
A Class of 2-Head Finite Automata for Linear

Languages

Benedek Nagy

Research Group on Mathematical Linguistics

Universitat Rovira i Virgili

Tarragona, Spain

Faculty of Informatics

University of Debrecen

Debrecen, Hungary

E-mail: nbenedek@inf.unideb.hu

Summary. Both deterministic and non-deterministic �nite state machines (au-

tomata) recognize regular languages exactly. Now we extend these machines us-

ing two heads to characterize even-linear and linear languages. The heads move in

opposite directions in these automata. For even-linear languages, deterministic au-

tomata have the same e�ciency as non-deterministic ones, but for the general case

(linear languages) only the non-deterministic version is su�cient. We compare our

automata to other two-head automata as well.

1 Introduction

The theory of automata is well developed and applicable in many theoretical

and practical �elds. The class of �nite automata (both deterministic and non-

deterministic) characterizes regular languages. They have many interesting exten-

sions, for instance, probabilistic, weighted automata etc.

Triangle: Language, Literature, Computation, n. 8, 2012
Publicacions Universitat Rovira i Virgili · ISSN: 2013-939X

https://revistes.urv.cat/index.php/triangle

90 B. Nagy

Chomsky type grammars and generated language families are some of the most

basic and important �elds in theoretical computer science [1, 10].

In some senses, linear languages are more related to regular languages than

context free ones. For instance, in [11] regular-like expressions are used to describe

linear languages. There is a language class between linear and regular ones (namely,

the even-linear languages) which play an important role in learning theory as well

[12].

In this paper we present a class of 2-head �nite automata which characterize

linear context-free languages exactly. We analyse the deterministic versions of this

class of automata as well. The normal form of these automata and a special class

characterizing the even-linear languages are also presented. Some relations to other

two-head automata, for instance to the Watson-Crick automata [9, 8], will also be

discussed.

2 Preliminaries

In this section we recall some well-known concepts of formal language and automata

theory.

Let V be a �nite non-empty set of symbols (usually called letters). The strings

built up by letters are called words. The sets of words are the languages over the

alphabet V . In this paper the sign ε refers to the empty word.

First both the deterministic and non-deterministic �nite state machines are re-

called

De�nition 1. A 5-tuple A = (Q, s, V, δ, F) is a �nite state machine or �nite au-

tomata, with the �nite (non-empty) set of states Q; s ∈ Q is the initial state; V is

the (input) alphabet and F ⊂ Q is the set of �nal (or accepting) states. The function

δ is the transition function. There are two extremal possibilities of this functions

are used. If δ : Q × (V ∪ {ε}) → 2Q, then the device is the non-deterministic �-

nite automaton. If δ : Q × V → Q then the machine is called a deterministic �nite

automaton.

A word w is accepted by a �nite automaton if there is a run starting with s,

ending in a state in F and the symbols of the transitions of the path results w.

Now we recall some language families related to the Chomsky hierarchy.

De�nition 2. A grammar is a construct G = 〈N,V, S,H〉, where N,V are the non-

terminal and terminal alphabets, with N ∩ V = ∅; they are �nite sets. S ∈ N is a

special symbol, called initial letter. H is a �nite set of pairs, where a pair uses to be

written in the form v → w with v ∈ (N ∪ V)∗N(N ∪ V)∗ and w ∈ (N ∪ V)∗. (We

used the well-known Kleene-star notation.) H is the set of derivation rules.

TRIANGLE 8 • June 2012

A Class of 2-Head Finite Automata for Linear Languages 91

Let G be a grammar and v, w ∈ (N ∪ V)∗. Then v ⇒ w is a direct derivation

if and only if there exist v1, v2, v
′, w′ ∈ (N ∪ V)∗ such that v = v1v

′v2, w = v1w
′v2

and v′ → w′ ∈ H. A derivation v ⇒∗ u holds if and only if either v = u or there

is a �nite sequence of sequential forms connecting them as v = v0, v1, ...vm = u in

which vi ⇒ vi+1 is a direct derivation for each 0 ≤ i < m.

A sequence of letters v for which S ⇒∗ w and v ∈ (N ∪ V)∗ holds, is called

a sentential form. The language generated by a grammar G is the set of terminal

words that can be derived from the initial letter: L(G) = {w|S ⇒∗ w ∧ w ∈ V ∗}.
Two grammars are (weakly) equivalent if they generate the same language (mod-

ulo ε).

Depending on the possible structures of the derivation rules we are interested in

the following classes.

• type 2, or context-free (CF) grammars: for every rule the next scheme holds: A→ v

with A ∈ N and v ∈ (N ∪ V)∗.

• linear (lin) grammars: each rule is one of the following forms: A→ v, A→ vBw;

where A,B ∈ N and v, w ∈ V ∗.
• even-linear (elin) grammars: each rule is one of the following forms: A → v,

A → w1Bw2; where A,B ∈ N and v, w1, w2 ∈ V ∗ and the length of w1 equals the

length of w2 for each rule.

• type 3, or regular (reg) grammars: each derivation rule is one of the following

forms: A→ w, A→ wB; where A,B ∈ N and w ∈ V ∗. (Note, that this form is the

so-called right-linear form of these grammars; we will use later alternative forms as

well.)

The generating powers of these grammars are in the following hierarchy: Lreg (
Lelin (Llin (LCF .

Now we present normal forms for the rules of linear / even-linear / regular

grammars. (For instance this is well-known and widely used for regular grammars.)

Lemma 1. Every linear grammar has an equivalent grammar in which all rules are

in forms A→ aB,A→ Ba,A→ a.

Every even-linear grammar has an equivalent grammar in which all rules are in

forms A→ aBb,A→ a, A→ ε.

Every regular languages can be generated by grammar having only rules of types

A→ aB,A→ a (A,B ∈ N, a, b ∈ V).

Proof. Introducing new non-terminals each rule can be replaced by a sequence of

rules in the desired forms. 2

For context-free languages the concept of push-down automata �ts. In the liter-

ature, push-down automata with a restriction are used for linear languages (as they

are special context-free languages). This restriction is the following: whenever the

content of the stack is decreasing in a transition, it cannot push anything again into

the stack. These special push-down automata are called 1-turn push-down automata.

TRIANGLE 8 • June 2012

92 B. Nagy

From a derivation-tree point of view linear languages are more related to regular

ones (Fig. 1, [6]). On the basis of this observation we modify the well-known concept

of �nite automata to get an accepting device for linear languages.

Fig. 1. Derivations in regular grammar and in linear grammar (in normal form)

There is at most 1 non-terminal in each sentential form, soit can be modelled

by a �nite-state machine as we will show in the next section.

3 De�nition of 2-Head Finite Automata Accepting
Linear Languages

We construct �nite automata with two heads. They read the word from the beginning

and the end, in parallel.

De�nition 3. The 5-tuple 〈Q, s, V, d, F 〉 with the transition function d : Q × (V ∪
{ε}) × (V ∪ {ε}) → 2Q, where Q is the �nite set of states, s ∈ Q is the starting

state, F ⊂ Q contains the �nal states, and V is (as usual the set of terminals:) the

alphabet.

This automaton �nishes reading the input word when the heads meet, so the

whole word is processed: every letter is read by one of the heads.

TRIANGLE 8 • June 2012

A Class of 2-Head Finite Automata for Linear Languages 93

Fig. 2. A draw of a 2-head �nite automaton

In transitions we assign a pair of symbols (a, b) to the arrows meaning that the

�rst head reads symbol a, the second reads b and both step. We allow both a and b

to be the sign ε.

In Figure 2 the sketch of this type of automata can be seen with the 2 heads

and the directions of their motions.

One of our aims is to develop and analyse this automaton.

4 Properties of the 2-Head Finite Automata

First in this section we prove that linear languages are exactly those languages which

are accepted by the 2-head automata.

The proof consists of two parts.

Theorem 1. Every linear language is accepted by a 2-head �nite automaton.

Proof. The proof is constructive. Let us start by a grammar of the linear languages

of normal form presented in Lemma 1. Let the states of the automaton are the non-

terminal symbols of the grammar with initial state s = S. Put a new state to the

automaton as the �nal state. The alphabet V is the same as in the grammar. Now

we give the transition function: for each rule of the form A → aB let a transition

be B ∈ d(A, a, ε). For the rules of type A → Ba let a transition be B ∈ d(A, ε, a).

Finally for the rules A → a let the �nal state is in d(A, a, ε). It is easy to show by

the construction that each derivation has a one-to-one correspondence with a run

of the automaton. Therefore, the automaton accepts the linear language generated

by the grammar exactly. 2

Theorem 2. Every language accepted by a 2-head �nite automaton is a linear lan-

guage.

TRIANGLE 8 • June 2012

94 B. Nagy

Proof. Now we construct a linear grammar based on the given automaton. Let the

set V be the same for both the automaton and the grammar. Let the non-terminals

be the representations of the states of the automaton, let S represent the initial

state. The rules of the grammar will be generated from the transition function. For

each transition B ∈ d(A, a, b) let the rule A→ aBb in H (a, b ∈ (V ∪ {ε})). Finally,
for all �nal-state F the rule F → ε is given. It is easy to check that every run of the

automaton has a unique derivation in the grammar and vice-versa. So, the grammar

generates the same language as the accepted language of the automaton. 2

As a special consequence of the previous theorems and constructions we can

de�ne a `normal form' for this type of automata.

Consequence 1 For each 2-head �nite automaton there is an equivalent one (ac-

cepting the same language as the original one) with only transitions of the forms

B ∈ d(A, a, ε) and B ∈ d(A, ε, a).

This fact is based on the normal form of linear grammars presented in Lemma

1.

In �gures the transitions of a normal form automaton can be (a, ε) and (ε, a).

We can use the alternative notions → a and ← a to indicate the direction of the

moving head.

Now let us see a famous example for a linear language: namely, the palindrome

language. This language contains all the words which are read in exactly the same

way both forwards and backwards.

In Figure 3 the automaton of this language can be seen over the binary alphabet.

This automaton is in `normal form': at each transition the arrow shows which head

is moving by reading the terminal letter.

Fig. 3. 2-head �nite automaton accepting the palindrome language

TRIANGLE 8 • June 2012

A Class of 2-Head Finite Automata for Linear Languages 95

Now we show that the deterministic version of these automata is weaker: i.e.

they do not accept all linear languages.

Consider the linear language {anbn} ∪ {a3nbn} (n > 0). It is clear that it can

be accepted by a 2-head non-deterministic �nite automata trying both possibilities

to check in a non-deterministic way. For a deterministic automaton it should be

decided which head moves in which step. With a �nite control it is impossible to

know at �rst how many steps of the �rst head should be followed by a step of the

second head.

4.1 Characterization of even linear languages

In this section we will use a special subclass of linear languages: namely, the even-

linear ones. Note that the even-linear language class strictly contains the class of

regular languages.

Theorem 3. The 2-head automata using transitions type B ∈ d(A, a, b) and C ∈
d(A, a, ε), where C is a �nal state and a, b ∈ V accepts exactly the even-linear

languages, if there is not any transition from the �nal states which can be reached

by a transition type C ∈ d(A, a, ε).

Proof. Using the same constructions as in Theorems 1 and 2 the result will be

a special linear grammar: namely, even-linear one. The automaton has transitions

without �nishing the read of the input word only type B ∈ d(A, a, b). It means

that both heads must move one step at the same time (using the normal form of

Lemma 1 the relation is obvious). The only exception is when the input has only 1

unread letter. In these cases only the �rst head steps �nishing the word and accept

it. Since there is no transition from the �nal state can be reached with only a tran-

sition using 1 head, the automata must stop even if the input has unread letters. 2

In the special automata above the process cannot be continued from a �nal state

which is reached by a step not type B ∈ d(A, a, b), but from Consequence 1 we know

that these automata can be translated to automata in `normal form'.

Now let us examine the deterministic version of these restricted automata.

Theorem 4. The 2-head deterministic �nite automata using transitions type B ∈
d(A, a, b) and C ∈ d(A, a, ε), where C is a �nal state and a, b ∈ V accepts exactly

the even-linear languages, if there is not any transition from the �nal states which

can be reached by a transition type C ∈ d(A, a, ε).

Proof. First, it is trivial (and it is a consequence of the previous theorem) that

the languages accepted by the deterministic version must be even-linear languages.

Now, we will prove that all even-linear language can be accepted by deterministic

2-head automata having the above properties. Let us use a method similar to the

TRIANGLE 8 • June 2012

96 B. Nagy

one for regular languages starting with a non-deterministic automata to receive a

deterministic one. This construction is the so-called set-construction. Let us start

with the automaton 〈Q, s, V, d, F 〉 described in Theorem 3. Now let our new states

(Q′) be the possible subsets of the original set Q. Let s′ = {s}. The same alphabet V

is used for the deterministic automaton as well. Let the new transition function d′ be

determined in the following way. For every pair of a, b ∈ V the state q′2 = d′(q′1, a, b)

such that qi ∈ q′2 if and only if there is a state qj ∈ q′1 for which qi ∈ d(qj , a, b).

For the possible transitions of another type (qi ∈ d(qj , a, ε)), let the deterministic

transitions be q′F = d′(q′1, a, ε) with a new state q′F if q′1 contains qj . We allow these

transitions for the automaton only in cases when both heads can read the same place

(i.e. the middle) of the tape and, therefore, it is not possible to step with both heads

simultaneously. Let the set of the �nal states be all the states q′i which contains any

of F and q′F . Finally, the states which are not accessible from the initial one can

be deleted. It is easy to see that this automaton is deterministic and recognizes the

same even-linear language as the original one. 2

4.2 Comparison with other 2-head automata

In this section we compare our 2-head automata with other 2-head automata.

Usually in the literature the heads of the 2-head automata can move in the same

direction [2].

Note that in [8] the so-called Watson-Crick automata are described. They are

highly similar to other 2-head automata in the literature from our view-point. The

main di�erence between our automata and these is the following. In Watson-Crick

automata both heads go in the same direction. (We do not want to describe here

that the Watson-Crick automata usually work with double strings, such as double

stranded DNA molecules.)

Now we want to show some examples of formal languages which can be accepted

by the traditional 2-head automata and/or our new 2-head automata.

For instance the language contain all words in shape anbn (n > 1) can be

recognized by both the traditional and the new 2-head machine. (In Figure 4 the

new automaton type can be seen for this language.)

A marked version of the so-called 'copy'-language ({wcw|w ∈ {a, b}∗}) can

be recognized by a traditional non-deterministic 2-head machine. The languages

{anbncn|n ∈ N} and {anbmcndm|n,m ∈ N} can be accepted by traditional deter-

ministic 2-head machines. Since these languages are not even context-free ones, they

are not accepted by any new type 2-head automata.

The new automata accepts the language {wwR|w ∈ V ∗ and wR is the reverse

of the word w}. This language cannot be accepted by any 2-head �nite automata

with heads moving to the same direction.

TRIANGLE 8 • June 2012

A Class of 2-Head Finite Automata for Linear Languages 97

Fig. 4. A 2-head �nite automaton accepting the language anbn (n > 1)

Finally we present a variation of the new 2-head automata. In the new variation

the heads do not know the position of the other one. Both heads should read the

whole word, but in di�erent directions.

It is open to prove that this variation also accepts all the linear languages.

The automata may guess when the heads are in the same position and after this

point it uses the opposite transitions as before. This means that if it was a transition

to the �rst head with a terminal, then it will be a transition with the same terminal

for the second head in this second phase, etc.; but it is not easy to prove that there

are no false acceptances.

5 Conclusions

One can imagine our new automata as automata working on words which are doubled

up (see Figure 5, where the tape can move).

To get all linear languages (not only the even-linear ones, in which each rule

has the same number of terminals before and after the non-terminal (if any) on

the right-hand-side) we allow transition steps in which only 1 head moves, while

the other does not (it reads the empty word). A normal-form of the automata is

presented. Using only 1 head in each step the work of the machine looks like the

inverse of a derivation tree using the normal form (Lemma 1).

TRIANGLE 8 • June 2012

98 B. Nagy

Fig. 5. 2-head �nite automaton with a folded tape

One can use a special, restricted form of the automata � corresponding to the

even-linear languages (for instance in normal form, the heads of the automaton can

only step one after the other). Moreover it is proved that the even-linear languages

can be accepted by deterministic machines as well.

So we applied the �nite state machines to recognize a wider class of languages

than the original ones with 1 head. These results make it possible to use linear

languages as simply as regular ones. We would like to extend these automata to

work on words which are folded several times to characterize other language classes

as well.

It would also be interesting to analyse the di�erences among the languages ac-

cepted by the variations of the new and the language classes accepted by variations

of the known (traditional) 2-head (for instance Watson-Crick) automata.

A note on related works

Between the time this paper is written and appeared some works are done in this

and related topics, see, for instance [3, 4, 5, 7]. The class of languages that can be

accepted by our deterministic machines are also characterized in [5].

References

1. Hopcroft, J. and J.D. Ullmann (1979). Introduction to automata theory, lan-

guages, and computation. Reading: Addison-Wesley, Reading.

2. Hromkovic, J. (1985). On one-way two-head deterministic �nite state automata.

Computers and Arti�cial Intelligence, 4/6: 503�526.

TRIANGLE 8 • June 2012

A Class of 2-Head Finite Automata for Linear Languages 99

3. Nagy, B. (2007). On 5′ → 3′ sensing Watson-Crick �nite automata. In Prepro-

ceedings of the DNA 13, The 13th International Meeting on DNA Computing,

pp. 327-336. Memphis.

4. Nagy, B. (2008). On 5′ → 3′ sensing Watson-Crick �nite automata. Lecture

Notes in Computer Science, 4848: 256�262.

5. Nagy, B. (2009). On a hierarchy of 5′ → 3′ sensing WK �nite automata lan-

guages. CiE 2009, Computability in Europe 2009: Mathematical Theory and

Computational Practice, Abstract Booklet, pp. 266-275. University of Heidel-

berg.

6. Nagy, B. (2012). Derivation �trees� and parallelism in Chomsky-type grammars.

Triangle, 8: 101-120 (this volume).

7. Leupold, P. and B. Nagy (2009). 5′ → 3′ Watson-Crick automata with sev-

eral runs. In Workshop on Non-Classical Models of Automata and Applications

(NCMA), pp. 167�180. Wroclaw.

8. P un, Gh., G. Rozenberg and A. Salomaa (1998). DNA computing. Berlin:

Springer.

9. Petre, E. (2003). Watson-Crick-Automata. Journal of Automata, Languages and

Combinatorics, 8(1): 59�70.

10. Rozenberg, G. and A. Salomaa (eds.) (1997). Handbook of formal languages.

Berlin: Springer.

11. Sempere, J.M. (2000). On a class of regular-like expressions for linear languages.

Journal of Automata, Languages and Combinatorics, 5(3): 343�354.

12. Sempere, J.M. and P. García (1994). A Characterization of Even Linear Lan-

guages and its Application to the Learning Problem. LNAI, 862: 38�44.

TRIANGLE 8 • June 2012

