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1 Introduction

The goal of this work is twofold. Firstly, we propose a uniform view of three

t

ypes of accepting networks of bio-inspired processors: networks of evolution-

ary processors, networks of splicing processors and networks of genetic proces-
sors. And, secondly, we survey some features of these networks: computational
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power, computational and descriptional complexity, the existence of universal
networks, efficiency as problem solvers and the relationships among them.

These networks are based on a rather common architecture for parallel
and distributed symbolic processing, related to the Connection Machine [28]
and the Logic Flow paradigm [24], and they consist of several processors,
each of which is placed in a node in a virtual complete graph, which can
handle data associated with the respective node. Each node processor acts on
the local data in accordance with some predefined rules, and then the local
data become mobile agents which can navigate in the network following a
given protocol. Only that data which is able to pass a filtering process can
be communicated. This filtering process may require that some conditions
imposed by the sending processor be satisfied by the receiving processor or
by both processors. All the nodes simultaneously send their data and the
receiving nodes use a variety of strategies to handle, also simultaneously, all
the arriving messages (see [25, 28]).

The general idea briefly presented above is modified here using a method
inspired by cell biology. Each processor in a node is very simple, either an
evolutionary, a splicing or a genetic processor. The three types of processors
differ from each other by the operation they carry out.

By an evolutionary processor we mean a processor which can perform
very simple operations: namely, point mutations in a DNA sequence (inser-
tion, deletion or substitution of a pair of nucleotides). More generally, each
node may be viewed as a cell that contains genetic information encoded in
DNA sequences which may evolve by local evolutionary events: that is, point
mutations. Each node is specialized for just one of these evolutionary opera-
tions.

By a splicing processor we mean a processor that can perform the splicing
operation which is one of the basic mechanisms by which the DNA sequences
are recombined under the effect of enzymatic activities.

By a genetic processor we mean a processor that can perform two differ-
ent types of operations: either a pure mutation operation (i.e. the substitution
operation in the evolutionary processors) or a full and massive crossover op-
eration between strings which can be considered as a splicing operation with
null contexts between strings.

Furthermore, the data in each node is organized in the form of multisets
of words (each word appears in an arbitrarily large number of copies), and all
copies are processed in parallel such that all the possible events that can take
place do actually take place.
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A series of papers was devoted to different variants of this model viewed
as language generating devices (see [2, 3, 4, 5, 6, 12, 13, 17, 19]). The pa-
per [42] is an early survey in this area. Similar ideas may be found in other
bio-inspired models: for example, tissue-like membrane systems [51] or mod-
els from Distributed Computing area like parallel communicating grammar
systems [47].

2 Basic Definitions

We start by summarizing the notions used throughout the paper. An alphabet
is a finite and nonempty set of symbols. The cardinality of a finite set A is
written card(A). Any sequence of symbols from an alphabet V is called word
over V. The set of all words over V' is denoted by V* and the empty word is
denoted by e. The length of a word « is denoted by |z| while alph(x) denotes
the minimal alphabet W such that x € W*.

In the course of its evolution, the genome of an organism mutates by differ-
ent processes. At the level of individual genes the evolution proceeds by local
operations (point mutations) which substitute, insert and delete nucleotides
of the DNA sequence. In what follows, we define some rewriting operations
that will be referred to as evolutionary operations since they may be viewed
as linguistic formulations of local gene mutations. We say that a rule a — b,
with a,b € V U {e} is a substitution rule if both a and b are not ¢; it is a
deletion rule if a # ¢ and b = ¢; it is an insertion rule if a = ¢ and b # .
The set of all substitution, deletion, and insertion rules over an alphabet V'
are denoted by Suby, Dely, and Insy, respectively.

Given a rule o as above and a word w € V*, we define the following actions
of o on w:

{ubv : Ju,v € V* (w =wuav)},

o Ifoc=a—be Suby, then o*(w) = { {w}, otherwise

Note that a rule such as the one above is applied to all occurrences of

the letter a in different copies of the word w. An implicit assumption is that
arbitrarily many copies of w are available.
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{uv: Ju,v € V* (w = uav)},
e If o =a— e € Dely, then o* {w} otherwise

w = ua},
{w}

otherwise

w=av},
{w}, otherwise
o If o =¢— ae€ Insy, then o*(w) = {ua :EIquV*(w:uv)},

o (w) = {wa}, o'(w) = {aw}.

a € {*,l,r} expresses the way a deletion or insertion rule is applied to a word,
namely at any position (o = %), in the left (a = 1), or in the right (o = r) end
of the word, respectively. The note for the substitution operation mentioned
above remains valid for insertion and deletion at any position. For every rule
o, action a € {x,l,r}, and L C V*, we define the a-action of o on L by
0*(L) = Uper, o“(w). Given a finite set of rules M, we define the a-action
of M on the word w and the language L by:

O"U}

M (w) = U o%(w) and M*(L) = U M (w)
oceM weL

respectively.
For two disjoint and nonempty subsets P and F' of an alphabet V and a
word z over V', we define the following two predicates

res(z; Py F) = P Calph(z) A FNalph(z) =0
rew(z; P F) = alph(z) NP #0 A FNalph(z) = 0.

The construction of these predicates is based on context conditions de-
fined by the two sets P (permitting contexts/symbols) and F (forbidding con-
texts/symbols). Informally, both conditions require that no forbidding symbol
be present in w; furthermore the first condition requires all permitting sym-
bols to appear in w, while the second one requires at least one permitting
symbol to appear in w. It is plain that the first condition is stronger than the
second one.

For every language L C V* and g € {s,w}, we define:

reg(L, P,F) ={z € L|rcg(z; P, F)}.

An evolutionary processor over V is a 5-tuple (M, PI, FI, PO, FO), where:
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— Either (M C Suby) or (M C Dely) or (M C Insy). The set M repre-
sents the set of evolutionary rules of the processor. As can be seen, a processor
is “specialized” in one evolutionary operation only.

— PI,FI CV are the input permitting/forbidding contexts of the proces-
sor, while PO, FO C V are the output permitting/forbidding contexts of the
processor (with PINFI = and PON FO = 0).

An evolutionary processor such as the one above with P/ = PO = P and
FI = FO = F is called a uniform evolutionary processor and is defined as
the triple (M, P, F'). We denote the set of (uniform) evolutionary processors
over V by (U)EPy. Clearly, the (uniform) evolutionary processor described
here is a mathematical concept similar to that of an evolutionary algorithm,
both being inspired by Darwinian evolution. As we have mentioned above,
the rewriting operations we have considered might be interpreted as muta-
tions and the filtering process described might be viewed as a selection pro-
cess. Recombination is missing but evolutionary and functional relationships
between genes can be captured by taking only local mutations into consider-
ation [57]. However, another type of processor based on recombination only,
called a splicing processor, has been the focus of a series of studies which will
be surveyed in the sections below.

3 Three Variants of Accepting Networks of Evolutionary
Processors

An accepting network of evolutionary processors (ANEP for short) is an 8-
tuple I' = (V,U,G, N, «, 8, z1,20), where:

e V and U are the input and network alphabets, respectively, V' C U.
G = (Xg, E¢) is an undirected graph without loops with the set of ver-
tices X and the set of edges Fg. G is called the underlying graph of the
network.

e N : X — FEPy is a mapping which associates each node = € X with
the evolutionary processor N(z) = (M, PI,, FI,, PO,, FO,).

o «:Xg— {x1,r}; alx) gives the action mode of the rules of node x on
the words existing in that node.

o [:Xg — {s,w} defines the type of the input/output filters of a node.
More precisely, for every node, x € X, the following filters are defined:
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input filter: p,.(-) = reg) (s Ply, F1y),
output filter: 7,(-) = reg) (1 POz, FOy).

That is, p,(w) (resp. 7,) indicates whether or not the word w can pass the
input (resp. output) filter of z. Moreover, p, (L) (resp. 7,.(L)) is the set of
words of L that can pass the input (resp. output) filter of x.

e 15,70 € X are the input and the output node of I', respectively.

An Accepting Network of Uniform FEvolutionary Processors (UANEP for
short) is an ANEP with uniform evolutionary processors only.

We say that card(X¢) is the size of I'. If o and ( are constant functions,
then the network is said to be homogeneous. In the theory of networks some
types of underlying graphs are common (for example rings, stars, grids, etc.).
In most of the cases considered here, we focus on complete networks (i.e., net-
works having a complete underlying graph). The last section is an exception,
as we discuss an incomplete [UJANEP that simulates a given ANEPFC (see
the meaning of the abbreviation ANEPFC in the next subsection).

A configuration of an [UJANEP I" as above is a mapping C : X¢ — 2V~
which associates a set of words with every node of the graph. A configuration
may be understood as the sets of words which are present in any node at a
given moment. Given a word w € V*, the initial configuration of I" on w is
defined by C’éw)(x[) = {w} and Cow) () =0for all x € X — {x}.

When changed for an evolutionary step, each component C(z) of config-
uration C' is changed in accordance with the set of evolutionary rules M,
associated with node  and the way the rules a(z) are applied. Formally, we
say that configuration C’ is obtained in one evolutionary step from configu-
ration C, written as C = ', iff

C'(z) = M@ (C(x)) for all z € Xg.

When changed for a communication step, each node processor z € X¢g
sends one copy of each word it has which can pass the output filter of x to all
the node processors connected to z. And it receives all the words sent by any
node processor connected with z providing that they can pass its input filter.
Formally, we say that configuration C’ is obtained in one communication step
from configuration C, written as C' + C’, iff

C'(x) = (Cx) —m(C@) U |J (1(Cy)Np(Cy)
{z.y}€Ec

for all x € X¢. Note that words which leave a node are removed from that
node. If they cannot pass the input filter of any node, they are lost.
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A model closely related to that of ANEPs, introduced in [23] and further
studied in [22, 31], is that of accepting networks of evolutionary processors
with filtered connections (ANEPFCs for short). An ANEPFC may be viewed
as an ANEP in which the filters are shifted from the nodes on the edges.
Therefore, instead of having a filter at both ends of an edge in each direction,
there is only one filter independently of the direction.

An ANEPFC is a 9-tuple

r=V,UG RN, a, B zr,20),
where:

e V,U,G=(Xg,Eq), have the same meaning as for ANEP,

R : Xg — 25ubu y2Pelu y 2Insu is 3 mapping which associates each
node with the set of evolutionary rules that can be applied in that node.
Note that each node is associated only with one type of evolutionary rules:
namely, for every x € X either R(x) C Suby or R(z) C Dely or R(z) C
Insy holds.

o «:Xg— {x1r}; alz) gives the action mode of the rules of node x on
the words existing in that node.

o N :Eg— 2V x2Y is a mapping which associates each edge e € Eg with
the permitting and forbidding filters of that edge; formally, N'(e) = (P., F.),
with P, N F, = (.

B : Eq — {s,w} defines the filter type of an edge.
xr,x0 € X¢g are the input and the output node of I, respectively.

Note that every ANEPFC can be immediately transformed into an equiv-
alent ANEPFC with a complete underlying graph by adding the edges that
are missing and associating with them filters that do not allow any words to
pass. Note that such a simplification is not always possible for ANEPs.

A configuration of an ANEPFC is defined in the same way as the config-
uration of an ANEP (see above). An evolutionary step is also defined in the
same way as above.

Otherwise, when changed for a communication step, in an ANEPFC, each
node-processor € X sends one copy of each word it contains to every
node-processor y connected to z, provided they can pass the filter of the edge
between = and y. It keeps no copy of these words but receives all the words
sent by any node processor z connected with = providing that they can pass
the filter of the edge between = and z. In this case, no word is lost.

Let I" be an [UJANEP[FC], the computation of I' on the input word

w € V* is a sequence of configurations C(()w),wa),Céw), ..., where Céw) is
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the initial configuration of I" defined by C(()w)(xf) = w and Cé“’) (x) = 0 for all
z € X, w# ar, O5) = i) and C{¥), + ), for all i > 0. Note that
the configurations are changed by alternative evolutionary and communica-
tion steps. By the previous definitions, each configuration C’i(w) is uniquely
determined by configuration Cz(iui

A computation halts (and it is said to be halting) if one of the following
two conditions holds:

(i) There exists a configuration in which the set of words existing in
the output node xp is non-empty. In this case, the computation is said to be
an accepting computation.

(ii) There exist two identical configurations obtained either in consec-
utive evolutionary steps or in consecutive communication steps.

The language accepted by the [UJANEP[FC] I is L,(I") = {w € V* | the
computation of I" on w is an accepting one}. We denote by L([UJANEP[FC])
the class of languages accepted by [UJANEP[FC]s.

We say that an [UJANEP[FC]| I" decides the language L C V*, and write
L(I') = L iff L,(I') = L and the computation of I" on every x € V* halts.

3.1 Computational power of [UJANEP|[FC]s

The results obtained so far ([40, 38, 22, 23]) state that non-deterministic
Turing machines can be simulated by ANEPs and ANEPFCs.
Therefore we have:

Theorem 1. Both L(ANEP) and L(ANEPFC) equal the class of recur-
siwely enumerable languages.

It is clear that filters associated with each node of an ANEP allow the
computation to be closely controlled. However, by moving the filters from the
nodes to the edges, the possibility of controlling the computation seems to
be diminished. For instance, data cannot be lost during the communication
steps. In spite of this, we have seen that ANEPFCs are still computationally
complete. This means that moving the filters from the nodes to the edges does
not decrease the computational power of the model. Although the two variants
are equivalent from the point of view of computational power, a direct proof
would have been worthwhile. In [8] it was shown that the two models can
efficiently simulate each other: namely, each computational step in one model
is simulated in a constant number of computational steps in the other. This
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is particularly useful when the solution of a problem needs to be translated
from one model to the other. Note that a translation via a Turing machine, by
the constructions shown in [40, 38, 22, 23| squares the time complexity of the
new solution. A natural question arises: What is the computational power of
UANEPs? The answer was given in [9] where the time complexity preserving
simulation between ANEPs and ANEPFCs was extended to UANEPs. More
precisely, it was shown that each pair of networks among the three variants
efficiently simulates each other. Consequently, we can state the first main
result of this section:

Theorem 2.

1. Each class L([UJANEP[FC]) equals the class of recursively enumerable
languages.

2. Each pair of networks among the three variants efficiently simulates each
other.

These results can be improved by showing that each recursively enumer-
able language can be accepted by an ANEP[FC] of constant size. More pre-
cisely:

Theorem 3. [32, 31, 6]

1. Every recursively enumerable language can be accepted by an ANEP of size
7.

2. Bvery recursively enumerable language can be accepted by an ANEPFC of
size 16.

The second result can be extended to characterize the class NP. Although
the first result cannot be extended to a similar succinct characterization of
NP, as the proof in [6] is based on the simulation of a phrase-structure gram-
mar, such a succinct characterization of NP is proposed in [32, 31].

Theorem 4.

1. A language is in NP if and only if it is accepted by an ANEP of size 10 in
polynomial time.

2. A language is in NP if and only if it is accepted by an ANEPFC of size
16 in polynomaial time.

We do not know whether similar results like those in Theorems 3 or 4
holds for UANEPs.
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4 Accepting Networks of Splicing Processors

In the case of Accepting Networks of Splicing Processors (ANSP for short),
the point mutations associated with each node are replaced by the missing
operation (recombination), which is present here in the form of splicing. This
computing model is to some extent similar to the test tube distributed systems
based on splicing introduced in [16] and further explored in [48]. However,
there are several differences: first, the model proposed in [16] is a language
generating mechanism while ours is an accepting one; second, we use a single
splicing step, while every splicing step in [16] is actually an infinite process
consisting of iterated splicing steps; third, each splicing step in our model
is reflexive; fourth, the filters of our model are based on random context
conditions while those in [16] are based on membership conditions; fifth, at
every splicing step a set of auxiliary words, always the same and particular to
every node, is available for splicing. Along the same lines, we should stress the
differences between this model and the time-varying distributed H systems, a
generative model introduced in [50] and further studied in [41, 49, 46]. The
computing strategy of such a system is that the passing of words from a set of
rules to another one is specified by a cycle. Only those words that are obtained
at one splicing step by using a set of rules are passed in a circular way to the
next set of rules. This means that words which cannot be spliced at some step
disappear from the computation while words produced at different splicing
steps cannot be spliced together. Now, the differences between time-varying
distributed H systems and ANSPs are evident: each node of an ANSP has a
set of auxiliary words, words obtained at different splicing steps in different
nodes can be spliced together, words are not communicated in a circular way,
since identical copies of the same word are sent out to all the nodes, the
communication is controlled by filters.

A splicing rule over a finite alphabet V' is a word of the form uy #uo$v1 #vo
such that u1, ug, v1, and vg are in V* and such that $ and # are two symbols
not in V.

For a splicing rule r = uj#us$v1#vo and for x,y,w,z € V*, we say that
r produces (w, z) from (z,y) (denoted by (z,y) b, (w, 2)) if there exist some
T1,%2,Y1,Yy2 € V* such that z = z1ujusxs, ¥y = y10102y2, 2 = T1u1V2Y2, and
W = Y1v1Uu2x2.

For a language L over V and a set of splicing rules R we define

or(L) ={z,we V" | (3u,v € L,r € R)[(u,v) Fr (2,w)]}.
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A splicing processor over V is a 6-tuple (S, A, PI, FI, PO, FO), where S a
finite set of splicing rules over V', A a finite set of auxiliary words over V,
and all the other parameters have the same meaning as in the definition
of evolutionary processors. Now an ANSP can be defined in the same way
as an ANEP except that the processors associated with nodes are splicing
processors.

A configuration of an ANSP I is a mapping C : X¢ — 2" which asso-
ciates a set of words to every node of the graph. By convention, the auxiliary
words do not appear in any configuration.

There are two ways to change a configuration: by a splicing step or by
a communication step. When a splicing step is used, each component C(x)
of the configuration C' is changed according to the set of splicing rules S,
whereby the words in set A, are available for splicing. Formally, configuration
(' is obtained in one splicing step from configuration C, written as C' = C’,
iff for all x € X

C'(z) =05, (C(z) U Ay).

Since each word present in a node, as well as each auxiliary word, appears
in an arbitrarily large number of identical copies, all possible splicings are
assumed to be done in one splicing step. If the splicing step is defined as
C= ' iff

C'(z) = S.(C(x), Ay) for all z € Xg,

then all processors of I are called restricted and I itself is said to be restricted.

A communication step and the language accepted/decided by an ANSP are
defined in the same way as those for ANEP. The definitions of the complex-
ity classes defined on ANEPs can be straightforwardly carried over ANSPs.
On the other hand, accepting networks of splicing processors with filtered
connections (ANSPFC) are defined similarly to ANEPFCs.

4.1 Computational power of ANSP[FC]s
The main result in [37, 36] is:

Theorem 5.

1. Each recursively enumerable language L is accepted by a restricted ANSP
of size 7.

2. Each NP language L is accepted by a restricted ANSP of size 7 in polyno-
mial time.
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We should point out that only the rules in the node input node depend on the
language L, and the encoding that we use for its symbols while the parameters
of the other nodes do not depend in any way on language L. If we allow all
the parameters of the networks to depend on the given language, we have

Theorem 6. [30]

1. All recursively enumerable languages are accepted by ANSPs of size 2.

2. All languages in NP can be accepted by ANSPs of size 3 working in poly-
nomial time.

Note that the ANSPs in the last theorem are not necessarily restricted.
Since, by definition, ANSPs need at least two nodes to accept any non-trivial
language, these results go a long way to settling this issue, although they
do leave one problem unsolved: the efficient simulation of non-deterministic
Turing machines by ANSPs with two nodes.

As far as the computational power of ANSPFCs is concerned, a complete
characterization is reported in [14]:

Theorem 7.

1. A language is recursively enumerable if and only if it is accepted by a
restricted ANSPFC of size 4.

2. A language is in NP if and only if it is accepted by a restricted ANSPFC
of size 4 in polynomial time.

5 Problem Solving with [UJANEP[FC|s/ANSP[FC]s

Although the results in the previous sections state that every problem in
NP can be solved in polynomial time using different variants of accepting
networks, the results are obtained by simulating a nondeterministic Turing
machine; thus we still have to obtain a classic solution to a problem, and
then translate it in terms of [UJANEP[FC|s/ANSP[FC]Js. To overcome this
drawback, a series of papers discussed how [UJANEP[FC]s and ANSP[FC]s
can be viewed as problem solvers.

Recall that a possible correspondence between decision problems and lan-
guages can be made via an encoding function which transforms an instance
of a given decision problem into a word (see, e.g., [26]). We say that a de-
cision problem P is solved in time O(f(n)) by [UJANEP[FC|s/ANSP[FC]s if
there exists a family G of [UJANEP[FC]s/ANSP[FC]s such that the following
conditions are satisfied:
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1. The encoding function of any instance p of P with size n can be computed
by a deterministic Turing machine in time O(f(n)).

2. For each instance p of size n of the problem one can effectively construct,
in time O(f(n)), an |[UJANEP|FC|/ANSP|FC| I'(p) € G which decides,
again in time O(f(n)), the word encoding the given instance. This means
that the word is decided if and only if the solution to the given instance
of the problem is “YES”. This effective construction is called an O(f(n))
time solution to the problem.

If the [UJANEP[FC]/ANSP[FC] I" € G constructed above decides the lan-
guage of words encoding all instances of the same size n, then the construction
of I' is called a uniform solution. Intuitively, a solution is uniform if for prob-
lem size m, we can construct a unique [UJANEP[FC|/ANSP[FC] that solves
all instances of size n taking the (reasonable) encoding of instance as “input”.

The paper [34] proposes using ANEPs to provide uniform linear time so-
lutions to the 3-CNF-SAT and Hamiltonian Path; in [38] a uniform linear
solution to the Vertex-Cover problem is proposed. And [23] proposes another
uniform linear time solution to the Vertex-Cover problem, solved this time by
ANEPFCs. Uniform linear time solutions to the SAT and Hamiltonian Path
problems with ANSPs and ANSPFCs are discussed in [33].

6 Accepting Networks of Genetic Processors

The third case that we refer to in this work is the Accepting Networks of
Genetic Processors (ANGP). Here, there are two sources of inspiration: the
classical paradigm of Genetic Algorithms and Evolutionary Computation [43],
and the models of Evolutionary or Splicing processors mentioned above. A ge-
netic processor can perform one of the following two operations: (1) Mutation
between symbols (here, the substitution operation in the evolutionary proces-
sors can be considered), and (2) Pure and massive crossover (which can be
considered as the splicing operation by taking empty contexts). Observe that
both operations were considered in the past as the main ingredients of genetic
algorithms. Despite this, ANGP differs from classical Genetic Algorithms in
two aspects: first, ANGP consists of a finite number of processors that run in
parallel independently, so they should be considered as a full parallel scheme
for genetic algorithms [1]; and second, the model is an acceptation model not
an optimization one (like genetic algorithms). Nevertheless, ANGP could be
modified to tackle optimization problems instead of acceptation ones.
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For any alphabet V', the mutation rules take the form a — b, with a,b € V,
and they can be applied over the string xay to produce the new string xby.
The crossover operation is defined as follows: Let « and y be two strings, then
x>y = {x1y2,y122 : * = z122 and y = y1y2}. Observe that z,y € x <y
given that we can take € to be a part of = or y. In addition, the crossover
operation can be extended over languages in the usual form.

A genetic processor over V is a tuple (Mg, A, PI, FI, PO, FO, «, 3), where
Mp, is a finite set of mutation rules over V', A is a multiset of strings over V
with a finite support and an arbitrary large number of copies of every string,
PI,FI C V* are the input permitting/forbidding contexts, PO, FO C V*
are the output permitting/forbidding contexts, o € {1, 2} defines the working
mode with the following values

e If a =1 the processor applies mutation rules
e If o = 2 the processor applies crossover rules and Mg = ()

and 8 € {(s),(w)} defines the type of the input/output filters of the
processor. Here, s means the strong predicate rcg(-; P, F') as defined in the
evolutionary case, and w the weak predicate denoted by rc,(-; P, F'). Never-
theless, given that P, F' C V| the previous predicates will be defined over the
segments of a given string instead of its symbols.

An Accepting Network of Genetic Processors is defined as in the previous
models of ANEPs and ANSPs. The acceptance criterion, the configuration of
the network and the alternation between communication steps and genetic
steps are defined as in the previous models.

With respect to the completeness of the ANGP model, we have the fol-
lowing result.

Theorem 8. [10] Every recursively enumerable language can be accepted by
an ANGP.

The proof of the previous result is approached in a non-uniform manner.
Hence, one can construct in polynomial time an ANGP that simulates the
computation of an arbitrary Turing machine with an arbitrary input string
(no matter its length). Given that the previous simulation works in polynomial
time depending on the length of the input string (provided that we take into
account the number of genetic and communication steps), the following result
comes easily by simulating a nondeterministic Turing machine.
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Theorem 9. [10] Every language in NP can be accepted/decided in polyno-
mial time by an ANGP.

Observe that no results have been obtained to define the description com-
plexity of this model. Nevertheless, a formal proof that 16 genetic processors
are sufficient to generate any recursively enumerable language is provided in
[11]. So, it is expected that further results of the descriptive complexity of
ANGPs will be provided shortly.

7 Towards an Unifying Model

We have presented three different models of Accepting Networks of Bio-
inspired processors. They have common characteristics and features that point
to a model which can be formally defined. They share the following aspects
and, probably, new models will be formulated in the near future:

1. A finite set of processors that apply operations over strings which have
been inspired by biomolecular functions and operations in nature. The
processors work with a multiset of strings.

2. A connection topology between processors in the form of a network.

3. A set of (input/output) filters which can be attached to the processors or
to the connections.

A biologically inspired processor with filters, over an alphabet V', can be
defined as the tuple (op, PI, F'I, PO, FO), where op is a biologically inspired
operation over strings and the rest of the elements have been defined in the
evolutionary processors.

The following table shows some of the operations that we have defined in
this study and others which can be used instead of the operations that have
been defined previously.
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insertion Insert a symbol into a string
deletion Delete a symbol from a string
substitution (mutation)|Substitute a symbol into a string
splicing Splicing rules
crossover Full massive splicing with empty context

hairpin completion
superposition

loop and double loop
recombination
inversion, duplication
and transposition

Hairpin completion from folded strings [15, 52]
Complementarity completion from double
stranded strings [7]

DNA recombination based on gene assembly [54]

DNA fragments modification as operations over
substrings [29, 18]

Table 1: Some operations which can be inserted into biologically

inspired processors

Once we have introduced a generalization of previously defined processors,
an Accepting Network of Bio-inspired Processors (ANBP) can be defined as
the tuple I' = (V,U,G, N, «, 8, z1,20), where the difference with respect to
ANEPs is that the function N associates a biologically inspired processor to
every vertex in the connection graph.

Here, we describe a n

ew framework that should be studied in depth. In

particular the following questions should be addressed:

Some of the operations shown in Table 1, do not have computational com-

pleteness (i.e. they do
We can combine some

not characterize recursively enumerable languages).
of these operations by inserting them into different

processors. It is natural to ask whether computational completeness could

be achieved for some
combination is to achi

combinations of operations, and what the minimal
eve it.

Filtered connections have been proposed for ANEPs while other models
consider only filtered processors. The transformation of filtered processors
into filtered connections should be explored in the different combinations
of operations. Furthermore, we could provide a pure hybrid network where
different types of filters (connections or processors) work together.
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