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64 A. Ortega de la Puente et al.

1 Solving NP-problems with Lineally Bounded
Resources

In the following pages we will use NEPS to solve several small instances of
well known NP problems. We will show computational implementations of
NEPs.

In previous sections we have shown some results that prove the computa-
tional power of NEPs and the possibility of lineally bounding the temporal
performance of their algorithms to solve NP problems. Their excellent per-
formance depends on the following facts: NEPs are inherently parallel, and it
is assumed that each of their processors has the spatial resources needed to
store the results of applying all the possible rules to its contents. All these
results are assumed to be generated at the same time.

NEPs have not been implemented in real hardware. So, in practice, NEPs
have to be simulated on the architecture of one of the available computers.
In practice it is very di�cult to achieve lineal termporal performance because
all these platforms need to explicitly handle all the possible results of all the
processors. If all of them are simultaneously stored to be processed in paral-
lel, the likely exponential temporal complexity turns into exponential spatial
complexity. Nevertheless, it seems possible that the overall performance can
be improved if we choose the proper platform. It is a trade-o� between spatial
and temporal needs.

Elsewere in this volume, we have described di�erent approaches to the
simulation of NEPs in di�erent platforms (including their e�cient access to
clusters of computers).

In this chapter we will not take into account the �nal platform but only
will show how NP-problems can be computationally solved with NEPs and
be simulated with jNEP. It is clear that we can improve the likely exponen-
tial temporal performance if we choose the proper �nal platform to run our
programs.

1.1 Solving the SAT problem with jNEP

Reference [12] describes a NEP with splicing rules (ANSP) which solves the
boolean satis�ability problem (SAT) with linear resources, in terms of the
complexity classes also present in [12].

We have previously explained in this same volume that ANSP stands for
Accepting Networks of Splicing Processors. In short, an ANSP is a NEP in
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NEPs Applied to Solve Speci�c Problems 65

which the transformation rules of its nodes are splicing rules. The transfor-
mation performed by those rules is very similar to the genetic crossover.
To be more precise, a splicing rule σ is a quadruple of words written as
σ = [(x, y); (u, v)]. Given this splicing rule σ and two words (w,z), the action
of σ on (w,z) is de�ned as follows:

σ(w, z) = {t | w = αxyβ, z = γuvδ for any words α, β, γ, δ and t = αxvδ or
t = γuyβ}

We can use jNEP to actually build and run the ANSP that solves the
boolean satis�ability problem (SAT). We will see how the features of NEPs
and the splicing rules can be used to tackle this problem. The following is a
broad summary of the con�guration �le for such an ANSP, applied to the solu-
tion of the SAT problem for three variables. The entire �le can be downloaded
from jnep.e-delrosal.net.

<NEP nodes="9">

<ALPHABET symbols="A_B_C_!A_!B_!C_AND_OR_(_)_[A=1]_[B=1]_[C=1]_[A=0]_[B=0]_[C=0]_#_

UP_{_}_1"/>

<!-- WE IGNORE THE GRAPH TAG TO SAVE SPACE. THIS NEP HAVE A COMPLETE GRAPH -->

<STOPPING_CONDITION>

<CONDITION type="NonEmptyNodeStoppingCondition" nodeID="1"/>

</STOPPING_CONDITION>

<EVOLUTIONARY_PROCESSORS>

<!-- INPUT NODE -->

<NODE initCond="{_(_A_)_AND_(_B_OR_C_)_}"

auxiliaryWords="{_[A=1]_# {_[A=0]_# {_[B=1]_# {_[B=0]_# {_[C=1]_# {_[C=0]_#">

<EVOLUTIONARY_RULES>

<RULE ruleType="splicing" wordX="{" wordY="(" wordU="{_[A=1]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="(" wordU="{_[A=0]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[A=0]" wordU="{_[B=0]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[A=0]" wordU="{_[B=1]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[A=1]" wordU="{_[B=0]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[A=1]" wordU="{_[B=1]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[B=0]" wordU="{_[C=0]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[B=0]" wordU="{_[C=1]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[B=1]" wordU="{_[C=0]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[B=1]" wordU="{_[C=1]" wordV="#"/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="4"

permittingContext=""

forbiddingContext="[A=1]_[B=1]_[C=1]_[A=0]_[B=0]_[C=0]_#_UP_{_}_1"/>

<OUTPUT type="4" permittingContext="[C=1]_[C=0]" forbiddingContext=""/>

</FILTERS>

</NODE>

<!-- OUTPUT NODE -->

<NODE initCond="">

<EVOLUTIONARY_RULES>

</EVOLUTIONARY_RULES>

<FILTERS>
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66 A. Ortega de la Puente et al.

<INPUT type="1" permittingContext=""

forbiddingContext="A_B_C_!A_!B_!C_AND_OR_(_)"/>

<OUTPUT type="1" permittingContext=""

forbiddingContext="[A=1]_[B=1]_[C=1]_[A=0]_[B=0]_[C=0]_#_UP_{_}_1"/>

</FILTERS>

</NODE>

<!-- COMP NODE -->

<NODE initCond="" auxiliaryWords="#_[A=0]_} #_[A=1]_} #_} #_1_)_}">

<EVOLUTIONARY_RULES>

<RULE ruleType="splicing" wordX="" wordY="A_OR_1_)_}" wordU="#"

wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="!A_OR_1_)_}" wordU="#"

wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="B_OR_1_)_}" wordU="#"

wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="!B_OR_1_)_}" wordU="#"

wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="C_OR_1_)_}" wordU="#"

wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="!C_OR_1_)_}" wordU="#"

wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="AND_(_1_)_}" wordU="#"

wordV="}"/>

<RULE ruleType="splicing" wordX="" wordY="[A=1]_(_1_)_}" wordU="#"

wordV="[A=1]_}"/>

<RULE ruleType="splicing" wordX="" wordY="[A=0]_(_1_)_}" wordU="#"

wordV="[A=0]_}"/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="1" permittingContext="1" forbiddingContext=""/>

<OUTPUT type="1" permittingContext="" forbiddingContext="#_1"/>

</FILTERS>

</NODE>

<!-- A=1 NODE -->

<NODE initCond="" auxiliaryWords="#_1_)_} #_)_}">

<EVOLUTIONARY_RULES>

<RULE ruleType="splicing" wordX="" wordY="A_)_}" wordU="#" wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="(_!A_)_}" wordU="#" wordV="UP"/>

<RULE ruleType="splicing" wordX="" wordY="OR_!A_)_}" wordU="#" wordV=")_}"/>

<RULE ruleType="splicing" wordX="" wordY="B_)_}" wordU="#" wordV="UP"/>

<RULE ruleType="splicing" wordX="" wordY="C_)_}" wordU="#" wordV="UP"/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="1" permittingContext="[A=1]" forbiddingContext="[A=0]_1"/>

<OUTPUT type="1" permittingContext="" forbiddingContext="#_UP"/>

</FILTERS>

</NODE>

<!-- A=0 NODE -->

<NODE initCond="" auxiliaryWords="#_1_)_} #_)_}">

<EVOLUTIONARY_RULES>

<RULE ruleType="splicing" wordX="" wordY="OR_A_)_}" wordU="#" wordV=")_}"/>

<RULE ruleType="splicing" wordX="" wordY="(_A_)_}" wordU="#" wordV="UP"/>

<RULE ruleType="splicing" wordX="" wordY="!A_)_}" wordU="#" wordV="1"/>

<RULE ruleType="splicing" wordX="" wordY="B_)_}" wordU="#" wordV="UP"/>

<RULE ruleType="splicing" wordX="" wordY="C_)_}" wordU="#" wordV="UP"/>

</EVOLUTIONARY_RULES>

<FILTERS>
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<INPUT type="1" permittingContext="[A=0]" forbiddingContext="[A=1]_1"/>

<OUTPUT type="1" permittingContext="" forbiddingContext="#_UP"/>

</FILTERS>

</NODE>

<!-- NODES FOR 'B' AND 'C' ARE ANALOGOUS TO THOSE FOR 'A'. WE DO NOT PRESENT

THEM TO SAVE SPACE-->

</EVOLUTIONARY_PROCESSORS>

</NEP>

With this con�guration �le, at the end of its computation, jNEP outputs
the interpretation which satis�es the logical formula contained in the �le;
namely

(_A_)_AND_(_B_OR_C_): {_[C=0]_[B=1]_[A=1]_} {_[C=1]_[B=1]_[A=1]_} {_[C=1]_[B=0]_[A=1]_}

This ANSP can solve any formula with three variables. The formula to be
solved must be speci�ed as the value of the initCond attribute for the input
node.

*************** NEP INITIAL CONFIGURATION ***************

--- Evolutionary Processor 0 ---

{_(_A_)_AND_(_B_OR_C_)_}

Our ANSP works as follows. Firstly, the �rst node creates all the possible
combinations for the values of the 3 variables. We show below the jNEP output
for the �rst step:

*************** NEP CONFIGURATION - EVOLUTIONARY STEP -**

****************** TOTAL STEPS: 1 ***********************

--- Evolutionary Processor 0 ---

{_# {_[A=1]_(_A_)_AND_(_B_OR_C_)_} {_[A=0]_(_A_)_AND_(_B_OR_C_)_}

As shown, the splicing rules of the initial node have appended the two
possible values of A to two copies of the logical formula. The rules concerned
are:

<RULE ruleType="splicing" wordX="{" wordY="(" wordU="{_[A=1]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="(" wordU="{_[A=0]" wordV="#"/>

This kind of rules (Manea's splicing rules) uses some auxiliary words that
are never removed from the nodes. In our ANSP we use the following auxiliary
words:

auxiliaryWords="{_[A=1]_# {_[A=0]_# {_[B=1]_# {_[B=0]_# {_[C=1]_# {_[C=0]_#"

The end of this �rst stage arises after 2n− 1 steps, where n is the number
of variables:

--- Evolutionary Processor 0 ---

{_#

{_[C=0]_[B=0]_[A=0]_(_A_)_AND_(_B_OR_C_)_} {_[C=0]_[B=0]_[A=1]_(_A_)_AND_(_B_OR_C_)_}
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68 A. Ortega de la Puente et al.

{_[C=1]_[B=0]_[A=0]_(_A_)_AND_(_B_OR_C_)_} {_[C=1]_[B=0]_[A=1]_(_A_)_AND_(_B_OR_C_)_}

{_[C=0]_[B=1]_[A=0]_(_A_)_AND_(_B_OR_C_)_} {_[C=0]_[B=1]_[A=1]_(_A_)_AND_(_B_OR_C_)_}

{_[C=1]_[B=1]_[A=0]_(_A_)_AND_(_B_OR_C_)_} {_[C=1]_[B=1]_[A=1]_(_A_)_AND_(_B_OR_C_)_}

We should point out that NEPs take advantage of the fact that all the rules
can be applied to one word in the same step. This is because the model states
that each word has an arbitrary number of copies in its processor. Therefore,
the above task (which is Θ(2n)) can be completed in n steps, since each step
double the number of words by including in each word a new variable with
the value 1 or 0.

After this �rst stage, the words can leave the initial node and travel to
the other nodes. In the net, there is one node per variable and value; in
other words, there is one node for A = 1, another for C = 0 and so on.
Each of these nodes reduces, from right to left, the word representing the
formula according to the variable values. For example, the sixth node is re-
sponsible for C = 1 and, thus, makes the following modi�cation to the word
{_[C=1]_[B=1]_[A=1]_(_A_)_AND_(_B_OR_C_)_}:

{_[C=1]_[B=1]_[A=1]_(_A_)_AND_(_B_OR_C_)_} =⇒

{_[C=1]_[B=1]_[A=1]_(_A_)_AND_(_B_OR_1_)_}

However, the ninth node is responsible for C = 0 and, therefore, produces
the following change:

{_[C=0]_[B=1]_[A=1]_(_A_)_AND_(_B_OR_C_)_} =⇒

{_[C=0]_[B=1]_[A=1]_(_A_)_AND_(_B_)_}

In this way, the nodes share the results of their modi�cations until one
of them produces a word in which the formula is empty and only contains
the left side with the variable values. This kind of words is allowed to pass
through the input �lter of the output node and will therefore enter it At this
point the NEP halts, since the stopping condition of the NEP states that a
non-empty output node is the signal to stop the computation.

For further details, plase refer to [12] and the implementation in jnep.e-
delrosal.net.
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NEPs Applied to Solve Speci�c Problems 69

1.2 Solving an instance of the Hamiltonian path problem with

jNEP

Hamiltonian path problem

This well-known NP-complete problem searches an undirected graph for a
Hamiltonian path; that is, one that visits each vertex exactly once.

In [1], Adleman proposed to solve this problem with polynomial resources
by means of DNA manipulations in the laboratory. Figure 1 shows the graph
he used. In this case, the solution is obvious (path 0-1-2-3-4-5-6) Despite its
simplicity, Adleman described a general algorithm applicable to almost any
graph with the same performance.

Fig. 1. Graph studied by Adleman

Adleman's algorithm can be summarized as follows:

1. Randomly generate all the possible paths.
2. Select those paths that begin and end in the proper nodes.
3. Select only the paths that contain exactly the total number of nodes.
4. Remove those paths that contain some node more than once.
5. The remaining paths are solutions to the problem.

The present study follows a similar approach (we have already introduced
it in this same volume). Remember that the NEP graph is very similar to
the one studied above: an extra node is added to ease the de�nition of the
stopping condition. The set i,0,1,2,3,4,5,6 is used as the alphabet. Symbol i
is the initial content of the initial node (v0) Each node (except the �nal one)
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70 A. Ortega de la Puente et al.

adds its number to the string received from the network. Input and output
�lters are de�ned to allow the communication of all the possible words without
any special constraint. The input �lter of the �nal node excludes any string
which is not a solution. It is easy to imagine a regular expression for the
set of solutions (those words with the proper length, the proper initial and
�nal node and where each node appears only once). The NEP basic model
de�nes �lters by means of regular expressions. It is also easy to devise a
set of additional nodes that performs the previous �lter following Adleman's
checks (proper beginning and end, proper length, and number of occurrences
of each node). For the sake of simplicity we have explicitly used the solution
word (i_0_1_2_3_4_5_6) instead of a more complex regular expression or
a greater NEP.

The reader will �nd at http://jnep.e-delrosal.net the complete XML �le
for this problem (Adleman.xml).

The XML �le for this example de�nes the alphabet with this tag

<ALPHABET symbols="i_0_1_2_3_4_5_6" />

and the initial content of node 0 as

<NODE initCond="i">

The rules for adding the number of the node to its string are de�ned as
follows (here for node 2)

<RULE ruleType = "insertion" actionType = "RIGHT" symbol = "2"/>

There are several ways of de�ning �lters for the desired behavior (to allow
the communication of all the possible words without any special constraint).
We have used only the permitted input and output �lters. A string can enter
a node if it contains any of the symbols of the alphabet and no string is
forbidden.

<FILTERS>

<INPUT type="2"

permittingContext="i_0_1_2_3_4_5_6"

forbiddingContext="" />

<OUTPUT type="2"

permittingContext="i_0_1_2_3_4_5_6"

forbiddingContext="" />

</FILTERS>

The behavior of the NEP is sketched as follows:

1. In the initial step the only non empty node is 0 and contains the string i
2. After the �rst step, 0 is added to this string and, node 0 therefore contains

i_0
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3. This string is moved to the nodes connected to node 0. In the next steps
only nodes 1, 3 and 6 contain i_0.

4. These nodes add their number to the received string. In the next step
their contents are, respectively, i_0_1, i_0_3 and i_0_6

5. This process is repeated as many times as necessary to produce a string
that meets the conditions of the solution. In this �nal step the solution
string i_0_1_2_3_4_5_6 is sent to node 7 and the NEP stops.

De�ning �lters in the NEP model poses some di�culties to the design
of NEPs and, thus, to the development of a simulator. These �lters are de-
�ned [7] [6] by means of two paris of �lters (forbidden and allowed) to each
operation (input and output). There are also several ways of combining and
applying the �lters to translate them into a set of strings. This mechanism
contains obvious redundancies that make it di�cult to design NEPs. It could
be advisable a more general agreement of the researchers to ease and simplify
the development of NEPs simulators.

1.3 Solving a graph coloring problem with jNEP

This problem describes a map whose regions have to be colored with only
three colors. Adjacent regions must be colored in di�erent colors. We have
used the NEP de�ned in [6]. The map is translated into an undirected graph
whose nodes stand for the regions and whose edges represent the adjacency
relationship between regions. Figure 2 shows one of the examples we have
studied. It is straightforward to prove that there is no solution to this map.

Fig. 2. Example of a map and its adjacency graph. In this case, there is no solution
for the 3-colorability problem
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72 A. Ortega de la Puente et al.

The NEP has a complete graph with two special nodes (for the initial and
�nal steps) and a set of seven nodes associated to each edge of the adjacency
graph. These nodes perform the tasks outlined below.

The initial (�nal) node is responsible for starting (stopping) the computa-
tion. The seven nodes associated with an edge of the map are grouped in three
pairs (one for each color). There is, in addition, a special node to communicate
with the set of nodes of the next edge. Each pair is responsible for the main
operation in the NEP: to check that a coloring constraint is not violated for
the current edge. It performs this task in the following way:

Let us suppose that the color red is the one associated with the pair of
nodes. The �rst node in the NEP associates the color red to the �rst node
of the edge in the map. The second node in the NEP simultaneously keeps
all the allowed coloring (two, in this case) for the second node of the edge:
(blue and green) It is clear that the only acceptable colorings for this edge are
red-blue and red-green.

The behavior of the complete NEP could be described as follows:

1. The initial node generates all the possible assignments of colors to all the
regions in the map and adds a symbol to identify the �rst edge to be
checked. These strings are communicated to all the nodes of the graph.

2. The set of nodes associated to each edge accepts only the strings marked
with the symbol of the edge. These nodes remove all the strings that
violate the coloring constraint for the regions of the edge. One special
node in the set replaces the edge mark with that which corresponds to
the next edge. In this way, the process continues.

3. The �nal node of the NEP collects the strings that satisfy the constraints
of all the edges. It is straightforward to see that these strings are the
solutions.

Some fragments of the XML �le for this example (3Coloring.xml) are
shown below to describe the above behavior in greater detail:

The alphabet of the NEP is de�ned as follows:

<ALPHABET

symbols="b1_r1_g1_b2_r2_g2_b3_r3_g3_b4_r4_g4_b5_r5_g5_B1_R1_G1_B2_R2_G2_B3_R3_G3

_B4_R4_G4_B5_R5_G5_a1_a2_a3_a4_a5_X1_X2_X3_X4_X5_X6_X8_X9"/>

This alphabet contains the following subsets of symbols: a1,...,a5 repre-
sents the initial situation of the regions (uncolored). b1, r1, g1,..., b5, r5, g5
represents the assignment of the colors to the regions. B1, R1, G1,..., B5,
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R5, G5 is a copy of the previous set to be used while checking the constraint
associated with a pair of adjacent regions.

The string contained in the initial node at the beginning represents the
complete uncolored map and the number of the �rst edge to be tackled (X1)

<NODE initCond="a1_a2_a3_a4_a5_X1">

The rules of the initial node assign all the possible colors to all the regions.
The following rules refer to the second region:

<RULE ruleType = "substitution"

actionType = "ANY"

symbol="a2" newSymbol="b2"/>

<RULE ruleType="substitution"

actionType="ANY"

symbol="a2" newSymbol="r2"/>

<RULE ruleType="substitution"

actionType="ANY"

symbol="a2" newSymbol="g2"/>

The node in the NEP that assigns a color (Red, in this case) to the �rst
region (1 in the example) of an edge in the map uses the following rule:

<RULE ruleType="substitution"

actionType="ANY" symbol="r1"

newSymbol="R1"/>

The other node ensures that the adjacent region (2 in this case) has a
di�erent color by means of these rules:

<RULE ruleType="substitution"

actionType="ANY"

symbol="b2"

newSymbol="B2"/>

<RULE ruleType="substitution"

actionType="ANY" symbol="g2"

newSymbol="G2"/>

The node used for starting the process in the next edge removes any special
(capitalized) color symbol and sets the edge marking to the next one. The
following rules correspond to the �rst edge

<RULE ruleType="substitution"

actionType="ANY" symbol="R1"

newSymbol="r1"/>

<RULE ruleType="substitution"

actionType="ANY" symbol="B1"

newSymbol="b1"/>

<RULE ruleType="substitution"

actionType="ANY" symbol="G1"

newSymbol="g1"/>

<RULE ruleType="substitution"
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actionType="ANY" symbol="R2"

newSymbol="r2"/>

<RULE ruleType="substitution"

actionType="ANY" symbol="B2"

newSymbol="b2"/>

<RULE ruleType="substitution"

actionType="ANY" symbol="G2"

newSymbol="g2"/>

<RULE ruleType="substitution"

actionType="ANY" symbol="X1"

newSymbol="X2"/>

We found it di�cult to apply the input and output �lters as they are
in [6]. In our opinion, greater standardization is advisable to minimize these
situations. Notice that nodes associated with the last edge (in this case with
number 8) mark their strings with the following number, which does not cor-
respond to any edge in the graph (9 in our example). This is important for
the design of the �nal node that checks the stopping condition (Non Empty
Node Stopping Condition). This �nal node only accepts strings with the cor-
responding mark (one that does not correspond to any edge in the adjacency
graph).

Figure 3 shows another map to be colored with 3 colors. It is generated
by splitting region 3 and 4 in �gure 2. Figure 3 also summarizes the sequence
of steps for one of the possible solutions. It is worth noticing that all the
solutions are simultaneously kept in the con�gurations of the NEP.

The behavior of the NEP for this map could be summarized as follows:
the initial content of the initial node is a1_a2_a3_a4_a5_X1. This node
produces all the possible coloring combinations. In the second step of the
computation, for example, it contains the following strings:

b1_a2_a3_a4_a5_X1 r1_a2_a3_a4_a5_X1
g1_a2_a3_a4_a5_X1 a1_b2_a3_a4_a5_X1
a1_r2_a3_a4_a5_X1 a1_g2_a3_a4_a5_X1
a1_a2_b3_a4_a5_X1 a1_a2_r3_a4_a5_X1
a1_a2_g3_a4_a5_X1 a1_a2_a3_b4_a5_X1
a1_a2_a3_r4_a5_X1 a1_a2_a3_g4_a5_X1
a1_a2_a3_a4_b5_X1 a1_a2_a3_a4_r5_X1
a1_a2_a3_a4_g5_X1

The NEP still needs a few more steps to get all the combinations. Then,
the coloring constraints are applied simultaneously to all the possible solutions
and those assignments that violate some constraint are removed. We describe
below a sequence of strings generated by the NEP that corresponds to the
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Fig. 3. Sequence of steps in the solution of a 3-coloring problem by jNEP

solution graphically shown in �gure 2: r1_g2_b3_b4_r5_X1 is generated
in the initial steps. After checking the 1st edge (regions 1 and 2) the NEP
contains two strings: R1_g2_b3_b4_r5_X1 and R1_G2_b3_b4_r5_X1

After checking the 2nd edge (regions 1 and 3) R1_g2_B3_b4_r5_X2.
And after checking edges 3, 4, 5, 6 and 8 (remember that edge 7 was removed
to make the map colorable) associated, respectively, with the pairs of regions
1-4, 2-3, 2-4, 2-5 and 4-5, the following strings are in the NEP:

R1_g2_b3_B4_r5_X3 r1_G2_B3_b4_r5_X4
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r1_G2_b3_B4_r5_X5 r1_G2_b3_b4_R5_X6
r1_g2_b3_B4_R5_X8.

Finally, the complete solution is found to be r1_g2_b3_B4_R5_X9 and
r1_g2_b3_b4_r5_X9

This NEP processes all the solutions at the same time. It removes all the
coloring combinations that violate any constraint. In the last step the �nal
node contains all the solutions found. [6] describes one of the kinds of NEPs
(simple NEPs) that is simulated by jNEPs. As we have brie�y mentioned
before, we have observed that the authors have used slightly di�erent �lters
for the 3-coloring problem. We could not use these �lters and we had to change
some of them (most of the output �lters) for the NEP to behave properly. The
complete XML �le is available at http://jnep.e-delrosal.net.

2 Some Applications of NEPs to Language Processing

2.1 PNEPs: top-down parsing for natural languages

Motivation

Syntactic analysis is one of the classical problems related to language process-
ing, and applies both to arti�cial languages (formal languages such as, for
instance, programming languages) and to natural ones (those that people use
to write and talk).

There is an ample range of parsing tools that computer scientists and
linguists can use. They share a common goal (parsing), but have obvious dif-
ferences: some are based on the theoretical foundations of Computer Science
(automata, Chomsky grammars) while others mix several formal and infor-
mal techniques [14]: for example, generalized deterministic parsing, linear-
time substring parsing, parallel parsing, parsing as intersection, non-canonical
methods or non-Chomsky systems [15].

The characteristics of the particular language determine the suitability
of the parsing technique. Two of the main di�erences between natural and
formal languages are ambiguity and the size of the required representation.
Ambiguity creates many di�culties for parsing, so programming languages
are usually designed to be non ambiguous. On the other hand, ambiguity is
an almost implicit characteristic of natural languages, so it should be taken
into account by parsing techniques. To compare the size of di�erent repre-
sentations, the same formalism should be used. Context-free grammars are
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widely used to describe the syntax of languages. It is possible to informally
compare the sizes of context free grammars for some programming languages
(such as C) and for some natural languages (such as Spanish). We conjecture
that the representations required to parse natural languages are frequently
greater than those required for high level imperative programming languages.

Parsing techniques for programming languages usually restrict the repre-
sentation (grammar) used in di�erent ways: it must be unambiguous, recur-
sion is restricted, lambda rules must be removed, they must be (re)written
according to some speci�c normal form, etc. These conditions mean that the
designer of the grammar has more work to do, and that non-experts in the
�eld of formal languages will have greater di�culty in properly understanding
the grammar. This may be one of the reasons why formal representations such
as grammars are little used or even unpopular. Natural languages usually do
not ful�ll these constraints.

These paragraphs focus on formal representations (based on Chomsky
grammars) that can be used for syntactic analysis, and specially those which
do not comply with these kinds of constraints. In this way, our approach will
be applicable to both natural and formal languages.

Formal parsing techniques for natural languages are ine�cient. The sen-
tences that these techniques can usually parse are short (usually less than a
typical computer program).

This chapter also focus on new models to increase the e�ciency of parsing
for languages with non-restricted context free grammars: we propose the use
of NEPs as e�cient parsing tools. In other sections of the current volume
we show how we can e�ciently access parallel hardware, such as clusters of
computers, in order to simulate NEPs. Our goal is to provide the scienti�c
community with e�cient parsing tools that can be run on parallel platforms
when they are available.

In the paragraphs below we will introduce the peculiarities of the syntactic
analysis of natural languages, and PNEPs, an extension to NEPs that makes
them suitable for e�cient parsing of any kind of context free grammars, par-
ticularly those applicable to languages that share characteristics with natural
languages (inherent ambiguity, for example). We have designed a top-down
parser for context free grammars without additional constraints. Bellow we
informally describe the algorithm, formally de�ne it, detail a jNEP implemen-
tation and discuss some examples.
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Introduction to analysis of natural languages with NEPs

Computational Linguistics researches linguistic phenomena that occur in dig-
ital data. Natural Language Processing (NLP) is a sub�eld of Computational
Linguistics that focuses on building automatic systems that can interpret or
generate information written in natural language [26]. This is a broad area
which poses a number of challenges, both for theory and for applications.

Machine Translation was the �rst NLP application in the �fties [27]. In
general, the main problem found in all cases is the inherent ambiguity of the
language [22].

A typical NLP system has to cover several linguistic levels:

• Phonological: Sound processing to detect expression units in speech.
• Morphological: Extracting information about words, such as their part

of speech and morphological characteristics [21, 2]. The best systems have
an accuracy of 97% in this level [4].

• Syntactical: Using parsers to detect valid structures in the sentences,
usually in terms of a certain grammar. One of the most e�cient algo-
rithms is the one described by Earley and its derivatives [11, 24, 28]. It
provides parsing in polynomial time, with respect to the length of the
input (linear in the average case; n2 and n3, respectively, for unambigu-
ous and ambiguous grammars in the worst case) These sections focus on
this step. Syntactical analysis for natural language requires considerable
of computational resources. Parsers can usually only completely analyze
short sentences. Shallow parsing tries to overcome this di�culty. Instead of
a complete derivation tree for the sentence, this parsing technique actually
builds partial derivation trees for its elemental components.

• Semantic: Finding the most suitable knowledge formalism to represent
the meaning of the text.

• Pragmatic: Interpreting the meaning of the sentence in a context which
makes it possibe to react accordingly.

The last two levels are still far from being solved [13].
Figure 4 shows the way in which typical NLP systems usually cover the

linguistic levels described above.
A computational model that can be applied to NLP tasks is a network of

evolutionary processors (NEPs). NEP as a generating device was �rst intro-
duced in [10] and [9]. The topic is further investigated in [7], while further
di�erent variants of the generating machine are introduced and analyzed in
[5, 17, 18, 19, 20].
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Fig. 4. Typical phases in natural language processing

The �rst attempt was made to apply NEPs for syntactic NLP parsing
in [3]. We have the same goal: to test the suitability of NEPs for this task.
We have previously mentioned some performance characteristics of one of the
most popular families of NLP parsers (those based on Earley's algorithm).
We will conclude that the complexity of our approach is similar.

While [3] outlines a bottom up approach to natural language parsing with
NEPs, we suggest a top-down strategy and show its possible use in a practical
application.

Top down parsing with NEPs and jNEP

Informal description Other authors have studied the relationships between
NEPs, regular, context-free, and recursively enumerable languages [14-18].
[21] shows how NEPs simulate the application of context free rules (A →
α,A ∈ V, α ∈ V ∗ for alphabet V ): a set of additional nodes is needed to
implement a rather complex technique to rotate the string and locate A in
one of the string ends, then delete it and add all the symbols in α. PNEPs
use context free rules rather than classic substitution (A→ B,A,B ∈ V ), as
well as insertion and deletion NEP rules. In this way, the expressive power of
NEP processors is bounded, while providing a more natural and comfortable
way to describe the parsed language for practical purposes.
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PNEPs implement a top down parser for context free grammars. Like any
other parsers, PNEPs have to build the derivation tree of the string being
parsed. We have added a simple mechanism to solve this task. We have used
indexes to identify the rules added to the sentential form when each rule is
applied. The generated string includes these indexes, making it possible to
reconstruct the derivation tree. Several examples are shown below. A PNEP
for a given grammar can explicitly generate all the possible derivations of
each string in the language generated by the grammar. Its temporal complex-
ity is bounded by the length of the analyzed string (actually by the depth
of the derivation tree, that is, by the logarithm of the length). This bound
can be used to stop the computation when processing incorrect strings, thus
avoiding the possibility that the PNEP runs for an in�nite number of steps.
Nevertheless, this naive approach seems to be spatially ine�cient, because of
the high number of strings and derivations simultaneously considered which
the processors have to store. We have added two additional mechanisms to
overcome this ine�ciency:

Discarding non promising sentential forms

The �rst check we have implemented is the lightest, and it is present in almost
all the parsers: discard any sentential form that contains a terminal symbol
that the analyzed string does not contain. Parsers usually check sequentially
for this condition, starting at the right end of the string. NEPs �lters make
it possible to check the condition regardless of the positions in the sentential
form where the incorrect symbols are. We have implemented this feature by
means of an additional node which contains just one deletion rule that deletes
nothing (no symbol). In this way we can prevent the whole string from being
lost when the evolutionary step is executed in the node. The pruning actually
happens during the communication step, because it is implemented by the
input �lters. A string can pass the �lter if it contains only non terminals, or
terminals that belong to the input string being parsed. PNEPs duplicate the
number of steps needed to parse a string, but reduce the number of strings
stored by the processors.

Forcing a left-most derivation order

Applying all the possible rules in parallel to a sentential form produces a lot
of di�erent derivations that are actually the same derivation tree. They only
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di�er in the order in which the non terminal symbols of the same sentential
form are derived. We extend the NEP model with a new specialized kind of
context free evolutive rule that applies only to the left-most non terminal. The
symbol →l will be used to represent this kind of rule. The result of applying
the rule r : A →l s, where s ∈ V ∗ (V stands for the NEP's alphabet) on a
given string w, can be formally de�ned as follows:

r(w) =

t where w = w1Aw2, t = w1sw2, not_contains(w1, A), s ∈ V ∗, w1 ∈ V ∗, and w2 ∈ V ∗

For example, the rule r : A→l s will change the following words as shown
below:

Aw1 ⇒ sw1 (changes the left-most ocurrence of non-terminal A, which is the
left-most non-terminal)

BAw1 ⇒ Bsw1 (changes the left-most ocurrence of non-terminal A, although
non-terminal B is on its left)

cdAw1 ⇒ cdsw1 (now there are terminals to the left of A)

From context free grammars to PNEPs

The PNEP is built from the grammar in the following way:

1. We assume that each derivation rule in the grammar has a unique index
that can be used to reconstruct the derivation tree.

2. There is a node for each non terminal (deriving nodes) that applies to its
strings all the derivation rules for its left-most non terminal.

3. There is an additional node (discarding node) which discards non promis-
ing sentential forms. It receives all the sentential forms generated and
sends to the net those that just contain non terminal symbols or termi-
nals which are also contained in the input string.

4. The deriving nodes are connected only to the discarding node.
5. There is an output node, in which the parsed string can be found: this is a

version of the input, enriched with information that will make it possible
to reconstruct the derivation tree (the rules indexes).

6. The output node is connected with all the deriving nodes.

Obviously the same task can be performed using a trivial PNEP with only
one deriving node for all the derivation rules. However, the proposed PNEP
is easier to analyze and makes it easier to distribute the work among several
nodes.
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We will use the following grammar as an example for some of the steps
outlined above. Let us consider grammar Ganbnom induced by the following
derivation rules (notice that indexes have been added in front of the corre-
sponding right hand side):

X → (1)SO , S → (2)aSb|(3)ab , O → (4)Oo|(5)oO|(6)o

It is easy to prove that the language corresponding to this grammar is
{anbnom | n,m > 0}. Furthermore, the grammar is ambiguous, since every
sequence of o symbols can be generated in at least two di�erent ways: by
producing the new terminal o with rule 4 or rule 5.

The input �lters of the output node describe parsed copies of the initial
string. In other words, strings whose symbols are preceded by strings of any
length (including 0) of the possible rules indexes. As an example, a parsed
version of the string aabboo would be 12a3abb5o6o.

Formal description We will now describe the way in which our PNEP is
de�ned, starting from a certain grammar. Given the context free grammar
G = {ΣT = {t1, ..., tn}, ΣN = {N1, ..., Nm}, A, P} with A ∈ ΣN its axiom
and P = {Ni → γj | j ∈ {1, .., k}, i ∈ {1, ..., n} ∧ γj ∈ (ΣT ∪ΣN )∗} its set of
k production rules; the PNEP is de�ned as

ΓG = (V = ΣT ∪ΣN ∪{1, ..., k}, nodeoutput, N1, N2, ..., Nm, N
t
1, N

t
2, ..., N

t
m, G)

where

1. Ni is the family of deriving nodes. Each node contains the following set
of rules: {Ni →l γj} ({Ni → γj} are the derivation rules for Ni in G)

2. N t is the discarding node. As has been mentioned above it only contains
the deletion rule →

3. nodeoutput is the output node
4. G is a graph that contains an edge for
• Each pair (Ni, nodeoutput)
• Each pair (Ni, N t

i )
5. The input node A is the only one with a non empty initial content (A)
6. The �lters for each node are designed to produce the behavior informally

described above. In general, the deriving nodes have empty output �lters

For example, the PNEP for grammar Ganbnom described above has a node
for nonterminal S with the following substitution rules: {S → 2aSb, S → 3ab}.
The input �lter for this node allows all strings containing some copy of their
non terminal S to be input in the node.
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The input �lter for the output node nodeoutput has to describe what we
have called parsed strings. Parsed strings will contain numbers, correspond-
ing to the derivation rules which have been applied, among the symbols of
the initial string. For PInodeoutput

, we can easily create membership condi-
tions. For example, in order to parse the string aabbo with the grammar
given above, the regular expression can be {1, 2, 3, 4, 5, 6}∗a{1, 2, 3, 4, 5, 6}∗a
{1, 2, 3, 4, 5, 6}∗b{1, 2, 3, 4, 5, 6}∗b{1, 2, 3, 4, 5, 6}∗o. Our PNEP will stop com-
puting whenever a string enters the output node.

For the discarding node, PINt is a random context �lter of type 2, where
P = {a, b, o,X, S,O} and F = ∅. The derivation nodes have a random context
PINi

of type 1, where P = {Ni} and F = ∅. Finally, any other �lters are
designed to accept any word without additional constraints.

The complete PNEP for our example (Γanbnom) is de�ned as follows:

• Alphabet V = {X,O, S, a, b, o, 1, 2, 3, 4, 5, 6}
• Nodes

� nodeoutput:
· Aoutput = ∅ is the initial content;
· Moutput = ∅ is the set of rules;
· PIoutput = { (regular expression membership �lter);
· {{1, 2, 3, 4, 5, 6} ∗ a{1, 2, 3, 4, 5, 6} ∗ a{1, 2, 3, 4, 5, 6} ∗ b{1, 2, 3, 4, 5, 6} ∗

b{1, 2, 3, 4, 5, 6} ∗ o}};
· POoutput = ∅ is the output �lter

� NX :
· AX = {X};
· MX = {X →l 1SO};
· PIX = {P = {X}, F = ∅};
· POX = ∅

� NS :
· AS = ∅;
· MS = {S →l 2aSb, S →l 3ab};
· PIS = {P = {S}, F = ∅};
· POS = ∅

� NO:
· AO = ∅;
· MO = {O →l 4oO,O →l 5Oo,O →l 5o};
· PIO = {P = {O}, F = ∅};
· POO = ∅

� N t:
· A = {};
· M = {→};
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· PI = {P = {X,O, S, a, b, o}, F = ∅};
· PO = {F = ∅, P = ∅}

� Its graph contains an edge for each pair {(NX , N
t), (NS , N

t), (NO, N
t),

(NX , nodeoutput), (NS , nodeoutput), (NO, nodeoutput)}
� It stops the computation when some string enters nodeoutput

The following shows some of the strings generated by all the nodes of the
PNEP in succesive communication steps, when parsing the string aboo (each
set corresponds to a di�erent step):
{X} ⇒ {1SO} ⇒ {..., 13abO, ...} ⇒ {..., 13ab4Oo, 13ab5oO, ...} ⇒

{..., 13ab46oo, ..., 13ab5o6o, ...}
The last set contains two di�erent derivations for aboo by (Ganbnnom),

which can enter the output node and stop the computation of the PNEP.
It is easy to reconstruct the derivation tree from the parsed strings in the

output node, by following their sequence of numbers. For example, consider
the parsed string 13ab6o and its sequence of indexes 136; abo is generated in
the following steps: X ⇒ (rule 1 X ⇒ SO ) SO , SO ⇒ (rule 3 S ⇒ ab ) abO
, abO ⇒ (rule 6 O ⇒ o ) abo

jNEP description of PNEPs In a previous section we have described the struc-
ture of the XML input �les for jNEP.

In order to keep jNEP as general as possible, we have added new xml
descriptions for each extension needed in PNEP.

Context free rules are represented in the xml �le as follows:

<RULE ruleType=``contextFreeParsing'' symbol=``[symbol]'' newString=``[symbolList]''/>

Those applied to the left-most non terminal, however, use this syntax:

<RULE ruleType="leftMostParsing" symbol="NON-TERMINAL" string="SUBSTITUTION_STRING"

nonTerminals="GRAMMAR_NON-TERMINALS"/>

Three of the sections of the xml representation of the PNEP Γanbnom

de�ned above (the output node, the derivating node for axiom X and the
discarding node) are shown below.

<NODE initCond="">

<EVOLUTIONARY_RULES>

<RULE ruleType="deletion" actionType="RIGHT" symbol=""/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="RegularLangMembershipFilter"

regularExpression="[1-6]*a[1-6]*b[1-6]*o[1-6]*o"/>

<OUTPUT type="1" permittingContext="" forbiddingContext="a_b_o_o"/>

</FILTERS>

</NODE>
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<NODE initCond="X">

<EVOLUTIONARY_RULES>

<RULE ruleType="leftMostParsing" symbol="X" string="1_S_O" nonTerminals="S_O_X"/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="1" permittingContext="X" forbiddingContext=""/>

</FILTERS>

</NODE>

<NODE initCond="">

<EVOLUTIONARY_RULES>

<RULE ruleType="deletion" actionType="RIGHT" symbol=""/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="2" permittingContext="a_b_o_o_0_1_2_3_4_5_S_O_X"

forbiddingContext=""/>

</FILTERS>

</NODE>

The nodes for other non terminal symbols are similar, but with an empty
(””) initial condition and their corresponding derivation rules.

An example for natural language processing

As described in a previous section, the complexity of the grammars used for
syntactic parsing depends on the desired target. These grammars are usually
very complex, which makes them one of the bottlenecks in NLP tasks.

We will use the grammar deduced from the following derivation rules,
whose axiom is the non terminal Sentence. This grammar is similar to gram-
mars devised by other authors in previous attempts to use NEPs for parsing
(natural) languages [19]. We have added the index of the derivation rules that
will be used later.
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Sentence → (1) NounPhraseStandard PredicateStandard
| (2) NounPhrase3Singular Predicate3Singular

NounPhrase3Singular → (3) DeterminantAn VowelNounSingular
| (4) DeterminantSingular NounSingular
| (5) Pronoun3Singular

NounPhraseStandard → (6) DeterminantPlural NounPlural
| (7) PronounNo3Singular

NounPhrase → (8) NounPhrase3Singular | (9) NounPhraseStandard
PredicateStandard → (10) VerbStandard NounPhrase
Predicate3Singular → (11) Verb3Singular NounPhrase

DeterminantSingular → (12) a | (13) the | (14) this
DeterminantAn → (15) an

VowelNounSingular → (16) apple
NounSingular → (17) boy

Pronoun3Singular → (18) he | (19) she | (20) it
DeterminantPlural → (21) the | (22) several | (23) these

NounPlural → (24) apples | (25) boys
PronounNo3Singular → (26) I | (27) you | (28) we | (29) they

VerbStandard → (30) eat
Verb3Singular → (31) eats

As we have described above, NLP syntax parsing usually takes the results
of the morphological analysis as input. In this way, the previous grammar can
be simpli�ed by removing the derivation rules for the last 9 non terminals
(from DeterminantSingular to Verb3Singular): these symbols become termi-
nals for the new grammar.

Notice, also, that this grammar implements grammatical agreement by
means of context free rules. For each non terminal, we had to use several
di�erent specialized versions. For instance, NounPhraseStandard and Noun-
Phrase3Singular are specialized versions of non terminal NounPhrase. These
rules increase the complexity of the grammar.

We can build the PNEP associated with this context-free grammar by
following the steps described in the corresponding section.

Let us consider the English sentence the boy eats an apple. Some of the
strings generated by the nodes of the PNEP in successive communication
steps while parsing this string are shown below (we show the initials, rather
than the full name of the symbols).

A left derivation of the string is highlighted: { S } ⇒ { ..., 2 NF3S P3S,
... } ⇒ { ..., 2 4 DS NS P3S, ... } ⇒ { ..., 2 4 13 the NS P3S, ... } ⇒ { ..., 2 4
13 the 17 boy P3S, ... } ⇒ { ..., 2 4 13 the 17 boy 11 V3S NF, ... } ⇒ { ...,
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2 4 13 the 17 boy 11 31 eats NF, ... } ⇒ { ..., 2 4 13 the 17 boy 11 31 eats 8
NF3S, ... } ⇒ { ..., 2 4 13 the 17 boy 11 31 eats 8 3 DA VNS, ... } ⇒ { ..., 2
4 13 the 17 boy 11 31 eats 8 3 15 an VNS, ... } ⇒ { ..., 2 4 13 the 17 boy 11
31 eats 8 3 15 an 16 apple, ... }

The following fragments of the jNEP output for this case show more detail
of the contents of some nodes of the PNEP during its execution.

Notice that

• Node 16 is the discarding node, node 17 is the output node and the rest
are the deriving nodes.

• The indexes of the rules added to the string in order to build the derivation
tree include two numbers:
1. The �rst one identi�es their non terminal
2. The second identi�es the right hand side
For example, index 1-8 refers to the eighth right hand side of the �rst non
terminal.

• The string [...] means that a piece of output is not shown to save space.
Comments are also written between square brackets.

*************** NEP INITIAL CONFIGURATION ***************

--- Evolutionary Processor 0 ---

[...]

--- Evolutionary Processor 9 ---

--- Evolutionary Processor 10 ---

Sentence

--- Evolutionary Processor 11 ---

[...]

--- Evolutionary Processor 16 ---

--- Evolutionary Processor 17 ---

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 1 **************

[...]

--- Evolutionary Processor 10 ---

10-1_NounPhraseStandard_PredicateStandard 10-0_NounPhrase3Singular_Predicate3Singular

[...]

--- Evolutionary Processor 16 ---

--- Evolutionary Processor 17 ---

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 2 ************

--- Evolutionary Processor 0 ---

[...]

--- Evolutionary Processor 15 ---
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--- Evolutionary Processor 16 ---

10-1_NounPhraseStandard_PredicateStandard 10-0_NounPhrase3Singular_Predicate3Singular

--- Evolutionary Processor 17 ---

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 3 **************

--- Evolutionary Processor 0 ---

[...]

--- Evolutionary Processor 15 ---

--- Evolutionary Processor 16 ---

10-1_NounPhraseStandard_PredicateStandard 10-0_NounPhrase3Singular_Predicate3Singular

--- Evolutionary Processor 17 ---

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 4 ************

--- Evolutionary Processor 0 ---

--- Evolutionary Processor 1 ---

--- Evolutionary Processor 2 ---

--- Evolutionary Processor 3 ---

10-0_NounPhrase3Singular_Predicate3Singular

--- Evolutionary Processor 4 ---

--- Evolutionary Processor 5 ---

--- Evolutionary Processor 6 ---

--- Evolutionary Processor 7 ---

10-1_NounPhraseStandard_PredicateStandard

--- Evolutionary Processor 8 ---

--- Evolutionary Processor 9 ---

--- Evolutionary Processor 10 ---

--- Evolutionary Processor 11 ---

--- Evolutionary Processor 12 ---

--- Evolutionary Processor 13 ---

10-0_NounPhrase3Singular_Predicate3Singular

--- Evolutionary Processor 14 ---

--- Evolutionary Processor 15 ---

10-1_NounPhraseStandard_PredicateStandard

--- Evolutionary Processor 16 ---

--- Evolutionary Processor 17 ---

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 5 **************

[...]

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 6 ************

[...]
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*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 7 **************

[...]

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 8 ************

[...]

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 9 **************

--- Evolutionary Processor 0 ---

--- Evolutionary Processor 1 ---

--- Evolutionary Processor 2 ---

10-0_3-0_2-2_he_Predicate3Singular 10-0_3-0_2-1_she_Predicate3Singular

10-0_3-0_2-0_it_Predicate3Singular

--- Evolutionary Processor 3 ---

10-0_3-1_DeterminantSingular_NounSingular_Predicate3Singular

10-0_3-0_Pronoun3Singular_Predicate3Singular

10-0_3-2_DeterminantAn_VowelNounSingular_Predicate3Singular

--- Evolutionary Processor 4 ---

10-1_7-1_4-1_several_NounPlural_PredicateStandard

10-1_7-1_4-2_the_NounPlural_PredicateStandard

10-1_7-1_4-0_these_NounPlural_PredicateStandard

--- Evolutionary Processor 5 ---

10-0_3-2_5-0_an_VowelNounSingular_Predicate3Singular

--- Evolutionary Processor 6 ---

--- Evolutionary Processor 7 ---

--- Evolutionary Processor 8 ---

10-0_3-1_DeterminantSingular_NounSingular_Predicate3Singular

--- Evolutionary Processor 9 ---

10-1_7-0_9-2_you_PredicateStandard 10-1_7-0_9-0_they_PredicateStandard

10-1_7-0_9-3_I_PredicateStandard

10-1_7-0_9-1_we_PredicateStandard

--- Evolutionary Processor 10 ---

--- Evolutionary Processor 11 ---

10-0_3-1_11-2_a_NounSingular_Predicate3Singular

10-0_3-1_11-0_this_NounSingular_Predicate3Singular

10-0_3-1_11-1_the_NounSingular_Predicate3Singular

--- Evolutionary Processor 12 ---

10-0_3-2_DeterminantAn_VowelNounSingular_Predicate3Singular

--- Evolutionary Processor 13 ---

10-0_3-1_DeterminantSingular_NounSingular_Predicate3Singular

10-0_3-0_Pronoun3Singular_Predicate3Singular

10-0_3-2_DeterminantAn_VowelNounSingular_Predicate3Singular

10-0_NounPhrase3Singular_Predicate3Singular

--- Evolutionary Processor 14 ---

10-1_7-1_DeterminantPlural_NounPlural_PredicateStandard

--- Evolutionary Processor 15 ---

10-1_NounPhraseStandard_PredicateStandard

10-1_7-1_DeterminantPlural_NounPlural_PredicateStandard

10-1_7-0_PronounNo3Singular_PredicateStandard

--- Evolutionary Processor 16 ---

--- Evolutionary Processor 17 ---

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 10 ***********
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--- Evolutionary Processor 0 ---

[...]

[AT THIS POINT, PARSING TREES WITH INCORRECT TERMINALS HAVE BEEN PRUNED]

--- Evolutionary Processor 16 ---

10-0_3-2_5-0_an_VowelNounSingular_Predicate3Singular

10-1_7-1_DeterminantPlural_NounPlural_PredicateStandard

10-0_3-1_DeterminantSingular_NounSingular_Predicate3Singular

10-0_3-0_Pronoun3Singular_Predicate3Singular

10-0_3-2_DeterminantAn_VowelNounSingular_Predicate3Singular

10-1_7-1_4-2_the_NounPlural_PredicateStandard

10-0_3-1_11-1_the_NounSingular_Predicate3Singular

10-0_NounPhrase3Singular_Predicate3Singular

--- Evolutionary Processor 17 ---

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 11 *************

--- Evolutionary Processor 0 ---

[...]

--- Evolutionary Processor 16 ---

10-0_3-2_5-0_an_VowelNounSingular_Predicate3Singular

10-1_7-1_DeterminantPlural_NounPlural_PredicateStandard

10-0_3-1_DeterminantSingular_NounSingular_Predicate3Singular

10-0_3-0_Pronoun3Singular_Predicate3Singular

10-0_3-2_DeterminantAn_VowelNounSingular_Predicate3Singular

10-1_7-1_4-2_the_NounPlural_PredicateStandard

10-0_3-1_11-1_the_NounSingular_Predicate3Singular

10-0_NounPhrase3Singular_Predicate3Singular

--- Evolutionary Processor 17 ---

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 12 ***********

--- Evolutionary Processor 0 ---

--- Evolutionary Processor 1 ---

--- Evolutionary Processor 2 ---

10-0_3-0_Pronoun3Singular_Predicate3Singular

--- Evolutionary Processor 3 ---

10-0_NounPhrase3Singular_Predicate3Singular

--- Evolutionary Processor 4 ---

10-1_7-1_DeterminantPlural_NounPlural_PredicateStandard

--- Evolutionary Processor 5 ---

10-0_3-2_DeterminantAn_VowelNounSingular_Predicate3Singular

--- Evolutionary Processor 6 ---

--- Evolutionary Processor 7 ---

--- Evolutionary Processor 8 ---

10-0_3-1_DeterminantSingular_NounSingular_Predicate3Singular

10-0_3-1_11-1_the_NounSingular_Predicate3Singular

--- Evolutionary Processor 9 ---

--- Evolutionary Processor 10 ---

--- Evolutionary Processor 11 ---

10-0_3-1_DeterminantSingular_NounSingular_Predicate3Singular

--- Evolutionary Processor 12 ---
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10-0_3-2_5-0_an_VowelNounSingular_Predicate3Singular

10-0_3-2_DeterminantAn_VowelNounSingular_Predicate3Singular

--- Evolutionary Processor 13 ---

10-0_3-2_5-0_an_VowelNounSingular_Predicate3Singular

10-0_3-1_DeterminantSingular_NounSingular_Predicate3Singular

10-0_3-0_Pronoun3Singular_Predicate3Singular

10-0_3-2_DeterminantAn_VowelNounSingular_Predicate3Singular

10-0_3-1_11-1_the_NounSingular_Predicate3Singular

10-0_NounPhrase3Singular_Predicate3Singular

--- Evolutionary Processor 14 ---

10-1_7-1_DeterminantPlural_NounPlural_PredicateStandard

10-1_7-1_4-2_the_NounPlural_PredicateStandard

--- Evolutionary Processor 15 ---

10-1_NounPhraseStandard_PredicateStandard

10-1_7-1_DeterminantPlural_NounPlural_PredicateStandard

10-1_7-0_PronounNo3Singular_PredicateStandard

10-1_7-1_4-2_the_NounPlural_PredicateStandard

--- Evolutionary Processor 16 ---

--- Evolutionary Processor 17 ---

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 13 *************

[...]

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 14 ***********

[...]

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 15 *************

[...]

[...]

[...]

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 38 ***********

--- Evolutionary Processor 0 ---

[...]

--- Evolutionary Processor 16 ---

10-0_3-2_5-0_an_12-0_apple_13-0_6-0_eats_0-0_7-0_PronounNo3Singular

10-0_3-2_5-0_an_12-0_apple_13-0_6-0_eats_0-1_3-2_5-0_an_VowelNounSingular

10-0_3-2_5-0_an_12-0_apple_13-0_6-0_eats_0-1_3-1_11-1_the_8-0_boy

[...]

10-0_3-1_11-1_the_8-0_boy_13-0_6-0_eats_0-0_NounPhraseStandard

10-0_3-1_11-1_the_8-0_boy_13-0_6-0_eats_0-1_3-2_DeterminantAn_VowelNounSingular

10-0_3-1_11-1_the_8-0_boy_13-0_6-0_eats_0-0_7-1_DeterminantPlural_NounPlural

[...]

--- Evolutionary Processor 17 ---

10-0_3-1_11-1_the_8-0_boy_13-0_6-0_eats_0-1_3-2_5-0_an_12-0_apple

----------------------- NEP has stopped!!! -----------------------

Stopping condition found: net.e_delrosal.jnep.stopping.NonEmptyNodeStoppingCondition

------------------------------------------------------------------

If we analyze an incorrect sentence, such as the boy eat the apple, the PNEP
will continue the computation after the steps summarized above, because in
this case it is impossible to �nd a parsed string. To modify our PNEP to stop
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when this happens, it is enough to take into account that the length of the
input string is a bound for the number of steps needed (it is always possible
to get equivalent context free grammars without chaining and lambda rules;
in addition, the length of a given string is usually less than the depth of its
derivation trees).

2.2 PNEPs for shallow parsing

Motivation

The goal of the following paragraphs is to modify and use PNEPs for shallow
parsing. Shallow parsing will be described later. It is a parsing technique
frequently used in natural language processing to overcome the ine�ciency of
other approaches to syntactic analysis.

Some of the authors of this contribution were involved in developing
IBERIA, a corpus of scienti�c Spanish which is able to process the sentences
at the morphological level.

We are very interested in adding syntactic analysis tools to IBERIA. The
current contribution has this goal.

Below we will introduce shallow parsing and FreeLing, a well-known free
platform that o�ers parsing tools such as a Spanish grammar and shallow
parsers for this grammar.

Then we will show how PNEPs can be used for shallow parsing and de-
scribe a jNEP implementation. Finally some examples will be given.

Introduction to FreeLing and shallow parsing

Let us summarize some of the main di�culties encountered by parsing tech-
niques when building complete parsing trees for natural languages:

• Spatial and temporal performance of the analysis. The Early algorithm
and its derivatives [11, 24, 28] are some of the most e�cient approaches.
They, for example, provide parsing in polynomial time, with respect to the
length of the input. Its time complexity for parsing context-free languages
is linear in the average case, while in the worst case it is n2 and n3,
respectively, for unambiguous and ambiguous grammars.

• The size and complexity of the corresponding grammar, which is also dif-
�cult to design. Natural languages, for instance, are usually ambiguous.
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The goal of shallow parsing is to analyze the main components of the
sentences (for example, noun groups, verb groups, etc.) rather than complete
sentences. It ignores the actual syntactic structure of the sentences, which are
considered to be merely sets of these basic blocks. Shallow parsing tries to
overcome, in this way, the performance di�culties that arise when building
complete derivation trees.

Shallow parsing produces sequences of subtrees. These subtrees are fre-
quently shown as children of a �ctitious root node. This way of presenting the
results of the analysis can confuse the inexperienced reader, because the �nal
tree is not a real derivation tree: neither is its root the axiom of the grammar
nor its branches correspond to actual derivation rules.

Shallow parsing includes di�erent particular algorithms and tools (for in-
stance FreeLing [25] or cascades of �nite-state automata [16])

FreeLing is An Open Source Suite of Language Analyzers that provides
the scientist with several tools and techniques. FreeLing includes a Spanish
context-free grammar, adapted for shallow parsing, that does not contain a
real axiom. This grammar has almost two hundred non-terminals and ap-
proximately one thousand rules. The actual number of rules is even greater,
because they use regular expressions rather than terminal symbols. Each rule,
then, represents a set of rules, depending on the terminal symbols that match
the regular expressions.

The terminals of the grammar are part-of-speech tags produced by the
morphological analysis. So they include labels like �plural adjective�, �third
person noun� etc.

Figure 8 shows the output of FreeLing for a very simple sentence like �Él
es ingeniero�5.

FreeLing built three subtrees: two noun phrases and a verb. After that,
FreeLing just joins them under the �ctitious axiom. Figure 5 shows a more
complex example.

PNEP extension for shallow parsing

The main di�culty involved in adapting PNEPs to shallow parsing is the
�ctitious axiom. PNEPs are designed to handle context free grammars that
must have an axiom.

We have also found additional di�culties in the way in which FreeLing
reduces the number of derivation rules required by its grammar. As we have

5 He is an engineer
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Fig. 5. FreeLing output for �Aquel chico es un gran ingeniero� (That guy is a great

engineer)

mentioned above, FreeLing uses regular expressions rather than terminal sym-
bols. This kind of rules actually represents a set of rules: those whose terminals
match the regular expressions. We have also added this mechanism to PNEPs
in the corresponding �lters that implement the matching.

In the paragraphs below we will explain both problems in greater detail.
The virtual root node and the partial derivation trees (for the di�erent

components of the sentence) force some changes in the behavior of PNEPs.
Firstly, we have to derive many trees at once, one for each constituent, instead
of only one tree for the complete sentence. Therefore, all the nodes that will
apply derivation rules for the nonterminals associated with the components
in which the shallow parser is focused will contain their symbol in the initial
step. In [23] the nodes of the axiom were the only non empty nodes. More
formally:

• Initially, in the original PNEP [23], the only non empty node is associated
with the axiom and contains a copy of the axiom. Formally (NA and ΣN
stand, respectively, for the node associated with the axiom and the set of
nonterminal symbols of the grammar under consideration)
INA

= A

∀Ni ∈ ΣN , i 6= A→ INi = ∅
• The initial conditions of the PNEP for shallow parsing are:
∀Ni, INi = i

In this way, the PNEP produces every possible derivation sub-tree begin-
ning from each non-terminal, as if they were axioms of a virtually independent
grammar. However, those sub-trees have to be concatenated and then joined
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to the same parent node (virtual root node of the �ctitious axiom). We get this
behavior with splicing rules [8], [18] in the following way: (1) the PNEP marks
the end and the beginning of the sub-trees with the symbol %, (2) splicing
rules are applied to concatenate couples of sub-trees, taking the beginning of
the �rst one and the end of the second as the splicing point.

To be more precise, a special node is responsible for the �rst step. Its
speci�cation in jNEP is the following:

<NODE initCond="">

<EVOLUTIONARY_RULES>

<RULE ruleType="insertion" actionType="RIGHT" symbol="%"/>

<RULE ruleType="insertion" actionType="LEFT" symbol="%"/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="2" permittingContext="SET_OF_VALID_TERMINALS"

forbiddingContext=""/>

<OUTPUT type="RegularLangMembershipFilter"

regularExpression="%%.*|%.*%|.*%%"/>

</FILTERS>

</NODE>

During the second step the splicing rules concatenate the sub-trees. We
could choose a specialized node (just one node) or a set of nodes depending
on the degree of parallelism we prefer. The splicing rule required could be
de�ned as follows:

<RULE ruleType="splicingChoudhary" wordX="terminal1" wordY="%"

wordU="%" wordV="terminal2"/>

Where terminal2 follows terminal1 in the sentence at any place. It should
be remembered that % marks the end and beginning of the derivation trees.
If the sentence has n words, there are n-1 rules/points for concatenation. It
is important to note that only splicing rules that create a valid sub-sentence
are actually concatenated. 6

For example, if the sentence to be parsed is a_b_c_d, we would need the
following rules:

<RULE ruleType="splicingChoudhary" wordX="a" wordY="%"

wordU="%" wordV="b"/>

<RULE ruleType="splicingChoudhary" wordX="b" wordY="%"

wordU="%" wordV="c"/>

<RULE ruleType="splicingChoudhary" wordX="c" wordY="%"

wordU="%" wordV="d"/>

They could concatenate two sub-sentences like b_c and d, resulting in
b_c_d.
6 In fact, we are using Choudhary splicing rules [8] with a little modi�cation to
ignore the symbols that belong to the trace of the derivation.
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Our PNEP for the FreeLing's Spanish grammar

The jNEP con�guration �le for our PNEP adapted to FreeLing's grammar is
large. It has almost 200 hundred nodes and some nodes have dozens of rules.
We will show, however, some of its details. Let the sentence to be parsed be
�Él es ingeniero�. The output node has the following de�nition:

<NODE initCond="">

<EVOLUTIONARY_RULES>

<RULE ruleType="deletion" actionType="RIGHT" symbol=""/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="RegularLangMembershipFilter"

regularExpression=

"%[0-9\-]*(PP3MS000|PP\*)[0-9\-]*(VSIP3S0|VSI\*)

[0-9\-]*(NCMS000|NCMS\*|NCMS00\*)%"/>

<OUTPUT type="1" permittingContext=""

forbiddingContext="PP*_PP3MS000_VSI*_VSIP3S0

_NCMS*_NCMS00*_NCMS000"/>

</FILTERS>

</NODE>

We have explained above that the input sentence includes part-of-speech
tags instead of actual Spanish words. This sequence of tags, together with
the indexes of the rules that will be used to build the derivation tree, are in
the input �lter for the output node. We can also see some tags written as
regular expressions. We have added this kind of tags because FreeLing also
uses regular expressions to reduce the size of the grammar.

As an example, we show the speci�cation of one of the deriving nodes.
We can see below that the non-terminal group-verb has many rules. The rule
with trace ID 70-7 is the one that is actually needed to parse our example.

<NODE initCond="grup-verb" id="70">

<EVOLUTIONARY_RULES>

<RULE ruleType="leftMostParsing" symbol="grup-verb"

string="70-0_grup-ve[...]

<RULE ruleType="leftMostParsing" symbol="grup-verb"

string="70-1_grup-ve[...]

<RULE ruleType="leftMostParsing" symbol="grup-verb"

string="70-7_verb" [...]

[...]

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="1" permittingContext="grup-verb"

forbiddingContext=""/>

</FILTERS>

</NODE>
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The output of jNEP is also considerable. However, we can show at least the
main dynamics of the process (see Figures 6 and 7). The comments between
brackets provide explanations to facilitate understanding.

***************NEP INITIAL CONFIGURATION***************

--- Evolutionary Processor 0 ---

[THE INITIAL WORD OF EVERY DERIVATION NODE IS ITS CORRESPONDING

NON-TERMINAL IN THE GRAMMAR]

[...]

--- Evolutionary Processor 70 ---

grup-verb

[...]

--- Evolutionary Processor 112 ---

sn

[...]

--- Evolutionary Processor 190 ---

[THE OUTPUT NODE IS EMPTY]

*************** NEP CONFIGURATION - EVOLUTIONARY STEP -

TOTAL STEPS: 1 ***************

[FIRST EXPANSION OF THE TREES]

[...]

--- Evolutionary Processor 70 ---

70-6_verb-pass 70-7_verb 70-0_grup-verb_patons_patons_patons[...]

[...]

--- Evolutionary Processor 112 ---

112-104_grup-nom 112-103_grup-nom-ms 112-97_pron-mp 112-95_pron-ns[...]

[...]

*************** NEP CONFIGURATION - COMMUNICATION STEP -

TOTAL STEPS: 2 ***************

--- Evolutionary Processor 0 ---

[THE FIRST TREES WITH ONLY TERMINALS APPEAR AT THE BEGINNING OF

SPLICING SUB-NET]

--- Evolutionary Processor 178 ---

57-3_NCMS00* 151-35_VSI* 1-2_PP3MS000 99-0_NCMS* 121-2_VSI*

[...]

[THE REST GO TO THE PRUNING NODE]

--- Evolutionary Processor 189 ---

112-87_psubj-mp_indef-mp 8-3_s-a-ms 44-6_prep_s-a-fp [...]

Fig. 6. jNEP output for �Él es ingeniero�. 1 of 2

As jNEP shows, the output node contains more than one derivation tree.
We design the PNEP in this way because ambiguous grammars have more
than one possible derivation tree for the same sentence. In this case, our
PNEP will produce all the possible derivation trees, while FreeLing is only
able to show the most likely.

Figure 8 also clearly corresponds to the output of jNEP when our PNEP
is run for shallow parsing.
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*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 4 ************

[THE PROCESS OF MARKING THE END AND THE BEGINNING STARTS]

[...]

--- Evolutionary Processor 178 ---

1-2_PP3MS000_% %_151-35_VSI* 57-3_NCMS00*_% %_1-2_PP3MS000 %_99-0_NCMS* 99-0_NCMS*_%

151-35_VSI*_% 121-2_VSI*_% %_121-2_VSI* %_57-3_NCMS00*

[...]

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 7 **************

[THE SPLICING SUB-NET STARTS TO CONCATENATE THE SUB-TREES]

[...]

--- Evolutionary Processor 178 ---

156-3_1-2_PP3MS000_% 77-13_57-3_NCMS00*_% %_70-7_151-35_VSI* 34-11_99-0_NCMS*_%

%_111-4_1-2_PP3MS000 111-4_1-2_PP3MS000_% 70-7_151-35_VSI*_% %_77-13_57-3_NCMS00*

%_34-11_99-0_NCMS* %_156-3_1-2_PP3MS000

[...]

--- Evolutionary Processor 187 ---

%_121-2_VSI*_99-0_NCMS*_% %_% %_151-35_VSI*_% %_99-0_NCMS*_% %_121-2_VSI*_%

%_151-35_VSI*_99-0_NCMS*_%

--- Evolutionary Processor 188 ---

%_121-2_VSI*_57-3_NCMS00*_% %_151-35_VSI*_57-3_NCMS00*_% %_% %_151-35_VSI*_%

%_121-2_VSI*_% %_57-3_NCMS00*_%

[...]

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 18 ***********

[THE OUTPUT NODE RECEIVES THE RIGHT DERIVATION TREE. IT IS THE SAME AS THE ONE OUTPUT

BY FREELING]

--- Evolutionary Processor 190 ---

[THE FIRST ONE IS THE OUTPUT DESIRED]

%_112-99_111-4_1-2_PP3MS000_70-7_151-35_VSI*_112-103_77-13_57-3_NCMS00*_%

%_1-2_PP3MS000_151-35_VSI*_57-3_NCMS00*_%

[...]

Fig. 7. jNEP output for �Él es ingeniero�. 2 of 2
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