
Aggregation with Recombination Patterns

M. Dolores Jiménez-López

Research Group on Mathematical Linguistics,
Rovira i Vigili University
Tarragona, Spain
E-mail: mariadolores.jimenez@urv.cat

Summary. In this paper, we show the commonalities between aggregation processes
in Natural Language Generation and recombination patterns, a framework introduced
recently as a way of generating complex sentences in natural languages using very
simple recombination –and therefore biological– rules. By showing similarities be-
tween these two mechanisms, we suggest the possibility of carrying out aggregation
by means of recombination patterns. We also refer to the possibility of using such
a biological-motivated framework in the design of efficient and simple natural lan-
guage generation devices.

1 Introduction

Natural Language Generation (NLG) may be seen as the technique of let-
ting a computer automatically create natural language out of a computa-
tional representation. In order to generate natural language from computa-
tional representations, different processes must be carried out. First, from
the knowledge base, it must be decided what to say: this is the so-called con-
tent selection phase. Then, during the so-called text plan, the order in which
the sentences should be generated to make the text coherent is decided.
Then sentence planning is carried out. And finally, in the so-called surface

Triangle: Language, Literature, Computation, n. 6, 2011
Publicacions Universitat Rovira i Virgili · ISSN: 2013-939X

https://revistes.urv.cat/index.php/triangle

90 M.D. Jiménez-López

generation, the syntactic structures and lexical choices (how to say it) are per-
formed. Part of the sentence planning is the task of aggregation.

Aggregation has become a popular research topic in the field of NLG
[8, 10]. It is usually described as a process in generation that consists of
removing redundant information without losing information. Research on
this topic has proved to be important in NLG because without aggregation
automatically generated text is often very poor. In contrast, aggregation im-
proves the quality of generated text by making it more fluent, concise and
easy to read. Vastly different approaches to aggregation can be found in the
literature and they are often not compatible. The definition of aggregation
provided in [3], and reported below, is considered to be one of the best since
it summarizes what other researchers consider this task to be:

‘Functioning as one or a set of processes acting on some inter-
mediate text structures in text planning, aggregation decides which
pieces of structures can be combined together to be realized as com-
plex sentences later on so that a concise and cohesive text can be
generated while the meaning of the text is kept almost the same as
that without aggregation.’

In this paper we want to show the commonalities between that important
area in NLG and a formalism that have recently been defined in [9] with the
aim of showing that the mechanism of recombination –found in Biology–
also works in natural language. This new framework –called Recombination
Patterns– shows that it is possible to generate a natural language (or an im-
portant part of it) by starting with a base –composed of a finite number of
simple sentences and words– and by applying a small number of recombi-
nation rules. Initially, the formalism is defined for the generation of complex
sentences in English, Italian and Spanish.

It is accepted that people do aggregation all the time to make natural lan-
guage expressions shorter, non-redundant and easy to read. On the other
hand, it seems that recombination patterns can explain in a very natural fash-
ion the way in which people process natural language. So, both aggrega-
tion and recombination patterns could be found in the human processing of
natural language. Now, since software engineering tools, data bases or ex-
pert systems are often highly redundant, aggregation processes have been
defined and implemented for NLG devices. What we claim here is that re-
combination patterns also – such as aggregation– can also be applied to the

TRIANGLE 6 • December 2011

Aggregation with Recombination 91

field of NLG and that such a new formalism may facilitate the definition of
simple and efficient natural language generation devices.

The great deal of similarities between aggregation processes that have
been defined in the area of NLG and recombination patterns lead us to
suggest here that it may be possible to carry out aggregation by means of
recombination patterns. Moreover, as we have already said, we suggest that
the naturalness of recombination patterns may enable them to be used in
the area of NLG.

The paper is divided into six sections. Section 2 and 3 briefly introduce
aggregation and recombination patterns, respectively. Section 4 compares
two issues. Section 5 suggests that it may be possible to used recombination
patterns in natural language generation. Finally, some final remarks and
basic references are presented.

2 An overview of aggregation

Researchers in the field have different understandings of what aggregation
is. According to [11], aggregation is taken to be 1) redundancy elimination,
2) abbreviation, 3) text structure combination for concise and coherent text
generation, 4) the combination of text components at any level to achieve a
cohesive text, 5) the syntactic expression of concise and tightly constructed
text and the generation of fluent, more readable and less boring text, etc.
The scope of this section is, as far as possible, to shed light on this topic by
providing answers to the questions: what, why, when and where aggrega-
tion. At the end of the section, the reader should have a clear idea of what
aggregation is, and will be able to understand the comparison we will make
with recombination patterns.

What is aggregation? Aggregation is the process of removing redundant in-
formation in a text without losing any information. In [11], two usages
of the term ‘aggregation’ are pointed out:

1. the narrow sense: ‘Aggregation is any process which maps one or
more structures into another structure which gives rise to text
which is more x-aggregated than would otherwise be the case. X-
aggregated text is text which contains no multiple nonpronominal
overt realizations of any propositional content.’

TRIANGLE 6 • December 2011

92 M.D. Jiménez-López

2. the broad sense: ‘Aggregation is the combination of two or more lin-
guistic structures into a single linguistic structure which contributes
to sentence structuring and construction.’

According to [16], aggregation is not a process, a task, or a set of de-
cisions in generation, but a reason for decisions to be made in a certain
way. Aggregation is not an end in itself. Aggregation is an emergent
phenomenon. From this perspective, aggregation is neither a process
nor a goal of processes; rather, it is a characteristic of texts which have
been generated properly.

Why is aggregation done? There are as many reasons as there are goals.
People and systems must perform aggregation to make their text more
readable, understandable, fluid, concise, coherent, cohesive...: not do-
ing so risks the reader’s misunderstanding or irritation. We assume ax-
iomatically that shorter and less redundant text is better text.

When is aggregation done? Assuming that in NLG the tasks carried out are
content selection, sentence planning and surface generation, we may say that
aggregation takes place after content selection and before surface genera-
tion. So, aggregation is part of the sentence planning. Anyway it can be
carried out whenever the appropriate structures arise, it can take place
during every phase of NLG except during content selection and surface
form generation. This leads to the view that there need not be a specific
aggregation module in a generation pipeline. Rather aggregation can be
done whenever possible on an opportunistic basis.

Where is aggregation done? Wherever the appropriate structures arise. In
fact, there seems to be no aspect of language generation which can be
excluded from a thorough consideration of aggregation.

What is aggregation done to/on? In order to answer this question, we can
refer to the several types of aggregation that have been described. The
typology suggests that it can be done at any level of linguistic repre-
sentation. Types of aggregation differ from author to author. [10] distin-
guishes: 1) Embedding or hypotactic aggregation; 2) paratactic aggregation;
and 3) lexical aggregation. A similar classification can be found in [3]
where the types of aggregation are: 1) Lexical aggregation; 2) embedding;
3) hypotactic aggregation, and 4) paratactic aggregation. Now, combining
the information from [11] and [5] we offer the following classification of
general types of aggregation:

TRIANGLE 6 • December 2011

Aggregation with Recombination 93

1. Conceptual aggregation. Conceptual aggregation typically reduces the
number of propositions in the message while increasing the com-
plexity of the value of some conceptual role.

2. Discourse aggregation. This reduces the complexity of rhetorical struc-
ture but increases the complexity of one of the propositional leaves.

3. Semantic aggregation. We take it that conceptual information is non-
linguistic, language-independent, domain knowledge and that se-
mantic information is linguistic, language-dependent representa-
tions of meaning. An example of semantic aggregation might be
the mapping of the meanings of ‘Jamie is Chris’s sister’ and ‘Chris
is Jamie’s brother’ to the meaning of ‘Chris and Jamie are brother and
sister’.

4. Syntactic aggregation. This removes redundant information, but leaves
(at least) one item in the text to carry the meaning explicitly. This is
carried out at a pure syntactic level with no information loss about
the content of the aggregation items. It is the most common form of
aggregation. The two most common rules are (a) the subject group-
ing rule and (b) the predicate grouping rule.

5. Elision. This removes information that can be inferred and leaves no
items in the text to carry the information explicitly but the informa-
tion remains there implicitly.

6. Lexical aggregation. This replaces a set of items with a new item, while
the overall meaning is kept intact.

7. Referential aggregation. This replaces redundant information with
some sort of trace, such as a pronoun, to carry the information ex-
plicitly.

The systems which implement aggregation are designed in a number of
different ways. Their architectures can be classified under the following four
categories, on the basis of where aggregation is performed:

1. Independent sentence-planning module. This treats aggregation as a mi-
croplanning subtask which happens after text planning and before sur-
face realization. When it runs, the full contents have been selected and
the rhetorical structure of the text is determined. The module attempts
to improve the text quality by performing aggregation on propositions
which are either adjacent or close enough to be brought together, but
the interaction with other NLG tasks is minimal.

TRIANGLE 6 • December 2011

94 M.D. Jiménez-López

2. Opportunistic text planning. This views aggregation as a tool used by text
planning or content selection. It is used to generate concise summaries
of some input data. The first planning task is to determine what in-
formation is essential, and what information is optional. All essential
information is included in the text plan, but then aggregation, espe-
cially embedding, is used to determine which optional facts should be
included. If an optional fact can be expressed concisely, it is included;
otherwise it is left out.

3. Discourse Organization Module. This approach combines ideas from the
first two approaches. It assumes that the content is selected as a first
independent step and that all facts passed on must be included, but
then it uses the technique of opportunistic planning to build the text
structure, yielding a concise and flowing text. It is one of the best ways to
perform aggregation when content determination can be done up-front
without regard to realization issues. This approach gives the application
a high degree of flexibility.

4. Revision-based generation. This does not contrast with the former types;
rather it is a particular feature of some systems in the other categories.
It is based on human writing analysis which concludes that writing
is usually done in three heavily interwoven (and recursively nested)
phrases: planning, sentence generation, revision. Since humans generate
multiple drafts before producing a final text, it is reasonable for NLG
systems to do the same.

3 Introducing recombination patterns

In [9], we define recombination patterns for natural language syntax with the
aim of showing that the mechanism by which genetic material is merged
–that is, recombination– works and is also valid in natural languages. The
main scope of the idea we propose is not so much to explain the human
processing of language as to be able to offer a formalism that may simplify
generation mechanisms for natural language; that is to define a formalism
that may allow the construction of natural language processing systems that
are as simple and efficient as possible. We are somehow convinced that re-
combination may well explain the way in which speakers combine linguis-
tic elements (words, phrases, sentences) that they already know in order to
construct new linguistic structures. More specifically, our research focus on

TRIANGLE 6 • December 2011

Aggregation with Recombination 95

the possibility of generating a natural language (or an important part of it)
using a finite number of words, phrases, sentences... and by only applying
recombination rules. In order to show that recombination may well describe
natural syntax we have focused, up to now, on the study of complex sen-
tences in three languages: English, Italian and Spanish. We have defined dif-
ferent formulae –called patterns– for coordinate and subordinate sentences
in these three natural languages. Up to now, we have defined 379 patterns
that allow us to generate complex sentences in English, Italian and Span-
ish by the recombination of simple sentences. Each pattern is a very simple
formalism divided into three different parts:

1. The first one –called pattern recognition– defines in terms of some basic
categories –proposition, substantive, noun, etc.– the two propositions
we always have at hand in order to generate complex sentences.

2. The second part –called pattern recombination– is where the application
of different recombination rules (insertion, deletion, transposition, trans-
formation, etc.) takes place. Taking into account that in every pattern we
start by having at hand two propositions, this phase starts by placing
Proposition 2 in some place with reference to Proposition 1. It does so
by performing either
• an initial insertion. In this type of insertion, Proposition 2 is situ-

ated before Proposition 1. The typical instruction here says: Insert
Prop.2 before Prop.1;

• a median insertion. Here, Proposition 2 is placed after the Subject of
Proposition 1, the instruction being something like Insert Prop.2

after Subject in Prop.1; or
• a final insertion. Final insertion situates Proposition 2 after Proposi-

tion 1. So, the instruction here says: Insert Prop.2 after Prop.1.
After the positioning of Proposition 2 with respect to Proposition 1,
some recombination rules are applied.

3. And finally, in the last part –called grammatical adaptation– necessary
changes (insertion of elements, transformation of verbal tenses and
modes...) in order to obtain grammatical sentences are made.

Recombination rules applied during the pattern recombination and the
grammatical adaptation phases are only of the following five types:

TRIANGLE 6 • December 2011

96 M.D. Jiménez-López

1. Insertion, where some element or structure is inserted at some point of
the string.

2. Deletion, where some elements of the structure are deleted.
3. Transposition, where some elements are shifted to another location in the

string.
4. Inversion, where elements in the string can be reversed.
5. Transformation, where some elements change their form.

One of our goals in defining such formulae –even though not the most
important one– is to do without the traditional grammatical division of com-
plex sentences and to speak just of patterns that recombine some acceptable
structures and give some other acceptable structures. Patterns defined, then,
give up the usual terminology (relative sentences, noun sentences and the
like) and are organized according the following criteria:

• Variables used. We define patterns by specifying the variables used. We
specify the variables at hand when we start the application of the rules
sequence (in) and the result obtained after the application of such a se-
quence (out).

• Type of insertion. Taking into account that in every pattern we start by
having at hand two propositions, by type of insertion we mean the place
–the beginning, middle, end– where the second proposition is situated
with respect to the first one.

• Rules sequence. Sequence of rules applied in order to obtain the complex
sentence from the two simple sentences considered.

• Element introduced. The word we introduce in order to generate a com-
plex sentence from the recombination of two simple ones.

The following example shows what patterns look like. In this example,
the four criteria above can be observed. Notice, also, that the three different
parts mentioned above are distinguished: (1) pattern recognition (roman);
(2) pattern recombination (italics); and (3) grammatical adaptation (boldface).
Moreover, we consider that each of the simple sentences in the so-called
pattern recognition phase belongs to a Corpus (C).

By using the pattern in Table 1, sentences like ‘The book which he read
belonged to John’, ‘The umbrella which she took is mine’, ‘The report which Karen
submitted implicated several of her friends’ or ‘The books which he had recom-
mended were unobtainable’ can be generated. In order to show how patterns
work, we show how to generate the first sentence. The reader can easily

TRIANGLE 6 • December 2011

Aggregation with Recombination 97

Pattern: (in: x, y, w, z, s; out: x WHICH w s y)
Rules Sequence: Median Insertion, Transposition, Deletion, Insertion

English: WHICH

xy = Prop. 1: Proposition ∈ C
wz = Prop. 2: Proposition ∈ C
x: Substantive ∈ C
w: Substantive ∈ C
y: Predicate ∈ C
z = s x: Predicate ∈ C
s: Verb ∈ C

x (w s x) y: Quasi Proposition Insert Prop.2 after x in Prop.1

x (x w s) y: Quasi Proposition Transpose x in Prop.2 to initial position in Prop.2

x WHICH w s y: Proposition Delete x in Prop.2 & Insert WHICH

Table 1. Example of a Recombination Pattern.

check how to obtain the other three –and sentences of the same type– by
using the same pattern. As shown in the first part of the pattern in Table 1,
we start by identifying two simple sentences and by defining them in terms
of basic categories as shown below:

• The book belonged to John:= x y
• He read the book:= w z; z = s x

– The book:= x
– belonged to John:= y
– He:= w
– read the book:= z
– read:= s

Now, once we know the elements we have at hand, we start the phase of
pattern recombination. In our example, we perform the two recombina-
tion rules –Insert Prop.2 after x in Prop.1; Transpose x in Prop.2

to initial position in Prop.2– indicated in the pattern above:

The book (he read the book) belonged to John:= x (w s x) y
The book (the book he read) belonged to John:= x (x w s) y

TRIANGLE 6 • December 2011

98 M.D. Jiménez-López

And finally, in the grammatical adaptation phase we introduce the elements
required in order to obtain a grammatical sentence. By performing the rule
indicated in the pattern –Delete x in Prop.2 & Insert WHICH– we obtain
the following structure:

The book WHICH he read belonged to John:= x which w s y

The patterns we have defined show how to combine and modify sim-
ple sentences in order to generate complex ones. What is important in our
formalism is that we can generate complex structures by using simple sen-
tences and by applying only five types of very simple rules: insertion, inver-
sion, deletion, transposition and transformation. This simplifies the generation
of natural languages quite considerably. From the patterns defined it may
not be difficult to define an algorithm that specifies the steps required to
generate complex sentences from simple ones. We also have the intuition
that such an algorithm may be language independent, since patterns de-
fined for the three languages considered are very similar –they only have
significant differences in the so-called grammatical adaptation phase. The
definition of an algorithm of these characteristics may have important im-
plications in the fields of natural language generation and language univer-
sals, since it shows that formal methods can be defined to generate natural
languages independently of specific languages. Such a formalism may also
have interesting implications in the areas of cognitive science or machine
learning theory since –as pointed out by [1]– intuitively, maybe recombina-
tion rules are more feasible than rewriting systems to explain how humans
process language.

4 Aggregation versus recombination patterns

The task of aggregation is to combine simple representations to form a com-
plex one. Recombination patterns fit with this broad sense of aggregation
understood as the ‘combination’ of any two linguistic structures to produce
a third more ‘complex’ structure.

According to [11], regardless of the level of representation, aggrega-
tion is performed on linguistic structures (unless they are predominantly
conceptual). Thus, theories of coordination and subordination are relevant.
However, there is almost no mention of linguistic theory in the aggrega-
tion literature. There are several theories of coordination and subordination

TRIANGLE 6 • December 2011

Aggregation with Recombination 99

in the linguistics literature which could be used, but this appears not to
have been done. Instead, relatively simple and superficial approaches, es-
pecially in syntactic aggregation, have been adopted. Indeed, compared to
the linguistic theories available, the treatments of coordination in particular
implemented NLG systems have been relatively trivial. The conclusion we
draw from this is that any successful system which achieves ‘aggregated
text’ will have to incorporate linguistic knowledge about coordination and
extraction, ellipsis, focus, centering and discourse and lexical semantics. Re-
combination patterns can offer a very simple linguistic theory of syntax that
may contribute to the improvement of aggregation processes in NLG by
incorporating a natural and implementable treatment of coordination and
subordination.

In [12], Casper (Clause Aggregation in Sentence PlannER) is introduced
as a sentence planner which focuses on generating concise sentences –an
expression is more concise than another expression if it conveys the same
amount of information in fewer words. Complex sentences combine clauses
and are more concise than the corresponding simple sentences because mul-
tiple references to the recurring entities are removed. Clause aggregation
can happen at three levels: 1) inferential, 2) rhetorical, and 3) linguistic.
Here we are interested only in the linguistic level. At this level, lexical and
syntactic information are used to combine clauses. We can distinguish the
following two types of linguistic aggregation operators:

1. Hypotactic operators. The term hypotaxis describes the relation between a
dependent element and its dominant clause. To aggregate two proposi-
tions using hypotactic operators, the propositions must share some en-
tities in common. When they do, hypotactic operators try to transform
one of the clauses into a modifier. Since the goal is to generate concise
text, CASPER prefers to transform a proposition into an adjective if pos-
sible, then a PP, a participle clause, and if all else fails, a relative clause.

2. Paratactic operators. Paratactic aggregation operators combine clauses us-
ing constructions of equal status, such as coordination. Two approaches
to combining propositions using coordinate constructions can be distin-
guished. In the first approach, adjacent propositions that have only one
slot containing distinct elements are collapsed into one proposition with
one conjoined slot containing the distinct elements. In the second ap-
proach, the conjoined propositions have distinct elements in more than
one slot. To combine them, each conjoined proposition is generated, but

TRIANGLE 6 • December 2011

100 M.D. Jiménez-López

deletion rules are used to ensure the resulting sentence has the correct
ellipsis.

If we consider the above two types of operators used in linguistic aggre-
gation and we look at some examples of aggregation rules, we will realize
the similarities between the technique used in Natural Language Genera-
tion and recombination patterns. Those similarities could support our idea
of applying our framework to the field of aggregation. Moreover, we claim
that recombination patterns provide a simple and natural linguistic theory
of coordination and subordination that can be easily used in those syntactic
aggregation processes.

We can distinguish between embedding and paratactic aggregation. Em-
bedding is considered the most interesting and powerful type of aggrega-
tion. It can be used to express multiple facts about an entity concisely, and
it is an effective tool in opportunistic generation. Three types of embedding
are given in [15]: nominal, adjectival, and adverbial. Each type has a number
of possible realizations with different complexities:

1. Nominal. A nominal can be embedded as a noun or an appositive phrase.
For example, given ‘King made this jewel’; ‘King is a Scottish designer’, the
second proposition can be embedded as a noun: ‘The Scottish designer
King made this jewel’, or as a appositive phrase: ‘King, a Scottish designer,
made this jewel’.

2. Adjectival. An adjectival can be embedded as an adjective, a preposi-
tional phrase or a relative clause. For example, given ‘A man bought the
picture’; ‘The man had blond hair’, the second proposition can be embed-
ded as an adjective: ‘A blond man bought the picture’, as a prepositional
phrase: ‘A blond man with blond hair bought the picture’, or as a relative
clause: ‘A man who had blond hair bought the picture’.

3. Adverbial. An adverbial can be realized as an adverb or a prepositional
phrase. For example, given ‘Paula danced with Peter’; ‘She was willing’,
the second proposition can be embedded as an adverb: ‘Paula danced
with Peter willingly’, or as a prepositional phrase: ‘Paula danced with Peter
with willingness’.

When many forms of embedding are possible for the same proposition,
prefer the simplest one.

In [9] we have defined recombination patterns that can account in a very
simple way for the three types of embedding referred in [15]. However, in

TRIANGLE 6 • December 2011

Aggregation with Recombination 101

order to show the similarities between aggregation processes and recombi-
nation patterns we focus here on paratactic aggregation. Paratactic aggre-
gation consists of conjoining two or more propositions with the help of a
coordinating conjunction. Redundant information can be elided so that the
conjunction can be found at any depth in the sentence structure. For exam-
ple: ‘John has a car’; ‘John drives to school’ can be aggregated to ‘John has a car
and drives to school’. At a deeper nesting level, ‘John walks with Mary’; ‘John
walks with Jane’ can be aggregated to ‘John walks with Mary and Jane’.

In what follows we will use the following abbreviations: S = Subject; P =
Predicate; Do = Direct object; Pc = Predicative Subject Complement; Conn
= Connectives, i.e. And, Or, Xor; Xor = exclusive or. Moreover, we assume
that a normal English clause has the following order S P Do. Two examples
of aggregation rules are shown in Tables 2 and 3.

Definition of Predicate and Direct Object grouping (PDO-grouping):

S1PDo Conn S2PDo Conn SnPDo −→ S1 Conn S2 Conn... SnPDo

Table 2. Example of an Aggregation Rule: PDO-grouping.

Definition of Subject and Predicate grouping (SP-grouping):

SP(Do1 Xor Pc1) Conn SP(Do1 Xor Pc2) Conn... SP(Don Xor Pcn) −→ SP(Do1 Xor
Pc1) Conn (Do2 Xor Pc2) Conn (Don Xor Pcn)

Table 3. Example of an Aggregation Rule: SP-grouping.

If we apply the aggregation rule in Table 2 to the following two sen-
tences: 1) ‘John is a student’ and 2) ‘Mary is a student’, the aggregated sentence

TRIANGLE 6 • December 2011

102 M.D. Jiménez-López

obtained is: ‘John and Mary are students’, where the grouped phrase is: ‘are
students’.

Now, if we apply the aggregation rule in Table 3 to: ‘John is a boy’ and
‘John is tall’, the result after aggregation with Subject and Predicate Group-
ing is : ‘John is a boy and tall’, where the grouped phrase is: ‘John is’.

If we compare the aggregation rules in Tables 2 and 3 with the recombi-
nation patterns in Tables 4 and 5, the similarities are evident.

PATTERN: AND (Median Insertion)

x y: Proposition ∈ C
w y: Proposition ∈ C
x: Substantive ∈ C
w: Substantive ∈ C

x (w y) y: Quasi Proposition Insert Prop.2 after Subject in Prop.1

x AND (w y) y: Quasi Proposition Insert AND before Prop.2

x AND w y: Proposition Delete in Prop.2 elements present in Prop.1

Table 4. Recombination Pattern: AND (Median Insertion).

By using the recombination pattern in Table 4, we can obtain an aggregated
sentence like ‘Gordon and Shirley missed the meeting’ by performing the steps
established in the pattern as follows:

• Gordon missed the meeting:= x y
• Shirley missed the meeting:= w y

Gordon:= x
missed the meeting:= y
Shirley:= w

Gordon (Shirley missed the meeting) missed the meeting:= x (w y) y

Gordon AND (Shirley missed the meeting) missed the meeting:= x
and (w y) y

TRIANGLE 6 • December 2011

Aggregation with Recombination 103

PATTERN: AND (Final Insertion)

x y: Proposition ∈ C
x z: Proposition ∈ C
x: Substantive ∈ C

x y (x z): Quasi Proposition Insert Prop.2 after Prop.1

x y AND (x z): Quasi Proposition Insert AND after Prop.1

x y AND z: Proposition Delete in Prop.2 elements present in Prop.1

Table 5. Recombination Pattern: AND (Final Insertion).

Gordon AND Shirley missed the meeting:= x and w y

Now if we apply the recombination pattern in Table 5, we can obtain
paratactic aggregations such as the one in ‘Smith hit the ball and ran to first
base’ by performing the rules stated in the pattern:

• Smith hit the ball:= x y
• Smith ran to first base:= x z

Smith:= x
hit the ball:= y
ran to first base:= z

Smith hit the ball (Smith ran to first base):= x y (x z)

Smith hit the ball AND (Smith ran to first base):= x y and (x z)
Smith hit the ball AND ran to first base:= x y and z

What we have tried to show in this section is that recombination patterns
and rules proposed in the field of aggregation are very similar. In fact, the
same result can be obtained by applying an aggregation rule, such as the
ones in Tables 2 and 3, or by applying a recombination pattern such as the
ones defined in Tables 4 and 5. Therefore, what we claim here is that aggre-
gation may be carried out by using recombination patterns, an integrative
approach to natural syntax coming from formal languages, biology and lin-
guistics. By offering a simple, natural and implementable new approach to

TRIANGLE 6 • December 2011

104 M.D. Jiménez-López

syntax, recombination patterns might provide the missing linguistic theory
in most of the implemented aggregation systems.

5 NLG with recombination patterns

In this section we would like to suggest the possibility of applying recom-
bination patterns to natural language generation. What we present here is
just a preliminary intuition about this possibility, nothing else. A great deal
of research should be done in this direction in order to actually define an
NLG system based on the formal framework introduced in this paper.

In general it is accepted that in a Natural Language Generation System
the following phases can be distinguished:

• Content selection: from the abundant knowledge base we select what to
say. This phase packages information as verb-based, clause-sized propo-
sitions, each of which is realized as a single sentence. Many of these
propositions share common features, such as the entity being described.
If a generation system simply generates each proposition as a sentence,
the output will contain many repetitive and redundant references to
common features.

• Text plan: decides the order in which the sentences should be generated
to make the text coherent.

• Sentence planning: its main task is aggregation –the combining of seman-
tically related propositions in order to produce concise and fluent ex-
pressions. The goal or the sentence planner is to transform a set of input
propositions into a minimum number of words under lexical, grammat-
ical and pragmatic constraints. This transformation process occurs in
multiple stages. In each stage, a set of combining operators is applied to
the propositions.

• Surface generation: it has to be decided how to say it, i.e., the realization of
the syntactic structures and lexical choices.

Now let us take a slightly simplified view of the text generation process
as a pipeline of three stages: 1) Text planning (which determines the content
and overall discourse structure of the text material), followed by 2) sentence
planning (which decides on the sentence structure and scope), which in turn
is followed by 3) surface form realization (which is based on syntax). So, the
steps in a natural language generation system using aggregation techniques
can be the ones in Figure 1.

TRIANGLE 6 • December 2011

Aggregation with Recombination 105

Content Selection/Text Plan

?
Input Proposition

?
Sentence Planner-Aggregation

?
Aggregated Text

?
Surface Generation

?
Complex Sentence

Fig. 1. NLG System with Aggregation.

If we apply our framework to the scheme of natural language genera-
tion steps in Figure 1, we obtain a completely equivalent NLG system that
consists of the same steps specified with a recombination terminology as
shown in Figure 2.

So, in our model we can say that aggregation is performed in the pattern
recombination phase, whereas surface generation is equivalent to the gram-
matical adaptation phase in recombination patterns. Taking into account those
equivalences, we could define an NLG system in which once the content of
the text is determined we receive a text plan where:

1. we can recognize some patterns in the so-called pattern recognition phase;
2. we can apply pattern recombination by performing a task analogous to

the one performed by the so-called aggregation technique –as a matter of
fact, what we do in such a phase is to DELETE redundant elements and,
therefore, to provide a more readable text (the same task performed by
aggregation);

3. in the grammatical adaptation phase we perform a task analogous to sur-
face generation in natural language generation mechanisms, since what

TRIANGLE 6 • December 2011

106 M.D. Jiménez-López

Content Selection/Text Plan

?
Input Proposition

?
Pattern Recognition

?

Pattern Recombination

?

Recombined Pattern

?
Grammatical Adaptation

?
Complex Sentence

Fig. 2. NLG System with Recombination Patterns.

we do here is to make the necessary modifications in order to provide a
grammatical sentence (agreement, tense modification, and so on).

6 Final remarks

In this paper we have made a preliminary introduction of a new framework
for linguistics based on the behaviour of DNA molecules. Recombination
patterns seem to be quite suitable for explaining in a completely new way
some syntactic phenomena. We claim that they are a powerful and simple
model that can be very useful to:

1. Reconstruct syntax with molecular methods.
2. Formulate some systems capable of generating the larger part of syntactic

structures of language.

TRIANGLE 6 • December 2011

Aggregation with Recombination 107

3. Define a formalization that can be implemented and may be able to de-
scribe and predict the behaviour of syntactic structures.

The considerable number of similarities between aggregation and re-
combination patterns has led us to suggest the possibility of carrying out
aggregation by means of recombination. To the question ‘why recombina-
tion patterns for aggregation processes?’ we can answer by referring to the
main features of the model introduced here:

• Simplicity:
– A limited number of patterns are sufficient to explain every syntactic

phenomenon.
– It is possible to model syntax with just five operations.
– It is based on cutting and pasting mechanisms, that are simpler and

more efficient than rewriting.
• Naturalness: They reconstruct syntax with natural methods and therefore

provide a natural model for natural languages.
• Linguistic base: They formulate systems to generate complex syntactic

structures of natural language.
• Computational Suitability: They define a formalization of language that

can be implemented.

References

1. G. Bel Enguix, Molecular Computing Methods for Natural Language Syntax. GRLMC
Report, 18/01, Tarragona (2001).

2. H. Cheng & Ch. Mellish, Capturing the Interaction between Aggregation and
Text Planning in Two Generation Systems. In INLG’2000. Proceedings of the First
International Conference on Natural Language Generation. (2000).

3. H. Cheng, Ch. Mellish & M. O’Donnell, Aggregation Based on Text Structure for
Descriptive Text Generation. In Proceedings of the PhD Workshop on Natural Lan-
guage Generation, 9th European Summer School in Logic, Language and Information
(ESSLLI97). Aix-en-Provence (1997).

4. C.K. Chuah, Aggregation by Conflation of Quasi-Synonymous Units in Author
Abstracting. In TALN. 8e Conférence sur le Traitament Automatique des Langues Na-
turelles. Tours (2001): 143-152.

5. H. Dalianis, Aggregation as a Subtask of Text and Sentence Planning. In
J.H.Stewman (ed.): Proceedings of Florida AI Research Symposium, FLAIRS-96. Key
West, Florida (1996): 1-5.

TRIANGLE 6 • December 2011

108 M.D. Jiménez-López

6. H. Dalianis, Aggregation, Formal Specification and Natural Language Genera-
tion. In Proceedings of the NLDB’95, First International Workshop on the Application
of Natural Language to Data Bases. Versailles (1995): 135-149.

7. H. Dalianis, Aggregation in Natural Language Generation. Journal of Computa-
tional Intelligence, 15/4 (1999): 384-414.

8. H. Dalianis & E. Hovy, Aggregation in Natural Language Generation. In Adorni,
G. and Zock, M. (eds.): Trends in Natural Language Generation: an Artificial Intel-
ligence Perspective, EWNLG’93, Fourth European Workshop. LNAI 1036, Springer,
Berlin (1996): 88-105.

9. M.D. Jiménez-López & V. Manca, Recombination Patterns for Natural Syntax.
submitted.

10. E.J.S. Joanis, Review of the Literature on Aggregation in Natural Language Genera-
tion. Technical Report CSRG-398, Department of Computer Science, University
of Toronto (1999).

11. M. Reape & Ch. Mellish, Just what is aggregation anyway? In Proceedings of the
7th European Workshop on Natural Language Generation. Toulouse (1999): 20–29.

12. J. Shaw, Clause Aggregation Using Linguistic Knowledge. In Proceedings of the
9th International Workshop on Natural Language Generation. Niagara-on-the-Lake,
Canada (1998): 138-147.

13. J. Shaw, Segregatory Coordination and Ellipsis in Text Generation. In Proceed-
ings of the 36th Association for Computational Linguistics and the 17th International
Conference on Computational Linguistics. Montreal (1998): 1220-1226.

14. J. Shaw & K. McKeown, An Architecture for Aggregation in Text Generation. In
Proceedings of the 15th International Joint Conference on Artificial Intelligence. Nagoya
(1997).

15. D. Scott & C. de Souza, Getting the Message Across in RST-based Text Genera-
tion. In Current Research in Natural Language Generation. Academic Press, London
(1990).

16. J. Wilkinson, Aggregation in Natural Language Generation: Another Look. Technical
Report, Computer Science Department, University of Waterloo (1995).

TRIANGLE 6 • December 2011

