
Developing Tools for Networks of Processors ?

Alfonso Ortega de la Puente1, Marina de la Cruz Echeandía1, Emilio del
Rosal1, Carmen Navarrete Navarrete1, Antonio Jiménez Martínez1, Juan de
Lara1, Eloy Anguiano Rey1, Miguel Cuéllar1, and José Miguel Rojas Siles2

1 Departamento de Ingeniería Informática
Escuela Politécnica Superior
Universidad Autónoma de Madrid
Madrid, Spain
E-mail: {alfonso.ortega, marina.cruz, emilio.delrosal,

carmen.navarrete, antonio.jimenez, juan.delara, eloy.anguiano,

miguel.cuellar}@uam.es
2 Departamento de Lenguajes y Sistemas Informáticos e Ingeniería de Software
Universidad Politécnica de Madrid
Madrid, Spain
E-mail: josemiguel.rojas@upm.es

1 Motivation

A great deal of research e�ort is currently being made in the realm of so called
�natural computing�. �Natural computing� mainly focuses on the de�nition,
formal description, analysis, simulation and programming of new models of
computation (usually with the same expressive power as Turing Machines)
inspired by Nature, which makes them particularly suitable for the simulation
of complex systems.

? Work partially supported by the Spanish Ministry of Science and Innovation
under coordinated research project TIN2011-28260-C03-00 and research projects
TIN2011-28260-C03-01, TIN2011-28260-C03-02 and TIN2011-28260-C03-03.

Triangle: Language, Literature, Computation, n. 7, 2012
Publicacions Universitat Rovira i Virgili · ISSN: 2013-939X

https://revistes.urv.cat/index.php/triangle

26 A. Ortega de la Puente et al.

Some of the best known natural computers are Lindenmayer systems (L-
systems, a kind of grammar with parallel derivation), cellular automata, DNA
computing, genetic and evolutionary algorithms, multi agent systems, arti�-
cial neural networks, P-systems (computation inspired by membranes) and
NEPs (or networks of evolutionary processors). This chapter is devoted to
this last model.

There are two main areas in which these models could be useful: as new
architectures for computers, other than von Neumann's machine; and as mod-
elling tools to simulate complex systems for which �conventional approaches"
(usually based on di�erential equations) are, in practice, di�cult to handle.

Two steps are needed in both scenarios:

1. design a particular instance of the model able to solve the task under
study (this step is equivalent to �programming� the model) and

2. �run� the model.

Several attemps have been made to build hardware devices to support
these bio-inspired models. Some research groups are currently implementing
in silico the basic components of P-systems [19]. [38] describes other examples
of hardware implementations of cellular automata, CAM-6 and its derivatives,
that have been used for the simulation of complex systems (see [36]). But,
unfortunately there are no real computers for almost all bio-inspired models.
So, step 2 usually involves simulating the model in a �conventional� (von
Neumann) computer.

Informally, and assuming that NP (nondeterministic polynomial time) 6=
P, NP is a complexity that includes those problems whose solution by means
of algorithms run on conventional computers requires more than polynomial

time. We can informally understand more than polynomial as exponential.
One of the most interesting features of these bio-inspired computers is their
intrinsic parallelism. We can design algorithms for them that could improve
the exponential performance of their classic versions. Nevertheless, when the
models have to be simulated on conventional computers, the total amount of
space needed to simulate the model and to actually run the algorithm usu-
ally becomes exponential. This may be one of the main reasons why natural
computers are not widely used to solve real problems. Most of the simulators
are not able to handle the size of non trivial problems. Grid, cloud compu-
tation and clusters o�er an interesting and promising option to overcome the
drawbacks of both solutions: �speci�c� hardware, and simulators run on von
Neumann's machines.

TRIANGLE 7 • March 2012

Developing Tools for NEPs 27

There are several research groups interested in programming tools for natu-
ral computers. These tools include textual and visual programming languages,
compilers, sequential and parallel simulators.

P-Lingua ([21] and http://www.p-lingua.org) is a programming lan-
guage for membrane computing which aims to be a standard to de�ne P
systems. One of its main characteristics is to remain as close as possible to
the formal notation used in the literature to de�ne P systems. Once he has
formalized his P systems, the programmer does not need any additional ef-
fort to describe them with P-Lingua. P-Lingua is also the name of a software
package that includes several built-in simulators for each supported model, as
well as the compilers needed to simulate P-Lingua programs.

One of the current topics of interest of the authors of this chapter is the
development of programming tools for NEPs, which will be brie�y described
in the following paragraphs.

This chapter is structured as follows:

1. We describe our approaches to simulate NEPs:
• jNEP, a Java multitreaded NEPs simulator
• The simulation of NEPs on massively parallel platforms

2. We describe some graphical tools for designing NEPs:
• We describe our graphical viewer for the simulation of jNEP

(jNEPView)
• We also describe our visual programming language for NEPs

(NEPsVL)
3. With respect to other tools for designing NEPs, we introduce NEPsLin-

gua, our textual language for NEPs inspired by P-Lingua.

We should point out that this chapter brings together some work previously
published earlier. All the references are placed in the corresponding section.

2 Simulation of NEPs

jNEP: a Java NEP simulator

Current research on NEPs focuses mainly on the de�nition of di�erent fami-
lies and on the study of their formal properties, such as their computational
completeness and their ability to solve NP problems with polynomial perfor-
mance. However, apart from [26], little e�ort has been made to develop a NEP
simulator for any kind of implementation. Unfortunately, this software hardly

TRIANGLE 7 • March 2012

28 A. Ortega de la Puente et al.

restricts the general model because it only allows one kind of rules and �lters
and, what is more important, violates two of the main principles of the model:

1. NEP's computation should not be deterministic and
2. Evolutionary and communication steps should alternate strictly.

In addition, the software focuses on solving decision problems in a parallel
way, rather than on providing the researchers with a general simulator for
any kind of NEPs.

jNEP tries to �ll this gap in the literature. It is a program written in Java
which can simulate simulate almost any NEP in the literature. In order to be
a valuable tool for the scienti�c community, it has been developed under the
following principles:

a) It rigorously complies with the formal de�nitions found in the literature.
b) It serves as a general tool, by allowing the use of the di�erent NEP variants

and is ready to adapt to future possible variants, as the research in the
area advances.

c) It exploits as much as possible the inherent parallel/distributed nature of
NEPs.

The jNEP code is freely available in http://jnep.e-delrosal.net.

jNEP design

jNEP provides an implementation of NEPs as general, �exible and rigorous
as has been described in the previous paragraphs. As shown in �gure 1, the
design of the NEP class mimics the NEP model de�nition. In jNEP, a NEP
is composed of evolutionary processors and an underlying graph (attribute
edges) to de�ne the net topology and the allowed inter processor interactions.
The NEP class coordinates the main dynamic of the computation and rules
the processors (instances of the EvolutionaryProcessor class), forcing them
to perform alternate evolutionary and communication steps. It also stops the
computation when needed. The core of the model includes these two classes,
together with the Word class, which handles the manipulation of words and
their symbols.

We keep jNEP as general and rigorous as possible by means of the follow-
ing mechanisms: Java interfaces and di�erent versions to widely exploit the
parallelism available in the hardware platform.

jNEP o�ers three interfaces:

TRIANGLE 7 • March 2012

Developing Tools for NEPs 29

Fig. 1. Simpli�ed class diagram of jNEP

TRIANGLE 7 • March 2012

30 A. Ortega de la Puente et al.

a) StoppingCondition, which provides the method stop to determine whether
a NEP object should stop according to its state.

b) Filter, whose method applyFilter determines which objects of class Word

can pass.
c) EvolutionaryRule, which applies a Rule to a set of Words to get a new set.

jNEP tries to implement a wide set of NEPs' features. The jNEP user

guide (http://jnep.e-delrosal.net) contains the updated list of �lters, evolu-
tionary rules and stopping conditions implemented.

Currently jNEP has two lists of choices to select the parallel/distributed
platform on which it runs (any combination of them is also available in
http://jnep.e-delrosal.net). Concurrency is implemented by means of two dif-
ferent Java approaches: Threads and Processes. The �rst needs more complex
synchronization mechanisms. The second uses heavier concurrent threads. The
supported platforms are standard JVM and clusters of computers (by means
of JavaParty).

More precisely, in the case of the Processes option each processor in the net
is actually an independent program in the operating system. The communica-
tion between nodes is carried out through the standard input/output streams
of the program. The class NEP has access to those streams and coordinates the
nodes. The mandatory alternation of communication and evolutionary steps
in the computations of NEPs greatly eases their synchronization and com-
munication. The following protocol has been followed for the communication
step:

1 NEP class sends the message to communicate to every node in the graph.
Then it waits for responses.

2 All node �nish their communication step after sending the words that pass
their outputs �lters. Then, they indicate to the NEP class that they have
�nished the communication step.

3 The NEP class moves all the words from the net to the input �lters of the
corresponding nodes.

The evolutionary step is synchronized by means of an initial message sent
by the NEP class to make all the nodes evolve. Afterwards, the NEP class
waits until all the nodes �nish.

The implementation with Java Threads has other implications. In this
option, each processor is an object of the Java Thread class. Thus, each pro-
cessor execute its tasks in parallel as independent lines, although they all
belong to the same program. Data exchange between them is performed by

TRIANGLE 7 • March 2012

Developing Tools for NEPs 31

direct access to memory. The principles of communication and coordination
are the same as in the previous option. The main di�erence is that, instead
of waiting for all the streams to �nish or to send a certain message, Threads
are coordinated by means of basic concurrent programming mechanisms as
semaphores, monitors, etc.

In conclusion, jNEP is a very �exible tool that can run in many di�erent
environments. Depending on the operating system, the Java Virtual Machine
used and the concurrency option chosen, jNEP will work in a slightly di�erent
manner. Users should select the best combination for his needs.

Nevertheless, the peculiarities of Java (the JVM can be considered an
intermediate layer of middleware between the source code and the operating
system) makes it di�cult to adjust all the details of the parallel simulation.
This is why we have decided to explore other approaches that will be shown
in the following sections.

Using jNEP

jNEP is written in Java therefore to run jNEP one needs a Java virtual ma-
chine (version 1.4.2 or above) installed in a computer. Then one has to write
a con�guration �le describing the NEP. The jNEP user guide (available at
http://jnep.e-delrosal.net) contains the details concerning the commands and
requirements needed to launch jNEP. In this section, we focus on the con�g-
uration �le which has to be written before running the program, since it has
some complex aspects important to be aware of the potentials and possibilities
of jNEP.

The con�guration �le is an XML �le specifying all the features of the NEP.
Its syntax is described below in BNF format, together with a few explana-
tions. Since BNF grammars are not capable of expressing context-dependent
aspects, context-dependent features are not described here. Most of them have
been explained informally in the previous sections. Note that the traditional
characters <> used to identify non-terminals in BNF have been replaced by
[] to prevent confusion with the use of the <> characters in the XML format.

- [con�gFile] ::= <?xml version="1.0"?> <NEP nodes=�[integer]�> [alphabetTag] [graphTag] [pro-
cessorsTag] [stoppingConditionsTag] </NEP>

- [alphabetTag] ::= <ALPHABET symbols=�[symbolList]�/>
- [graphTag] ::= <GRAPH> [edge] </GRAPH>

- [edge] ::= <EDGE vertex1=�[integer]� vertex2=�[integer]�/> [edge]
- [edge] ::= λ
- [processorsTag] ::= <EVOLUTIONARY_PROCESSORS> [nodeTag]

</EVOLUTIONARY_PROCESSORS>

TRIANGLE 7 • March 2012

32 A. Ortega de la Puente et al.

The above rules show the main structure of the NEP: the alphabet, the
graph (speci�ed through its vertices) and the processors. It is worth remember-
ing that each processor is identi�ed implicitly by its position in the processors
tag (�rst is number 0, second is number 1, and so on).

- [stoppingConditionsTag] ::= <STOPPING_CONDITION> [conditionTag]
</STOPPING_CONDITION>

- [conditionTag] ::= <CONDITION type=�MaximumStepsStoppingCondition� maximum=�[integer]�/>
[conditionTag]

- [conditionTag] ::= <CONDITION type=�WordsDisappearStoppingCondition� words=�[wordList]�/>
[conditionTag]

- [conditionTag] ::= <CONDITION type=�ConsecutiveCon�gStoppingCondition�/> [condition-
Tag]

- [conditionTag] ::= <CONDITION type=�NonEmptyNodeStoppingCondition� nodeID=�[integer]�/>
[conditionTag]

- [conditionTag] ::= λ

The syntax of the stopping conditions shows that a NEP can have sev-
eral stopping conditions. The �rst one which is met causes the NEP to stop.
The di�erent types try to cover most of the stopping conditions used in the
literature. If needed, more of them can be added to the system.

At this moment jNEP supports 4 stopping conditions, the jNEP user guide

explains their semantics in detail:

1. ConsecutiveCon�gStoppingCondition: It stops the NEP if nothing
changes after two consecutive complete con�gurations (a communication
and an evolutionary step).

2. MaximumStepsStoppingCondition: The NEP stops after a maximum
number of steps.

3. WordsDisappearStoppingCondition: It stops the NEP if none of the
words speci�ed are in the NEP. It is useful for generative NEPs where the
lack of non-terminals means that the computation have reached its goal.

4. NonEmptyNodeStoppingCondition: The NEP stops if one of the
nodes is non-empty. Useful for NEPs with an output node.

- [nodeTag] ::= <NODE initCond="[wordList]" [auxWordList]> [evolutionaryRulesTag] [node-
FiltersTag] </NODE> [nodeTag]

- [nodeTag] ::= λ
- [auxWordList] ::= auxiliaryWords="[wordList]" | λ
- [evolutionaryRulesTag] ::= <EVOLUTIONARY_RULES> [ruleTag] </EVOLUTIONARY_RULES>
- [ruleTag] ::= < RULE ruleType=�[ruleType]� actionType= �[actionType]� symbol= �[symbol]�

newSymbol= �[symbol]� /> [ruleTag]
- [ruleTag] ::= < RULE ruleType= "splicing" wordX= �[symbolList]� wordY= �[symbolList]�

wordU= �[symbolList]� wordV= �[symbolList]�/> [ruleTag]
- [ruleTag] ::= < RULE ruleType= "splicingChoudhary" wordX= �[symbolList]� wordY= �[sym-

bolList]� wordU= �[symbolList]� wordV= �[symbolList]�/> [ruleTag]
- [ruleTag] ::= λ
- [ruleType] ::= insertion | deletion | substitution

TRIANGLE 7 • March 2012

Developing Tools for NEPs 33

- [actionType] ::= LEFT | RIGHT | ANY
- [nodeFiltersTag] ::= [inputFilterTag] [outputFilterTag]
- [nodeFiltersTag] ::= [inputFilterTag]
- [nodeFiltersTag] ::= [outputFilterTag]
- [nodeFiltersTag] ::= λ
- [inputFilterTag] ::= <INPUT [�lterSpec]/>
- [outputFilterTag] ::= <OUTPUT [�lterSpec]/>
- [�lterSpec] ::= type=[�lterType] permittingContext=�[symbolList]�

forbiddingContext=�[symbolList]�
- [�lterSpec] ::= type=�SetMembershipFilter� wordSet=�[wordList]�
- [�lterSpec] ::= type=�RegularLangMembershipFilter� regularExpression=�[regExpression]�
- [�lterType] ::= 1 | 2 | 3 | 4

Above, we describe the elements of the processors: their initial conditions,
rules, and �lters. jNEP treats rules with the same philosophy as in the case
of stopping conditions, that is, our system supports almost all kinds found in
the literature at the moment and, more important, future types can also be
added.

jNEP can work with any of the rules found in the original model [6, 20, 7].
Moreover, we support splicing rules, which are needed to simulate an extension
of the original model presented in [8] and [12]. The two splicing rule types are
slightly di�erent. It is important to note that if you use Manea's splicing rules,
you may need to create an auxiliary word set for those processors with splicing
rules.

With respect to �lters, jNEP is prepared to simulate nodes with �lters
based on random context conditions. To be more speci�c, jNEP supports any
of the four �lter types traditionally used in the literature since [30]. Besides,
jNEP is capable of creating �lters based on membership conditions. They are
used in such studies as [6]. They are to some extent non-standard and could
be de�ned as follows:

1. SetMembershipFilter: It allows only words that are included in a spe-
ci�c set to pass.

2. RegularLangMembershipFilter: This �lter contains a regular lan-
guage to which words need to belong. The language has to be de�ned
as a Java regular expression.

We will �nish the explanation of the grammar for our xml �les with the
rules needed to describe some of the pending non-terminals. They are typical
constructs for lists of words, list of symbols, boolean and integer data and
regular expressions.

- [wordList] ::= [symbolList] [wordList]
- [wordList] ::= λ
- [symbolList] ::= a string of symbols separated by the character '_'

TRIANGLE 7 • March 2012

34 A. Ortega de la Puente et al.

- [boolean] ::= true | false
- [integer] ::= an integer number

- [regExpression] ::= a Java regular expression

The reader may refer to the jNEP user guide for further detailed informa-
tion.

jNEPview: a graphical viewer for the simulations of jNEP

jNEP has been improved with several visualization facilities. jNEPView dis-
play the network topology in a friendly manner and shows the complete de-
scription of the simulation state in each step. This tool makes it easier to
program and study NEPs, which are quite complex, facilitating theoretical
and practical advances on the NEP model.

In the following paragraphs we will describe the features of jNEP we have
used to implement this graphic viewer, we will also discuss the design of
jNEPView, and �nally we will show some examples.

jNEP logging system

jNEP produces a sequence of log �les while it is running, one for each sim-
ulation step. This sequence of �les will be read by jNEPView to show the
successive con�gurations of the NEP. These logs are in a very simple format
that contains a line for each processor in the same implicit order in which
they appear in the con�guration �le. Each line contains the strings of the cor-
responding processor. This little extension of jNEP makes it simple to follow
the trace of the simulation and manage it.

jNEPView design

To handle and visualize graphs, we have used JGraphT [2] and JGraph [4]
which are free Java libraries under the terms of the GNU Lesser General
Public License.

JGraphT provides mathematical graph-theory objects and algorithms. It
is used by jNEPView to formally represent the NEP underlying graph. Fortu-
nately, JGraphT can also display its graphs using the JGraph library, which
is graph visualization library with many utilities.

We use those libraries to show the NEP topology. Once jNEPView is
started, a window shows the NEP layout as clear as possible. We have decided
to set the nodes in a circle, but the user can freely move each component. In
this way, it is easier to interpret the NEP and study its dynamics.

TRIANGLE 7 • March 2012

Developing Tools for NEPs 35

Moreover, several action buttons have been placed to study the NEP state
and progress. If the user clicks on a node, a window is open where the words
of the node appear. In order to control the simulation development, the user
can move throughout the simulation and the contents of the selected nodes
are updated in their corresponding windows in a synchronize way.

Before running jNEPView, jNEP should have actually �nished the sim-
ulation. In this way, jNEPView just reads the jNEP state logs and the user
can jump from one simulation step to another, without worrying about the
simulation execution times.

jNEPView example

This section describes how jNEPView shows the execution of a NEP solving
a particular case of the Hamiltonian path in an undirected graph. This NEP
is described in detail in [16] and in the chapter of this publication devoted to
some application of NEPs. The jNEP package, that you can freely download
from the web, includes the con�guration XML �le of this NEP.

Firstly, the user has to select the con�guration �le for jNEP which de�nes
the NEP to simulate. After that, the layout of the NEP is shown as in �gure
2.

At this point, the buttons placed in the main window to handle the sim-
ulation are activated and the user can select the nodes whose content is to
be inspected during the simulation. Besides, the program allows the user to
move throughout the simulation timeline by stepping forward and backward.
Figures 3 to 6 display the contents of all the nodes in the NEP at three di�er-
ent moments: the three �rst steps and the �nal one. The user can also jump
to a given simulation step by clicking on the appropriate button.

First steps of the simulation of NEPs on massively parallel

platforms

Introduction to parallel computing

Parallel computing is a form of computation in which many calculations are
carried out simultaneously (by means of multiple processing elements) to solve
a problem. The problem is broken up into independent parts (subdomains
or partitions) so that each processing element can execute its part of the
algorithm simultaneously with the others.

TRIANGLE 7 • March 2012

36 A. Ortega de la Puente et al.

Fig. 2. Window that shows the layout of the simulated NEP

Clusters of computers are a popular way of accessing to massively parallel
platforms. This is the case of the current work.

Perhaps the most popular general approach to parallel algorithms is the
master/slave type of organization. In these multiple-tier applications, a single
node (or more) organizes and disseminates the relatively separate tasks of
the overall composite problem, and (optionally) collects and/or reassembles
the individual results into a single integrated answer or product. The class of
nodes actually receiving and processing the smaller component tasks represent
another specialized tier of this hierarchical approach. More than two tiers
of organization are also possible. A single tier of �slaves�, all simultaneously
running serial code with absolutely no inter-communication, can be viewed
as a specialized form of this approach. But two levels of organization, often
with a single �master� node, is the most common con�guration. Strategies for
providing and optimizing load-balancing across multiple slave nodes within

TRIANGLE 7 • March 2012

Developing Tools for NEPs 37

Fig. 3. Initial simulation step

Fig. 4. Next simulation step

heterogeneous parallel environments is of general signi�cance across a wide
array of problems.

Because communication and synchronization between the di�erent sub-
tasks and nodes are typically one of the greatest obstacles to good parallel

TRIANGLE 7 • March 2012

38 A. Ortega de la Puente et al.

Fig. 5. Second simulation step

Fig. 6. End of simulation

programm performance, parallel computer programs and algorithms are more
di�cult to implement than sequential ones. But good management of the
communications and synchronization is not su�cient in itself to achieve the

TRIANGLE 7 • March 2012

Developing Tools for NEPs 39

best performance of the parallel algorithm; the loadbalancing and the domain
decomposition techniques also have a large role to play.

The most noteworthy idea of parallel computing is to decompose the prob-
lem into subproblems that are easier to solve; that is, the Divide and conquer

philosophy. But, it should be borne in mind that a better or worse perfor-
mance, and therefore the better use of resources, will depend on the solution
taken to decompose the problem into at least as many domains as processes
[25]; choosing an inappropriate domain decomposition will a�ect the speed-up
of the parallel solution but the domain decomposition depends on both the
problem that we want to execute in the cluster and its symmetries. Thus, our
goal is to develop a generic platform to execute existing sequential codes, so
that the parameters that optimize the application performance in the clus-
ter (such as network and data topologies or domain decomposition, etc.) will
be dynamically obtained while the algorithm is being executed. In general,
the domains decomposition algorithm must take into account the problem
properties and symmetries and must change them if the speed-up decreases.

Although we have used this framework to run NEPs in parallel, the frame-
work is not limited to this kind of application.

Methodology

In order to test the performance of clusters of computers when they are run in
parallel NEPs we have designed a family of graphs to solve several instances
of the Hamiltonian Path problem (HPP). [16] shows how the HPP can be
solved by means of NEPs with a lineal (temporal) performance. Although our
goal is not to reach this bound, this proof will give useful hints on how to
improve the performance of the simulation of NEPs on non parallel hardware
platforms.

2.1 Hamiltonian path problem solution by NEPs

This well-known NP-complete problem searches an undirected graph for a
Hamiltonian path, that is, one that visits each vertex exactly once.

This problem can be solved by means of the following NEP:

• The NEP graph is very similar to the one studied: an extra node is added
to ease the de�nition of the stopping condition.

• Let n be the number of nodes of the graph under consideration (see �gure
7).

TRIANGLE 7 • March 2012

40 A. Ortega de la Puente et al.

• Let {vi, 0 ≤ i ≤ n} be the set of processors of the NEP.
• The set {i, 0, 1, ..., n} is used as the alphabet. Symbol i is the initial content

of the initial node (v0). Each node (except the �nal one) adds its number
to the string received from the network.

• Input and output �lters are de�ned to allow the communication of all the
strings that have not yet visited the node.

• The input �lter of the �nal node excludes any string which is not a solution.
• It is easy to imagine a regular expression for the set of solutions (those

words with the proper length, the proper initial and �nal node and where
each node appears only once). The NEP basic model allows �lters to be
de�ned by means of regular expressions.

2.2 Family of graphs

Our goal is to check the cluster performance when solving the HPP for graphs
of increasing di�culty. We have used a family of graphs with n nodes. 0 is the
label of the initial node. Each node is connected with the four closest nodes.
That is, node i is connected with the set of nodes {i − 2, i − 1, i + 1, i + 2}
There is a special case. When de�ning the NEP to solve this instance, we
have to add the output node. The highest label is given to this node (n+ 1).
The output node is only connected with the �nal node of the graph under
consideration (n). The other connections of the output node are removed.

Fig. 7. Example of a NEP with n=6 and the extra one to collect the strings

Figure 7 shows this circumstance and the graph for n = 6.
These pages compare two approaches that our research group has used to

run NEPs on parallel platforms:

TRIANGLE 7 • March 2012

Developing Tools for NEPs 41

1. A multithreaded simulator for desktop computers (possibly parallel)
2. A massively parallel architecture (clusters of computers)

2.3 Multithread platform architecture

As we have previously explained, jNEP is a multithreaded Java simulator for
NEPs. That is, it could actually be run in parallel if the underlying system is
able to distribute the threads among di�erent processors. We have performed a
set of experiments in a multicore desktop computer with these characteristics.

The standard Java Virtual Machine is not designed to be run on clusters
of computers. To run multithread Java applications on clusters a speci�c ex-
tension must be used. Most of these extensions migrate the threads on the
clusters by means of RMI (Remote Method Invocation). In this study we have
used JavaParty [3]. This is why it is di�cult to compare jNEP with other fre-
quently used libraries to handle parallel code on clusters. We just summarize
the results of jNEP and compare them with other implementations.

2.4 Parallel platform architecture

We can consider this platform to be a framework that works as both, master
and slave; it can also execute sequential code in a cluster, taking advantage of
the workload and dynamic domain decomposition concepts, without rewrit-
ing the code (NEPs in our case) to adapt it to this parallel platform. This
framework is implemented in ANSI C++, uses the MPI-II ([5]) extensions
and follows the master-slave model.

Any problem that will be solved on the cluster, can be modeled as a
weighted and directed graph Ga, denoted by Ga(T,D, ω); T denotes a set of
vertices of the graph that represents the tasks to be done; D represents a
�nite set of edges of the graph; each vertex has a computation weight ω that
represents the number of computations required by the task to accomplish
one step of the algorithm. The existence of an edge between vertex A and
vertex B means that, to calculate the value of A at a certain instant in the
execution, we need the value of B at the previous step of the algorithm. We
say that A has a data dependency on B.

The framework (see �gure 8) can be divided into 4 modules:

• Cluster controller: the module that handles the cluster and controls the
communication between the master process and the plugins speci�ed by
the users. These plugins con�gure the behaviour of the framework to adapt
it to the algorithm it will run on the cluster.

TRIANGLE 7 • March 2012

42 A. Ortega de la Puente et al.

• Master-side procedures: the master creates the data structures, balances
the workload ω among the di�erent nodes of the cluster (loadbalancing
policy), takes care of the domain decomposition (to break the problem
into independent domains) and reassembles the results sent by the slave
processes. Communication with the user is always through this process.

• Slave-side procedures: slaves execute the sequential algorithm over the re-
ceived domain as if they were not part of the cluster. Once the calculations
have been made, they send the results back to the master process.

• Communication layer: implemented as a layer over Message Passing Inter-
face (MPI), API speci�cation that allows processes to communicate with
another one or with any group of processes by sending and receiving mes-
sages.

Fig. 8. Framework architecture implemented to run sequential code as parallel in
a cluster of computers.

Both master and slave processes work with graph stuctures so, the master
translates the information given by the user into a graph and descomposes it
into several domains that are sent to the slaves. The slaves receive the domains
and translate them again into graphs. To transfer the information through the
net, both processes must be able to serialize and deserialize the information
of the graph, that is, binarize the user de�ned data structure that allocates
the data to each vertex of the graph.

The kernel method allows the user to execute its speci�c algorithm on the
slave process. Users do not have to worry about the communication and syn-

TRIANGLE 7 • March 2012

Developing Tools for NEPs 43

chronization with the master process and they know neither how many slaves
have joined the simulation/resolution nor which loadbalancing and partition
algorithm is used.

The behaviour of the cluster (cluster con�guration and loadbalancing poli-
cies) and of the problem (problem con�guration and domain decomposition
method) are modelled by means of plugins. The system provides several plu-
gins that can be replaced by the users with their own code.

Results

We have performed two sets of experiments: on a conventional multicore ar-
chitecture and on a massively parallel platform.

For the �rst set of experiments we used a multithreaded multicore plat-
form (a desktop computer running a Linux kernel 2.6.26, with 16Gb of memory
and 4 ? 6 cores Intel(R) Xeon(R) CPU E7450 2.40GHz) running a Java mul-
tithreaded simulator for NEPs, developed by our research group. The jNEP
platform succeeded in solving graphs up to 8 nodes whereas the biggest graph
solved by our parallel framework had 24 nodes.

The results for the second set, were obtained by executing a sequential
NEP kernel in a parallel environment ([1] HLRB II, 9728 cores, 4Gb memory
per core) using the framework described. The simulation has been executed
with NEPs of di�erent numbers of nodes, from n = 16 (more or less 4x103

valid strings) to n = 24 (5x105 strings). From n = 28 and higher values, the
assigned resources reached the limit. To observe the framework behaviour the
number of slaves was changed, from 20 (equivalent to a single processor) to 24.
It is not possible to have 25 or more slaves, because this exceeds the number
of vertexes of the NEP. This is the reason for our limited testbench.

Time(s) Processes Mem.(Mb) Processes
n 2 3 5 9 17 n 2 3 5 9 17
NEP12 5 4 4 5 - NEP12 - - - - -
NEP16 6 6 5 4 6 NEP16 4 9.8 5.2 3.9 11
NEP20 17 14 13 9 9 NEP20 106-7 135.5 19.3 9.8 21.3
NEP24 103 90 83 79 74 NEP24 842.9 930.4 1445.5 200.1 153.6

Table 1. Execution time vs. number of processes and memory consumption vs.
number of processes.

TRIANGLE 7 • March 2012

44 A. Ortega de la Puente et al.

Fig. 9. a) Execution time running a sequential NEP algorithm in parallel using
the framework described. The performance of the application was better with the
NEP algorithm than with the single slave execution. b) Semilog plot for the memory
consumption running the NEP algorithm under the framework.

From the point of view of the execution time, the performance of the
algorithm is no worse when the framework (see table 1 and �g. 9). It can
also be observed that the execution time decreases until a certain value, that
depends on the number of processors and on the dimension of the problem, has
been reached. Once this point has been exceeded, if the number of processors
is still increasing, the execution time will start growing again, just because the
master spends more time on the management of the communication, processes
and domains than the slaves on the real calculus of the problem.

From the point of view of the memory consumption, behaviour is simi-
lar(see table 1); there is an optimal value of memory that depends on the
number of processes and on the number of nodes of the NEP. Once this point
has been reached, if the number of slaves is increased, the amount of memory
needed to solve the HPP will also increase. As long as more slaves join the
simulation, the number of domains will grow lineally and therefore, to ful�ll
the data dependencies between domains, the information will be more and
more replicated among the cluster (i.e more memory to allocate the network
bu�ers). On the other hand, increasing the number of domains involves in-
creasing of the number of frames sent by the slaves to the master process. In
summary, increasing the number of slaves leads to increasing the number of
dataframes and the size of each one.

TRIANGLE 7 • March 2012

Developing Tools for NEPs 45

2.5 Programming languages for NEPs

NEPvl

Introduction to Domain Speci�c Visual Languages and AToM3

Visual Languages play a central role in many computer science activities. For
example, in software engineering, diagrams are widely used in most phases
of software construction. They provide intuitive and powerful domain-speci�c
constructs and make it possible to abstract from low-level, accidental details,
enabling reasoning and improving understandability and maintenance. The
term Domain Speci�c Visual Language (DSVL) [24] refers to languages that
are especially oriented to a certain domain, limited but extremely e�cient for
the task to be performed. DSVLs are extensively used in Model Driven Devel-
opment, one of the current approaches to Software Engineering. In this way,
engineers no longer have to resort to low-level languages and programming,
but are able to synthesize code for the �nal application from high-level, visual
models. This increases productivity, and quality, and means that it can be
used by non-programmers.

Designing a DSVL involves de�ning its concepts and the relations between
them. This is called the abstract syntax, and is usually de�ned through a meta-
model. Meta-models are normally described through UML class diagrams.
Hence, the language spawned by the meta-model is the (possibly in�nite)
set of models conformant to it. In addition, a DSVL needs to be provided
with a concrete syntax. That is, a visualization of the concepts de�ned in the
meta-model. In the simplest case, the concrete syntax just assigns icons to
meta-model classes and arrows to associations. The description of the abstract
and concrete syntax is enough to generate a graphical modelling environment
for the DSVL. Many tools are available that automate this task, and in this
chapter we describe AToM3 [15].

In many scenarios, the description of the DSVL syntax is not enough:
manipulations need to be de�ned that �breathe life� into such models. For
example, the models can be animated or simulated, �macros� de�ned for com-
plex editing commands, or code generators built for further processing by
other tools. As models and meta-models can be described as attributed, typed
graphs, they can be visually manipulated by means of graph transformation
techniques [18]. This is a declarative, visual and formal approach to manipu-
late graphs. Its formal basis, developed in the last 30 years, makes it possible
to demonstrate properties of the transformations. A graph grammar is made

TRIANGLE 7 • March 2012

46 A. Ortega de la Puente et al.

of a set of rules and a starting graph. Graph grammar rules consist of a left
and a right hand side (LHS and RHS), each with graphs. When a rule is
applied to a graph (called host graph), an occurrence of the LHS should be
found in the graph, and then it can be replaced by the RHS.

In this chapter, we describe our e�orts to apply the aforementioned con-
cepts to build a DSVL to design Networks of Evolving Processors (NEPs).
For this purpose, we built a meta-model in the AToM3 tool and a graphical
modelling environment was automatically generated. Then, this environment
was enriched by providing rules to automate complex editing commands, and
a code generator to synthesize code for jNEPs, in order to perform simula-
tions. The approach has the advantage that the �nal user does not need to be
pro�cient in the jNEP textual input language, but he can model and simulate
NEPs visually.

NEPs visual language

Designer's viewpoint: how to de�ne the metamodel for NEPs and, thus, the

visual language The system consists of four parts. Two of them are core com-
ponents and the rest can be considered as tools for increasing the usability of
the �nal system.

• Core components

� The meta-model, which provides the designer with the elements
needed to build models.

� The code generator, a program that automatically writes the code
used as input by the simulator.

• Tools that increase usability

� The constraints included in the meta-model that ensure the syntactic
(and possibly semantic) correctness of the models de�ned.

� Graph grammars. Some graph transformation rules can be speci-
�ed to automatically modify the models (which are actually AToM3

graphs) because several typical transformations might become dull and
time-consuming if done manually.

The �nal programmer just draws his NEP on a canvas of the main win-
dow by means of buttons and other typical GUI components. Some special
buttons trigger the checker and the code generator, they, �nally, they start
the execution of the simulator that uses the generated �le. The user gets the
result of the simulation without taking into account all the low level details
of the complete process.

TRIANGLE 7 • March 2012

Developing Tools for NEPs 47

In the following paragraphs, the di�erent components of the system are
described with more detail.

Fig. 10 shows theUML class diagram of the meta-model that represents
the NEP domain for the simulator. We can see several classes for the usual el-
ements of a NEP: alphabet, processors, �lters, rules, and stopping conditions.
It also shows these subclasses:

Fig. 10. The meta-model UML class diagram

• Di�erent rules (found in the literature):
� inserting rules,
� deleting rules,
� substituting rules (replace a symbol),
� deriving rules (change a symbol by a string),
� rules that match regular expressions (splicing rules)

• Di�erent stopping conditions (the name used in the diagram is highlighted)
� consecutive_con�g, the system stops when no change is detected;
� maximum_steps, it stops after a given number of steps;
� words_disappear, when some speci�c words disappear;
� non_empty_node, when something enters a speci�c node by the �rst

time .

TRIANGLE 7 • March 2012

48 A. Ortega de la Puente et al.

The code generator is a set of Python routines responsible for creating
the XML �le that will be the input for the simulator (jNEP in this case). The
algorithm of the code generator follows two steps:

• Correctness test. The code generator checks the following properties: there
must be exactly one alphabet and one stopping condition; all the symbols
in the model have to be contained in the alphabet, and there is a maximum
of zero or one connection between each pair of processors.

• Code generation. The NEP being programmed is internally represented
as a graph between instances of the classes de�ned in the metamodel.
The edges of this graph follow the relationship of the metamodel. After
checking the correctness of the model, and only if there is no mistake,
the code generator goes across the graph of the model translating each
instance and each relation into the corresponding XML code.

Graph grammars We have identi�ed two speci�c tasks that could be-
come boring and time-consuming if a NEP is designed manually. We have
decided to automatically implement these tasks by means of graph grammars:

• To create the input and ouput �lters of each processor.
• To create a complete graph among the processors.

In both cases, the �nal programmer will only push the button associated with
the corresponding action.

In AToM3, each component in the UML diagram of the metamodel is
enriched with the graphical representation by means of which the �nal pro-
grammer will draw this component on the canvas of the �nal system. These
graphical representations actually describe the (graphic) basic syntax of the
visual language. We have used for NEPvl the following representations for the
main components:

• Big rectangles, for alphabets.
• Small rectangles, for stopping conditions.
• Triangles, for �lters.
• Ovals, for rules.
• Those attributes whose values are strings of characters are represented by

means of texts.

Figure 11 shows some examples of these graphical representations by
means of part of a NEP that contains the alphabet and two processors with
their �lters; each processor has a rule (P1 has a deleting rule and P2 has an
inserting one) and they form a complete graph.

TRIANGLE 7 • March 2012

Developing Tools for NEPs 49

Fig. 11. Example of graphic representation of a NEP

Programmer's viewpoint: how to graphically design NEPs It is very simple to
design models graphically, because the programmer only has to use di�erent
GUI elements (buttons, combo-boxes, pop-up menus, etc.) to draw the NEP
on the canvas of the main window of the system.

Figure 11 also shows the main buttons of NEPvl. They are in the left
margin of the window

NEPsLingua

In this chapter we introduce NEPs-Lingua, the �rst textual programming
language for NEPs. It is a �rst step to extend the P-Lingua approach to
other bio-inspired models of computation. Our goal is to provide researchers
with homogeneous family of languages for programming natural computers.
Programmers who are familiar with a model will not have to learn a very
di�erent syntax if they try to use other models. This is why NEPs-Lingua is
designed to be similar to P-Lingua. NEps-Lingua has two main goals that will
also be described in detail below:

1. Like P-Lingua, it aims to provide researchers with a syntax as close as
possible to the one used to describe NEPs in the literature.

TRIANGLE 7 • March 2012

50 A. Ortega de la Puente et al.

2. It tries to ease some usually boring, mechanical and time-consuming tasks
needed to describe NEPs with the input formalisms of the available tools.

The NEPs-Lingua syntax

In the following paragraphs we describe, mainly by examples, the syntax of
NEPs-Lingua. A full ANTLR 3 description of the complete grammar may
be ordered from the authors. The main components of a NEPs-Lingua pro-
gram are atomic data, comments, nodes, the alphabet, the initial contents of
the nodes, evolutionary rules, �lters, the connections of the NEP graph and
stopping conditions.

Atoms There are two classes of atomic data: alphanumeric strings of symbols
(they have to start with an alphabetic character); and integer arithmetic ex-
pressions, with the usual mathematical notation, which include the operators
in the set {∧(power),+,−, ∗, /}

Comments The typical C++ comments are also available in NEPs-Lingua.

• Line comments For example // Comment.
The comment includes every symbol until the end of the line.

• Multi line comments For example

/* ... Comment

... */

Where the comment includes everything (even the end of line markers)
between the symbols �/*� and �*/�.

Alphabet It is the alphabet of the NEP, a set of strings of symbols. The ex-
pression @A={X,S,a,b,o,O} de�nes an alphabet that contains the elements
�X�, �S�, �a�, �b�, �O�, and �o�.

Nodes This is the most complex type of NEPs-Lingua data. There are two
classes of nodes: with and without indexes. There are two kinds of indexes:
numeric (de�ned by a range) and symbolic (de�ned by a set of strings of
symbols). The syntax of indexes with numeric ranges is borrowed from P-
Lingua.

3 ANTLR is a Java tool for designing top-down parsers and language pro-
cessors, developed by Terence Par. Further information can be found at
http://www.antlr.org/

TRIANGLE 7 • March 2012

Developing Tools for NEPs 51

• Non indexed nodes The expression {initial, final} de�nes two nodes
without indexes with the names initial and �nal.

• Indexed nodes The example de�nes a family of nodes with two indexes.
One of them (i) takes its values from the interval [0, 10]. The values of the
other (j) are taken from the set {o, a, b}.

{m{i,j}: 0<=i<=10, j->{o,a,b}}

The explicit set of the 33 de�ned nodes is {m0,a,m0,b,m0,c, . . .m10,a,m10,b,m10,c}.

Di�erent kinds of nodes can be mixed by means of the union operator. The
next example de�nes a set of nodes that contains the two previous examples.

@N={initial, final}+{m{i,j}: 0<=i<=10, j->{o,a,b}}

Initial content It describes the set of strings that a given node initially con-
tains. Notice that the node is written as a parameter of the content directive
@c. The expression @c{n{X}} = {X, S} sets the initial content of the node
nX to {X,S}

Rules Each type of rule has a di�erent notation. Notice that, as in P-Lingua,
the symbol # stands for the empty string and the string --> separates the left
and right sides of the rule. The sentences # -->a, a --># and S-->aSb are
examples of insertion, deletion, and substitution (or deriving) rules, respec-
tively.

All the rules for a given node are given together in the same sentence. The
sentence @r{n{S}} = {S-->aSb, S-->ab} assigns two deriving rules to the
node nS .

Filters Each processor needs an input and an output �lter. Several papers
mentioned above de�ne three components in the �lters: their type and the
permitting and forbidding contexts. We have grouped the di�erent �lters of
the literature into six types (depending on how they are applied): types from
1 to 4 and �lters de�ned by means of regular expressions or by means of
sets of strings. Both contexts are just sets of symbols described by means
of regular patterns or explicit sets of strings. The following examples de�ne
several �lters:

@pif{n{S}}={1, {abc, oo}}

@fof{initial}={@regular_pattern, (((a[]b)+)][(c*))][# }

@pif{n{2,a}}={@set, {a,ab,aabb}}

TRIANGLE 7 • March 2012

52 A. Ortega de la Puente et al.

where @pif and @fof stand, respectively, for permitting input and forbidding
ouput �lter (the same notation is used for forbidding input and permitting
output �lters). In regular expressions [],][, +, *, # represent intersec-
tion, union, + and *, and the empty string, respectively.

Connections This element makes it possible to get a compact representation
of NEPs. There are two ways of de�ning connections: the directive @complete,
which stands for a complete graph; and an explicit set of connections de�ned
by means of pairs of nodes. The following examples show both options:

@C=@complete

@C={ (final,n{X}), (n{X},m{9,a}) }

Stopping conditions The stopping conditions are written in a set after the
directive @S. Each kind of condition is represented by its name and its required
parameters. Both names and parameters are easy to identify in the following
example:

@S={@no_change, @max_steps = 3+4,

@non_emtpy_node={n{O}, n{X}} }

where @no_change stands for two consecutive equal con�gurations;
@max_steps requires an expression to de�ne the number of steps (the NEP
stops after taking the given number of steps); and @non_empty_node includes
a set of nodes whose contents are initially empty (the NEP stops when one of
these nodes receives some string).

Examples

In this section we will show some complete NEPs-Lingua programs. Our main
goal is to highlight the two main characteristics of NEPs-Lingua: reducing
the size and keeping close to the formal notation. For this purpose we will
compare several NEPs-Lingua programs with NEPs examples taken from the
literature. For reasons of space, we refer to the original papers for the detailed
de�nition of the examples.

Reducing the size of the representations We shall �rst consider a very simple
NEP. It has two nodes that delete and insert the symbol B. The initial word
AB travels from one node to the other. The �rst node removes the symbol B
from the string before leaving it in the net. The other node receives string A
and adds symbol B again. The resulting string comes back to the initial node
and the same process takes place again.

The XML �le for jNEP is shown below:

TRIANGLE 7 • March 2012

Developing Tools for NEPs 53

<NEP nodes="2">

<ALPHABET symbols="A_B"/>

<GRAPH> <EDGE vertex1="0" vertex2="1"/> </GRAPH>

<EVOLUTIONARY_PROCESSORS>

<NODE initCond="A_B">

<EVOLUTIONARY_RULES>

<RULE ruleType="deletion" actionType="RIGHT"

symbol="B"

newSymbol=""/></EVOLUTIONARY_RULES>

<FILTERS> <INPUT type="2"

permittingContext="A_B"

forbiddingContext=""/>

<OUTPUT type="2"

permittingContext="A_B"

forbiddingContext=""/>

</FILTERS>

</NODE>

<NODE initCond="">

<EVOLUTIONARY_RULES>

<RULE ruleType="insertion" actionType="RIGHT"

symbol="B"

newSymbol=""/> </EVOLUTIONARY_RULES>

<FILTERS> <INPUT type="2"

permittingContext="A_B"

forbiddingContext=""/>

<OUTPUT type="2"

permittingContext="A_B"

forbiddingContext=""/>

</FILTERS>

</NODE>

</EVOLUTIONARY_PROCESSORS>

<STOPPING_CONDITION>

<CONDITION type="MaximumStepsStoppingCondition"

maximum="8"/>

</STOPPING_CONDITION>

</NEP>

(XML con�guration �le for a simple NEP with just two processors that send the
words A and B back and forth)

TRIANGLE 7 • March 2012

54 A. Ortega de la Puente et al.

It is easy to see that the NEPVl program shown in �gure 11 corresponds
to this same NEP.

We will show below the NEPs-Lingua program for the previous example.
With this simple case we can see that the NEPs-Lingua program is more
compact than the other two representations described.

@A={A,B}

@N={ n{i}: 0 <= i <= 1}

@c{n{0}}={A,B}

@r{n{0}}={B-->#}

@r{n{1}}={#-->B}

@S={@max_steps = 8 }

@C={@complete}

The reduction in size increases as the complexity of the NEP increases.
NEPs usually have complete graphs.

Fig. 12. jNEPview window showing the complete graph of a NEP with 9 processors.

TRIANGLE 7 • March 2012

Developing Tools for NEPs 55

Figure 12 shows the jNEPview window for a NEP with a complete graph
with 9 nodes.

The XML con�guration �le for this NEP is forced to explicitly contain all
the nodes and connections while the NEPs-Lingua source has to contain just
the following two sentences:

@N={ n{i}: 0 <= i <= 8}

@C=@complete

[6] shows a NEP that can solve a small instance of the well known graph
coloring problem with three di�erent colours. It needs a complete graph with
many more nodes than in the previous example.

The jNEPview window for this NEP is not shown here because it is di�cult
to handle: it looks like a ball of yarn. Once again the NEPs-Lingua program
needs just the following two sentences:

@N={ n{i}: 0 <= i <= 50 } // Definition of 51 nodes

@C=@complete

Keeping NEPs-Lingua as close as possible to the formal notation used in the

literature. The interested reader can easily see in the references for the last
two examples (3-SAT and 3 coloring) that NEPs-Lingua syntax is mainly
inspired by the formal notation used in the literature to describe NEPs.

[23] contains another example: a NEP associated with the context free
grammar for axiom X with the derivation rules {X → SO, S → aSb, S →
ab,O → o,O → oO,O → Oo}

It is easy to see that the following NEPs-Lingua program for this NEP is
quite similar to its formal de�nition.

@A={X,S,a,b,o,O} // Alphabet

@N= {final}+ {n{symbol}:symbol->{X,S,O}} /* Nodes associated

with non terminal symbols */

@c{n{X}}={X} // Initial content of the axiom node

@r{n{X}}= {X-->SO} // Deriving rules for the axiom

@r{n{S}}= {S-->aSb, S-->ab}

@r{n{O}}= {O-->o, O-->oO, O-->Oo}

@C=@complete // The graph is complete

@S={ @non_emtpy_node={final} } // Stopping conditions

TRIANGLE 7 • March 2012

56 A. Ortega de la Puente et al.

NEPs Lingua semantics

The semantic constraints that every NEPs-Lingua program has to satisfy are
outlined below:

• It has to contain exactly one alphabet and one set of node declarations.
• It needs at most one of the following elements:

� Connection declaration set. By default, the graph is considered com-
plete.

� Set of stopping conditions. @no_change is assumed by default.
• Filters, rules and initial contents are optional.
• Nodes have to be de�ned before they are used.
• Each symbol representing rules, �lters and initial contents has to be in-

cluded in the alphabet.

NEPs-Lingua compilers should ensure these conditions. The last one is
usually controlled by means of a symbol table that is �lled while processing
the declaration sentences and is consulted by the sentences that use nodes
and symbols.

We have used di�erent Hashtable Java objects to check these constraints.
The following example shows some semantic mistakes:

@A={A}

@N={ n{i}: 0 <= j <= 1}

@c{n{0}}={A,B}

@r{n{0}}={B-->#}

@r{n{2}}={#-->B}

@S={@max_steps = 8 }

@C={@complete}

• The third, fourth and �fth lines contain the symbol B, which is not in the
alphabet.

• The second line de�nes the index j, while the declared one is i
• The �fth line de�nes the rules for node n2, but the value for index (2) is

invalid

TRIANGLE 7 • March 2012

Developing Tools for NEPs 57

References

1. Hochleistungsrechenszentrum bayern, http://www.lrz.de.
2. http://jgrapht.sourceforge.net/.
3. http://wwwipd.ira.uka.de/javaparty/.
4. http://www.jgraph.com/jgraph.html.
5. Message passing interface forum, mpi: A message-passing interface standard,

university of tennessee, ut-cs-94-230, 1994.
6. E. Alfonseca. An Approach for Automatic Generation of on-line Information

Systems based on the Integration of Natural Language Processing and Adaptive

Hypermedia techniques. PhD thesis, Computer Science Department, UAM, 2003.
7. G. Bel Enguix, M. D. Jiménez-López, R. Merca³, and A. Perekrestenko. Net-

works of evolutionary processors as natural language parsers. In Proceedings

ICAART 2009, 2009.
8. T. Brants. Tnt�a statistical part-of-speech tagger. In Proceedings of the 6th

Conference on Applied Natural Language Processing, 2000.
9. J. Castellanos, P. Leupold, and V. Mitrana. On the size complexity of hybrid

networks of evolutionary processors. Theoretical Computer Science, 330(2):205�
220, 2005.

10. J. Castellanos, C. Martín-Vide, V. Mitrana, and J. M. Sempere. Networks of
evolutionary processors. Acta Informatica, 39(6-7):517�529, 2003.

11. Juan Castellanos, Carlos Martín-Vide, Victor Mitrana, and Jose M. Sempere.
Solving np-complete problems with networks of evolutionary processors. In
Connectionist Models of Neurons, Learning Processes and Arti�cial Intelligence

: 6th International Work-Conference on Arti�cial and Natural Neural Networks,

IWANN 2001 Granada, Spain, June 13-15, 2001, Proceedings, Part I, pages
621�, 2001.

12. A. Choudhary and K. Krithivasan. Network of evolutionary processors with
splicing rules. Mechanisms, Symbols and Models Underlying Cognition, Pt 1,

Proceedings, 3561:290�299, 2005.
13. E. Csuhaj-Varjú and V. Mitrana. Evolutionary systems: a language generating

device inspired by evolving communities of cells. Acta Informatica, 36(11):913�
926, May 2000.

14. E. Csuhaj-Varjú and A. Salomaa. Lecture Notes on Computer Science 1218,
chapter Networks of parallel language processors. 1997.

15. Juan de Lara and Hans Vangheluwe. AToM3: A tool for multi-formalism and
meta-modelling. In FASE'02, pages 174�188. Springer-Verlag, 2002.

16. Rojas-J.M. Núñez R. Castañeda C. del Rosal, E. and A. Ortega. On the solution
of np-complete problems by means of jnep run on computers. In Proceedings of

International Conference on Agents and Arti�cial Intelligence (ICAART 2009),
pages 605�612, 2009.

TRIANGLE 7 • March 2012

58 A. Ortega de la Puente et al.

17. J. Earley. An e�cient context-free parsing algorithm. Communications of the

ACM, 13(2):94�102, 1970.
18. Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Funda-

mentals of algebraic graph transformation. Springer-Verlag, 2006.
19. L. Fernández, V. J. Martínez, and L. F. Mingo. A hardware circuit for selecting

active rules in transition p systems. In Seventh International Symposium on

Symbolic and Numeric Algorithms for Scienti�c Computing (SYNASC 2005),
2005.

20. Carlos Martin-Vide Florin Manea and Victor Mitrana. Accepting networks of
splicing processors: Complexity results. Theoretical Computer Science, 371(1-
2):72�82, 2007.

21. M. García-Quismondo, R. Gutiérrez-Escudero, M. A. Martínez del Amor,
E. Orejuela, and I. Pérez-Hurtado. P-lingua 2.0: A software framework for
cell�like p systems. International Journal of Computers, Communications and

Control, IV(3):234�243, 2009.
22. C. Gomez, F. Javier, D. Valle Agudo, J. Rivero Espinosa, and D. Cuadra Fer-

nandez. Procesamiento del lenguaje Natural, chapter Methodological approach
for pragmatic annotation� pages 209�216. 2008.

23. Z. S. Harris. String Analysis of Sentence Structure. Mouton, The Hague, 1962.
24. Steven Kelly and Juha-Pekka Tolvanen. Domain-Speci�c Modeling: Enabling

Full Code Generation. Wiley-IEEE Computer Society, 2008.
25. A. Lastovetsky and R. Reddy. Data partitioning with a realistic performance

model of networks of heterogeneous computers. Scienti�c Programming, 2:93�
112, 2005.

26. E. Santos Menendez R. Gonzalo M. A. Diaz, N. Gomez Blas and F. Gisbert. Net-
works of evolutionary processors (nep) as decision support systems. In Fifth In-

ternational Conference. Information Research and Applications ETHIA, 2007,
volume 1, pages 192�203, 2007.

27. F. Manea. Using ahneps in the recognition of context-free languages. In In

Proceedings of the Workshop on Symbolic Networks ECAI, 2004.
28. Florin Manea and Victor Mitrana. All np-problems can be solved in polynomial

time by accepting hybrid networks of evolutionary processors of constant size.
Information Processing Letters, 103(3):112�118, July 2007.

29. M. Margenstern, V. Mitrana, and M. J. Perez-Jimenez. Accepting hybrid net-
works of evolutionary processors. DNA Computing, 3384:235�246, 2005.

30. C. Martín-Vide and V. Mitrana. Solving 3cnf-sat and hpp in linear time using
www. Machines, Computations, and Universality, 3354:269�280, 2005.

31. C. Martín-Vide, V. Mitrana, M. J. Perez-Jimenez, and F. Sancho-Caparrini.
Hybrid networks of evolutionary processors. Genetic and Evolutionary Compu-

tation. GECCO 2003, PT I, Proceedings, 2723:401�412, 2003.
32. Andrei Mikheev. Periods, capitalized words, etc. Computational Linguistics,

28(3):289�318, 2002.

TRIANGLE 7 • March 2012

Developing Tools for NEPs 59

33. R. Mitkov. The Oxford Handbook of Computational Linguistics. Oxford Uni-
versity Press, 2003.

34. Alfonso Ortega, Emilio del Rosal, Diana Pérez, Robert Mercas, Alexander
Perekrestenko, and Manuel Alfonseca. PNEPs, NEPs for Context Free Pars-

ing: Application to Natural Language Processing, chapter Bio-Inspired Systems:
Computational and Ambient Intelligence, pages 472�479. LNCS. 2009.

35. S. Seifert and I. Fischer. Parsing String Generating Hypergraph Grammars.
Springer, 2004.

36. M. A. Smith and Y. Bar-Yam. Cellular automaton simulation of pulsed �eld
gel electrophoresis. Electrophoresis, 14(1):1522�2683, 1993.

37. TALP. http://www.lsi.upc.edu/ nlp/freeling/, 2009.
38. T. To�oli and N. Margolus. Cellular Automata Machines. MIT Press, London,

1987.
39. M. Volk. Introduction to Natural Language Processing,. Course CMSC 723 /

LING 645 in the Stockholm University, Sweden., 2004.
40. W. Weaver. Translation, Machine Translation of Languages: Fourteen Essays.

1955.
41. A. Zollmann and A. Venugopal. Syntax augmented machine translation via

chart parsing. In Proccedings of the Workshop on Statistic Machine Translation.
HLT/NAACL, New York, June. 2006.

TRIANGLE 7 • March 2012

