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Summary. In this paper we define a general class of P systems covering some bio-
logical operations with membranes, including evolution, communication, and mod-
ifying the membrane structure, and we describe and formally specify some of these
operations: membrane merging, membrane separation, membrane release. We also
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investigate a particular combination of types of rules that can be used in solving the
SAT problem in linear time.

1 Introduction

Such operations as membrane fusion (merging), membrane fission (bud-
ding, separation), and release of vesicle contents are well known phenom-
ena in cell biology. Many macromolecules are too large to be transported
across membranes through protein channels, which is why they are trans-
ported by means of vesicle formation. This process can transport packages
of chemicals into or out of the cell, the content of the vesicle is released, and
the vesicle fuses with the cell membrane.

Informally speaking, in P systems with active membranes without polar-
izations six types of rules are used: (a0) multiset rewriting rules, (b0) rules
for introducing objects into membranes, (c0) rules for sending objects out
of membranes, (d0) rules for dissolving membranes, (e0) rules for dividing
elementary membranes, and ( f0) rules for dividing non-elementary mem-
branes (see [1]). In these rules, a single object takes part in the process. We
introduce here some further types of rules: (g0) membrane merging rules,
(h0) membrane separation rules, and (i0) membrane release rules, all in
the framework of P systems with active membranes. The common feature
of these rules is the transport of multisets of objects among regions of the
system.

Some operations with membranes, other than dissolution and division
which are considered to be basic in membrane computing, were also intro-
duced in [3] and [2].

In P systems, exponential workspace is obtained by dividing mem-
branes, creating membrane, and replicating strings. We will see an interest-
ing new way for obtaining exponential workspace in linear time, by using
membrane separation. Some particular combinations of types of rules in
P systems with active membranes can solve hard problems, typically NP-
complete problems, in linear time. This possibility is illustrated here with
the SAT problem.
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2 Operations on membranes without polarization

The reader is assumed to be familiar with the fundamentals of membrane
computing, e.g., from [4]; details can be also found at http://ppage.psystems.eu/.

We are considering a P system defined as Π = (O, H, µ, w1, . . . , wm, R),
where

1. m ≥ 1 is the initial degree of the system;
2. O is the alphabet of objects;
3. H is a finite set of labels for membranes;
4. µ is a membrane structure, consisting of m membranes, labeled (not nec-

essarily in a one-to-one manner) with elements of H;
5. w1, . . . , wm are strings over O, describing the multisets of objects placed in

the m regions of µ;
6. R is a finite set of developmental rules, of the following forms:

(a0) [ a→ v ] h, for h ∈ H, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending
on the label, but not directly involving the membranes, in the sense
that the membranes are neither taking part in the application of
these rules nor are they modified by them);

(b0) a[ ] h → [ b ] h, for h ∈ H, a, b ∈ O
(communication rules; an object is introduced in the membrane dur-
ing this process);

(c0) [ a ] h → [ ] hb, for h ∈ H, a, b ∈ O
(communication rules; an objects sent out of the membrane during
this process);

(d0) [ a ] h → b, for h ∈ H, a, b ∈ O
(dissolving rules; in reaction with an object, a membrane can be
dissolved, while the object specified in the rule can be modified);

(e0) [ a ] h → [ b ] h[ c ] h, for h ∈ H, a, b, c ∈ O
(division rules for elementary membranes; in reaction with an ob-
ject, the membrane is divided into two membranes with the same
label; the object specified in the rule is replaced in the two new
membranes by possibly new objects);

(g0) [ ] h[ ] h → [ ] h, for h ∈ H
(merging rules for elementary membranes; in the reaction of two
membranes, they are merged into a single membrane; the objects of
the former membranes are put together in the new membrane);
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(h0) [ O ] h → [ U ] h[ O−U ] h, for h ∈ H, U ⊂ O
(separation rules for elementary membranes, with respect to a given
set of objects; the membrane is separated into two membranes with
the same labels; the objects from U are placed in the first membrane,
those from U −O are placed in the other membrane);

(i0) [ [ O ] h ] h → [ ] hO, for h ∈ H
(release rule; the objects in a membrane are released from a mem-
brane, surrounding it, while the first membrane disappears).

The rules are applied non-deterministically, in the maximally parallel man-
ner; among the rules of types (b0), · · · , (i0) at most one can be applied to
each membrane in each step.

Rules of types (a0), (b0), (c0), (d0), and (e0) were introduced in [1], with-
out membrane polarizations, and without the ability to change the mem-
brane labels they involve (this is the case in [4] with rules of type (b), (c)).
Moreover, in [1] rules are considered that can change the membrane labels,
and they are called type (a′0), (b

′
0), (c

′
0), and (e′0). We use this idea and

this notation also in rules of types (g0), (h0): their primed versions indicate
the fact that the labels can be changed. Specifically, these rules are of the
following forms:

(g′0) [ ] h1
[ ] h2

→ [ ] h3
, for h1, h2, h3 ∈ H.

(h′0) [ O ] h1
→ [ U ] h2

[ O−U ] h3
, for h1, h2, h3 ∈ H, U ⊂ O.

In what follows we will see how a particular combination of types of rules
can be used to solve SAT in linear time.

3 Efficiency

From [1] we know that P systems with rules of types (a0), (b0), (c0), and
(e′0) can solve SAT in linear time. In solving SAT, we can eliminate membrane
division (e′0) by using membrane separation (h′0).

Theorem 1. P systems with rules of types (a0), (b0), (c0), (h′0) can solve SAT in
linear time in a confluent way.

Proof. Let us consider a propositional formula in the conjunctive normal
form:
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β = C1 ∧ · · · ∧ Cm,

Ci = yi,1 ∨ · · · ∨ yi,li , 1 ≤ i ≤ m, where

yi,k ∈ {xj,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li.

The instance β of SAT will be encoded in the rules of the P system by multi-
sets vj and v′j of symbols, corresponding to the clauses satisfied by assigning
xj to be true and false, respectively:

vj = {ci | xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m}, 1 ≤ j ≤ n,

v′j = {ci | ¬xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m}, 1 ≤ j ≤ n.

We construct the P system

Π = (O, H, µ, w0, w1, ws, R), with

O = {di, d′i | 0 ≤ i ≤ n + m + 5}
∪ {ti,j, t′i,j, fi,j, f ′i,j | 1 ≤ i ≤ j ≤ n}
∪ {ci | 1 ≤ i ≤ m} ∪ {t, yes, no},

µ = [ [ ]0[ ]1 ] s,

ws = λ,

w0 = d0,

w1 = d0,

H = {s, 0, 1, · · · , m + 2},

and the following rules (we accompany them with explanations about how
they are used):

• Generation phase:
G1.[ di → di+1ti+1,i+1d′i+1,i+1 f ′i+1,i+1 ]1, 0 ≤ i ≤ n− 1,
G2.[ d′i → di+1ti+1,i+1d′i+1,i+1 f ′i+1,i+1 ]1, 1 ≤ i ≤ n− 1,
G3.[ O ]1 → [ U ]1[ O−U ]1,

where U = {d′i | 1 ≤ i ≤ n} ∪ {t′i,j, f ′i,j | 1 ≤ i ≤ j ≤ n},
G4.[ ti,j → ti,j+1t′i,j+1 ]1,

[ fi,j → fi,j+1 f ′i,j+1 ]1,
[ t′i,j → ti,j+1t′i,j+1 ]1,
[ f ′i,j → fi,j+1 f ′i,j+1 ]1, 1 ≤ i ≤ j ≤ n.

In n steps, 2n membranes with label 1 are created, corresponding to all possi-
ble 2n truth assignments of the variables x1, x2, · · · , xn. During this process,

TRIANGLE 6 • December 2011



24 A. Alhazov, T.-O. Ishdorj

objects ti,j, t′i,j correspond to the true value of variables xi, and objects fi,j, f ′i,j
correspond to the f alse value of variables xi. These 2n copies of membranes
1 are placed in the skin membrane (the system always has only two levels
of membranes).

G5.[ ti,n → vi ]1,
[ fi,n → v′i ]1,
[ t′i,n → vi ]1,
[ f ′i,n → v′i ]1, 1 ≤ i ≤ n.

Every object ti,j, t′i,j, fi,j, f ′i,j evolves to ti,n, t′i,n, fi,n, f ′i,n, respectively. Then
these objects evolve into objects ci, corresponding to clauses Ci, satisfied
by the true or f alse values chosen for xi.

• Checking phase:
C1.[ O ] i → [ Ui ] i[ O−Ui ] i+1,

where Ui = {ci}, 1 ≤ i ≤ m.

Next, starting with i = 1, in membranes with label i, objects ci will be
separated from the other objects, and the label of the membrane with objects
O − {ci} will become i + 1. The membranes which do not contain objects
ci+1 will never evolve anymore. If all objects ci, 1 ≤ i ≤ m, are present
in some membrane, then after m steps this membrane will evolve into a
membrane with label m + 1, containing objects dn, d′n, by the rules C1.

C2.[ d′n → dn ]m+1,
C3.[ dn ]m+1 → [ ]m+1dn,
C4.[ dn → tt ] s.

If β has solutions, then at step n + m + 1, every membrane corresponding
to a solution of β ejects dn in the skin region, and they will all be rewritten
into tt.

C5.t[ ]0 → [ t ]0,
C6.t[ ]m+1 → [ t ]m+1,
C7.[ O ]0 → [ U′ ]m+1[ O−U′ ]m+2,

where U′ = {t},
C8.[ di → di+1 ]0,
C9.[ di → di+1 ]m+2, 0 ≤ i ≤ n + m + 4.

At step n + m + 3, one copy of t enters the membrane with label 0, and
(assuming β has s solutions, 1 ≤ s ≤ 2n) s copies of t enter the s membranes
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with label m + 1, at step n + m + 4, s− 1 copies of t enter the membranes
with label m + 1, or s− 2 copies of t enter the s− 2 membranes with label
m + 1, and 1 copy of t enters the membrane with label 0. Using rule C7,
a membrane with label 0 is separated into two membranes, which contain
object t and object dn+m+4, respectively. If β has no solution, then no object
enters the membrane labeled by 0 and rule C7 is not applied.

• Output phase:
O1.[ dn+m+5 ]0 → [ ]0no,
O2.[ dn+m+5 ]m+2 → [ ]m+2yes,
O3.[ no ] s → [ ] sno,
O4.[ yes ] s → [ ] syes.

If β has solutions, then at step n + m + 5, object dn+m+5 in the membrane
with label m + 2 ejects yes into the skin and then into the environment. It is
the (n + m + 7)th step of the computation. If β has no solution, then after
n + m + 5 steps object dn+m+5 ejects object no into the skin and then into the
environment. �

The following theorem shows how membrane merging (g0) can be used
instead of rules (b0) to solve SAT.

Theorem 2. P systems with rules of types (a0), (c0), (g0), (h′0) can solve SAT in
linear time in a confluent way.

Proof. We construct the P system

Π = (O, H, µ, w0, w1, ws, R), with

O = {di, d′i | 0 ≤ i ≤ m + 2n}
∪ {ti,j, t′i,j, fi,j, f ′i,j | 1 ≤ i ≤ j ≤ n}
∪ {ci | 1 ≤ i ≤ m} ∪ {d′, t, yes, no},

µ = [ [ ]0[ ]1 ] s,

ws = λ,

w0 = d0,

w1 = d0,

H = {s, 0, 1, · · · , m + 2}.

We reuse rules of the generation phase and rule C1 in Theorem 1, and we
replace the remaining part of the construction with:
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• Checking phase (continued):
C2.[ ]m+1[ ]m+1 → [ ]m+1.

Using the merging rule as above, in at most n steps, all the membranes
corresponding to a solution of β (assuming β has s solutions, 1 ≤ s ≤ 2n)
are merged into a single “solution" membrane with label m + 1, which will
contain s copies of objects dn and d′n.

C3.[ dm+2n → d0d′ ]0,
C4.[ O ]0 → [ U′′ ]0[ O−U′′ ]m+1,

where U′′ = {d′}.

The counter object dm+2n from the membrane with label 0 is rewritten into
d0d′, and separated into two membranes with labels 0 and m+ 1, containing
objects d′ and d0, respectively. By using rule C4, the latter membrane is
merged with the “solution" membrane, if β has solutions.

C5.[ O ]m+1 → [ U′′′ ]m+1[ O−U′′′ ]m+2,
where U′′′ = {dn, d′n}.

If membrane m + 1 contains at least one object dn or d′n, then there is a
solution for β, and we can separate into two membranes, with label m +
1 which contains objects dn, d′n, and one with label m + 2, which contains
object d0. The object d0 evolves into d1.

C6.[ d0 → d1 ]m+1.

If there is no solution for β, then the merging rule C5 is not applied. In this
case, rule C6 will be applied, and object d0 evolves to d1.

• Output phase:
O1.[ d1 ]m+1 → [ ]m+1no,
O2.[ d1 ]m+2 → [ ]m+2yes,
O3.[ no ] s → [ ] sno,
O4.[ yes ] s → [ ] syes.

If β has no solutions, then at step m + 2n + 2 the object d1 from the
membrane with label m + 1 ejects object no into the skin and then into the
environment. If β has solutions, then after m + 2n + 4 steps object d1 in
the membrane with label m + 2 ejects yes into the skin and then into the
environment. This is (m + 2n + 6)th step of the computation. Thus, the sat-
isfiability problem is solved. �
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Also rules for the release of vesicle contents (i0) can be used instead of
rules (c0) in the following way.

Theorem 3. P systems with rules of types (a0), (g0), (h′0), (i0) can solve SAT in
linear time in a confluent way.

Proof. Following the generation phase of Theorem 1, and the checking phase
of Theorem 2, we replace the output phase of the construction by:

• Output phase:
O1.[ d1 → d′ no ]m+1,
O2.[ d1 → d′ yes ]m+2,
O3.[ O ]m+1 → [ U′′ ]m+1[ O−U′′ ] s,

where U′′ = {d′},
O4.[ O ]m+2 → [ U′′ ]m+2[ O−U′′ ] s,

where U′′ = {d′},
O5.[ [ O ] s ] s → [ ] sO.

If β has no solution, then the counter object d1 in the membrane with label
m + 1 is rewritten into d′no and separated into two membranes, one with
label m + 1, which contains object d′, and one with label s, which contains
object no. At the (m + 2n + 4)th step, rule O5 is applied, thus releasing
object no into the environment. If β has solutions, then the counter object
d1 in membrane with label m + 2 is rewritten into d′yes, and then separated
into two membranes. The membrane with label s will contain object yes.
After m + 2n + 6 steps, the object yes is released into the environment by
applying rule O5. �

4 Conclusions

We have considered several new types of rules for membrane handling: (g0)
membrane merging, (h0) membrane separation, and (i0) membrane release,
common in cell biology.

These types of rules could also be used in neural-like networks of mem-
branes because naturally crowded chemicals in a neuron are transmitted
through an axon, and released in to the cleft of the synaptic connections of
neurons package by package in vesicle formation and uptaken by neurons
from the cleft.

The following problems require future work: What is the power of P
systems that use particular combinations of rules of types (g0), (h0), and
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(i0) with other rules, and primed versions of these rules? For instance, can P
systems with rules (a0, b0, c0, d0, e0, g′0, h0, i0) solve SAT in linear time? What
are the versions of the rules of types (g0), (h0), and (i0) for non-elementary
membranes?
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