
A Survey of State Merging Strategies for DFA

Identi�cation in the Limit

Cristina Tîrn uc

Research Group on Mathematical Linguistics

Universitat Rovira i Virgili

Tarragona, Spain

E-mail: cristina.bibire@estudiants.urv.cat

Summary. Identi�cation of deterministic �nite automata (DFAs) has an extensive

history, both in passive learning and in active learning. Intractability results by Gold

[5] and Angluin [1] show that �nding the smallest automaton consistent with a set

of accepted and rejected strings is NP-complete. Nevertheless, a lot of work has

been done on learning DFAs from examples within speci�c heuristics, starting with

Trakhtenbrot and Barzdin's algorithm [15], rediscovered and applied to the discipline

of grammatical inference by Gold [5]. Many other algorithms have been developed,

the convergence of most of which is based on characteristic sets: RPNI (Regular

Positive and Negative Inference) by J. Oncina and P. García [11, 12], Traxbar by

K. Lang [8], EDSM (Evidence Driven State Merging), Windowed EDSM and Blue-

Fringe EDSM by K. Lang, B. Pearlmutter and R. Price [9], SAGE (Self-Adaptive

Greedy Estimate) by H. Juillé [7], etc. This paper provides a comprehensive study

of the most important state merging strategies developed so far.

1 Introduction

The problem of DFA identi�cation from examples was �rst mentioned in a paper

by Gold [4] back in 1967, when he also introduced the notion of learning formal

Triangle: Language, Literature, Computation, n. 8, 2012
Publicacions Universitat Rovira i Virgili · ISSN: 2013-939X

https://revistes.urv.cat/index.php/triangle

122 C. Tîrn uc

languages. Motivated by observing how children acquire their �rst language, he

suggested that learning is an in�nite process of guessing of grammars that does not

terminate in �nite steps but only converges in the limit.

In 1973, Trakhtenbrot and Barzdin described a polynomial time algorithm

(henceforth denoted TB) for constructing the smallest DFA consistent with a com-

pletely labeled training set (a set that contains all the words up to a certain length).

Five years later Gold rediscovered the TB algorithm and applied it to the dis-

cipline of grammatical inference (uniformly complete samples are not required). He

also speci�ed the way to obtain indistinguishable states using the so called state

characterization matrices. If the data set does not contain the characteristic set

mentioned above the algorithm guarantees the consistency at the cost of outputting

the pre�x tree acceptor (PTA) of the positive sample.

In 1992 Oncina and Garcia proposed the RPNI (Regular Positive and Negative

Inference) algorithm [12], and in the same year Lang described the TB algorithm

and generalized it to produce a (not necessarily minimum) DFA consistent with a

sparsely labeled tree [8]. The algorithm (Traxbar) can deal with incomplete data

sets as well as complete data sets.

All the algorithms mentioned above are data-dependent (also called data-driven)

and they do not take into account any evidence present in the sample. Since 1997,

several evidence-driven algorithms have been proposed. The main contribution to

the �eld in this direction is due to the Abbadingo One contest which took place in

1997. The competition was held by Kevin J. Lang and Barak A. Pearlmutter and

presented the challenge of predicting, with 99% accuracy, the labels that an unseen

�nite state automaton would assign to test data given training data consisting of

positive and negative examples. There were two winners: Robert Price, for solving

the 60,000-string, 506-state problem and Hugues Juillé, for solving the 1,521-string,

65-state problem.

2 Preliminaries

In this paper we use the standard de�nitions and notations of formal language

theory. The reader is referred to [6, 10] for further information about this domain.

Let Σ be a �nite set of symbols called alphabet and let Σ∗ be the set of strings over

Σ. A language L over Σ is a subset of Σ∗. The elements of L are called words. Let

u, v, w be strings in Σ∗ and |w| be the length of the string w. λ is a special string

called the empty string and has length 0. Given a string w = uv, u is a pre�x of w

and v is a su�x of w. We de�ne:

Pr(L) = {u ∈ Σ∗ | ∃v ∈ Σ∗ such that uv ∈ L},
Suf(L) = {v ∈ Σ∗ | ∃u ∈ Σ∗ such that uv ∈ L},
Lu = {v ∈ Σ∗ | uv ∈ L}.

TRIANGLE 8 • June 2012

State Merging Strategies 123

2.1 Finite automata

A deterministic �nite automaton is a 5-tuple A = (Q,Σ, δ, q0, F) where Q is a �nite

set of states, Σ is a �nite alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of �nal

states and δ is a partial function that maps Q×Σ to Q. The transition function δ

can be extended to strings by doing δ(q, λ) = q and δ(q, ua) = δ(δ(q, u), a), ∀q ∈ Q,
∀u ∈ Σ∗, ∀a ∈ Σ. A word u is accepted by A if δ(q0, u) ∈ F . The set of words

accepted by A is denoted by L(A).

A non-deterministic �nite automaton (NFA) is de�ned like a DFA with the only

di�erence that that transition function is a mapping from Q×Σ to 2Q. In general,

a �nite state automaton (FSA) refers to either a DFA or an NFA.

A �nite set S+ is called a positive sample for the language L if S+ ⊆ L. Analo-
gous, a negative sample for the language L is a �nite set S− such that S− ⊆ Σ∗ \L.
A completely labeled data set includes all example strings up to a given length.

We say that an automaton is consistent with a sample if it accepts all positive

examples and rejects all negative examples. A set is said to be structurally complete

with respect to a DFA A if it covers each transition of A and uses each �nal state

of A.

2.2 Quotient automaton

For any set S, a partition π is a set of pairwise disjoint nonempty subsets of S whose

union is S. Let s denote an element of S and let B(s, π) denote the unique element,

or block of π containing s. Given two partitions πi and πj , πi is �ner than πj if every

block of πj is a union of one or several blocks of πi. We denote this by πi � πj .
Let A = (Q,Σ, δ, q0, F) be an FSA. The quotient automaton A/π = (Q′, Σ, δ′,

B(q0, π), F) is de�ned by:

• Q′ = Q/π = {B(q, π)|q ∈ Q},
• F ′ = {B ∈ Q′|B ∩ F 6= ∅},
• δ′(B, a) = {B′ ∈ Q′ | ∃q ∈ B, q′ ∈ B′ such that q′ ∈ δ(q, a)} for all B ∈ Q′,

a ∈ Σ.
The states of Q belonging to the same block B of the partition π are said to

be merged together. The set of all derived automata obtained by systematically

merging the states of A represents a lattice of FSA [13]. Given a canonical DFA A

and a set S+ that is structurally complete with respect to A, the lattice derived

from PTA(S+) is guaranteed to contain A [2].

2.3 Pre�x tree acceptor - augmented pre�x tree acceptor

Given a set S+, let PTA(S+) denote the pre�x tree acceptor for S+. PTA(S+) is a

DFA that contains a path from the start state to an accepting state for each string

in S+ modulo common pre�xes. Clearly, L(PTA(S+)) = S+.

TRIANGLE 8 • June 2012

124 C. Tîrn uc

More formally, PTA(S+) = (Q,Σ, δ, q0, F) where:

• Q = Pr(S+),

• Σ = the alphabet of S+,

• δ(u, a) = ua, for all u, ua ∈ Q

• q0 =

{
λ, if S+ 6= ∅
∅, otherwise.

• F = S+.

An augmented pre�x tree acceptor (APTA) with respect to S+ and S−, denoted

APTA(S+, S−), is de�ned as a 6-tuple (Q,Σ, δ, q0, F+, F−) where:

• Q = Pr(S+ ∪ S−),

• Σ = the alphabet of S+ ∪ S−,
• δ(u, a) = ua for all u, ua ∈ Q,

• q0 =

{
λ, if (S+ ∪ S−) 6= ∅
∅, otherwise.

• F+ = S+

• F− = S−

Example

Consider sets S+ = {0, 1, 010, 011} and S− = {01, 11}, then the PTA(S+) and

the APTA(S+, S−) are illustrated in Figure 1.

Fig. 1. PTA(S+) and APTA(S+, S+)

TRIANGLE 8 • June 2012

State Merging Strategies 125

3 Grammatical Inference

Grammatical inference is known as one of the most attractive paradigms of scienti�c

learning. The goal of any inference algorithm is roughly to discover a grammar

that generates a given set of sample sentences. The learning model that was �rst

introduced (and also the most used) is learning in the limit. In this setting, the

learner has access to either a growing sequence of positive examples (learning from

text), or both positive and negative information (learning from informant), and has

to output his hypotheses. After some �nite time, the guesses must converge to the

correct language.

Gold [4] shows that given a positive presentation one cannot identify the class

of regular languages, and that any recursively enumerable class is identi�able using

a complete presentation (positive and negative data).

Learning paradigms seem not to be applicable to human learning:

• Gold's identi�cation in the limit framework has been criticized as children seem

to learn natural language without negative examples;

• All learning paradigms assume a known representation class;

• Some learnability results are based on enumeration.

The problem of minimum automaton identi�cation from incompletely labeled

training data has been proved to be NP-complete [5]. However, the average case is

tractable [8].

4 Algorithms for Learning DFA

Below we present the most important algorithms for DFA identi�cation from exam-

ples.

4.1 The Trakhtenbrot and Barzdin algorithm

The algorithm proposed by Trakhtenbrot and Barzdin [15] produces the canonical

DFA for any language, from a complete data set, in polynomial time. Perhaps the

biggest advantage of this algorithm is its simplicity. Furthermore, it deals with data

sets of various sizes in a very short time frame. Unfortunately, it also has a disad-

vantage since the algorithm merges compatible nodes in breadth-�rst order despite

evidence or clues present within the training data. In other words, the attempted

merge order is predetermined, and very little search of the problem space is necessary

to determine the next merge pair.

It is important to note that the advantages and disadvantages outlined above

apply not only to the algorithm proposed by Trakhtenbrot and Barzdin [15] for

TRIANGLE 8 • June 2012

126 C. Tîrn uc

complete data sets but also for the modi�ed version of this algorithm for incomplete

training data.

Given an APTA A = (Q,Σ, δ, q0, F+, F−), we say that two states p and q are

distinguishable in A if there exists a word u in Σ∗ such that (δ(p, u) ∈ F+ and

δ(q, u) ∈ F−) or (δ(p, u) ∈ F− and δ(q, u) ∈ F+). Otherwise, p and q are not distin-

guishable in A. For a detailed description of the procedure distinguishable(p, q, A),

the reader is referred to [3].

U is a set of unique nodes; that is, nodes that are pairwise distinguishable. The

algorithm starts by adding the root of the APTA to the list of unique nodes. Then,

it visits each proceeding node q of the APTA in breadth-�rst order, compares the

subtree rooted at q with the sub-tree rooted at each node in the unique nodes list.

If q is pairwise distinguishable from each node from U , it appends q to the end of

the list. Otherwise, it disconnects q from the APTA.

An upper bound on the running time of the algorithm is mn2, where m is the

total number of nodes in the initial APTA and n the total number of states in the

�nal hypothesis (more details in [9]).

The TB Algorithm is described bellow:

Algorithm 1 TB Algorithm

TB(APTA(S+, S−))

A:=APTA(S+, S−);

U := {λ};
While p visits each proceeding node of A in breadth-�rst order

dist:=true;

While (q in U) and (dist)

dist:=distinguishable(p, q, A);

End While;

If dist then append p to U

else disconnect p from A;

End While;

4.2 Gold's algorithm

The algorithm proposed by Gold [2] is based on the so called state characterization

matrix.

A state characterization matrix over an alphabet Σ is a triple (S,E, T) where

S,E are �nite subsets of Σ∗ and T : (S ∪ SΣ)E → {0, 1, ↑}. The elements of S are

called states, and those of E are called experiments. The function T is de�ned using

the sets S+ and S− as follows. For all u ∈ S ∪ SΣ and v ∈ E,

TRIANGLE 8 • June 2012

State Merging Strategies 127

T (uv) =


1, if uv ∈ S+

0, if uv ∈ S−
↑, otherwise.

Every element u of S ∪ SΣ de�nes a row which will be called row(u). Given

u, v ∈ S ∪ SΣ, we say that row(u) is obviously di�erent from row(v), and we write

row(u) 6∼= row(v), if there exists an experiment e ∈ E such that T (ue), T (ve) ∈ {0, 1}
and T (ue) 6= T (ve).

A state characterization matrix is called closed if none of the rows in SΣ − S is

obviously di�erent from the rows in S.

Gold's algorithm was initially established using Mealy machines. Here we use

Moore machines. Doing it this way, the comparisons between algorithms can be seen

more clearly.

A Moore machine is a 6-tuple M = (Q,Σ, Γ, δ, q0, Φ), where Σ (resp. Γ) is the

input (resp. output) alphabet, δ is a partial function that maps Q×Σ in Q and Φ

is a function that maps Q in Γ called output function. The behavior of M is given

by the partial function tM : Σ∗ ⇒ Γ de�ned by tM (u) = Φ(δ(q0, u)), for every u in

Σ∗ such that δ(q0, u) is de�ned.

Given two �nite sets of words, S+ and S−, we de�ne the pre�x Moore machine

PTM(S+, S−) as the Moore machine having Γ = {0, 1, ↑}, Q = Pr(S+∪S−), q0 = λ

and δ(u, a) = ua if u, ua ∈ Q and a ∈ Σ. For every state u the value of the output

function associated to u is 1, 0 or ↑ (unde�ned) depending whether u belongs to S+,

S− or it is in the complementary set of S+ ∪ S−.
There are exactly two places where the algorithm may be nondeterministic. The

�rst one is when there are several rows from SΣ − S that can be moved to S. The

second is when we are building the output automaton and there are several obviously

di�erent rows (states) where the transition can be assigned. One solution that can

be adopted for both situations is to choose the smallest row in lexicographic order.

For a better understanding of Gold's algorithm the reader is referred to [3] in

which it is described as a procedure of merging states in the pre�x Moore machine

of the sample.

4.3 RPNI algorithm

The regular positive and negative inference (RPNI) algorithm proposed by Oncina

and Garcia [12] is a polynomial time algorithm that identi�es a target DFA, given

the sample S = S+∪S−. It was shown that if the sample includes a characteristic set

then the algorithm is guaranteed to return a canonical representation of the target

DFA [12].

In order to present the algorithm we need some de�nitions and notations.

• the set Sp(L) of short pre�xes of L is

Sp(L) = {u ∈ Pr(L) | ∀v ∈ Σ∗ such that Lu = Lv, u ≤ v}

TRIANGLE 8 • June 2012

128 C. Tîrn uc

Algorithm 2 Gold's Algorithm

Gold(S+,S−)

S := {λ}; E := Suf(Σ−1(S+ ∪ S−));

Build the table (S, E, T);

While there exists s′ ∈ (SΣ − S) s.t. row(s′) 6∼= row(s),∀s ∈ S
Choose any s′;

S := S ∪ {s′};
Update (S, E, T);

End While;

Q := S; q0 := λ;

For all s ∈ S
Φ(s) := T (s);

For all a ∈ Σ
If sa ∈ S then δ(s, a) := sa

else δ(s, a) := any s′ ∈ S s.t. not(row(sa) 6∼= row(s′));

End For;

End For;

M := (Q,Σ, {0, 1, ↑}, δ, q0, Φ);

If M is consistent with (S+, S−) then Return(M)

else Return (PTM(S+, S−)).

• the kernel N(L) of L is

N(L) = {λ} ∪ {ua ∈ Pr(L) |u ∈ Sp(L), a ∈ Σ}

A sample S = S+ ∪ S− is said to be characteristic with respect to a regular

language L (with the canonical DFA A) if it satis�es the following two conditions:

1. N(L) ∩ L ⊆ Pr(S+),

2. ∀u ∈ Sp(L), v ∈ N(L), if Lu 6= Lv then ∃w ∈ Σ∗ such that (uw ∈ S+ and

vw ∈ S−) or (uw ∈ S− and vw ∈ S+).

Intuitively, condition 1 implies structural completeness with respect to A and

condition 2 implies that for any distinct states of A there is a su�x w that correctly

distinguishes them.

Notice that:

• if you add more strings to a characteristic sample it remains characteristic,

• there can be many di�erent characteristic samples.

The RPNI algorithm is described below:

The convergence of the RPNI algorithm relies on the fact that sooner or later,

the set of labeled examples seen by the learner will include a characteristic set.

If the stream of examples provided to the learner is drawn according to a simple

distribution, the characteristic set would be made available relatively early (during

TRIANGLE 8 • June 2012

State Merging Strategies 129

Algorithm 3 RPNI Algorithm

RPNI (PTA(S+), S−)

A := PTA(S+);

K := {q0}; Fr := {δ(q0, a)|a ∈ Σ∗};
While Fr 6= ∅

choose q from Fr;

If ∃p ∈ K such that L(dmerge(A, p, q))∩S− = ∅
then A := dmerge(A,p,q)

else K := K ∪ {p};
Fr := {δ(q, a)|q ∈ K} −K;

End While.

learning) with a su�ciently high probability, so the algorithm will converge quickly

to the desired target.

RPNI is an optimistic algorithm: at any step two states are compared and the

question is: can they be merged? No positive evidence can be produced; merging will

take place each time that such a merge does not produce inconsistency. Of course

an early mistake can have disastrous e�ects and a breadth �rst exploration of the

lattice is likely to be better.

4.4 Traxbar algorithm

A variation of the Trakhtenbrot and Barzdin algorithm (Traxbar) was implemented

by Lang [8] in order to show that random DFAs can be approximately learned from

sparse uniform examples.

The modi�cations made to the algorithm were needed to maintain consistency

with incomplete training sets. For instance, unlabeled nodes and missing transitions

in the APTA needed to be considered.

The simple extensions added to the Trakhtenbrot and Barzdin algorithm are

summarized as follows.

If node p is to be merged with node q then:

• labels of labeled nodes in the sub-tree rooted at p must be copied over their

respective unlabeled nodes in the sub-tree rooted at q;

• transitions in any of the nodes in the sub-tree rooted at p that do not exist in

their respective node in the sub-tree rooted at q must be spliced in.

An important observation is that the de�nition of distinguishable states does

not change. However, because the sample is not complete, we do not know for all

the states whether they are accepting or rejecting.

As a result of these changes, the Traxbar algorithm will produce a (not neces-

sarily minimum size) DFA that is consistent with the training set.

TRIANGLE 8 • June 2012

130 C. Tîrn uc

Algorithm 4 Traxbar Algorithm

Traxbar(APTA(S+, S−))

A:=APTA(S+, S−);

U := {λ};
While p visits each proceeding node of A in breadth-�rst order

dist:=true;

While (q in U) and (dist)

dist:=distinguishable(p, q, A);

End While;

If dist then append p to U

else A := merge(p, q, A);

End While;

Implementing this label copying process correctly requires careful attention to

details, but the conceptually important thing is that the resulting merger of di�erent

parts of the training set increases its e�ective density and constrains succeeding

choices of which state to merge. This can be good or bad depending on whether

the algorithm's greedy initial state merging choices are correct. If they are not, the

resulting merger of unrelated sets of labels can cause the training set to look random

and lead to an explosion in the size of the hypothesis. Conversely, if the initial choices

are correct there can be a snowballing of constraints leading to a highly accurate

hypothesis. Because the algorithm's initial choices are so important they should be

based on as much evidence as possible.

4.5 EDSM algorithm

Price won the Abbadingo One Learning Competition by using an evidence-driven

state merging (EDSM) algorithm. Essentially, he realized that an e�ective way of

choosing which pair of nodes to merge next within the APTA would simply involve

selecting the pair of nodes whose subtrees share the most similar labels.

A post-competition version of the EDSM algorithm as described by Lang, Pearl-

mutter and Price [9] is included below.

The score is calculated by assigning one point for each overlapping label node

within the subtrees rooted at the nodes considered for merging. If the two nodes

are distinguishable, the score is −∞. No merging is possible when all the remaining

pairs of nodes are pairwise distinguishable.

The general idea of the EDSM approach is to avoid bad merges by selecting the

pair of nodes within the APTA which has the highest score. It is expected that the

scoring will indicate the correctness of each merge, since on average, a merge that

survives more label comparisons is more likely to be correct [9].

TRIANGLE 8 • June 2012

State Merging Strategies 131

Algorithm 5 EDSM Algorithm

EDSM(APTA(S+, S−))

A:=APTA(S+, S−);

For all pairs (p, q) in Q

compute score(p, q);

End For;

Repeat

Find p, q in Q such that score(p, q) is maximum and positive;

A := merge(p, q, A);

until no merge is possible.

Unfortunately, the di�culty of detecting bad merge choices increases as the

density of the training data decreases. Since the number of labeled nodes decreases

within the APTA as the training data becomes more sparse, the idea of selecting

merge pairs based on the highest score proves less e�ective.

This explains why the EDSM approach did well with large automata but not

as well with low density problems. Considering every potential merge pair at each

stage of the inference process is computationally expensive.

4.6 Windowed EDSM algorithm

To improve the running time of the EDSM algorithm, one possibility is to merge

only those nodes that lie within a �xed sized window from the root node of the

APTA. The recommended size of the window is twice the number of states in the

target DFA. This might be a problem when the size of the target DFA is not known.

However, a simple solution is to execute the algorithm several times while gradually

increasing the window size. Unfortunately, this approach also has a drawback since

there is no way of knowing when to stop increasing the window size. The Windowed

EDSM algorithm is described below.

As expected, the running time of the W-EDSM algorithm is much better than

that of EDSM. The improvement in the running time is due to the reduction of

the search space at each merge step of the algorithm. Of course, this can harm the

performance of the algorithm in the relatively rare case in which high scoring merges

involving deep nodes may be excluded from the window. For instance, the ideal

algorithm would consider all possible merge pairs, and select for merging those pairs

of nodes that score highest. Since such an algorithm is computationally expensive,

only a subset of possible merge pairs are to be considered.

We denoted by n the number of states of the target DFA. Q is the set of states of

the APTA A and the score is computed in the same way as in the EDSM algorithm.

TRIANGLE 8 • June 2012

132 C. Tîrn uc

Algorithm 6 W-EDSM Algorithm

W-EDSM(APTA(S+, S−))

A:=APTA(S+, S−);

W := {λ};
winsize := 2 ∗ n;
Repeat

While (size(W) ≤ winsize) and (W 6= Q)

�nd the next node q in breadth-�rst order;

add q to W ;

End While;

max := −1;

For all p, q in W do

compute score(p, q);

If score(p, q) > max then max := score(p, q);

pmax := p ;

qmax := q ;

End For;

If (max > −1) then A := merge(pmax, qmax, A)

else winsize := 2 ∗ winsize;
until (W = Q).

It is conjectured that a tight upper bound on the running time of the W-EDSM

algorithm is closer to m3n than to m4n where m is the number of nodes in the

APTA and n is the number of states in the �nal hypothesis [9].

4.7 Blue-fringe algorithm

An alternative windowing method to that used by the W-EDSM algorithm is also

described by Lang, Pearlmutter and Price [9]. It uses a red and blue coloring scheme

to provide a simple but e�ective way of choosing the pool of merge candidates

at each merge level in the search. The Blue-fringe windowing method helps the

implementation of the algorithm and improves on its running time.

Similar to the W-EDSM algorithm, Blue-fringe EDSM places a restriction on the

merge order. For example, the algorithm always starts with the root node colored

red and its children blue resulting in a maximum of two possible merge pairs to

choose from at the start.

Considering the sparseness of some of the data sets, one would assume that

the pool of possible merge pairs would be greatest at the start and then gradually

decrease to save on the running time. All the evidence in the training data would be

considered at the start, which helps to make the correct decisions in the initial stage

of the algorithm. This is important since changing the label of a node after it has

TRIANGLE 8 • June 2012

State Merging Strategies 133

Algorithm 7 Blue-fringe Algorithm

Blue-fringe(APTA(S+, S−))

A:=APTA(S+, S−);

Red := {λ};
Blue := ∅;
Repeat

For all p in Red do

For all sons q of the node p do

If q not in Red then add q to Blue;

End For;

End For;

max := −1;

For all (p in Red) and all (q in Blue) do

compute score(p, q);

If score(p, q) > max then max := score(p, q);

pmax := p ;

qmax := q ;

End For;

If there exist (q in Blue) such that for all p in Red score(p, q) = −∞
then add q to Red;

remove q from Blue;

else A := merge(pmax, qmax, A);

until (Blue = ∅) and (max = −1).

been labeled as a result of a merge is not possible within this algorithm. Instead, as

the algorithm progresses, the number of red and blue nodes increases, resulting in

a large number of possible merge choices.

Despite the restriction in the merge order and the reduction in merge choices at

each merge level within the search tree, Blue-fringe EDSM is very e�ective and its

inference capabilities are comparable with those of W-EDSM.

The score is computed in the same way as in the EDSM algorithm. We should

add that when the algorithm promotes the blue node which is distinguishable from

each red node, it chooses the shallowest one.

The upper bound on the running time of the Blue-fringe algorithm is mn3 where

m is the total number of nodes and n is the total number of states in the initial

APTA and �nal hypothesis, respectively [9]. It is important to note that this is of

an order of magnitude greater than the Traxbar algorithm.

TRIANGLE 8 • June 2012

134 C. Tîrn uc

4.8 SAGE algorithm

The inference engine used by Hugues Juillé is vastly di�erent from the algorithms

discussed thus far. Actually, Juillé and Pollack were the �rst to use random sampling

techniques on search trees as a heuristic to control the search. The idea of using a

tree to visualize the search space is very practical.

The algorithm is based on a Self-Adaptive Greedy Estimate search procedure

(SAGE). Each iteration of the search procedure consists of two phases: a construction

phase and a competition phase.

It is in the construction phase that the list of alternatives or merge choices is

determined. All the alternatives in the list have the same depth within the search

tree. Each member of a population of processing elements is then assigned one

alternative from the list. Each processing element then scores its assigned alternative

by randomly choosing a path down the search tree until a leaf node is reached or a

valid solution is encountered. Next, the competition phase kicks in.

The scores assigned to each alternative in the search tree are then used to guide

the search. The meta-level heuristic determines whether to continue with the next

level of search. If so, each processing element is randomly assigned one of the children

of its assigned alternative. The search ends when no new node can be expanded upon.

To avoid an exhaustive search of the problem space only the �rst set of initial

merges are explored. These are thought of as the most critical merge choices since

each merge places constraints on future merges.

5 Concluding Remarks

We have revised the Trakhtenbrot and Barzdin (TB), Gold, RPNI and Lang al-

gorithms. As can be seen in [3], the �rst two are in fact the same, while the �rst

description that Lang provides of the TB algorithm agrees with it only when the

sample is uniformly complete. The extension he gives to obtain consistent hypothe-

ses is in fact the RPNI algorithm. The evidence driven state merging technique

gives better results on large and sparse data sets, mainly because we avoid doing

�bad mergings", based on the evidence we have. A totally di�erent approach is the

algorithm introduced by Hugues Juillé, in which random sampling techniques are

used.

Our main contribution consists of presenting these algorithms in the same frame-

work, which makes the comparison between them much easier and o�ers a solid base

for those who are in the beginning of their research career in Grammatical Inference

in general, and state merging strategies for identi�cation in the limit of DFA, in

particular.

TRIANGLE 8 • June 2012

State Merging Strategies 135

Acknowledgements

This work was possible thanks to the FPU Fellowships AP2004-6968 from the Span-

ish Ministry of Education and Science.

References

1. Angluin, D. (1978). On the complexity of minimum inference of regular sets.

Information and Control, 39(3): 337�350.

2. Dupont, P., L. Miclet and E. Vidal (1994). What is the search space of the

regular inference?. In R.C. Carrasco and J. Oncina (eds.), Proceedings of the

2nd International Colloquium on Grammatical Inference (ICGI '94), pp. 25-37.

Berlin: Springer.

3. García, P., A. Cano and J. Ruiz (2000). A comparative study of two algorithms

for automata identi�cation. In A.L Oliveira (ed.), Proceedings of the 5th Inter-

national Colloquium on Grammatical Inference (ICGI '00), pp. 115-126. Berlin:

Springer.

4. Gold, E.M. (1967). Language identi�cation in the limit. Information and Con-

trol, 10(5):447-474.

5. Gold, E.M. (1978). Complexity of automaton identi�cation from given data.

Information and Control, 37(3): 302�320.

6. Hopcroft, J. and J. Ullman (1979). Introduction to Automata Theory, Languages

and Computation. Addison-Wesley.

7. Juillé, H. and J. B. Pollack (1998). A stochastic search approach to grammar

induction. In V. Honavar and G. Slutski (eds.), Proceedings of the 4th Interna-

tional Colloquium on Grammatical Inference (ICGI '98), pp. 126�137. Berlin:

Springer.

8. Lang, K.J. (1992). Random DFA's can be approximately learned from sparse

uniform examples. In Proceedings of the 5th Annual Workshop on Computational

Learning Theory (COLT '92), pp. 45-52. ACM Press.

9. Lang, K.J., B.A. Pearlmutter and R.A. Price (1998). Results of the Abbadingo

one DFA learning competition and a new evidence-driven state merging algo-

rithm. In V. Honavar and G. Slutski (eds.), Proceedings of the 4th International

Colloquium on Grammatical Inference (ICGI '98), pp. 1�12. Berlin: Springer.

10. Martín-Vide, C., V. Mitrana and Gh. P un (eds.) (2004). Formal Languages

and Applications. Berlin: Springer.

11. Oncina, J. and P. García (1991). Inferring regular languages in polynomial up-

date time. In Pattern Recognition and Image Analysis, pp. 49-61. World Scien-

ti�c Publishing.

12. Oncina, J. and P. García (1992). A polynomial algorithm to infer regular lan-

guages, pp. 49-61. World Scienti�c.

TRIANGLE 8 • June 2012

136 C. Tîrn uc

13. Pao, T. and J. Carr (1978). A solution of the syntactic induction-inference

problem for regular languages. Computer Languages, 3: 53-64.

14. Parekh, R. and V.G. Honavar (1997). Learning DFA from simple examples. In

M. Li and A. Maruoka (eds.), Proceedings of the 8th International Conference

on Algorithmic Learning Theory (ALT '97), pp. 116�131. London: Springer.

15. Trakhtenbrot, B. and Y. Barzdin (1973). Finite Automata: Behavior and Syn-

thesis. Amsterdam: North-Holland Publishing.

TRIANGLE 8 • June 2012

