
Applications of Evolutionary Algorithms in
Formal Languages

Adrian Horia Dediu

Faculty of Engineering in Foreign Languages
University “Politehnica” of Bucharest
Splaiul Independentei 313, 060042,
Bucharest, Romania

Research Group in Mathematical Linguistics
Rovira i Virgili University
Avinguda Catalunya 35, 43002,
Tarragona, Spain

E-mail: adrian.dediu@urv.cat

Summary. Starting from the model proposed by means of Grammatical Evolution,
we extend the applicability of the parallel and cooperative searching processes of
Evolutionary Algorithms to a new topic: Tree Adjoining Grammar parsing. We
evolved derived trees using a string-tree-representation. We also used a linear match-
ing function to compare the yield of a derived tree with a given input. The running
tests presented several encouraging results. A post running analysis allowed us to
propose several research directions for extending the currently known computa-
tional mechanisms in the mildly context sensitive class of languages.

Triangle: Language, Literature, Computation, n. 6, 2011
Publicacions Universitat Rovira i Virgili · ISSN: 2013-939X

https://revistes.urv.cat/index.php/triangle

30 A.-H. Dediu

1 Introduction

Evolutionary Algorithms (EAs), mainly probabilistic searching techniques,
represent several converging research areas that have their roots in the
1960s. They were introduced by Hans-Paul Schwefel, Holland and De Jong.
Despite the fact that various sub-domains of EAs, Evolutionary Strategies
(ESs), Genetic Algorithms (GAs), Evolutionary Programming (EP), Genetic
Programming (GP), etc. appeared as separate research domains they all have
a basic common structure and common components. A searching space and
a coding scheme representing solutions for a given problem, a fitness func-
tion, and operators to produce offspring and select a new generation are the
main components of EAs. Common terms such as individuals that group
together the coding scheme and the fitness function, population of individ-
uals, and sub-populations are used in all EA sub-domains. EAs try to solve
searching problems by mimicking natural principles of selection and sur-
vival of the fittest individual from a population. Real world applications
of EAs deal with maximizing or minimizing objective functions such as
resource location or allocation optimization. EAs are usually used for large
searching space problems for which they find efficient solutions to problems
that in general require a large amount of computation time. Distributed Evo-
lutionary Algorithms (DEAs), parallel and cooperative searching processes
have been proposed as an extension of centralized EAs in order to avoid
premature convergence and to solve problems faster.

EAs have also been used for automatic program generation. GP, in par-
ticular, was used to generate target Lisp code. Grammatical Evolution is a
new approach proposed by O’Neill in [13] that uses Context Free Grammars
to automatically evolve computer programs in arbitrary languages.

Starting from the model proposed by Grammatical Evolution, we ex-
tended the applicability of the parallel and cooperative searching processes
of Evolutionary Algorithms to a new topic: Tree Adjoining Grammar pars-
ing. We evolved derived trees using a string-tree-representation. Implement-
ing a linear matching function to compare the yield of a derived tree with
a given input we obtained several encouraging results during the running
tests.

Due to the high complexity of some classical parsing algorithms, long
sentences analysis could be a very difficult task for a computer program.
Evolutionary Algorithms used for parsing are able to process long sentences
due to their reduced computational complexity. In one of our examples, we

TRIANGLE 6 • December 2011

Applications of Evolutionary Algorithms in Formal Languages 31

implemented a linear complexity fitness function and in conjunction with
the global complexity of the whole EA, in comparison with the O(n6) which
is the complexity of the classical parsing algorithm for the same formalism,
we increased the limit of the parsed words per sentence.

At the end of the paper we present a post running analysis that al-
lowed us to propose several research directions for extening the currently
known computational mechanisms in the mildly context sensitive class of
languages.

2 Basic aspects of evolutionary algorithms

Various sub-domains of EAs developed a more or less rigorous theory to ex-
plain why the algorithms perform so well when they solve searching prob-
lems. For genetic algorithms there are several hypotheses that try to explain
the partial results obtained. According to Goldberg [7] who introduced the
schema theorem - the lower the number of symbols in the alphabet used for
the coding scheme, the higher the implicit parallelism was, so an adequate
coding scheme for GAs should use a binary alphabet. Studies [12] with
high cardinality alphabets revealed that using or real codification had unex-
pected advantages(in particular, they made it possible to introduce new and
stronger genetic operators such as the average crossover which performs
better). In [8], Goldberg developed a new theory about how representations
with a high number of symbols could perform better. Very simple fitness
models are used for Evolutionary Strategies in order to obtain analytical
results.

Generally, there are some unknown aspects regarding the most suitable
EA operators for a given searching problem. There is a large set of recom-
bination operators such as “one point crossover”, “two points crossover”,
“shuffle crossover”, “average crossover”, “uniform mutation”, “normal mu-
tation”, “step by step mutation”, etc. Also the select next generation oper-
ator has many variations such as: “roulette wheel selection”, “elitist selec-
tion”, “disruptive selection”, “rank space selection”, etc. We can find more
details about the mentioned operators in [2], [3] and [18]. How can we
know which is the best operator set capable of solving a given problem
faster? How can we compare the results of different Evolutionary Algo-
rithms when the initial population is randomly generated and the opera-
tors act randomly? Using the new paradigms of distributed Evolutionary

TRIANGLE 6 • December 2011

32 A.-H. Dediu

Algorithms, new problems arise. Do distributed EAs perform better than
centralized EAs? How can we compare the performances of distributed or
centralized EAs? The answers to these questions depend on the problem
that EAs try to solve and up to now, due to the lack of a rigorous theory
explaining the basic aspects, empirical results are the only way of shedding
some light on this area.

2.1 Biological inspiration of evolutionary algorithms: common terms

Evolutionary Algorithms were inspired by biological models so the termi-
nology used for different data structures or procedures uses the biological
terms. It is somehow surprising that a list of common terms used in Evolu-
tionary Algorithms and Genetics are explained using a single definition and
not as terms with different “algorithmic meaning” or “biological meaning”.
The explanation relies on the fact that the common list of terms uses sev-
eral basic terms such as “generation”, “individual”, “population”, etc. the
meaning of which is clear from the biological or computational points of
view.

The following list presents only the most important terms used both in
biology and Evolutionary Algorithms.

A gene is a physical and functional unit of heredity that carries informa-
tion from one generation to the next.

The chromosome is the structure that carries the genes.
Locus means the location of a gene on a chromosome.
An allele represents one of the different forms of a gene that can exist at

a single locus.
The genome is the sum of all the genetic material in a chromosome set.
The genotype means the specific allelic composition of a certain gene or a

set of genes.
The phenotype is the visible or measurable characteristics of a genotype.
Mutation is a change of a gene.
Crossover means the exchange of genetic material between maternal and

paternal chromosomes.
Fitness in population represents the ability of a particular genotype to

reproduce itself compared to all other genotypes.
Epistasis appears when a gene expression is controlled by another gene.

TRIANGLE 6 • December 2011

Applications of Evolutionary Algorithms in Formal Languages 33

2.2 Theoretical approach on evolutionary algorithms

A very good overview of Evolutionary Algorithms theory can be found
in [1]. Briefly, an Evolutionary Algorithm may be defined as a 7-tuple

EA = (I, Φ, µ, λ, Ω, s, t) (1)

where:

• I represents the set of the searching space instances usually called in-
dividuals. Sometimes associated with individuals we can keep useful
information for genetic operators.

• Φ is a fitness function associated with individuals.
• µ denotes the number of parents.
• λ is the number of children in the population.
• Ω is a set of genetic operators which produce new λ children when

applied to the parents.
• s is the selection operator that changes the number of individuals from

parents and children to produce the next generation of parents (Iµ+λ →
Iµ). The selection operator may also consider that after one generation
the parents have completed their task and thus s selects only from the
population of children (Iλ → Iµ).

• t represents the stop criterion which may be “Stop when a good enough
value is reached by an individual fitness function”, “Stop after a certain
number of generations”, “Stop if the population converged to a single
individual”, “Stop after a maximum time available for computations”,
etc.

A general Evolutionary Algorithm can be described as follows, where
gen represents the generation number and s, t are, respectively, the selection
operator and the termination criterion.

The structure of an Evolutionary Algorithm is:
gen:=0;
initialize with random values and evaluate P(0):=
{〈−→i 1(0), Φ(

−→
i 1(0))〉, . . . , 〈−→i µ(0), Φ(

−→
i µ(0))〉};

repeat
apply genetic operators and evaluate (P(gen))→ P′(gen)=
{〈−→i ′1(gen), Φ(

−→
i ′1(gen))〉, . . . , 〈−→i ′λ(gen), Φ(

−→
i ′λ(gen))〉};

select the next generation P(gen+1):=s(P(gen),P′(gen));

TRIANGLE 6 • December 2011

34 A.-H. Dediu

gen := gen+1;
until (t(P(gen)));

2.3 Schema theorem for genetic algorithms

The schema theorem presented in [7] assumes that a genetic algorithm
works with a binary coding. First, we add a new simbol * to the binary
alphabet {0, 1} which means “matches with both 0 and 1 symbols”. Strings
formed with symbols from the extended alphabet {0, 1, ∗} are called
schemata. A schema describes a set of binary string. As an example, the
schema *10* represents the set {0100, 0101, 1100, 1101}. For a binary string
of length l there are 3l schemata and in general for strings over alphabets of
cardinality k there are (k + 1)l schemata.

Let us consider a schema H taken from the alphabet {0, 1, ∗} whose
length is l. We consider that individuals inside the algorithm have the same
number of l bits. An individual in the population represents 2l schemata
while on every position we may have the actual value or *. So in a population
of n individuals, there may be n · 2l schemata. We can now define a schema
order, denoted by o(H) that is the number of fixed positions (characters
other than the * symbol) in the schema. The length of a schema denoted by
δ(H) is the distance between the first and the last character other than the *.

Assume that we have A(t), a population A at generation t, and we use
the notation m(H, t) if there are m particular schema H inside the popula-
tion. During the selection of a new generation a string is copied with the
probability pi =

fi
∑ f j

, where fi is the fitness of the particular string and ∑ f j

is the sum of the fitness function inside the population. We write f (H) the
average fitness of the strings representing schema H and with f the average

fitness of a population, that is f =
∑ f j

n . We can deduce that after the selec-
tion of a new generation of n individuals the multiplicity of the schema H
is: m(H, t + 1) = n · pi ·m(H, t). That is

m(H, t + 1) = m(H, t)
f (H)

f

The formula above shows that the number of schemata that are below
the average fitness decreases in the subsequent generation, and the number
of schemata that are above average fitness increases during the next gener-
ation.

TRIANGLE 6 • December 2011

Applications of Evolutionary Algorithms in Formal Languages 35

During the crossover operation, schema H is destroyed with the proba-
bility pd = δ(H)

l−1 so schema H will survive with the probability ps = 1− pd.
If we consider that for a given individual there is a crossover probability pc
then the previous formula becomes:

ps ≥ 1− pc ·
δ(H)

l − 1

We used “≥” instead of “=” because the schema H might appear in the
population after a crossover of different individuals that do not represent
the schema H.

For the mutation operator the probability of surviving for a schema H
depends on every fixed surviving position. For one position the probability
of surviving is (1− pm). Therefore, for the whole schema, which has o(H)
fixed positions, we have a surviving probability (1 − pm)o(H), which for
1� pm may be approximated by the expression (1− pmo(H)).

Now, considering all the effects of selection, crossover and mutation, and
by multiplying the respective expressions, we obtain:

m(H, t + 1) ≥ m(H, t)
f (H)

f
·
[

1− pc ·
δ(H)

l − 1
− o(H) · pm

]
The interpretation of the above formula, known as the schema theorem,

is: short, low order, above average schemata receive exponential surviving
chances in the subsequent generations.

2.4 Distributed evolutionary algorithms

We consider the distributed EAs as 9-tuples

DEA = (I, Φ, µ, λ, Ω, s, t, n, Ξ) (2)

where:

• I, Φ, µ, λ, Ω and s are the same as for EAs.
• we consider t = (t f (impSol), te(maxGen)) where t f (impSol) means “ter-

minate when a solution is found that is equal to or better than imp-
Sol”, and te(maxGen) means “terminate when exceeded maxGen gener-
ations”.

• n represents the number of distributed populations that evolve in paral-
lel during the distributed EA.

TRIANGLE 6 • December 2011

36 A.-H. Dediu

• Ξ is an operator that exchanges individuals among populations.

In order to describe the structure of DEAs, we use the notation ‖procP for
“parallel execute procP”.

The structure of our implemented
Distributed Evolutionary Algorithm is:
‖initialize with random values and evaluate P1(0), . . . , Pn(0);
‖gen1 := 0, . . . , genn := 0;
‖repeat for every population
‖apply genetic operators and evaluate

(P1(gen1))→ P′1(gen1), . . . , (Pn(genn))→ P′n(genn);
‖apply exchange of individuals between populations

Ξ(Pk, Pm) f or some k, m in 1..n;
‖select the next generation P1(gen1 + 1) := s(P1(gen1), P′1(gen1)), . . . ,

Pn(genn + 1) := s(Pn(genn), P′n(genn));
‖gen1 := gen1 + 1, . . . , genn := genn + 1;

until (∃ k s.t. (t f (impSol) f or Pk(genk)) OR
(te(maxGen) f or P1(gen1) AND . . . te(maxGen) f or Pn(genn));

Studying the distributed evolutionary systems we observe the existence of
the following hierarchy of objects: individual, subpopulation, population,
distributed population, etc.

Naturally several questions arise:

• Is this hierarchy complete or can we define more and more complex
levels?

• What part of the above hierarchy might be computed in a centralized
way and what part in a distributed way using multithreading, multipro-
cessors, computer networks?

The answer to the first question is that we can imagine defining more
and more complex levels and we can use dedicated terms such as clusters
of distributed populations, super clusters, etc. In order to simplify the terms
used in distributed EAs, we propose the following terminology (Table 1):

We can imagine different distributed EAs computing architectures. We
mention that after a centralized layer there is no point for superior lay-
ers processed in a distributed way (the gain in speed coming from the
distributed processing would be canceled by the synchronization with the
lower centralized levels). In Figure 1 we present the possible interactions of a

TRIANGLE 6 • December 2011

Applications of Evolutionary Algorithms in Formal Languages 37

Level 0 Individual
Level 1 Subpopulation
Level 2 Population
Level 3 Distributed Population
Level 4 -
. . . -
Level n -

Table 1. Hierarchy of distributed EAs objects

centralized EA layer with other layers. We also note the the highest process-
ing layer being responsible for the algorithm itself needs to be centralized.

Indi vidua l

subpop ula tion

mi g ra tion/
crossove r

excha nges
with o the r

distributed

EA leve ls

Fig. 1. Centralized EA that have connections with other distributed EA levels

Using just levels instead of hierarchical terms for the population layers
we can imagine the following classes of distributed EAs (Table 2). (Table 2):

Based on the previous considerations we introduce a new notation for
distributed EA classes. We denote by 〈n, m〉, the class of a distributed EA,
where n is the total number of the EA layers, and m is the number of the

TRIANGLE 6 • December 2011

38 A.-H. Dediu

Level 0 Level 1 Level 2 Level 3 Level 4 . . . Level n
Distributed Distributed Distributed Distributed Distributed Distributed Distributed
Centralized Distributed Distributed Distributed Distributed Distributed Distributed

Centralized Distributed Distributed Distributed Distributed Distributed
Centralized Distributed Distributed Distributed Distributed

Centralized Distributed Distributed Distributed
. .

Centralized Distributed

Table 2. Possible distributed EAs computing architectures

distributed levels. As an example, the distributed GA implementation where
individuals are decentralized objects belongs to class 〈1, 0〉.

Usual distributed EAs implementations deal with 〈n, 3〉 classes. Figure 1
is also an example of such distributed EA architecture.

2.5 Evolutionary algorithms used in problem optimization, first example

When we try to solve a problem using EAs, we should first design the search
space. Depending on the number of dimensions and the searching precision
we automatically get the genetic structure of individuals. In almost all cases,
individuals in an EA represent solutions for the given problem and the
fitness function evaluates how good the solution is. Finally, choosing the set
of control parameters is a matter of personal experience and intuition.

The game of TicTacToe is played between two partners on a board as
we can see in Figure 2. Every partner marks the squares of the board with
distinct symbols. The goal of the game is to obtain a line (horizontal, ver-
tical or diagonal) of a certain length marked with the same symbol. In our
implementation one of the partners is an Evolutionary Algorithm that auto-
matically proposes the next move.

In the case of the TicTacToe game, what would be a solution for a given
situation on the board? We consider that individuals are formed from 2
genes, a starting coordinate and a direction to follow. How would one indi-
vidual be evaluated with respect to the proposed coding? Suppose that EA
plays with X. The value of an individual is the sum of already marked X
values. We assign negative values for 0 symbols in the individual’s “body”.
In order to increase the “intelligence” of the proposed solution we consid-
ered not the best individual as the next move, but the intersection of several
best individuals proposed by the algorithm.

More details regarding the implementation are not within the scope
of the current article. The implementation of the EA that plays TicTacToe

TRIANGLE 6 • December 2011

Applications of Evolutionary Algorithms in Formal Languages 39

Fig. 2. An implementation of a TicTacToe game partner using an EA engine

may be tested on the web address http://grammars.grlmc.com/GRLMC/

PersonalPages/AdrianHoria/tictactoe.html.

2.6 Grammatical evolution

Grammatical Evolution is a new approach proposed by O’Neill in [13]
that uses Context Free Grammars and Genetic Algorithms to automatically
evolve computer programs in arbitrary languages. Despite the fact that the
goal sounds very ambitious, the implementation has several limitations.

In paper [13] the EAs find a function of one independent variable and
one dependent variable in symbolic form, which fits a given sample of 20
data points (xi, yi). The quadratic polynomial function x4 + x3 + x2 + x with
points from the interval [−1, 1] was used.

The grammar used was the following:

TRIANGLE 6 • December 2011

40 A.-H. Dediu

1) < expr > ::= < expr >< op >< expr > (0
| (< expr >< op >< expr >) (1
| < pre− op > (< expr >) (2
| < var > (3

2) < op > ::= +| − |/|∗
3) < pre− op > ::= sin|cos|tan|log
4) < var > ::= X.
The algorithm constructs a symbolic expression using the sentential

form. The genetic coding is a string of bytes. First the algorithm starts with the
starting symbol (< expr >) and it expands the leftmost symbol considering
the gene value mod the number of choices. Then the next leftmost symbol
and the next gene are used. If there is only one choice then the symbol is ex-
panded without considering the gene value. This procedure continues until
all the nonterminals in the sentential form were expanded. If the string of
genes is exhausted before the nonterminals in the sentential form, then the
string of genes is used once again from the beginning as if it were a circular
string.

The fitness function evaluation promotes a multicriterial optimization,
which maximizes the number of fitting points and minimizes the error

20

∑
i=1
| f (xi)− yi|.

This approach is also useful in parsing . We can observe that GE cannot
really evolve programs, only functions specified by samples.

3 Evolutionary algorithms for tree adjoining grammatical
evolution

Context-free grammars (CFGs) are a well known class of grammars that
are extensively used for programming languages and they can also de-
scribe almost all structures of natural languages. Yet in shuch cases as
multiple agreement languages {an

1 an
2 . . . an

k |n ≥ 1, k ≥ 3}, copy languages
{ww|w ∈ {a, b}∗} and cross agreement {anbmcndm|n, m ≥ 1}, context-free
grammars are not the most appropriate investigation instrument for natu-
ral language analysis. Tree-Adjoining Grammars, or TAGs for short, were
introduced by Joshi, Levy and Takahashi in 1975 to model some linguistic

TRIANGLE 6 • December 2011

Applications of Evolutionary Algorithms in Formal Languages 41

aspects. Tree-Adjoining Grammars (TAGs) are an important class of gram-
mars, originally motivated by linguistic considerations, which subsequently
yielded important mathematical and computational results, which in turn
had linguistic implications. A.K. Joshi and Y. Shabes published an overview
of TAGs in [11].

Parsing algorithms play an important role in the implementation of com-
pilers, interpreters for programming languages and natural language pro-
cessing. Parsing usually refers to the construction of a derivation tree. It
is also possible to decide if a string belongs to a given language or not
(the membership problem) without constructing the derivation tree. Numer-
ous parsing algorithms have been developed over the years. Two of the best
known parsing algorithms for CFGs are the CYK recognizer [5] and the
Earley parser [4].

A recognizer is an algorithm that takes a string as input and either ac-
cepts it or rejects it, depending on whether it belongs to the language of a
grammar or not. In Figure 3 we can see a recognizer data flow.

Recognition
Algorithm

Grammar, Input String Accepted/Rejected

Fig. 3. A recognizer data flow

A parser is a recognizer which also outputs the derivation trees if the
string is accepted by the grammar.

3.1 Definition, components and composition operations in tree adjoining
grammars

Definition 1. A tree-adjoining grammar is a 5-tuple (T, N, I, A, S) where:

1. T is the alphabet used to build up a language (finite set of terminal symbols).
2. N is the set of non-terminal symbols (variables).
3. S is the start non-terminal symbol of the grammar.
4. I is a finite set of finite trees, which are called initial trees, and they have the

following features:
• the interior nodes are non-terminal symbols.

TRIANGLE 6 • December 2011

42 A.-H. Dediu

• the nodes on the frontier of the initial trees are terminal or non-terminal
symbols; the non-terminal symbols on the frontier which can be substituted
are marked with a down arrow (↓).

5. A is a finite set of finite trees, which are called auxiliary trees, and they have
the following features:
• interior nodes are non-terminal symbols.
• the nodes on the frontier are terminal or non-terminal symbols.
• The nodes on the frontier are marked for substitution (↓) except for the

foot node (annotated with an asterisk *). The label of the foot node must be
identical with the label of the root node.

A TAG where at least one terminal symbol (anchor) appears at the fron-
tier of every initial or auxiliary tree is called a lexicalized TAG.

The trees in I
⋃

A are called elementary trees.
The trees with roots labeled by the nonterminal A are called A-type trees.
We can associate a node address (Gorn-position) with every node in a

tree in an inductive way. The root node has the empty address. For a child
node we take the parent address and we add a dot and then the number of
children counted from the left. In the set of elementary trees we can form a
global address using tuples formed by (treeName, nodeAddress).

There are also alternative ways to assign addresses to nodes of trees.
For instance, we can assign sequential numbers to nodes by traversing re-
cursively the tree in a root-left-right or left-root-right manner. We can even
count the nodes in all the trees sequentially.

TAGs operate with two composition operations, adjoining and substitu-
tion.

Definition 2. Substitution is an operation that takes a nonterminal node A marked
for substitution by a down arrow (↓) which is located on the frontier of a tree and
replaces it with a tree from the initial trees whose root has the same label as the node
A.

Definition 3. Adjoining builds a new tree from an auxiliary tree β and another
tree α, which can be initial, auxiliary or a derived tree. Let us consider that the
root node of the auxiliary tree β is labeled by X (also the foot node, by definition).
If an internal node of the tree α is labeled by X then the adjoining operation will
construct a tree as follows:

• the sub-tree of α dominated by X, call it t, is removed from the tree α, leaving a
copy of X behind.

TRIANGLE 6 • December 2011

Applications of Evolutionary Algorithms in Formal Languages 43

• the auxiliary tree β is attached to the copy of the node labeled by X in the excised
tree α.

• the sub-tree t is attached to the foot node of β and the root of t is identified with
the foot node of β (they have the same label X).

By definition, any adjoining on a node marked for substitution is forbidden.

For linguistic reasons, we need a more precise way to specify which
auxiliary tree can be adjoined at a given node. Therefore several constraints
on adjoining were introduced.

Definition 4. In a TAG G = (T, N, I, A, S), for each node of an elementary tree
on which adjoining operation is allowed we can specify one of the following three
constraints on adjunction:

• Selective Adjunction written as SA(AT) specifies a set of trees AT ⊂ A, the
set of auxiliary trees that can be adjoined in a given node.

• Null Adjunction written as NA forbids any adjunction on a given node. We
have NA=SA(∅).

• Obligatory adjunction written OA(AT) specifies a set of trees AT ⊂ A, from
which one of the trees is mandatory to be inserted on a given node.

If there are no substitution nodes and no constraints, then we have a pure
TAG.

After applying the adjunction or the substitution operations we obtain
the derived trees. They do not have the information about how they were
built, so we need to build a special structure that can specify how a derived
tree was constructed.

Definition 5. A TAG derivation tree is a tree used to show how a derived tree was
constructed and it has:

• a root labeled by an S-type initial tree.
• all other nodes are labeled with trees and parents’ nodes addresses where the

composition operation (substitution / adjoining) has been performed.
• the arcs in the derivation tree connect a node labeled with (tree, parent’s node

address) with the parent tree. The substitution arcs are dashed and the adjoining
arcs are continuous.

An initial tree is completed if there is no substitution node on its frontier
and if all the obligatory adjunction constraints are satisfied.

The tree set, TG of a TAG is defined as the set of the completed initial
trees derived from some S-rooted initial tree.

TRIANGLE 6 • December 2011

44 A.-H. Dediu

The string language, L(G), of a TAG is the set of yields of all the trees in
the tree set TG:L(G) = {w|w = yield(t), t ∈ TG}

3.2 Lexicalized grammars

Lexicalized grammars, presented in [11] by Joshi and Shabes, have both
linguistic and formal importance.

Definition 6. A grammar is lexicalized if it consists of:

• a finite set of structures, each one associated with a lexical item called the anchor
of the corresponding structure.

• one or more operations for composing the structures.

The anchor must not be the empty string.

Proposition 1. Lexicalized grammars are finitely ambiguous.

We observe that a finite sentence has a finite number of lexical items and
hence a finite number of structures attached to the lexical items. The finite
number of structures may be combined in finitely many ways to produce
compound structures. Therefore we have a finite number of derivations that
produce the initial sentence. For this reason we have:

Proposition 2. It is decidable whether or not a string is accepted by a lexicalized
grammar.

Definition 7. We say that a formalism F can be lexicalized by another formalism
F′, if for any finitely ambiguous grammar G in F there is a grammar G′ in F′ s.t.
G and G′ generate the same tree set and G′ is lexicalized.

In general CFGs are not in lexicalized form because not all the rules contain
a lexical item on the right hand side and sometimes CFGs can be infinitely
ambiguous, containing recursive derivation chains such as X =⇒∗ X. Lex-
icalization of finitely ambiguous CFGs achieved by transforming them into
Greibach Normal Form [5], can be regarded as weak lexicalization since we
do not preserve also the structure of the derivation trees. The above defini-
tion of lexicalization may be regarded as strong lexicalization.

Definition 8. A tree-substitution grammar (TSG) is a TAG without auxiliary trees
and without the adjoin operation.

TRIANGLE 6 • December 2011

Applications of Evolutionary Algorithms in Formal Languages 45

We use the same terminology for derived trees and derivation trees. A tree
is completed if it has only terminals on its frontier. We denote with tX an
X-type initial tree and with Fr(tX) the frontier of the tree t.

The set of languages generated by TSGs is the same as the set of lan-
guages generated by CFGs. It is easy to see that for a TSG there is an equiv-
alent CFG that generates the same language. For any initial tree tX in the
TSG we write a CFG production of the form X → Fr(tX). For the other
inclusion we take a CFG grammar and for any production, we construct an
initial tree with the root the nonterminal in the left hand side of the pro-
duction, having the children the terminals and non-terminals from the right
hand side of the production. The non-terminals on the frontier of the initial
tree are marked for substitution.

The following propositions are well known from literature [11].

Proposition 3. Finitely ambiguous CFGs cannot be lexicalized by a TSG.

Proposition 4. A finitely ambiguous CFGs which does not generate the empty
string may be lexicalized by a TAG without substitution nodes.

We observe that adjunction is sufficient to lexicalize CFGs, but using
substitution as an additional operation we may obtain more compact TAGs.

3.3 A classical tree adjoining grammar recognizer

We present a version of an Earley algorithm for TAGs described by Joshi
and Schabes in [11]. The original algorithm uses a chart of items. Every
item contains a dotted tree and the dot may be in one of the following posi-
tions with respect to a node in the tree: left-and-above, left-and-below, right-
and-below, right-and-above. Because of this representation, there might be
several equivalent items in the chart with different representation as we
can see in Figure 4, for every dotted tree there can be two equivalent items
in the chart whit right-and-above and right-and-below equivalent dot posi-
tions on the left picture and right-and-above and left-and-above equivalent
dot positions on the right picture.

We introduce a shorthand notation for tree structures namely, string rep-
resentation for trees, in order to simplify tree descriptions. For the defini-
tions and notations related to N, T-trees we refer the reader to [6]. An N, T-
tree can be represented as a string by the mapping

TRIANGLE 6 • December 2011

46 A.-H. Dediu

S

e

S

α:

β

•

•
• •

 : NA

a dS

SNAb c*

Fig. 4. Equivalent dot positions

str : TN(T)→ (NB ∪ T)∗, defined as

str(ta()) = a, a ∈ T ∪ {λ} (a single-node tree labeled a),

str(tA(t1, · · · , tm)) = A str(t1) · · · str(tm) Ā, A ∈ N

(a tree labeled A with subtrees t1, · · · , tm).

where NB = N ∪ N̄, N̄ = {Ā | A ∈ N}.
If we can rapidly distinguish the nonterminals from the terminals by us-

ing, respectively, uppercase letters and lowercase letters from the alphabet,
then we can simplify the notation even more, and use only closed brackets
instead of bar symbols : i.e. str(tA(t1, · · · , tm)) = A str(t1) · · · str(tm)], A ∈
N.

Using the string-representation for trees we reduced the state description
for an item because instead of a dotted tree and a position of the dot we have
only a dotted string-tree. Additionally, the problem of equivalent dotted
items disappears, as we can see the trees in the Figure 4 have the following
representation: Se.] and SNAa.SbSNA∗]c]d].

Informal description of a TAG (LTAG) recognizer

In an attempt to reduce the number of trees in grammars, practical consid-
erations imposed the usage of lexicalized TAGs (LTAGs) instead of TAGs.
For the algorithms described in this paper the Tree Adjoining Grammars
should not be lexicalized but the implementations could benefit from the
fact that the grammars are lexicalized.

We define an item s as a 7-tuple,

s = [treeName, dottedStringTree, i, j, k, l, sat?]

where:

TRIANGLE 6 • December 2011

Applications of Evolutionary Algorithms in Formal Languages 47

• treeName is the name of an elementary tree.
• dottedStringTree is the string-representation of the tree treeName.
• i, j, k, l are indices of positions in the input string ranging between -1 and

n, n being the length of the input string. Only the indices j and k may
have the -1 value and this means that they are not bounded. The index l
is used to point the last analyzed character in the input string.

• sat? is used to disallow more than one adjunction in the same node.
sat? takes values ranging from {nil, true}, where nil means no adjunc-
tion has yet been performed on the dotted node and true means that an
adjunction has been performed on the dotted node.

According to the recognizer algorithm’s necessities, the dot may be po-
sitioned in front of the foot symbol (*) or after.

Initially, for all S-type initial trees αi, chart C contains all items of the
form:

[αi,“.”+αiStringTree, 0,−1,−1, 0, nil]

Depending on the items in chart C, new items are added to the chart.
According to the items in the chart four basic operations add new items:
PREDICT, SCAN, COMPLETE and ADJOIN to which work basically as de-
scribed in [11]. The algorithm stops in two cases:

• if no items can be added to the chart then the input string was not
recognized.

• if an item of the form:

[α, αStringTree+“.”, 0,−1,−1, n, nil],

where α is an S-type initial tree is to be added then the input string was
recognized. It is normal for indices j and k to have the value -1 since in
the item we refer to an initial tree without a footer node

Formal description of a TAG (LTAG) recognizer

We use the index in the string-tree representation as the nodes’ adresses and
the function pos to return the node number in the string-tree representation.

We use the following notations: Var is the set of variables; Term is
the set of terminals; StartingSymbol is the value of the starting symbol;
trees is the set of all elementary trees; for a given tree t we write str(t)

TRIANGLE 6 • December 2011

48 A.-H. Dediu

Functional After Current Supplementary
description dot item conditions

Scan 1 a (t1, s1+“.a”+s2, inputString[l+1]=a
i, j, k, l, nil)

Added item (t1, s1+“a.”+s2, i, j, k, l+1, nil)

Scan 2 λ (t1, s1+“.”+λ+s2,
i, j, k, l, nil)

Added item (t1, s1+λ+“.”+s2, i, j, k, l, nil)

Predict 1 V (t1, s1+“.”+V+s2, for each at ∈
i, j, k, l, nil), Adj(t1, pos(V))

Added items (at, “.”+str(at), l, -1, -1, l, nil)

Predict 2 V (t1, s1+“.”+V+s2, OA(V) = f alse
i, j, k, l, nil),

Added item t1, s1+V+“.”+s2, l, -1, -1, l, nil

Predict 3 * (t1, s1+V+“.*”+s2, for each t in trees,
l, -1, -1, l, nil) {for each V in str(t),

{ str(t)=s3+V+s4
t1 ∈ Adj(t, pos(V))
}}

Added items (t, s3+V+“.”+s4, l, -1, -1, l, nil)

Complete 1] (t1, s1+“.]”+s2, for each it in C
i, j, k, l, nil) it=(t2, s3+V+“.*]”+s4,

i, -1, -1, i, nil),
←↩(s1+“.]”)=V

Added items (t2, s3+V+“*.]”+s4, i, i, l, l, nil)

Complete 2] (t1, s1+“.]”+s2, for each it in C
i, j, k, l, nil) it=(t1, s3+“.”+V+s4,

h, j’, k’, i, sat?)
←↩(s1+“.]”)=V

Added items (t1, s1+“].”+s2, h, max(j, j’), max(k, k’), l, sat?)

Adjoin (t1, for each it in C
V+s1+“*”+s2+”.”, it=(t2,
i, j, k, l, nil) s3+“.]”+s4,

j, p, q, k, nil)
←↩(s3+“.]”)=V,
t1 ∈ Adj(t2, pos(V))

Added items (t2, s3+“].”+s4, i, p, q, l, true)

Table 3. New items added to the chart

TRIANGLE 6 • December 2011

Applications of Evolutionary Algorithms in Formal Languages 49

the string-tree representation of the tree t1; NullAdjoining is the set of
pairs (treeName, nodeAddress) for which the NullAdjoining attribute is set;
Adj(treeName, nodeAddress) is the set of auxiliary trees that can be adjoined
in the treeName at the address nodeNumber; inputString is the value of the
string to be recognized and we have the inputString = a1 . . . an; root is a
function that has one argument as a string-tree t and returns the nontermi-
nal character that is the root of the tree t; max(i, j) is the maximum value
between i and j; openBracket is a function that returns the non-terminal cor-
responding to a certain closed bracket in the string-tree representation that
may be described as follows:

counter =1

Starting from the dot position,

go right in the dotted string-tree,

increment the counter for any �]�,

decrement the counter for any V in Var,
if counter=0 then return V

Internally the algorithm builds the initialTrees and auxiliaryTrees sets
based on the trees set. We also use the item definition as described in the
informal description. The recognition algorithm works with a set of items
collected in a chart C. Also we define a procedure chartAdd that adds an
item to the chart C only if the item is not already in the chart.

The pseudo-code for the TAG recognizer algorithm may be described as
follows:

function recognize

C = φ
for each tree in initialTrees

if root(tree)=StartingSymbol then

chartAdd([tree,�.�+stringDescription(tree), 0,−1,−1, 0, nil])
end if

next tree

apply for each item in C
if (addNewItems(item)=�stop�) then

return(�recognized�)

end if

until no more items are added in the chart C
1 We can distinguish between initial trees and auxiliary trees, because auxiliary

trees will contain the footer symbol “*”

TRIANGLE 6 • December 2011

50 A.-H. Dediu

return(�not recognized�)

end function

The function addNewItems(currentItem) returns ”stop” if a new item of
the form:

[α, αStringTree+“.”, 0,−1,−1, n, nil],

where α is an S-type initial tree is to be added to chart C.
The function addNewItems considers the current item in the chart, and

depending on the character that is after the dot in the dotted string tree
description and a supplementary condition, adds new items to the chart.

To reduce the space used by variable description we use NA and OA
for NullAdjoining, ObligatoryAdjoining sets, respectively. We will also use
a for a terminal a ∈ Term, V for a variable V ∈ Var, and←↩ for the function
openBracket.

A step by step example for the classical TAG (LTAG) recognizer

We illustrate the recognizer’s work using an example. To describe the cor-
responding TAGs, we use the formalism that we have already introduced.

Example 1.

Table 4 describes the TAG G2 = (N = {S}, T = {a, b, c, d, e}, I = {α :
Se]}, A = {β : SNAaSbSNA∗]c]d]}, S).

Variable name Type Value
Var set {S}
Term set {a,b,c,d,e}
StartingSymbol value S
trees α Se]
trees β SaSbS*]c]d]
NullAdjoining β 1,5
ObligatoryAdjoining set {}
inputString value aabbeccdd

Table 4. Recognizer description of the TAG G2

The recognizer fills in the chart as described in Table 5.

TRIANGLE 6 • December 2011

Applications of Evolutionary Algorithms in Formal Languages 51

Input Item Apply
read No from Value

The positions in the input string are: 0a1a2b3b4e5c6c7d8d9
1 init α, .Se], 0, -1, -1, 0, n P1+2:P2+3
2 P1(1) β, .SNAaSbSNA*]c]d], 0, -1, -1, 0, n P2+4
3 P2(1) α, S.e], 0, -1, -1, 0, n S1-
4 P2(2) β, SNA.aSbSNA*]c]d], 0, -1, -1, 0, n S1+5

a 5 S1(4) β, SNAa.SbSNA*]c]d], 0, -1, -1, 1, n P1+6:P2+7
a 6 P1(5) β, .SNAaSbSNA*]c]d], 1, -1, -1, 1, n P2+8
a 7 P2(5) β, SNAaS.bSNA*]c]d], 1, -1, -1, 1, n S1-
a 8 P2(6) β, SNA.aSbSNA*]c]d], 1, -1, -1, 1, n S1+9
aa 9 S1(8) β, SNAa.SbSNA*]c]d], 1, -1, -1, 2, n P1+10:P2+11
aa 10 P1(9) β, .SNAaSbSNA*]c]d], 2, -1, -1, 2, n P2+12
aa 11 P2(9) β, SNAaS.bSNA*]c]d], 2, -1, -1, 2, n S1+13
aa 12 P2(10) β, SNA.aSbSNA*]c]d], 2, -1, -1, 2, n S1-
aab 13 S1(11) β, SNAaSb.SNA*]c]d], 2, -1, -1, 3, n P2+14
aab 14 P2(13) β, SNAaSbSNA.*]c]d], 3, -1, -1, 3, n P3+15:P3+16
aab 15 P3(14) α, S.e], 3, -1, -1, 3, n S1-
aab 16 P3(14) β, SNAaS.bSNA*]c]d], 3, -1, -1, 3, n S1+17
aabb 17 S1(16) β, SNAaSb.SNA*]c]d], 3, -1, -1, 4, n P2+18
aabb 18 P2(17) β, SNAaSbSNA.*]c]d], 4, -1, -1, 4, n P3+19:P3+20
aabb 19 P3(18) α, S.e], 4, -1, -1, 4, n S1+21
aabb 20 P3(18) β, SNAaS.bSNA*]c]d], 4, -1, -1, 4, n S1-
aabbe 21 S1(19) α, Se.], 4, -1, -1, 5, n C1(21+18)+22
aabbe 22 C1(21,18) β, SNAaSbSNA*.]c]d], 4, 4, 5, 5, n C2(22+17)+23
aabbe 23 C2(22,17) β, SNAaSbSNA*].c]d], 3, 4, 5, 5, n S1+24
aabbec 24 S1(23) β, SNAaSbSNA*]c.]d], 3, 4, 5, 6, n C1(24+14)+25
aabbec 25 C1(24,14) β, SNAaSbSNA*.]c]d], 3, 3, 6, 6, n C2(25+13)+26
aabbec 26 C2(25,13) β, SNAaSbSNA*].c]d], 2, 3, 6, 6, n S1+27
aabbecc 27 S1(26) β, SNAaSbSNA*]c.]d], 2, 3, 6, 7, n C2(27+9)+28
aabbecc 28 C2(27,9) β, SNAaSbSNA*]c].d], 1, 3, 6, 7, n S1+29
aabbeccd 29 S1(28) β, SNAaSbSNA*]c]d.], 1, 3, 6, 8, n C2(29+6)+30
aabbeccd 30 C2(29,6) β, SNAaSbSNA*]c]d]., 1, 3, 6, 8, n A(30+24)+31
aabbeccd 31 A(30,24) β, SNAaSbSNA*]c.]d], 1, 4, 5, 8, t C2(31+5)+32
aabbeccd 32 C2(31,5) β, SNAaSbSNA*]c].d], 0, 4, 5, 8, n S1+33
aabbeccdd 33 S1(32) β, SNAaSbSNA*]c]d.], 0, 4, 5, 9, n C2(33+2)+34
aabbeccdd 34 C2(33,2) β, SNAaSbSNA*]c]d]., 0, 4, 5, 9, n A(34+21)+35
aabbeccdd 35 A(34,21) α, Se.], 0, -1, -1, 9, t C2(35+1)+36
aabbeccdd 36 C2(35,1) α, Se]., 0, -1, -1, 9, n recognized

Table 5. Chart C after the recognition of the TAG G2 and the input string aabbeccdd

TRIANGLE 6 • December 2011

52 A.-H. Dediu

Complexity considerations for the TAG (LTAG) recognizer algorithm

The presented algorithm has the worst case time complexity O(|A| · |A⋃ I| ·
M · n6) where |A| is the number of auxiliary trees, |A⋃ I| is the number of
elementary trees, M is the maximum number of nodes in an elementary
tree and n is the length of the input string. In LTAGs, we can select from
the whole grammar only those trees that have lexical anchors in the parsing
sentence so we can dramatically reduce the number of elementary trees used
in the parsing process. The case complexity is worst during the ADJOIN
operation. As we can observe in Table 3, during the adjoin operation we
have to combine two items (t1, . . . , i, j, k, l, nil) and (t2, . . . , j, p, q, k, nil).
Therefore we have at most n6 instances of indices (i, j, k, l, p, q) and we can
call the adjoin operation |A| · |A⋃ I| ·M times.

3.4 Evolutionary algorithm for tree adjoining grammar parsing

We can find an introduction to Evolutionary Algorithms and their applica-
tions in [2] and [3] and a very good theory overview in [1]. Grammatical
Evolution (GE), proposed by a group from the University of Limerick [13],
combines aspects of Context Free Grammars with the searching capabili-
ties of Evolutionary Algorithms in order to evolve high-level languages. GE
orders the productions for every non-terminal in a CFG and then uses the
gene values in order to decide which production to use when it is necessary
to expand a given non-terminal.

GE solves two main problems. First, we might have an invalid gene value
when we want to apply a production number to expand the non-terminal.
In this case we consider the gene value mod maxValidValue: that is for the
given non-terminal we consider the gene value modulo the maximum pro-
duction number for the given non-terminal. The second problem is what
happens when we used all the genes and we still have non-terminals to ex-
pand. Then GE proposes to start to use the string of genes once again from
the beginning.

Applying a similar technique in a TAG Evolutionary Algorithm we can
construct a derivation tree and hence a derived tree whose yield matches on
a given input string.

Basic aspects of TAG (LTAG) evolution

Suppose that we have a TAG = (N, T, I, A, S) and a given input string.
We want to find a derived tree that starts with S and whose yield matches

TRIANGLE 6 • December 2011

Applications of Evolutionary Algorithms in Formal Languages 53

a given input string. Starting from an arbitrary S-type tree, we may apply
substitutions and adjoins to develop a derived tree. We stop the searching
process when the yield of the derived tree matches on a given input string.
As presented, the searching process is exponential, and at every step there
are several possible options to choose from. In fact, from the beginning we
may choose from several S-type trees, so in the derived tree we may choose
from several nodes to apply the next derivation and once a node has been
chosen, we may have several possible trees to substitute or to adjoin in the
given node.

Evolutionary Algorithms’ individuals represent solutions for a given
problem. The most complicated problem is to represent a derived tree in
the TAG formalism using a fixed number of genes.

Suppose that we have the TAG = (N, T, I, A, S) and there are |I| initial
trees and |IS| initial S-type trees. We order all the trees in the sets I and A
and all the nodes in every tree according to the node position in the string-
tree representation. Thus the tuples (tree number, node number) completely
characterize all the nodes in all the trees. We start to build a derived tree and
we carry on in the derived tree the nodes’ attributes such as “substitution
node” or the adjoining constraints. Now we can start to build the derived
tree.

We use the first gene mod |IS| to select the starting tree from the initial
S-type trees.

This initial tree will develop the derived tree.

1. We repeat the algorithm’s steps until the length of the yield of the de-
rived tree will be greater than or equal to the input string. If we finish
the genes during this process, we start to use the string of genes from
the beginning again. We count the non-terminals that do not have the
{NA} constraint in the derived tree and let nmax be the maximum num-
ber of the non-terminal node after the counting operation2. We use the
next gene mod nmax to select the next node where we apply a derivation
step

2. • If the selected node is a substitution node then we count the trees that
could be substituted in our node. Let nsmax be the maximum number
of a substitution tree. We use the next gene mod nsmax to select the
next substitution tree and after performing the substitution, we go
to the step 1

2 If we have Obligatory Adjoining constraints, they must be satisfied first.

TRIANGLE 6 • December 2011

54 A.-H. Dediu

• If the selected node is an adjoin node then we count the trees that
could be adjoined in our node, let namax be the maximum number
of an adjoin tree. We use the next gene mod namax to select the next
adjoin tree and after performing the adjoining, we go to step 1.

We can optimize the usage of genes and whenever we have a single option
for the next operation like a single tree or a single node to choose from, we
can perform the operation without consuming the gene.

We present the algorithm that describes the genetic decoding. We give
only the adjoin part, because the substitution is similar.

1) i = 0 {counter for genes index}
2) evolvedTree = initialTrees[gene[i] mod |IS|]

{IS is the set of the initial S-type trees }
3) do while len(yield(evolvedTree)) < len(is) {is : input string}
4) i = (i + 1) mod ng {ng : number of genes}
5) nmax = |{internalNodes in the evolvedTree}|−

| {internalNodes with NA attribute in the

evolvedTree}|
6) adjNode = nonTerminalCandidates[gene[i] mod nmax]
7) i = (i + 1) mod ng
8) adjSet = adjNode.Label − type auxiliary trees

9) namax = |adjSet|
10) i = (i + 1) mod ng
11) insertedTree = adjSet[gene[i] mod namax]

{p1 is the position of the adjNode
in the evolved tree}

{p2 is the position of the corresponding

closedBracket in the evolved tree of the adjNode}
12) t1 = evolvedTree.substring(0, p1)
13) t2 = insertedTree.split(“∗′′)[0]
14) {the left part of the insertedTree,
15) until the foot symbol “∗′′}
16) t3 = evolvedTree.substring(p1 + 1, p2)
17) t4 = insertedTree.split(“∗′′)[1]
18) {the right part of the insertedTree,
19) after the foot symbol “∗′′}
20) t5 = evolvedTree.substring(p2)
21) evolvedTree = t1 + t2 + t3 + t4 + t5
22) enddo

TRIANGLE 6 • December 2011

Applications of Evolutionary Algorithms in Formal Languages 55

In the “Running Examples” section we show how the decoding function
works.

Fitness function complexity

The fitness function assigns values to individuals developed by the Evolu-
tionary Algorithm. It is the most important factor that directs the searching
process of the Evolutionary Algorithms. Therefore, a fitness function that
says “yes” or “no” to the individuals of an EA is completely useless for the
searching process, because the EA cannot know if a new individual is a little
bit better or worse than another individual.

In our algorithm the characters in the input string and in the yield of the
derived tree must match and the two strings must be of equal length.

We can use several types of fitness function. The fitness function can
take values on N3, the first value representing the maximum length of
a sequence of matched characters, the second value being the number of
matches, and the third value having negative values for yields longer than
the input string. When we compare different individuals during the selec-
tion process, the first criterion is the most important, then the second and
then the third.

Let M be the number of generations after which we stop the evolution
of the TAG. We assume that the time complexity of the crossover, mutation
and selection operators is less than the fitness function evaluation complex-
ity. Under these circumstances we can say that our algorithm has a time
complexity of O(M · (µ + λ) · Time(f f)), where µ is the population size in
the algorithm, λ represents the number of children and Time(f f) is the time
complexity of the fitness function. During our tests we started with O(n3)
complexity for the fitness function, which we then reduced to O(n2). But
the results were best with a linear fitness function.

Running examples

We adapted the string-tree notation to simplify the internal representation
of the trees. We used curly brackets to specify the constraints, rectangular
brackets to specify the nodes subordinated to a nonterminal and a blank
separator after terminals. We considered that nonterminals start with an
uppercase character, the strings can be as long as required, constraints are
included and finally a “]” is used to indicate the end of the nonterminal

TRIANGLE 6 • December 2011

56 A.-H. Dediu

representation. Inside a balanced pair (“[”, “]”) we have all the children of
the nonterminal. A foot node of an auxiliary tree has no children so the
pair(“[”, “]”) is not necessary and instead, we have only the foot marker
that is the ”*”.

For tests we used the grammar TAG G = (N = {S}, T = {a}, I =
{α1 : S{na}[a S[a]], α2 : S{na}[b S[b]]}, A = {β1 : S{na}[a S[S{na} ∗ a]],
β2 : S{na}[b S[S{na} ∗ b]]}, S) that generates L(G) = {ww|w ∈ {a, b}+},
known as the copy language. In order to explain the decoding algorithm
better we illustrate it on an example. For the grammar mentioned above
and for an input string is =“aaaabbbabbaaaabbbabb”, len(is) is 20 and the
number of initial S− type trees |IS| = 2. Suppose that we have the follow-
ing string of genes: 113, 110, 248, 173, 119,... . According to the decoding
algorithm instruction no. 2), gene[0]=113, the evolvedTree is “S{NA}[b S[b
]]”. The length of the yield of the evolvedTree is less than 20 and the algo-
rithm will continue with the cycle from the third instruction. Next nmax is
1 and here due to the optimization of genes’ usage we do not increment
the gene counter as described in the fourth instruction of the algorithm. The
adjNode position is 8 (string index starts from 0), adjNode.Label is “S”, namax
is 2, gene[1]=248, the insertedTree is “S{na}[aS[S{NA}*a]]”. We have p1 = 8,
p2 = 13, t1 = “S{NA}[b ′′, t2 = “S{NA}[a S[S{NA}′′, t3 = “[b]′′, t4 = “a
]]′′, t5 = “]′′, evolvedTree = “S{NA}[b S{NA}[a S[S{NA}[b]a]]]′′.

The evolution cycle continues and we get the following evolvedTrees:
evolvedTree = “S{NA}[b S{NA}[a S{NA}[a S[S{NA}[S{NA}[b]a]a]]]]′′,
evolvedTree = “S{NA}[b S{NA}[a S{NA}[aS{NA}[b S[S{NA} [S{NA}
[S{NA} [b]a]a]b]]]]]′′, ...,
evolvedTree = “S{NA}[b S{NA}[a S{NA}[aS{NA}[b S{NA}[b S{NA}[bS
{NA} [a S{NA}[aS{NA}[a S{NA}[aS[S{NA}[S{NA}[S{NA}[S{NA}
[S{NA}[S{NA}[S{NA}[S{NA}[S{NA}[b]a]a]b]b] b]a]a]a]a]]]]]]]]]]]′′.

First we studied the behavior of the EA for several input examples, and
then we tried to compare the results with the classical parsing algorithm.

For the general behavior of the EA when it solves TAG parsing, we tested
two input strings, “aaaabbbaaaaabbba” and “aaaabbbaabbaaaaabbbaabba”
with lengths 16 and 24, respectively.

We used an evolutionary algorithm with 15 individuals as the popula-
tion size. Each individual had 20 genes with values between 0 and 255 (one
byte). We managed to simplify the fitness function because we stopped the
evolution of the derived trees as the length of the yield was equal to the
length of the input string for our particular grammar. We also considered

TRIANGLE 6 • December 2011

Applications of Evolutionary Algorithms in Formal Languages 57

Input string
aaaabbbaaaaabbba aaaabbbaabbaaaaabbbaabba

gen. Max Average Min gen. Max Average Min
0 7 3.27 2 0 5 2.67 1
1 7 6.27 6 1 8 6.33 5
2 16 7.13 6 2 8 6.93 6
3 16 7.40 6 3 12 8.20 7
4 16 7.87 7 4 12 8.73 7
5 16 8.67 7 5 12 9.07 8
6 16 11.20 8 6 12 9.20 8
7 16 11.20 8 7 12 9.53 9
8 16 11.20 8 8 12 9.73 9
9 16 12.80 8 9 24 11.80 9

10 16 15.47 8 10 24 11.93 9

Table 6. Results of tests of EAs for TAG parsing

the fitness function to be the maximum length of matching characters be-
tween the input string and the yield of the derived tree considered from the
beginning and the end of the strings.

We present the results of the runs in table 6, where gen represents the
generation number, is is the input string, Max represents the best fitness
function of an individual during one generation, Average is the average fit-
ness function of individuals during one generation and Min is the minimum
fitness function of an individual during one generation.

Theoretically the classical algorithm for parsing has the worst case com-
plexity O(n6). The problem is that for many examples the classical algo-
rithm does not reach the worst case and we believe that more important
than comparing the results for two algorithms would be to compare the
results for an average behavior. On the other hand, even if the EA uses a
linear fitness function, the number of generations multiplied by the num-
ber of individuals in the population could lead to a considerable volume of
computations while solving a parsing problem.

To compare the classical parsing algorithm with the EA we used a an
empirical method to measure the number of computations. In every cy-
cle we incremented global variables called computations. We estimated the
number of computations for both the classical algorithm and the EA us-
ing the same input string. We also used other comparative methods such
as measuring the time it took to find the solution. The only problem was

TRIANGLE 6 • December 2011

58 A.-H. Dediu

that we implemented the algorithms in two different programming environ-
ments (VBA and Java) and the running time would have been influenced by
other aspects, not only by the complexity of algorithms. Therefore we again
used two input examples whit lengths of 16 (“aaaabbbaaaaabbba”) and 20
(“aaaabbbabbaaaabbbabb”). For the classical algorithm we needed only one
run to determine the number of computations for an input example, while
for EA we considered the average result after 10 tests. The results are pre-
sented synthetically in table 7.

First example len(input)=16 Second example len(input)=20
Computations Computations

classical 827787.0 2153088.0
evoAvg 268886.3 661745.5

Table 7. Comparative tests for classical and EA TAG parsing

4 Post running analysis

Let us recall steps 12) to 21) from the algorithmic description of the adjoin
operation.

12) t1 = evolvedTree.substring(0, p1)
13) t2 = insertedTree.split(“∗′′)[0]
14) {the left part of the insertedTree,
15) until the foot symbol “∗′′}
16) t3 = evolvedTree.substring(p1 + 1, p2)
17) t4 = insertedTree.split(“∗′′)[1]
18) {the right part of the insertedTree,
19) after the foot symbol “∗′′}
20) t5 = evolvedTree.substring(p2)
21) evolvedTree = t1 + t2 + t3 + t4 + t5
We can see in Figure 5 that the adjoin operation is similar to something

like a synchronized pumping of two strings, the left side and the right side
of an auxiliary tree with respect to the foot.

We also know that TAGs have some limitations in the sense that the
language anbncndnen is not a TAL. Considering the previous observations,
we define two formalisms that can extend the TAG formalism.

TRIANGLE 6 • December 2011

Applications of Evolutionary Algorithms in Formal Languages 59

Y

X

(β)

X
Y

X

(α) (γ)

X

X *
t1 t3 t5

t2 t4 t1

t2
t3

t4

t5

t1 t3 t5

t2 t4

XX

Fig. 5. Synchronization in TAG formalism

Notations: NB = N ∪ N̄, N̄ = {Ā | A ∈ N}, DN,T is the Dyck language
over N, “enriched” with terminals (see its grammar G below), which we call
bracketed language.

G = (S, NB ∪ T, P, S),

P = {S→ λ, S→ SS} ∪ {S→ a | a ∈ T} ∪ {S→ aSā | a ∈ N}.

Definition 9. A step-synchronized rewriting system (SSR) is a quadruple G =
(N, T, P, S), where N is a finite set of non-terminal symbols, T is a finite set of
terminal symbols (N ∩ T = ∅), S ∈ N is a starting symbol, and P is a finite set of
rules that are tuples of context-free productions.

Example 2. Consider the following system

G1 = ({S, A, B, C, D}, {a, b, c, d, e, f , g, h}, P, S),

where P = {(S→ ABCD),

(A→ aAb, C → cCd), (A→ ab, C → cd),

(B→ eB f , D → gDh), (B→ e f , D → gh)}.

For any i ≥ 0 we define the sets Ni = {A(i) | A ∈ N} (intuitively,
symbols added at step i of a derivation), Vi = Ni ∪ T, and a homomorphism

TRIANGLE 6 • December 2011

60 A.-H. Dediu

hi : V → Vi defined by hi(a) = a for all a ∈ T and hi(A) = A(i) for all
A ∈ N. We also define N∗ = {Ai | A ∈ N, i ≥ 0} and V∗ = N∗ ∪ T.

Configurations of the systems G are represented by a string in V∗∗ and a
number. The starting configuration of G is (S(0), 0). We say that a configu-
ration (w, j) directly derives (w′, j′) (denoted as⇒) iff j′ = j + 1 and w and
w′ can be represented in the following way:

w = w1 A(i)
1 w2 · · ·wk A(i)

k wk+1,

w′ = w1hj+1(x1)w2 · · ·wkhj+1(xk)wk+1,

(A1 → x1, · · · , Ak → xk) ∈ P.

The derivation relation (⇒∗) is defined as a reflexive and transitive closure
of ⇒. The generated language is defined as L(G) = {w ∈ T∗ | (S(0), 0) ⇒∗
(w, n)}.

Example 3. For the system G1, consider the derivation:
(S(0), 0)⇒ (A(1)B(1)C(1)D(1), 1)⇒∗
(am A(m+1)bmB(1)cmC(m+1)dmD(1), m + 1)⇒∗
(am A(m+1)bmenB(m+n+1) f ncmC(m+1)dm gnD(m+n+1)hn, m + n + 1)⇒
(am+1bm+1enB(m+n+1) f ncm+1dm+1gnD(m+n+1)hn, m + n + 2)⇒
(am+1bm+1en+1 f n+1cm+1dm+1gn+1hn+1, m + n + 3) (see Figure 6).

The synchronization relation is represented by connecting the synchronized
nonterminals in the sentential form.

(am A(m+1)bmen B(m+n+1) f ncmC(m+1)dmgnD (m+n+1)hn, m + n + 1)

Fig. 6. For Example 3, the synchronization is by the derivation step.

We define SSRSk as the set of all step-synchronized rewriting systems
G = (N, T, P, S), where P ⊆ (N×V∗)≤k (at most k productions in all rules).
We write SSRS∗ =

⋃
k≥1 SSRSk.

Observation: L(SSRS1) = CF.
Observation: {an

1 · · · an
2k | n ≥ 1} ∈ L(SSRSk).

Definition 10. A bracketed-synchronized rewriting system (BSR) is a 4-tuple
G = (NB, T, P, S), where NB is a finite set of bracketed non-terminal symbols, T
is a finite set of terminal symbols (NB ∩ T = ∅), S ⊆ DN,T is a finite set of starting

TRIANGLE 6 • December 2011

Applications of Evolutionary Algorithms in Formal Languages 61

axioms and P is a finite set of rules that are pairs of context-free productions of the
form (A→ w1, Ā→ w2), where w1w2 ∈ DN,T .

We say that w directly derives in w′ (denoted as w ⇒ w′) iff w and w′

allow representation:

w = w1 Aw2 Āw3, w2 ∈ DN,T ,

w′ = w1x1w2x2w3, (A→ x1, Ā→ x2) ∈ P.

Observation: In each derivation starting from an axiom, every sentential
form is in DN,T . The derivation relation and the language are defined as
usual. BSRS is the set of BSR systems.

Example 4. For the system G2 = ({A, Ā}, {a, b, c, d}, P, AAĀĀ), P = {(A→
aAb, Ā→ cĀd), (A→ ab, Ā→ cd}), consider the following derivation:
AAĀĀ⇒∗ Aan−1 Abn−1cn−1 Ādn−1 Ā⇒∗
am−1 Abm−1an−1 Abn−1cn−1 Ādn−1cm−1 Ādm−1 ⇒
am−1 Abm−1anbncndncm−1 Ādm−1 ⇒ ambmanbncndncmdm (see Figure 7).

am−1 Abm−1an−1 Abn−1cn−1 Ā dn−1cm−1 Ā dm−1

Fig. 7. For Example 4, the synchronization is by the paired brackets: the nonterminals
are synchronized if the substring between them is in the bracketed language DN,T .

Theorem 1. L(BSRS) ⊆ L(SSRS2).

Proof sketch. Given a BSR G = (NB, T, P, S) we construct a SSR G′ =
(N′, T, P′, S′), where P′ = {(Ai → c(x1), Āi → c(x2)) | (A → x1, Ā → x2)}.
�
Observation: An N, T-tree can be represented as a string by the mapping

str : TN(T)→ (NB ∪ T)∗, defined as

str(ta()) = a, a ∈ T ∪ {λ} (a single-node tree labeled a),

str(tA(t1, · · · , tm)) = A str(t1) · · · str(tm) Ā, A ∈ N

(a tree labeled A with subtrees t1, · · · , tm).

Likewise, words w ∈ RN,T can be mapped into N, T-trees by the mapping
tree : RN,T → TN(T)

TRIANGLE 6 • December 2011

62 A.-H. Dediu

tree(a) = ta(), a ∈ T,

tree(A w1 · · ·wm Ā) = tA(tree(w1), · · · , tree(wm)), A ∈ N,

w1, · · · , wm ∈ RN,T , m ≥ 0,

RN,T = T ∪
⋃

A∈N
ADNT Ā

(RN,T = “rooted” bracketed language).

Observation: We recall that the foot of any auxiliary tree has an NA at-
tribute. Without restricting the generality ((yield) language family), we also
assume that the head labeled B of any auxiliary tree has an NA attribute
(otherwise replace such a tree t by the tree tNA

B (t)).

Theorem 2. L(TAG) = L(BSRS).

Proof sketch.
⊆ For a TAG G = (T, N, I, A, S) we construct the equivalent BSR system
G′ = (T, NB, P, S′) with S′ = {h(str(t)) | t ∈ I} and P = {(B → h(x1), B̄ →
h(x2)) | t = tB(t1, · · · , tm) ∈ A : str(t) = BNAx1BNA

∗ x2
¯BNA}

⊇ For a BSR G′ = (T, NB, P, S′) we construct the equivalent TAG

G = (T, N, I, A, S) where S is a new symbol,

I = {tree(SNAwS̄NA | w ∈ S′)},
A = {tree(BNAho(x1)BNA

∗ ho(x2)B̄NA) | (B→ x1, B̄→ x2) ∈ P},
ho(B) = BOA, B ∈ N, ho(a) = a, a ∈ T.

Every derivation in G′ corresponds to a derivation in G and vice-versa, so
L(G′) = L(G). �

The notion of BSR can be extended, considering tuples instead of pairs
of bracketed symbols, using the extended language Dk

N,T (see Figure 8),
defined by the grammar below

Gk = (S, Nk
B ∪ T, P, S), Nk

B = {A(i) | A ∈ N, 1 ≤ i ≤ k},
P = {S→ λ, S→ SS} ∪ {S→ a | a ∈ T} ∪
{S→ SA(1)S · · · SA(k)S | A ∈ N}.

We can define N≤k
B where the bracketed relation has at most k items.

We define BSRSk as the set of all bracket-synchronized rewriting systems
G = (N≤k

B , T, P, S). We write BSRS∗ =
⋃

k≥1 BSRSk.
Observation:{an

1 · · · an
2k | n ≥ 1} ∈ L(BSRSk).

TRIANGLE 6 • December 2011

Applications of Evolutionary Algorithms in Formal Languages 63

A(1)A(2)A(3) A(1) B(1)B(2)B(3)A(2) A(1)A(2)A(3)A(3) B(1)B(2)B(3)

Fig. 8. For the extended BSR systems we show an example of the ternary synchro-
nization.

5 Possible extensions and further research

After extending the BSR formalism we get a formalism that is very similar
to Coupled Context-Free Grammars, or Klammergrammatiken [16]. We also
find the step synchronized rewriting proprety defined as locality by Owen
and Satta in [14]. Using Recursive Matrix Systems (RMS) [10] we can also
simulate the derivations in SSRS.

Future research could go in several directions. First we could try to find
a connection between EAs for TAG parsing and DNA computing.

MDSi

MDSi+1IES

MDSi

MDSi+1

IES

IES

IES

Fig. 9. LoopDirect (ld) operation in gene assembly in Ciliates

Both domains, EAs and DNA computing, need to code solution some-
how for a given problem.

If we look at the process of gene assembly in Ciliates (we can find several
Formal Frameworks described in [9]) we observe that parts of the DNA
act as pointers as we can see in Figure 9 where MDS means Macronuclear
Destined Sequences and IES is Internally Eliminated Sequences.

We believe that there could be a connection between the non-Terminals
in BSR and non-overlapping pointers in self assembling in Ciliates and if
we could do a synchronized instead of the elimination operation insertion
as in Figure 10 we would obtain the adjoin operation as in Figure 5.

TRIANGLE 6 • December 2011

64 A.-H. Dediu

t1

t3

t3

t2

t2

t4

t4

t5

sync

Fig. 10. Synchronized insertion in DNA molecules

As a second research direction we could try to simulate the BSR systems
without rewriting rules, only adding contexts using Contextual Grammars
[15].

Also, for future developments, we will run the EAs algorithms for more
complex grammars including natural language

Parsing using the English Grammar available in the XTAG Project [19].
We will also try to guide the searching process of the EAs by using some sta-
tistical information. In order to solve the negative examples problem when
using EAs, we will combine the classical parsing algorithm with the EA in
a concurrent manner. We will thus be able to use the result of the algo-
rithm that arrives first to a conclusion. In the final phase of our research
we will focus on online tests and comparative results for natural language
parsing. Several theoretical results regarding the probability of not finding
the solution during one generation of the EA are also expected.

6 Concluding remarks

We have proposed an Evolutionary Algorithm for Tree Adjoining Grammar
parsing. We can observe that the classical parsing algorithm needs approxi-
mately 3 times more computations than the EA to solve the same problem.

TRIANGLE 6 • December 2011

Applications of Evolutionary Algorithms in Formal Languages 65

One of the disadvantages of the EA parsing algorithm is that, for nega-
tive examples, the EA will not be able to say that there is no solution. We
may not have let the algorithm run enough generations, but we ran some
tests for positive examples and we approximated the requested number of
generations required to find a solution for a certain length of the input
string.

Finally, one interesting aspect of the EA parsing algorithm is that if the
grammar is ambiguous, in one run of the same input string we found dif-
ferent parsings for the different individuals in the population.

The string-representation for trees representation could be a starting
point for developing new and more efficient TAG parsing algorithms.

We believe that our algorithms are a starting point for developing new
models for knowledge-based representation systems, automatic text sum-
marization etc.

Acknowledgement We gratefully acknowledge support from the Rovira i Virgili
University, within the research program “Ramon y Cajal” ref. 2002Cajal-BURV4. We
also thank James Rogers and Giorgio Satta for their observations regarding the cur-
rent paper and for their suggestions about possible future research.

References

1. Th. Bäck, Evolutionary Algorithms in Theory and Practice - Evolution Strategies,
Evoutionary Programming, Genetic Algorithms, Oxford University Press, 1996

2. D. Beasley, D.R. Bull, R.R. Martin, An Overview of Genetic Algorithms, Part 1, Fun-
damentals, University Computing, 1993, 15(2) pp. 58-69.

3. D. Beasley, D.R. Bull, R.R. Martin, An Overview of Genetic Algorithms, Part 2, Re-
search topics, University Computing, 1993, 15(4) pp. 170-181.

4. J. Earley, An Efficient Context - Free Parsing Algorithm, Communication ACM
13(2): 94 - 102, 1969

5. J.E. Hopcroft, J.D. Ullmann, Introduction to Automata Theory, Languages, and Com-
putation, Addison-Wesley Publishing Company, 1979

6. F. Gecseg, M. Steinby, Tree languages, Handbook of Formal Languages v. 3 (G.
Rozenberg, A. Salomaa, eds.), Springer-Verlag, 1997, 1–68.

7. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, 1989.

8. D.E. Goldberg, The Theory of Virtual Alphabets, H.-P. Schwefel and R. Mnner, edi-
tors, Parallel problem Solving from Nature, pp. 13-22. Springer-Verlag, 1990.

TRIANGLE 6 • December 2011

66 A.-H. Dediu

9. T. Harju, I. Petre, G. Rozenberg, Gene Assembly in Ciliates: Formal Frameworks,
Turku Centre for Computer Science, TUCS Technical Reports, NO 558, October
2003, ISBN 952-12-1233-0

10. D. Heckmann, Recursive Matrix Systems Diplomarbeit von Dominik Heckmann,
angefertigt am Deutschen Forschungszentrum fr Knstliche Intelligenz GmbH
und am Fachbereich 14, Informatik, Universitt des Saarlandes, Lehrstuhl Prof.
Dr. Dr. h.c. Wolfgang Wahlster Saarbrcken 1999

11. A.K. Joshi, Y. Schabes, Tree-Adjoining Garmmars, G. Rozenberg, A. Salomaa, edi-
tors, Handbook of Formal Languages, Springer-Verlag, vol. 3, pp. 69-123, 1997

12. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs,
Springer Verlag, 1992.

13. M. O’Neill, C. Ryan Automatic Generation of Programs with Grammatical Evolution,
In Proceedings of AICS , pages 72-78, 1999

14. R. Owen, G. Satta, Independent Parallelism in Finite Copying Parallel Rewriting Sys-
tems, Theoretical Computer Science 223(1-2), 1999

15. G. Paun, Marcus Contextual Grammars Series : Studies in Linguistics and Philos-
ophy , Vol. 67, 1998

16. G. Pitsch, LR(k)-Coupled-Context-Free Grammars, Inf. Process. Letter, 55(6): 349-
358, 1995

17. Y. Schabes, A.K. Joshi An Earley-Type Parser For Tree Adjoining Grammars, Depart-
ment of Computer and Information Science, University of Pennsylvania, 1988

18. P.H. Winston, Artificial Intelligence, third edition, Addison-Wesley, June 1992
19. The XTAG Project, http://www.cis.upenn.edu/∼xtag/

TRIANGLE 6 • December 2011

