Triangle: Language, Literature, Computation, n. 6, 2011
Publicacions Universitat Rovira i Virgili - ISSN: 2013-939X
https://revistes.urv.cat/index.php/triangle

On the Concepts of Parallelism in Biomolecular
Computing

Remco Loos!, Benedek Nagy!~?

1 Research Group on Mathematical Linguistics

Rovira i Virgili University

Tarragona, Spain

E-mail: remcogerard.loos@estudiants.urv.es

Faculty of Informatics (Computer Science and Information Technology)
University of Debrecen,

Debrecen, Hungary

E-mail: nbenedek@inf .unideb.hu

Summary. In this paper we consider DNA and membrane computing, both as the-
oretical models and as problem solving devices. The basic motivation behind these
models of natural computing is using parallelism to make hard problems tractable.
In this paper we analyze the concept of parallelism. We will show that parallelism
has very different meanings in these models. We introduce the terms "or-parallelism’
and ‘and-parallelism’ for these two basic types of parallelism.

1 Introduction

Over the last decade, molecular computing has been a very active field of re-
search. The great promise of performing computations at a molecular level
is that the small size of the computational units potentially allows for mas-
sive parallelism in the computations. Thus, computations that are intractable

110 R. Loos, B. Nagy

in sequential modes of computation can be performed (at least in theory) in
polynomial or even linear time.

In this paper, we investigate the way parallelism is used in different
models of molecular computation. We are interested in the role parallelism
plays in theoretical models (that is in the language-generating devices) as
well as in the way parallelism is employed to solve computationally hard
(typically NP-complete) problems.

We focus on two branches of molecular computing, DNA computing and
membrane computing. In the future, this work could be extended to other
models of molecular computation, such as forbidding-enforcing systems,
as well as other bio-inspired models of computation, like cellular automata
and neural networks.

The field of DNA computing was instigated by Leonard Adleman’s 1994
paper [1], in which he reports a molecular solution of an instance of an
NP-complete problem. Since then, much work has been done in this area,
covering both experimental work and the formulation of formal and com-
putational models. These models typically represent DNA strands as strings
and model biochemical operations by string rewriting rules. The reader is
referred to [11] for a detailed overview of the main computational models
of this type.

Membrane computing is an area of molecular computing initiated by
Gheorghe Paun [8, 10]. A membrane system (also called P system) is a com-
puting model inspired by the structure of a living cell. A membrane struc-
ture defines regions where objects evolve according to given rules. From
this basic structure, many different computational devices can be defined,
depending on the objects used (strings, symbols), the types of rules allowed
and the way the generated language is defined. Gheorghe Paun’s book [9]
is a good introduction to the most important types of membrane systems.

We will first analyze the nature of parallelism (see also [7]) in the formal
computational models of both areas. Next, we examine the ways parallelism
is used in both cases to solve computationally hard problems.

We will try to avoid considering specific models. Instead we focus on the
nature of the parallelism present in them, which we will see to be common
to most models in the considered area.

' TRIANGLE 6 e December 2011

On the Concepts of Parallelism in Biomolecular Computing 111

2 Parallelism in DNA computing

The field of DNA computing considers molecular computing in a variety of
ways, which range from purely theoretical computational models to more
practical ‘'molecular algorithms’ to actual experimental implementations of
molecular computations. The theoretical models include different types of
systems such as splicing systems, sticker systems and deletion-insertion sys-
tems. Details about these systems can be found in [11]. Here we do not
consider Watson-Crick automata, which is not a parallel device: rather it is
based on the inherent power of Watson-Crick complementarity. We claim
that despite the different levels of abstraction and the different models, es-
sentially the same type of parallelism underlies all systems of DNA com-
puting.

In experimental DNA computing, the working assumption is that all
molecules are present in such huge quantities that they can be considered
infinite. All formal models considered share this assumption: We start from
a (generally finite) initial language L, with all words w € L present in arbi-
trarily many copies. Similarly, in experiments, a series of biochemical opera-
tions is applied sequentially, but each biochemical operation applied affects
all molecules present. This is reflected in the theoretical models, where each
word is rewritten sequentially, but this sequential rewriting is applied to
all words in parallel. In this way, one computation gives all possible solu-
tions. In the context of language generating systems, we can say that one
‘run’ of the system gives the entire generated language. This is an impor-
tant difference with respect to most known models of computation, such as
the Turing machine or Chomsky grammars, where one run of the system
accepts or generates just one word in the language.

As an example of this type of parallelism we consider a molecular algo-
rithm presented in [4]. Although this is a theoretical algorithm, experimental
implementations of this or very similar algorithms are reported in [3], [4]
and [5]. In addition to exemplifying parallelism, this example also shows
how this parallelism can be used to reduce the computational complexity of
NP-complete problems.

The algorithm we consider solves the satisfiability problem for disjunc-
tive clauses (SAT). Suppose the Boolean variables of the formula are p; to
pn and the number of clauses is m. Suppose, moreover, we have a molecule
with 27 sites on which we can ‘write” (i.e. change) the site in such a way
it can later be recognised or ‘read” as being written. An unwritten site

' TRIANGLE 6 e December 2011

112 R. Loos, B. Nagy

is interpreted as 1 (true) and a written one as 0 (false). We start with a
single molecule which encodes 2n 1’s. We interpret this as the values of

P1, P11, P2, P2/ --Pns 7Pn-
Now, the algorithm for solving SAT is the following:

1. For each variable y, divide the solution into two parts. In one part, write
the site for y. In the other part, write the site for —y. This yields all
consistent assignments of variables.

2. For each clause, divide the content of the test tube. If for instance the
clause is (p; V —p;), we divide it into two parts. In one part, remove all
molecules which have —p; = 1, in the other, those which have p; = 1.
Thus only molecules which satisfy this clause remain.

3. Check if a molecule remains. If so, the answer is "yes’, otherwise no’.

We see that all the solutions are generated and checked in parallel, and in
this way we can simultaneously explore all options, and solve the instance
of SAT in O(n + m) biochemical operations (i.e. in linear time), assuming
each operation takes constant time.

Fig. 1 shows a sketch of the DNA computing method. In this example
there are three kinds of original DNA-molecules with sticky ends. Two of
these kinds can make a new molecule. The result can be seen in the figure:
long molecules without sticky ends (for instance, the last one). The third
kind of molecule can also make new molecules. For example, the second
molecule is the result of their reaction. Technically, by amplifying we can
multiply the number of present; the assumption is that there are enough
molecules of each kind in the sup. We assume that all possible ways of
continuing the computation are present in the same time.

3 Parallelism in membrane computing

A Membrane system (also called P system) is a computing model which
abstracts from the way living cells process chemical compounds in their
compartmental structure. This amounts to a membrane structure that de-
fines different regions which evolve according to given rules. The objects
can be described by symbols or by strings of symbols (in the former case
their multiplicity matter, (that is, we work with multisets of objects placed
in the regions of the membrane structure); in the second case we can work

' TRIANGLE 6 e December 2011

On the Concepts of Parallelism in Biomolecular Computing 113

'TA 'TA, [cc] iTAY |TA,
ITA T o 1TAn O] iGCE 1 TAY o
' C, 1CGLy €y |TA IGCH | Gy [TA| [TA,
LG GO G Ci ¢ 1GC s
ITAl | | T FeTel
T aTAl [T 1A N £ R FO A Tetel
iC I {GCi iC i iCG| G | iC { |G| IC [|AT|
iCG! 1CG; iCGi CG. 1C 1 iCGE 1C 1 iCGE GAT,
.CGi IATI iCGi ICGI 'AT! iCG 'AT! iCG ICGI
Al AT (Al AT ATy TAT: ATy ATE |GG

Fig. 1. Several DNA molecules of the same type and all possible ways of continuing
the computations are present

with languages of strings or, again, with multisets of strings). By using the
rules in a nondeterministic, maximally parallel manner, one gets transitions
between the system configurations. A sequence of transitions is a compu-
tation. With a halting computation we can associate a result, in the form
of the objects present in a given membrane in the halting configuration, or
expelled from the system during the computation. Various ways of control-
ling the transfer of objects from one region to another and of applying the
rules, as well as (using so-called active membranes:) possibilities to dissolve,
divide or create membranes were considered.

Many of these variants lead to computationally universal systems, while
several variants with enhanced parallelism are able (at least theoretically) to
solve NP-complete problems in polynomial (often, linear) time, by making
use of an exponential space.

Parallelism can be controlled through cooperative rules, catalysts, etc. A
simple membrane computer with symbol objects can be seen in Fig. 2.

Let us see how a membrane system can generate languages. First, as
the most usual case the so-called multiset languages are considered. The
membrane system in Figure 2 starts with a copy of the objects a and b in
membrane 1. In any subsequent configuration (except the halting one) there
is also exactly 1 copy of a and b in membrane 1. If a or b is processed
by the rule sending symbols into membrane 2 the other symbol should
be processed by the same type of rule, for maximal parallelism. In these

' TRIANGLE 6 e December 2011

114 R. Loos, B. Nagy

a— al(ain2) (a,in2) 1
b — b (b,in2) (b,in2) (b,in2)
ab — (a,out) (b,out)

2

S Q

Fig. 2. A cooperating membrane system

parallel steps two copies of a and three copies of b appear in membrane
2. No rule is available in membrane 2 so all copies inside still remain with
no change. The process continues until the cooperative rule is used to send
both a and b out of membrane 1. The computation halts with this step. A
word of the generated language is in membrane 2 (we consider it as the
output membrane). This membrane contains objects a?"b*" depending on
the length of the process. So, the generated multiset language as a Parikh-
set is (2n,3n).

As we have seen in the membrane system, parallelism is inside the com-
putation of a (multiset) word. The result of a computation process is a par-
ticular word of the language, and it can be any because of non-determinism.
To generate the whole language, we need to restart the computation many
times (usually infinitely many times). So, the power of parallelism is used
inside the computation of a word: and this means that each word can be
computed quickly and effectively.

Sometimes the objects sent out of the system build the result word
(traces). Parallelism has the same role here: the whole system constructs
only a very particular part (a word or words whit the same Parikh-vector)
of the language in a run.

The basic idea of parallelism is the same whenever we consider mem-
brane systems using catalysts, evolution rules, priorities, cooperative rules,
symport, antiport, electrical charges, dissolutions, creating and/or dividing
membranes. The only difference is that by using active membranes one can

' TRIANGLE 6 e December 2011

On the Concepts of Parallelism in Biomolecular Computing 115

dynamically play with the structure of the system as well. With more mem-
branes one can easily organize the derivation process because the mem-
branes can have various rule sets. The creation and division of membranes
enables independent computations to be performed in parallel way, too.

Now let us analyze how membrane systems can be used for effective
problem solving. We briefly describe how membrane creating can be used
to solve SAT in linear time. First we have an initial membrane with only
one object. Applying the only applicable rule for this object we introduce
two new objects corresponding to the possible values of the first variable,
and a technical object to continue the process. Then the new objects of the
logical variable create new membranes (and copy some symbols to the new
membranes). Now for each new membrane two new objects are introduced
for the next variable. These new objects create new ones again, etc. Finally
the membrane structure forms a complete n-level binary tree. Each path
from the initial to a leaf-membrane represents a possible truth-assignment.
Now, each membrane in the n-th level computes objects for satisfied clauses
of the SAT formula. (This can be done easily by a comparing the literals
of the clauses and the given truth-assignment of the membrane.) Using a
cooperative rule a special symbol is sent out if all clauses are satisfied in
a membrane. In the next step the previous level membranes forward these
symbols. Therefore, this special symbol moves up all n levels, and finally
leaves the system and terminates the process with answer ’satisfiable’. More
technical details can be found in [9].

In this process the power of parallelism builds up a complete tree by lev-
els in linear time. In each membrane, at the deepest level there are rules for
each clause, so clauses can be evaluated in a parallel way. (Here parallelism
is used in the same way as in language generation.)

4 A brief comparison

Now we describe some essential differences between DNA and membrane
computing.

In DNA-computing we assume that there are (theoretically) infinitely
many copies of each string of the initial language. We also assume that
infinitely (arbitrarily many) many copies of each string can appear in the
molecular soup and, therefore, all possibilities are explored. In a mathemat-
ical model, we can use sets to describe the configuration of the system. The
assumption is that the ‘space’ is already given.

' TRIANGLE 6 e December 2011

116 R. Loos, B. Nagy

In contrast membrane computing multisets. The numbers of the present
objects are very important. Membrane computing use ‘active membranes’
(division, creation, etc). These allow all options to be explored, space traded
for time, etc. In a way, an extra level of parallelism is needed for efficiency,
the parallelism of rule application does not play any significant role.

In DNA computing we can try all possibilities (maybe in a clever order,
to reject the false ones as soon as possible) to have a solution. If there is any,
then a (some) try will be successful.

5 Notions of parallelism

Abstracting from the specific systems we can identify two essentially differ-
ent notions of parallelism. We classify those here.

In the ‘and-parallelism’ the computation needs several branches. These
branches provide some subresults. Typically, these involve rewriting in par-
allel way, but there is a dependence between parallel computations. For
instance, a parallel computation generates one word. It affects both compu-
tational power and complexity. The non-deterministic massive parallel way
of applying the rules in the membrane system fits this notion exactly.

The ’or-parallelism’” (which we could also call 'Chinese army paral-
lelism’) is the following. The parallel branches independently try to solve
the problem. Any of them can produce the solution.

Computations are independent and they are performed in parallel. One
example is parallelism, which generates all words simultaneously. This type
of parallelism only affects complexity. We assume that the space can be
considered arbitrarily large. Parallelism in DNA computing, where each
word is rewritten sequentially, but all words are rewritten in parallel is of
this type. The use of active membranes in membrane computing also pro-
vides this kind of parallelism. Note that this notion is closely related to
non-determinism in the usual sense. This concept of parallelism considers
all the ways in which a non-deterministic algorithm can run at the same
time.

6 Conclusions

In this paper we have analyzed two fields of natural computing, DNA com-
puting and membrane computing, and studied the parallelism present in

' TRIANGLE 6 e December 2011

On the Concepts of Parallelism in Biomolecular Computing 117

them. Even though the parallelism is the main motivation for these fields
and an important property of both computational systems and problem
solving algorithms, it has never really been studied in itself. Looking at
the way the systems in these areas work in terms of parallelism, we made
two important observations. Firstly, in spite of the diversity of computa-
tional systems and even levels of description (experimental implementa-
tions, problem solving algorithms, language generating devices), we can
still make general statements about the parallelism present in these fields,
because the underlying notion of parallelism is essentially the same in all
models. Secondly, we noted that the notion of parallelism used in DNA com-
puting is very different from the parallelism present in all membrane sys-
tems. Whereas systems in DNA computing have parallel independent com-
putations, in membrane systems the parallelism is applied in a dependent
way, with all parallel computations taking place inside the rewriting of a sin-
gle configuration. However, in membrane computing there exists a subclass
of membrane systems called membrane systems with active membranes,
which in addition to the parallelism present in all membrane systems al-
lows for another type of parallelism, which is the same type of parallelism
as in DNA computing. It is precisely this additional kind of parallelism
that makes it possible to provide efficient solutions to computationally hard
problems.

We have also described the concept of parallelism in computations in
a more general way. There are two basic notions. In the so-called "and-
parallelism’ the results of several parallel branches are needed to provide
the result of the computation. We use parallelism for computation to be ef-
fective: parallel branches work somehow on the same "state’ or configuration
of the system. In “or-parallelism” (analogous to the so-called Chinese army
algorithm) the branches are independent and any of them can produce the
final result. We use parallelism because we do not know which branch will
be successful. This concept can be imagined as a non-deterministic machine
running in all possible ways at the same time.

7 Acknowledgements

A version of this paper is presented and appeared in [6]. The first author was
supported by Research Grant TIC2003-09319-C03-01 of the Spanish Min-
istry of Education and Science. The second author was supported by the
programme Oveges of NKTH, Hungary.

' TRIANGLE 6 e December 2011

118

R. Loos, B. Nagy

References

10.

11.

. LM. Adleman, Molecular Computation of Solutions To Combinatorial Problems, Sci-

ence, 266: 1021-1024 (1994)

T. Head Formal language theory and DNA: an analysis of the generative capacity of
specific recombinant behaviors, Bull. Math. Biology, 49, 737-759 (1987).

T. Head, X. Chen, M.]J. Nichols, M. Yamamura and S. Gal, Aqueous solutions
of algorithmic problems: emphasizing knights on a 3X3, in: DNA Computing - 7th
International Workshop on DNA-Based Computers (N. Jonoska, N.C. Seeman
eds.), Lecture Notes in Computer Science, v. 2340, Springer-Verlag, Berlin, 191-
202 (2002)

T. Head, X. Chen, M. Yamamura and S. Gal, Aqueous computing: a survey with an
invitation to participate, J. Computer Sci. & Tech. 17, 672-681 (2002)

T. Head, G. Rozenberg, R. Bladergroen, C.K.D. Breek, PH.M. Lommerse and
H. Spaink, Computing with DNA by Operating on Plasmids, Bio Systems 57, 87-93
(2000)

R. Loos and B. Nagy, Parallelism in DNA and Membrane Computing, CiE2007, Com-
putability in Europe 2007: Computation and Logic in the Real World, Siena, Italy,
(2007), 283-287.

B. Nagy, On the Notion of Parallelism in Artificial and Computational Intelligence,
Proceedings of the 7th International Symposium of Hungarian Researchers on
Computational Intelligence, Budapest, Hungary, (2006), 533-541.

Gh. Paun, Computing with Membranes, Journal of Computer and System Sciences,
61, 1, 108-143 (2000) and Turku Center for Computer Science-TUCS Report No.
208 (1998)

Gh. Paun, Membrane Computing: An introduction. Springer-Verlag, Berlin (2002)
Gh. Paun and G. Rozenberg, A guide to membrane computing, Theoretical Com-
puter Science, 287, 73-100 (2002)

Gh. Paun, G. Rozenberg and A. Salomaa, DNA Computing - New Computing
Paradigms, Springer-Verlag, Berlin (1998)

' TRIANGLE 6 e December 2011

