∪ AΞ], pτ∗A is the subset of ATΩ(Y ∪ Ξ) given as

follows:

1. if p = aξ (a ∈ A, ξ ∈ Ξ), then aξ ∈ pτ∗A;
2. if p ∈ X ∪Σ0, then aq ∈ pτ∗A for all (p, aq) ∈ P ,
3. if p = σ(p1, . . . , pm) (σ ∈ Σm,m > 0) then aq(q1, . . . , qm) ∈ pτ∗A for all

(σ(a1, . . . , am), aq) ∈ P and aiqi ∈ piτ∗A(a, ai ∈ A, i = i, . . . ,m);
4. nothing is in any pτ∗A unless this follows from (1)-(3).
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Example 7. Let A = (Σ, {x}, {a0, a1}, Ω, {y}, P, {a0}), where Σ = Σ2 =
{σ},Ω = Ω1 = {ω} and P consists of the productions x → a1y and

σ(a1, a1)→ a0ω(ξ1).
Consider the tree σ(x, x). One of the possible derivations

σ(x, x)⇒ σ(a1y, x)⇒ σ(a1y, a1y)⇒ a0ω(y)

is illustrated as below.

x x
1
a x

y

1
a 1

a

y y y

0
a

Fig. 2. A transformation by an F-transducer

De�nition 17. A root-to-frontier tree transducer (R-transducer) is a system

A = (Σ,X,A,Ω, Y, P,A′), where Σ,X,A,Ω, Y and A′ are speci�ed the same

way as F -transducer, A′ is the set of initial states, P is a �nite set of produc-

tions of the following two types:

1. ax→ q (a ∈ A, x ∈ X, q ∈ TΩ(y));
2. aσ(ξ1, . . . , ξm)→ q (a ∈ A, σ ∈ Σm,m ≥ 0, q ∈ TΩ [Y ∪AΞm]).

Given an R-transducer A = (Σ,X,A,Ω, Y, P,A′). Then transformation

induced by A is the relation

τA = {(p, q)|p ∈ TΣ(X), q ∈ TΩ(Y ), q ∈ pτA,a for some a ∈ A′} (4)

For any a ∈ A and p ∈ TΣ(X), pτA,a is de�ned as follows:

1. if p ∈ Σ0 ∪X and (ap, q) ∈ P then q ∈ pτA,a;
2. if p = σ(p1, . . . , pm) (σ ∈ Σm,m > 0), then for any (aσ, q(a1ξ

n1
1 , . . . ,amξ

nm
m ))

∈ P and qij ∈ piτA,aij
(1 ≤ i ≤ m, 1 ≤ j ≤ ni), q(q1, . . . ,qm) ∈

pτA,a where qi = (qi1 , . . . , qini
) (i = 1, . . . ,m);

3. nothing is in any pτA,a unless this follows from (1)-(2).

Example 8. LetA = (Σ, {x}, {a0, a1, a2}, Ω, {y1, y2}, P, {a0}) be anR-transducer,
where Σ = Σ1 = {σ}, Ω = Ω1 ∪ Ω2, Ω1 = {ω1}, Ω2 = {ω2} and P

consists of the productions a0σ → ω2(a1ξ1, a2ξ1), a1σ → ω1(a1ξ1), a2σ →

TRIANGLE 8 • June 2012



Transformations Induced by Transducers 53

ω1(a2ξ1), a1x → y1, a2x → y2. Consider the trees p = σ(σ(σ(x))) and

q = ω2(ω1(ω1(y1)), ω1(ω1(y2))). Then a derivation of q from a0p is shown

in Figure 3.

0
a

x

2
a

x

1
a

x

2

2
a

x

1

x

2

2
a

x

1

1
a

x

1
a

2

2
a

x

1

1
y

2

1

1

x

1

1
y

2

1

1

2
a

x

1

1
y

2

1

1

2
a

1

1

1
y

2

1

1

1

2
y

Fig. 3. A transformation by an R-transducer

3.3 Some classes of tree transformations

Let A = (Σ,X,A,Ω, Y, P,A′) be an F -transducer. Then:

1. A production of A is linear if each auxiliary variable occurs at most once

in it. Moreover, A is a linear F -transducer (LF-transducer) if all of its

productions are linear.

2. A is a totally de�ned F -transducer (TF-transducer) if

(i) for each x ∈ X there is a production in P with left-hand side x and

(ii) for all m > 0, σ ∈ Σm and a1, . . . , am ∈ A there is a production in P

with left-hand side σ(a1, . . . , am).
3. A is a nondeleting F -transducer (NF-transducer) if for every production

σ (a1, . . . , am) → aq, (σ ∈ Σm,m ≥ 0) from P each ξi ∈ Ξm occurs at

least once in q.

4. A is a deterministic F-transducer (DF-transducer) if there are no two

distinct productions in P with the same left-hand side.

5. A is an F-relabeling if each of its productions is of the form

(i) x→ ay (x ∈ X, a ∈ A, y ∈ Y ) or
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(ii) σ(a1, . . . , am) → aω(ξ1, . . . , ξm), where σ ∈ Σm, a1, . . . , am, a ∈
A,ω ∈ Ωm.

Example 9. Let A = (Σ, {x}, {a0, a1}, Ω, {y}, P, {a1}) be the F -transducer

with Σ = Σ2 = {σ} and Ω = Ω2 = {ω}, where P consists of the productions

x → a0y, σ(a0, a0) → a1ω(ξ1, ξ2), σ(a0, a1) → a0ω(ξ1, ξ2), σ(a1, a0) →
a1ω(ξ1, ξ2), σ(a1, a1)→ a1ω(ξ1, ξ2).

Then A is a linear, totally de�ned, nondeleting, and deterministic F-

transducer. A is also an F -relabeling.
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