
GNS: Abstract Syntax for Natural Languages

Vincenzo Manca1 and M. Dolores Jiménez-López2

1 Department of Computer Science

University of Verona

Verona, Italy

E-mail: vincenzo.manca@univr.it
2 Research Group on Mathematical Linguistics

Universitat Rovira i Vigili

Tarragona, Spain

E-mail: mariadolores.jimenez@urv.cat

Summary. This paper presents an overview of General Natural Syntax (GNS), a

formal theory of general explicative power that generalizes and formalizes syntactic

concepts in order to o�er a general notion of syntax that is independent of any

particular language.

1 General Natural Syntax: Basic Idea

General Natural Syntax (GNS) is a formal theory of general explicative power

that intends to formalize a general notion of syntax that is independent of

any particular language. The idea behind this formalism is that it reduces

syntactic constructions to a few principles related to their semantic functions,

but which can be de�ned independently of semantics.

GNS generalizes and formalizes syntactic concepts so that they can be in-

corporated into a formal theory of general explicative power. As we have said,

the general principles we proposed as elements of GNS are related to their

Triangle: Language, Literature, Computation, n. 8, 2012
Publicacions Universitat Rovira i Virgili · ISSN: 2013-939X

https://revistes.urv.cat/index.php/triangle

56 V. Manca, M.D. Jiménez-López

semantic function but de�nable independently of semantics. GNS represen-

tations stand between the concrete syntax of speci�c natural languages and

the semantic function of syntactic phenomena. In this regard, GNS can be re-

lated to the so-called abstract syntax of programming languages [4]. Abstract

syntax is an important tool in the translation process between programming

languages: it provides a deep description of syntactic constructs and is in-

dependent of any particular syntactic encoding. The starting point for this

approach was an algebraic notion of syntax, more abstract than a concrete

syntax, placed at an intermediate level as a bridge between syntax and seman-

tics. Symbols of an abstract syntax expression denote semantic functions, but

at the same time, all the information is included so that the concrete syntax

of the expression can be generated.

GNS is also related to the notion of tagged text, which is the basis of many

markup languages (TeX, HTML, XML). Also here, abstract expressions are

used that mix the pure textual information with information about text for-

mat and visualization (fonts, dimensions, paragraphs, etc.). So, the structure

of a text is represented in a way that in many aspects is independent from

the way a text is realized by a compiler or a browser. Marked texts abstractly

express properties and relations of the textual units at a logical level.

Considering all the above ideas and taking into account that the use of

algebraic formalization has a strong and deep tradition in natural language

analysis within the �elds of semantics [15, 14] and morphology [13], what

we propose here is to develop an analogous logic-algebraic approach at an

intermediate level between semantics and morphology: the level of the abstract

or general syntax.

2 Formal Prerequisites

In this section we provide the formal prerequisites that are needed to under-

stand the formalization presented in this paper. For further information on

the theory of formal languages and mathematical logic see [17, 16, 2].

A nonempty set V of symbols or letters is called an alphabet. A word or

a string over an alphabet V is an element of the free monoid V ∗ generated

by the symbols of V under a binary associative operation of concatenation

(denoted by juxtaposition). The empty word λ is the neuter element with

respect to concatenation (xλ = λx = x). The length of a string x ∈ V ∗ (the
number of symbol occurrences in x) is denoted by |x|.

TRIANGLE 8 • June 2012

GNS: Abstract Syntax for Natural Languages 57

We use symbols→, ¬, ∧, ∨,↔, ∀, ∃, ≡, = with the standard syntactic and

semantic �rst order logic meaning. We assume that the reader is familiar with

logical notions such as variables, constants, predicates, functors, �rst order

formulae and terms, and free and bound variables. A set of formulae, called

axioms, and all their logical consequences constitute a theory (with respect to

some notion of logical consequence or of logical deduction).

A model M, or a (relational) structure, is given by: i) a set D, called

domain of M, ii) some elements a, b, . . . ∈ D, called individual constants of

M, and iii) some operations f, g, . . . and relations R,Q, . . . over D (an arity

is associated with each operation and relation and it speci�es its number of

arguments). UsuallyM is indicated by:

M = (D, a, b, . . . , f, g, . . . , R,Q, . . .)

The set Term(M) of the terms overM is given by all the expressions that

can be constructed, in the usual algebraic sense, by applying the operations

of M to the individual constants of M. For example, if f has arity 1 and g

has arity 2, then the following are terms over the model given above:

f(a), g(a, b), f(g(a, b)), g(a, f(a)), f(g(a, f(a))), . . .

An equation such as g(a, f(a)) = b means that by applying the operation

f to the constant a we get an element of D, say c, and by applying g to

the pair a and c we get b. This means that g(a, f(a)) is considered as the

denotation of the element of D obtained by applying the operations following

the way algebraic expressions are usually evaluated (in the order speci�ed

by parentheses). However, we can consider the term as denoting itself, i.e. a

sequence of symbols for individual constants, operations, commas, and paren-

theses, disregarding any meaning of symbols. It is important to distinguish

between these two aspects. If we want to be precise we write g(a, f(a)) to

refer to the element of D (if it exists) denoted by the term, while in the other

case we write dg(a, f(a))e. However, in practice the context will indicate in

which sense a term is used.

A string model or a monoidal model M is a model that has: i) a domain

that includes a free monoid V ∗ over an alphabet V , ii) constants that include

a constant λ for an empty string and for symbols of V , iii) operations that

include a binary operation that on V ∗ coincides with the string concatenation

on V ∗ (indicated by juxtaposition).

TRIANGLE 8 • June 2012

58 V. Manca, M.D. Jiménez-López

A signature Σ is essentially a set of symbols for denoting objects (indi-

vidual constants), operations and relations of a relational structure (relations

can be identi�ed as operations that provide Boolean values as results). In Σ,

any symbol of operation or relation is equipped with an arity that speci�es

the number of arguments of the corresponding operation or relation.

A string theory or a monoidal theory T , over an alphabet A and a signature

Σ, is a �rst order logic theory of axioms Φ over the signature Σ such that all

the symbols of A and the empty string λ are individual constants of Σ. The

concatenation operation of monoids is denoted in Σ, and Φ also includes the

monoid axiom: ∀x, y, z(x(yz) = (xy)z ∧ xλ = x ∧ λx = x). In other words,

a monoidal theory over an alphabet A and a signature Σ is a theory where

terms include the strings over A. This means that concatenation is applied not

only to the symbols of A, but to the terms that can be built on the signature

Σ. This possibility provides syntactic constructs where not only symbols of

an alphabet, but even terms, are concatenated.

A monoidal system or simply a monoidal indicates, generically, a string

model or a string theory. Monoidals are good environments for de�ning the

syntax of formal languages [11].

Let us indicate by GNS(L) the terms, with their syntactic category, that

can be constructed starting from the lexical items of L in a suitable string the-

ory that will be de�ned in the course of the paper. The alphabet of this theory

is the set of usual Latin letters plus other special symbols that will appear

in the axioms given in the next sections. Variables are indicated by letters

x, y, z, u, v, . . . which may have apices or subscripts. Individual constants are

indicated by special strings of capital letters. Operations and predicates are

indicated by strings starting with a backslash (\). For a better reading, given
a predicate P we write t : P (t is of type P), instead of P (t), in fact, t : P
intuitively means that term t belongs to the syntactic category P .

3 General Natural Syntax: the Formalism

GNS has been de�ned as a general formal framework given by some axioms

according to which some operations are applied to strings of some categories

and get other strings (of some speci�ed categories). The formalism consists

of:

• Eight basic categories;

• Thirty syntactic operations;

TRIANGLE 8 • June 2012

GNS: Abstract Syntax for Natural Languages 59

• Forty axioms;

• A few hundred grammemes;

• A few thousand lexical items (basic lexicon).

In what follows we will present the above elements in order to provide an

overview of GNS.

3.1 Three basic operations

In order to construct GNS, three basic operations have been assumed as the

preliminary data of the analysis:

1. Conjugation (\conjug): adds temporal and dynamic parameters to syn-

tactic elements that can play verbal roles.

2. Determination (\determ): adds spatial and contextual information to el-

ements that can play nominal roles.

3. Predication (\pred): is the basic sentence building construction.

We assume that we know when these operations can be applied to some

arguments.

3.2 Eight basic categories

Taking into account the three basic operations introduced in the above section

we consider the following eight basic categories:

1. Verb (V erb): We de�ne the class V erb of elements x such that, for some

conjugative y, \conjug(x, y) provides a result. Formally:

V erb = {x | ∃ y z \conjug(x, y) = z , y ∈ Conjugative}
2. Noun (Noun): We de�ne the class Noun of elements x, such that, for

some determinative y, \determ(x, y) provides a result. Formally:

Noun = {x | ∃ y z \determ(x, y) = z , y ∈ Determinative}
3. Substantive (Subst): A substantive is the result of the determination

operation. Formally:

∀xyz(\determ(x, y) = z ∧ y : Determinative → z : Subst)

TRIANGLE 8 • June 2012

60 V. Manca, M.D. Jiménez-López

4. Verbative (V erbt): A verbative is the result of the conjugation operation.

Formally:

∀xyz(\conjug(x, y) = z ∧ y : Conjugative → z : V erbt)

5. Proposition (Prop). A proposition is the result of a \pred operation

that takes as arguments a substantive (Subst) and a verbative (V erbt)

and provides a proposition as a result. Formally:

Prop = {z | ∃ x y \pred(x, y) = z , x ∈ Subst , y ∈ V erbt}

We write x : Cat to state that x is an expression of category Cat. We use

Cat to indicate any of the previous categories. To those �ve basic categories

we need to add the following three Ad categories (AdCat indicates any of

them):

6. AdProp

7. AdNoun

8. AdVerb

It is important to note here that although the terms proposition, noun,

verb, and substantive are taken from traditional grammatical, logical, and

semantical analysis, the de�nition we provide of our basic types is completely

formal, based on the assumption of some initial operations.

3.3 Grammemes

The eight basic categories above are those of full linguistic elements. To them

we add a category of empty linguistic elements that we have called gram-

memes3. Grammemes determine the surface syntactic realization of the ab-

stract syntax operations considered in GNS.

Syntactic operations de�ned in GNS allow us to construct complex lin-

guistic expressions with one of the eithg basic categories described above.

However, many syntactic operations need some additional parameters, which

we have called grammemes. Grammemes are de�ned as elements that individ-

uate the features required to evaluate terms of GNS(L) into expressions of L:

that is, kinds of information that the grammar of L requires to provide the

3 Note that we are not using `grammeme' here with its usual meaning in linguistic

morphology.

TRIANGLE 8 • June 2012

GNS: Abstract Syntax for Natural Languages 61

morphological realization corresponding to the abstract syntactic representa-

tion.

It is important to distinguish grammemes from particles. Particles are

strings that are provided in the surface syntactic realization of the abstract

syntax operations. Particles are strings that are inserted in a text as a con-

sequence of applying a syntactic operation with some grammeme. Examples

of grammemes are: singular (SING), plural (PLUR), present (PRES), present-

progressive (PPG), past (PAST), disjunctive (OR), de�nite (DEF), agent (AGENT),

and �rst, second, third (I, II, III). The di�erence between grammemes and

particles can be observed in the following English example: \conjug(go, III,
SING, PPG, PAST)= was going.

Grammemes are classi�ed into several types. Although these types depend

on the particular language we believe that they vary very little even within

wide classes of languages. What is essential in the notion of grammemes is

that they are a �closed set�, which is a �xed and small number of elements not

exceeding a few hundred units (apart from numeral and ordinal elements).

Classes of grammemes in English, Italian, Spanish, and many other languages

are listed in Table 1.

Note that some of the above classes consist of a sequence of grammemes,

which depends on the language we are considering. For example, the class con-

jugative consists of a sequence which, depending on the language, may include

types such as personal, number, gender, tense, modal-attitudinal, aspect....

3.4 Operations: Generalities

The syntactic operations we de�ned in GNS are related to fundamental se-

mantic roles, but only the categories of their arguments and the categories of

their results are essential in their determination. In this regard, a general syn-

tactic construction is a kind of bridge between syntax and semantics. It does

not deal with the particular morphological features of the �nal linguistic form

of the expression that is the result of applying the syntactic operation, but at

the same time, it does not concern the meaning of the �nal expressions and

the way this meaning is related to those of the arguments of the operation.

Therefore, a syntactic operation is de�ned by:

i) its name,

ii) the categories of its arguments, and

iii) the category of the resulting expression.

TRIANGLE 8 • June 2012

62 V. Manca, M.D. Jiménez-López

CLASSES OF GRAMMEMES

1. Conjugative:

- Personal

- Number

- Tense

- Mood

- Gender

- Aspect

- Modal-Attitudinal

2. Determinative

3. Copulative

4. Circumstantial

5. Complementative

6. Locative

7. Cardinal

8. Ordinal

9. Deictic

10. Quanti�er

11. Intensive

12. Comparative

13. Coordinative

14. Subordinative

Table 1. Classes of Grammemes

The syntactic operations de�ned can be classi�ed as constructs of one of

three general schemata:

1. Combination Schema puts together strings of di�erent categories and pro-

vides a string of a category other than the categories of its components.

2. Expansion Schema takes as its argument a string of a given category and

provides a bigger string of the same category.

3. Transcategorization Schema transforms a string of a given category into

a string of another category.

Syntactic operations de�ned in GNS are listed in Table 2.

3.5 Axioms

GNS is given by some axioms according to which operations are applied to

strings of some categories and produce other strings (of some speci�ed cat-

TRIANGLE 8 • June 2012

GNS: Abstract Syntax for Natural Languages 63

N. OPERATION NOTATION

1 Conjugation \ conjug
2 Determination \ determ
3 Predication \ pred
4 Copulation \ copul
5 Modi�cation \ modif

6 Apposition \ appos
7 Complementation \ complem

8 Localization \ loc
9 Coordination \ coord
10 Subordination \ subord
11 Negation \ neg
12 Passivation \ passiv
13 Adjectivation \ adj
14 Adverbialization \ adverb
15 Adproposition \ adprop
16 Relativization \ relat
17 Anacoluthon \ anacoluth
18 Numeralization \ num
19 Ordinalization \ ord
20 Deicti�cation \ deixis
21 Anaphorization \ anaphor
22 Quanti�cation \ quant
23 Intensi�cation \ intens
24 Comparison \ compar

25 Correlation \ correl
26 Substantivation \ substantiv
27 Nominalization \ nomin

28 Quotation \ quot
29 Interrogation \ interr
30 Imperativization \ imper

Table 2. GNS Operations

egories). In this section we introduce the forty axioms related to the above

thirty syntactic operations. Some examples of their functioning are also pro-

vided.

We start by providing the �rst �ve axioms of our model according to which

the operations of conjugation, determination and predication are applied.

TRIANGLE 8 • June 2012

64 V. Manca, M.D. Jiménez-López

Axiom 1: Conjugation

∀xyz(\conjug(x, y) = z ∧ y : Conjugative → z : V erbt)

The type Conjugative refers to the conjugation parameters that in English,

Spanish and Italian are given by Tense, Mood, Person, Number. Examples of

conjugative grammemes are: PRES (present), PAST (past), FUT (future), PPG

(present-progressive), IND (indicative), SUB (subjunctive), PART (participle),

I (�rst), II (second), III (third), SING (singular), PLUR (plural), NEC (neces-

sity), PERF (perfect), IMP (imperfect), MASC (masculine), FEM (feminine), NEUT

(neuter).

Axiom 2: Determination

∀xyz(\determ(x, y) = z ∧ y : Determinative → z : Subst).

The basic determinative grammemes used in determination DEF (de�-

nite/near) and INDEF (inde�nite/far) in many languages need to be accom-

panied with grammemes of number (SING (singular), PLUR (plural)) and of

gender (MASC (masculine), FEM (feminine), NEUT (neuter)). In other languages

the set of determinatives could be richer and related to an intrinsic mechanism

of noun classi�cation.

Predication is the basis of the grammatical schema that provides a sentence

by combining a `subject' and a `predicate'. The following axioms show how to

apply this operation.

Axiom 3: Predication

∀x(x : Prop→ ∃u, v(u : Subst ∧ v : V erbt ∧ x = \pred(u, v)))

Axiom 4: Predication

∀uvwz((u : Subst ∧ v : V erbt ∧ w : V erb ∧ v 6= λ ∧ z : Conjugative ∧ v =
\conjug(w, z) ∧Agree(u, v))→ \pred(u, v) : Prop)

Axiom 5: Predication

∀xuv(x : Prop ∧ x = \pred(u, v)→ v = PREDICATE(x) ∧ u = SUBJ(x)

Knowing how conjugation, determination and predication work, we can

consider the sentence: `The dog barks'. It can be formalized as follows (by

DEF we mean the de�nite determiner):

TRIANGLE 8 • June 2012

GNS: Abstract Syntax for Natural Languages 65

\pred(\determ(dog, DEF) , \conjug(bark, III, SING, PRES))

The deep linguistic level of abstract syntax representations is easily un-

derstood if we consider the Italian and Spanish translations of the above

sentence: `Il cane abbaia' and `El perro ladra', respectively, whose abstract

syntax representations are the following:

\pred(\determ(cane, DEF), \conjug(abbaiare, III, SING, PRES))

\pred(\determ(perro, DEF), \conjug (ladrar, III, SING, PRES))

where we can see that these two representations can be obtained from the

English one by replacing the lexical items dog and bark with the corresponding

lexical items in Italian and Spanish.

Copulation is an operation that transforms a Noun and AdNoun, or a

Subst into a V erb. Axiom 6 provides the requirements to apply this operation.

Axiom 6: Copulation

∀xy((x : Noun ∨ x : AdNoun ∨ x : Subst) ∧ y : Copulative→ \copul(x, y) :
V erb)

Copulative grammemes are BE, BECOME, SEEM... Examples of copulative

constructions are the following:

• `was a lawyer': \conj(III, SING, PAST (\copul(lawyer, BE))
• `became president': \conj(III, SING, PAST (\copul(president, BECOME))

Modi�cation (\modif) is the combination of a phrase of category AdCat

with a phrase of a category Cat. Modi�cation introduces the notions of kernel

and modi�er. Axioms 7 and 8 formalize this operation:

Axiom 7: Modi�cation

∀xy(x : Cat ∧ y : AdCat ∧Agree(x, y)→ \modif(x, y) : Cat)

Axiom 8: Modi�cation

∀x(∃uv : u : Cat ∧ v : AdCat ∧ x = \modif(u, v)→ KER(x) =
u ∧MODIFIER(x) = v)

The following examples show how modi�cation works in GNS:

TRIANGLE 8 • June 2012

66 V. Manca, M.D. Jiménez-López

• `young artist': \modif(artist, young)
• `to walk slowly': \modif(walk, \adverb(slow))

Apposition (\appos) is an expansion of a Subst with a Noun or an

AdNoun. The noun or AdNoun does not add any further element into the de-

termination of the substantive, but it gives only additional descriptive aspects

of what is identi�ed by the substantive. Axiom 9 accounts for this operation.

Axiom 9: Apposition

∀xy(x : Subst ∧ y : Noun ∨ y : AdNoun→ \appos(x, y) : Subst)

An example of apposition is the following:

• `Rome, the capital of Italy': \appos(Rome, capital of Italy)

Two basic axioms that refer to agreement features are the following. Note

that axiom 10 axiomatizes the requirements for the relation Agree that guar-

antees the presence of some common features between the subject and the

predicate of a predication. Axiom 11 concerns some commutativity require-

ments between the kernel of a modi�cation and the agreement features of a

verb or a substantive. We indicate by Feature a typical feature (e.g. gender,

number, person, . . .)

Axiom 10: Agreement

∀xyz(\pred(x, y) = z → (x : Subst ∧ y : V erb ∧Agree(x, y)))

Axiom 11: Agreement

∀xy(x : Cat ∧ y : AdCat→ Feature(x) = Feature(\modif(x, y)))

Axioms 12, 13, 14 and 15 show how complementation is applied. Comple-

mentation (\complem) is an operation in which a Noun or a V erb is expanded

either with a Subst or with a Noun. This means that we can identify four

possible types of complementation:

1. \complemV S (a verb with a substantive);

2. \complemNS (a noun with a substantive);

3. \complemV N (a verb with a noun);

4. \complemNN (a noun with a noun).

TRIANGLE 8 • June 2012

GNS: Abstract Syntax for Natural Languages 67

These four types of complementation are formalized in the following axioms:

Axiom 12: Complementation

∀xyz(x : V erb ∧ y : Subst ∧ z : Complementative→ \complemV S(x, z, y) :
V erb)

Axiom 13: Complementation

∀xyz(x : Noun ∧ y : Subst ∧ z : Complementative→ \complemNS(x, z, y) :
Noun)

Axiom 14: Complementation

∀xyz(x : V erb ∧ y : Noun ∧ z : Complementative→ \complemV N (x, z, y) :
V erb)

Axiom 15: Complementation

∀xyz(x : Noun ∧ y : Noun ∧ z : Complementative→ \complemNN (x, z, y) :
Noun)

Complementative are grammemes that identify the roles of complemen-

tations. They correspond to the cases typical of many languages (e.g. Latin,

Greek, Russian, . . .) and can be represented with speci�c grammemes related

to a few main functionalities: AGT (agent), INST (instrument); GOAL (goal),

MANN (manner), MATT (matter), OWN (owner), REF (referent), REC (receiver),

UNI (union), CONT (content), PURP (purpose), and CAUS (cause).

Examples of complementation are the following:

• `Jane eats the cracker': \complemV S(eats, the cracker).

• `cup of tea': \complemNN (cup, CONT, tea).

Locative phrases are a special type of modi�ers used to indicate a spatio-

temporal localization. Axiom 16 accounts for this syntactic phenomenon which

we call localization (\loc):
Axiom 16: Localization

∀xy(x : Subst ∧ y : Locative→ \loc(x, y) : AdCat)

TRIANGLE 8 • June 2012

68 V. Manca, M.D. Jiménez-López

Locative grammemes can be IN, OUT, TO, FROM, AROUND, ACROSS,

BETWEEN, NEAR, OVER, TOWARDS, BEFORE, AFTER, etc.

An example of a locative phrase is:

• `(Jane) found the turtle under the table': \modif(\complemV S(found, the

turtle), \loc(the table, UNDER))

Coordination (\coord) allows us to connect two (or more) categories of the

same type by providing a category of that type. If two elements are of the

same category, then they can be joined together and the resulting unit is of

the same type. Any category can be coordinated (by means of a coordinative

grammeme: AND (addition), OR (alternation), BUT (variation)) with a category

of the same type and the result will be an item of the same category. Axiom

17 formalizes this idea.

Axiom 17: Coordination

∀xyz(x : Cat ∧ y : Cat ∧ z : Coordinative→ \coord(xzy) : Cat)

Consider the sentence `We saw many students of chemistry and doctors

of medicine', where the elements in italics are coordinated. In terms of GNS,

coordinated categories can be formalized as follows:

\coord((\complemNN (students, chemistry)), AND, (\complemNN (doctors,

medicine)))

Subordination connects elements that have a di�erent grammatical `sta-

tus', one of which is subordinate to or dependent on the other. Subordina-

tive grammemes are: BECAUSE (reason), IF (condition), WHERE (place), WHEN,

AFTER, BEFORE (time), WHILE, UNTIL (duration), THOUGH (concession), FOR,

TO (purpose). Axioms 18 and 19 give a formal account in GNS of this opera-

tion.

Axiom 18: Subordination

∀xyz(x : Cat ∧ y : Cat ∧ z : Subordinative→ \subord(xzy) : Cat)

Axiom 19: Subordination

∀xyz(x : Cat ∧ y : Cat ∧ z : Subordinative→ \subord(xzy) : Cat ∧ x =
Ker(\subord(xzy)))

TRIANGLE 8 • June 2012

GNS: Abstract Syntax for Natural Languages 69

Examples of the subordination of various classes of categories are: `poor but

happy', `late though not too late', `enemy for joke', `going to see'... The reader

can easily check how to formalize these examples by using the above axiom.

Negation (\neg) is a syntactic operation that can be applied to any Cat

and the result will be an item of the same Cat. Axiom 20 formalizes this

operation.

Axiom 20: Negation

∀x(x : Cat→ \neg(x) : Cat)

Examples of the application of this operation in the GNS framework are:

• `(I do) not agree': \neg(agree)
• `(It is) not soon': \neg(soon)

Passivation (\passiv) is an operation that like negation does not change

the syntactic category of the element it is applied to. It is based on the fact

that the order of the subject and object can be reversed in a predication with

transitive verbs. In this case, if P is a proposition to which passivation can be

applied, then \passiv(P) is its passive form. The actual means to calculate

the value of \passiv(P) is a matter of concrete syntax. Formally:

Axiom 21: Passivation

∀x(x : Prop→ \passiv(x) : Prop)

Axioms 22, 23 and 24 formalize cases of transcategorization. Adcategoriza-

tion stands for the operations of adjectivation, adverbialization and adpropo-

sition considered in the following axioms.

Adjectivation (\adj) takes as its input a Noun, a Subst, a V erb or a V erbt
and provides an AdNoun as shown in axiom 22.

Axiom 22: Adjectivation

∀xy((x : Noun ∨ x : Subst ∨ x : V erb ∨ x : V erbt) ∧ \adj(x) : AdNoun)

Adverbialization (\adverb) takes as an input an AdNoun and provides an

AdV erb.

TRIANGLE 8 • June 2012

70 V. Manca, M.D. Jiménez-López

Axiom 23: Adverbialization

∀x(x : AdNoun→ \adverb(x) : AdV erb)

And �nally, adproposition (\adprop) yields an adproposition element from

either an AdNoun or a Subst.

Axiom 24: Adproposition

∀x(x : AdNoun ∨ x : Subst→ \adprop(x) : AdProp)

Examples of the above operations are the following:

• `milk cup': \modif(cup, \adj(milk))

• `slowly': \adverb(slow)
• `This way, (Doris feeds her guppies)': \adprop(this way)

Relativization (\relat) is the syntactic operation that transforms a Prop

into a Noun. In order to describe this construction, we assume a special

grammeme REL that has the category of Subst (Actually, a �nite number

of di�erent relative grammemes REL1, REL2, REL3, . . . , could be necessary in

certain cases). If proposition P is `REL was on the table'. In this case, \relat(P)
is a noun, so the following syntactic term:

`I am looking for the \modif(pen, \adj(\relat (P))'

represents the statement: `I am looking for the pen that was on the table.'

Axiom 25 formalizes relativization, where Prop(REL) are the propositions

constructed by the special substantive REL.

Axiom 25: Relativization

∀x(x : Prop(REL)→ \relat(x) : Noun)

A syntactic operation formally described by the element of Prop (REL) is

the one that underlies the so-called phenomenon of anacoluthon, a construc-

tion present in ancient languages and in colloquial forms of modern languages.

We introduce the operation of anacoluthon (\anacoluth) de�ned in axiom 26.

Axiom 26: Anacoluthon

∀x(x : Prop(REL)→ \anacoluth(x) : V erb)

TRIANGLE 8 • June 2012

GNS: Abstract Syntax for Natural Languages 71

An example of anacoluthon formalized in GNS terms is the following:

`John, I told him to go away.': \pred(John, \conjug(\anacoluth(I told REL

to go away), III, SING))

Axioms 27 and 28 formalize the operations of numeralization and ordinal-

ization, respectively. Numeralization (\num) takes as its arguments a cardinal

number (two, three, ten, two hundred, three thousand, a dozen, hundreds) and

a noun and provides a noun. However, this operation is only de�ned for some

nouns, which are called countable nouns. Ordinalization (\ord) takes as its

arguments an ordinal number (�rst, second, last, next...) and a noun and

provides a noun.

Axiom 27: Numeralization

∀xy(x : Noun ∧ y : Cardinal→ \num(x, y) : Noun)

Axiom 28: Ordinalization

∀xy(x : Noun ∧ y : Ordinal→ \ord(x, y) : Noun)

The following two phrases are examples of these operations:

• `Three friends': \num(friend, 3))

• `The �rst friend': \determ(\ord(friend, 1), DEF)

Deicti�cation (\deixis) is an operation that takes as its arguments some

grammemes (conjugative, determinative: PRES, PAST, I, II, III,

DEF/INDEF, NEAR, FAR) and provides a Subst. Axiom 29 formalizes this idea.

Axiom 29: Deicti�cation

∀x(x : Deictic→ \deixis(x) : Subst)

English examples of deicti�cation are the following:

• \deixis(PRES) = `Now'

• \deixis(I, SING) = `I'

• \deixis(NEAR) = `Here'

TRIANGLE 8 • June 2012

72 V. Manca, M.D. Jiménez-López

Anaphorization (\anaphor) is a construct that assigns a label to syntactic

terms (pronoun) which can be used instead of the labeled term itself. Notice

that the label (pronoun or whatever) is something that concerns the concrete

syntax and not the abstract syntax we are de�ning here. Taking this into

account we de�ne this operation in axiom 30.

Axiom 30: Anaphorization

∀x(x : Cat→ \anaphor(x) : Cat)

An example:

• `On the table there is a pen, it is red': \anaphor(a pen) = `it'

Quanti�cation (\quant) can be considered as a special case of determi-

nation. However, it presents some subtle logical and semantic features that

mean that it has to be identi�ed separately from determination. First of all,

quanti�cation can only be applied to countable nouns or their plurals and

provides as its result a substantive with a `collective and distributive' nature.

It is formalized in axiom 31.

Axiom 31: Quanti�cation

∀xy(x : Quantifier ∧ y : Noun− Countable→ \quant(x, y) : Subst)

∀xy(x : Quantifier ∧ y : Subst− Plural→ \quant(x, y) : Subst)

Quanti�ers are grammemes that express the functionalities of words that

classical grammars classify as distributive pronouns: EVERY, EACH, ALL,

ANY, FEW, SOME, MOST, MANY, etc. (Some of them are very often referred

to as `partitive' pronouns).

Intensi�cation (\intens) consists of the use of grammemes that express

intensity or non-exact quantity with uncountable nouns. Examples of inten-

sive grammemes are MUCH, A LITTLE, FEW, ALMOST, MORE, LESS, VERY,

WHOLE, PARTIAL, ENOUGH, TOO... Axiom 32 provides a formal account of this

operation.

TRIANGLE 8 • June 2012

GNS: Abstract Syntax for Natural Languages 73

Axiom 32: Intensi�cation

∀xy(x : Noun− Uncountable ∧ y : intensive→ \intens(x, y) : Noun)
∀xy(x : AdNoun ∧ y : intensive→ \intens(x, y) : AdNoun)

Comparison (\compar) is related to degree particles such as more-than,

less-than, so-as. Comparison can be obtained in three ways: 1) with two terms

of a given category Cat and a comparison grammeme (this is, (<,>,=)); 2)
with a V erb or an AdNoun, a comparison grammeme, and a Subst; 3) with

a V erb or an AdNoun, a comparison grammeme, and a Prop. This idea is

captured in axiom 33.

Axiom 33: Comparison

∀xyz(x : Cat ∧ y : Cat ∧ z : Comparative→ \compar(x, y, z) : Cat)∧

∀xyzT (x : T ∧ ∧(T = V erb ∨ T = AdNoun) ∧ y : Subst ∧ z : Comparative
→ \compar(x, y, z) : T)∧

∀xyzT (x : T ∧ (T = V erb ∨ T = AdNoun) ∧ y : Prop ∧ z : Comparative
→ \compar(x, y, z) : T)

Examples of comparison are the following:

• \compar(beautiful, good, >): `more beautiful than good'

• \compar(beautiful, Mary, =): `as beautiful as Mary'

• \compar(good, the original, =): `as good as the original'

Axioms 34 and 35 account for the operation we have called correlation.

Correlation (\correl) is found in constructions where two propositions are

related by means of an intensivity degree of a V erb or an AdNoun that occurs

in the �rst proposition (e.g. so-that, such-that).

Axiom 34: Correlation

∀pqxuvwy(p : Prop ∧ q : Prop ∧ p = uwv ∧ (w : V erb ∨ w : AdNoun) ∧ w =
\intens(x, y)→ correl(p, w, q) : Prop)

TRIANGLE 8 • June 2012

74 V. Manca, M.D. Jiménez-López

Axiom 35: Correlation

∀pqxuvwzyrst ((p : Prop ∧ p = uwv ∧ (w : V erb ∨ w : AdNoun) ∧ (q :
Prop ∧ q = zxy ∧ (x : V erb ∨ x : AdNoun) ∧ t = \compar(w, r, REL) ∧ d =

\compar(x, s, REL)→ correl(p, t, q, d) : Prop)))

Examples of those two types of correlation are the following:

• `(This is) so big that you cannot carry it.': \correl(This is very big,

\intens(big, VERY), you cannot take it)

• `The quicker you are, the more they appreciate your work': \correl(you
are quick, \compar(quick, >, REL), they appreciate your work,

\compar(appreciate, >, REL).

Substantivation (\substantiv) and nominalization (\nomin) transcatego-
rize some categories into Subst (substantives) and Noun (nouns), respectively.

According to a general principle of language, any linguistic entity can become

something that can be spoken about; that is, any category can be nominal-

ized and substantivized. We formalize such general principles with axioms

36 and 37, which account for substantivation and nominalization (\nomin),
respectively.

Axiom 36: Substantivation

∀x(x : Prop ∨ x : Noun ∨ x : AdNoun→ \substantiv(x) : Subst)

Axiom 37: Nominalization

∀x(x : V erb ∨ x : AdNoun→ \nomin(x) : Noun)

Examples of the two operations above are:

• `eating': \substantiv(\nomin(to eat))

• `emptiness': \nomin(empty)

A particular case of substantivation is quotation (\quot) which transforms

any sequence of letters into a Subst. This particular case of substantivation

is formalized in axiom 38.

Axiom 38: Quotation

∀x(x : Cat→ \quot(x) : Subst)

TRIANGLE 8 • June 2012

GNS: Abstract Syntax for Natural Languages 75

Consider the following sentence:

�He said: `Tomorrow I will �nish the paper�

Here a full proposition works as a substantive. So,

`Tomorrow I will �nish the paper': \quot (Tomorrow I will �nish the paper)

The last two operations in the GNS framework are interrogation (\interr)
and imperativation (\imperat). Those general syntactic operations transform
any descriptive proposition into the corresponding proposition with a commu-

nication modality which is interrogative, or imperative respectively. Axioms

39 and 40 account for them.

Axiom 39: Interrogation

∀x(x : Prop→ \interrog(x) : Prop)

Axiom 40: Imperativation

∀x(x : Prop→ \imperat(x) : Prop)

4 An Example

In this section we provide an example of how GNS works. First, we analyze the

following English sentence, and then we show that the formal representation

of this English sentence �by just translating basic words� can be used to

generate equivalent Italian and Spanish sentences.

�The two children ran towards the river with their hands raised till they

reached the bank�

The above English sentence is analyzed in the following way (we use a #

to indicate the line number):

1. hand

2. to raise

3. child

4. river

5. to run

TRIANGLE 8 • June 2012

76 V. Manca, M.D. Jiménez-López

6. to reach

7. bank

8. \conjug(# 2, PART, PAST) = raised

9. \modif(#1, \adj(# 8)) = hand raised

10. \determ(# 9, DEF, PLUR) = their hands raised

11. \num(# 3, 2) = two children

12. \determ(# 11, DEF) = the two children

13. \conjug(# 5, III, PLUR, PAST, IMP) = ran

14. \determ(# 4, DEF) = the river

15. \loc(# 14, TOWARDS) = towards the river

16. \complem(# 13, # 15) = ran towards the river

17. \complem(# 16, MANN, #10) = ran towards the river with their hands

raised

18. \pred(# 12, # 17) = the two children ran towards the river with their

hands raised

19. \conjug(# 6, III, PLUR, PAST, PERF) = reached

20. \determ(# 7, DEF) = the bank

21. \complemV S(# 19, # 20) = reached the bank

22. \pred(\deixis(III, PLUR) , # 21) = they reached the bank

23. \subord(# 18, UNTIL, # 22) = The two children ran towards the river with

their hands raised till they reached the bank.

In the end we have the basic elements and operations shown in Table 3.

BASIC ELEMENTS OPERATIONS

child \ subord
to run \ pred
river \ determ
hand \ num
to raise \ complem

to arrive \ conjug
bank \ deixis

\ loc
\ modif

Table 3: Basic Elements and Operations.

If we now take the above GNS formalization and just translate the so-called

basic elements into Italian or Spanish in Table 4 below.

TRIANGLE 8 • June 2012

GNS: Abstract Syntax for Natural Languages 77

English Italian Spanish

child bambino niño

to run correre correr

river �ume río

hand mano mano

to raise alzare levantar

to reach raggiungere alcanzar

bank riva orilla

Table 4: Translation of Basic Elements

we obtain the following two sentences:

• I due bambini correvano verso il �ume con le mani alzate �nché non rag-

giunsero la riva.

• Los dos niños corrieron hacia el río con las manos levantadas hasta que

alcanzaron la orilla.

5 Conclusions

In this paper we have presented a formal theory of general explicative power:

General Natural Syntax. The aim behind this framework is to reduce syntac-

tic constructions to a few principles related to their semantic functions but

de�ned independently of semantics. In this regard, it can be related to the so-

called abstract syntax of programming languages. In fact, GNS establishes the

requirements for the construction of terms and the rules for assigning them

syntactic categories. It does not deal with the �nal surface syntactic forms

of concrete syntax. It does not try to cope with the particular morphological

features of the �nal linguistic form of the expression resulting from the ap-

plication of the syntactic operation, but it is interested in a deeper syntactic

level: GNS aims to de�ne an abstract syntax for natural languages.

Within GNS, many classical notions can be stated formally, in terms of

basic categories and basic abstract syntactic operations. GNS has the advan-

tage of simplicity. With a very small number of simple ingredients, GNS can

account for general syntactic constructions in any natural language. GNS gen-

eralizes and formalizes syntactic phenomena present in every natural language

and incorporates them into a formal theory of general explicative power. Al-

though GNS is very recent and still requires further research, if its features

TRIANGLE 8 • June 2012

78 V. Manca, M.D. Jiménez-López

are taken into account we feel that it may be suitable in the �elds of natural

language processing, machine translation and linguistics.

Our future work will focus on two main aspects: 1) basic lexicon and gram-

memes; and 2) formal and computational work. Regarding the former, we are

interested in establishing a basic lexicon and an exact number of grammemes.

Regarding the latter, it would be very useful to de�ne an interface to generate

GNS formula and to develop a system that can generate sentences from the

GNS formula. Besides those two topics, it would be very interesting to go

deeper into the possible applications of the framework.

References

1. Baker, C.L. (1997). English syntax. Cambridge: MIT Press.

2. Bell, J.L. and M. Machover (1977). A Course in mathematical logic. Amsterdam:

North-Holland.

3. Downing, A. and Ph. Locke (1995). A university course in English grammar.

London: Phoenix ELT.

4. Goguen, J.A., J.W. Thatcher and E.G. Wagner (1978). An initial algebra ap-

proach to the speci�cation, correctness and implementation of abstract data

types. In R. Yeh (ed.), Current trends in programming methodology. IV, pp.

80-149. Englewood Cli�s: Prentince Hall.

5. Huddleston, R. (1984). Introduction to the grammar of English. Cambridge Uni-

versity Press.

6. Manca, V. (1993). Typology and logical structure of natural languages. In K.

Sikkel and A. Nijholt (eds.), Parsing natural language. Proceedings of the 6th

Twente Workshop on Language Technology, pp. 23-36. Twente University.

7. Manca, V. (1995). A logical formalism for intergrammatical representations. In

A. Nijholt, G. Scollo, and R. Steetkamp (eds.), Algebraic methods in language

processing. Proceedings of the 10th TWLT & 1st AMiLP Workshop, pp. 247-254.

Twente University.

8. Manca, V. (1996). Toward a logical universal grammar. In V. Manca, Meta-

grammatical representations (VI Tarragona Seminar on Formal Syntax and Se-

mantics), pp. 53-75. GRLMC Report 11/97, Tarragona.

9. Manca, V. (1998). A metagrammatical logical formalism. In C. Martín-Vide

(ed.), Mathematical and computational analysis of natural language. Amster-

dam: John Benjamins.

10. Manca, V. (1999). Logical splicing in natural languages. In C. Martín Vide, C.

(ed.), Issues in mathematical linguistics, 131�143. Amsterdam: John Benjamins.

11. Manca, V. (2001). Logical string rewriting. Theoretical Computer Science.

TRIANGLE 8 • June 2012

GNS: Abstract Syntax for Natural Languages 79

12. Manca, V. (2004). String models and string theories. In C. Martíin-Vide, V.

Mitrana and Gh. P un (eds.), Formal languages and applications, pp. 439-456,

Berlin: Springer,

13. Marcus, S. (1967). Algebraic linguistics: Analytical models. London: Academic

Press.

14. Montague, R. (1974). Formal philosophy. In R.H. Thomason (ed.). London: Yale

University Press.

15. Reichenbach, H. (1947). Elements of symbolic logic. New York: MacMillan Lim-

ited.

16. Rozenberg, G. and Salomaa, A. (eds.) (1997). Handbook of formal languages.

Berlin: Springer.

17. Salomaa, A. (1973). Formal languages. New York: Academic Press.

18. Wardhaugh, R. (1995). Understanding English grammar. A linguistic approach.

Oxford: Blackwell.

TRIANGLE 8 • June 2012

