
On Special forms of Splicing on Arrays and
Graphs

K.G. Subramanian1, A. Roslin Sagaya Mary2, and P. Helen Chandra3

1 School of Mathematical Sciences
Universiti Sains Malaysia
11800 Penang, Malaysia
E-mail: kgsmani1948@yahoo.com

2 GRLMC
Universitat Rovira I Virgili
1 Plaï£¡a Imperial Tarraco, 43005 Tarragona, Spain
E-mail: anthonath.roslinsagayamary@estudiants.urv.cat

3 Department of Mathematics
Jayaraj Annapackiam College for Women
Periyakulam, Theni 625 601 India

Summary. Tom Head (1987), in his pioneering work on formal language theory ap-
plied to DNA computing, introduced a new operation of splicing on strings, while
proposing a model of certain recombination behaviour of DNA molecules under the
action of restriction enzymes and ligases. Since then this operation has been studied
in great depth giving rise to a number of theoretical results of great interest in for-
mal language theory. Extension of this operation of splicing to higher dimensional
structures such as circular words, arrays, trees and graphs have been proposed in
the literature. Here we examine the effect of certain specific forms of the splicing
operation applied to arrays and graphs

Triangle: Language, Literature, Computation, n. 6, 2011
Publicacions Universitat Rovira i Virgili · ISSN: 2013-939X

https://revistes.urv.cat/index.php/triangle

120 K.G. Subramanian, A. Roslin, P.H. Chandra

1 Introduction

There has been a lot of interest among researchers in the study of formal
language theory applied to DNA computing. A specific model of DNA
recombination is the splicing operation which consists of “cutting" DNA
sequences and then “pasting" the fragments again, under the action of re-
striction enzymes and ligases. In [7], Tom Head defined splicing systems
motivated by this behaviour of DNA sequences. The splicing systems make
use of a new operation, called splicing on strings of symbols. These systems
are a new class of generative systems, intended to model certain recom-
binant behavior of DNA molecules and are of current interest and study.
Theoretical investigation of splicing on strings has been extensively done by
different researchers [8].

Extension of the splicing operation to graphs has been proposed by Fre-
und [4]. Relationship between graph splicing languages of Freund [4] and
Hyperedge replacement graph languages [6] is examined in [3]. Sakakibara
and Ferretti [13] have introduced and studied splicing of tree structures.
Krithivasn [9] has considered a different kind of splicing of graphs.

On the other hand, in syntactic approaches to generation and recog-
nition of picture patterns, considered as arrays of symbols, several two-
dimensional grammars have been proposed and studied [5, 12, 15, 16, 17,
18, 19, 20] extending and generalizing the techniques of formal string lan-
guage theory. Splicing of arrays structures which could be thought of as
graphs on grid structures has also been recently considered [2,10]. A simple
but effective method of splicing on images of rectangular arrays is intro-
duced in [2] as an extension of the operation of splicing on strings.

Mateescu etal [11] introduced a special kind of a splicing rule, called
simple splicing rule and investigated the effect of this type of rule on words.
This notion of simple splicing has been examined in [1] for circular words.
As an application of the concept of simple splicing, it is natural to extend
this special form of splicing to higher dimensional structures such as graphs,
trees and arrays.

Here we introduce and examine the analogue of simple splicing for pic-
ture patterns of rectangular arrays in the context of domino splicing rules of
[2]. We compare the resulting systems called Simple array splicing systems
with two other picture describing models. We then introduce the notion of
simple splicing on trees which allows us to obtain a set of trees. The re-
sulting system, called Simple Tree splicing system, describes the derivation

TRIANGLE 6 • December 2011

On Special forms of Splicing on Arrays and Graphs 121

trees of context-free grammars. We also consider the string language con-
sisting of words associated in a standard way with trees . It is known that
simple splicing yields only regular languages [11]. It is of interest to note
that, in contrast to the string case, the picture language class obtained by the
simple array splicing systems is incomparable with the two other regular-
like picture classes and in the tree case, the associated string languages are
context-free languages.

2 Simple Array Splicing Systems

We first recall the notion of simple splicing on words [11]. For notions of
language theory we refer to [14].

Definition 1. Let V be an alphabet. $, # are two special symbols, not in V. A simple
splicing rule over V is a string of the form r = a# λ $ a# λ, where a ∈ V.
For such a rule r and strings x, y, z ∈ V∗, we write (x, y) `r z if and only if
x = x1ax2, y = y1ay2, z = x1ay2 for some x1, x2, y1, y2 ∈ V∗. We say that z is
obtained by splicing x, y, as indicated by the rule r.

A simple splicing scheme is a pair σ = (V, R), where V is an alphabet
and R is a set of simple splicing rules. A simple splicing scheme is also
referred to as a simple H scheme [11]. For a given simple splicing scheme
σ = (V, R) and a language L ⊆ V∗, we define σ(L) = {z ∈ V∗ / (x, y) `r z
for some x, y ∈ L, r ∈ R }

We now introduce the notions of simple domino splicing rules and sim-
ple array splicing Systems (SAS). These systems are a special kind of H array
splicing systems introduced and studied in [2].

Definition 2. Let V be an alphabet. #, $ are two special symbols, not in V. A col-

umn domino over V is of the form
a
b

and a row domino is of the form a b for some

a, b ∈ V. Both a, b can be λ or # .

A simple column or row domino splicing rule over V is of the form r
= α # λ $ β # λ where both α and β are column dominoes or both row
dominoes.We refer to α, β as the first and third dominoes of r respectively.

TRIANGLE 6 • December 2011

122 K.G. Subramanian, A. Roslin, P.H. Chandra

Given two arrays X and Y of sizes m× p and m× q respectively,

X =

a11 · · · a1,j · · · a1p
a21 · · · a2,j · · · a2p
...

. . .
...

. . .
...

am1 · · · am,j · · · amp ,

Y =

b11 · · · b1,k · · · b1q
b21 · · · b2,k · · · b2q

...
. . . · · · . . .

...
bm1 · · · bm,k · · · bmq

air, bis ∈ V, for 1 ≤ i ≤ m, 1 ≤ r ≤ p, 1 ≤ s ≤ q. Let X# and Y# be bordered
arrays of sizes (m + 2)× (p + 2), (m + 2)× (q + 2) obtained by surrounding
X and Y with # symbols, as shown below.

X# =

· · · # · · · #
a11 · · · a1,j · · · a1p
a21 · · · a2,j · · · a2p
...

...
. . .

...
. . .

...
...

am1 · · · am,j · · · amp
· · · # · · · # # ,

Y# =

· · · # · · · #
b11 · · · b1,k · · · b1q
b21 · · · b2,k · · · b2q
...

...
. . .

...
. . .

...
...

bm1 · · · bm,k · · · bmq
· · · # · · · #

Here we refer to the top and bottom rows of #′s as the 0th and m + 1st

row. Similarly for the leftmost and rightmost columns of #′s.
We write (X, Y) |Φ Z if there is a sequence of simple column splicing
rules r0, r1, r2, ...rm (not necessarily all different) such that

ri =
ai,j
ai+1,j

#
λ

λ
$

bi,k
bi+1,k

#
λ

λ

and ai,j = bi,k

TRIANGLE 6 • December 2011

On Special forms of Splicing on Arrays and Graphs 123

for all i, 0 ≤ i ≤ m and for some j, k 0 ≤ j ≤ p + 1, 0 ≤ k ≤ q + 1 and

Z# =

· · · # # · · · #
a11 · · · a1,j b1,k · · · b1q
a21 · · · a2,j b2,k · · · b2q
...

...
. . .

...
...

. . .
...

...
am1 · · · am,j bm,k · · · bmq
· · · # # · · · #

In other words, we can imagine that a 2× 1 window is moved down the
jth column of X#. The sequence of dominoes collected are the first dominoes
of the rules r0, r1, r2, ..., rm (not all necessarily different). Likewise for the kth

column of Y# except that the dominoes collected are the third dominoes of
the rules. When such rules exist in the system, the simple column splicing
of the arrays X and Y amounts to the array X# being vertically “cut" after
jth column and the array Y# after kth column and the resulting left subarray
of X# “pasted" (column catenated) with the right subarray of Y# to yield
Z#. We now say that Z is obtained from X and Y by simple domino column
splicing in parallel, where Z is Z# with surrounding # symbols deleted.

We can similarly define simple row splicing operation of two arrays U
and V of sizes p× n and q× n, using simple domino row splicing rules to
yield an array W. We write (U, V) |Θ W. As done for the column splic-
ing of arrays, we can imagine 1× 2 windows being moved over respective
rows. The row splicing of the arrays U and V can be thought of as U# being
horizontally “cut" below the rth row and V# below sth row and the upper
subarray of U# “pasted" (row catenated) to the lower subarray of V# to yield
W#. We now say that W is obtained from U and V by simple domino row
splicing in parallel, where W is W# with # symbols deleted.

We now introduce the main notion of Simple Array Splicing Systems.

Definition 3. A Simple array splicing scheme is a triplet Γ = (V, Rc, Rr)
where V is an alphabet, Rc = a finite set of simple domino column splicing rules,
and Rr = a finite set of simple domino row splicing rules.
For a given Simple array scheme Γ = (V, Rc, Rr) and a language L ⊆ V∗∗, we
define

TRIANGLE 6 • December 2011

124 K.G. Subramanian, A. Roslin, P.H. Chandra

Γ(L) = {Z ∈ V∗∗ / (X#, Y#) |Φ Z# or (X#, Y#) |Θ Z# for some X, Y ∈
L}. In other words, Γ(L) consists of arrays obtained by column or row splicing any
two arrays of L using the simple domino column or row splicing rules.

A Simple array splicing system (SAS) is defined by S = (Γ, I)
where Γ = (V, Rc, Rr) and I is a finite subset of V∗∗. The language of S is
defined by L(S) = Γ∗(I) and we call it a Simple array splicing language
(SASL) and denote the class of such languages by L(SASL).

We illustrate with an example.

Example 1. Let V = {x, a}, I =


x x x x
x a a x
x a a x
x x x x

 ,

Rc =

{
p1 :

x
a

#
λ

λ
$c

x
a

#
λ

λ

p2 :
a
a

#
λ

λ
$c

a
a

#
λ

λ

p3 :
a
x

#
λ

λ
$c

a
x

#
λ

λ

p4 :
#
x

#
λ

λ
$c

#
x

#
λ

λ

p5 :
x
#

#
λ

λ
$c

x
#

#
λ

λ

}
,

Rr =
{

q1 : x a # λ λ $r x a # λ λ

q2 : a a # λ λ $r a a # λ λ

q3 : a x # λ λ $r a x # λ λ

q4 : # x # λ λ $r # x # λ λ

q5 : x # # λ λ $r x # # λ λ
}

TRIANGLE 6 • December 2011

On Special forms of Splicing on Arrays and Graphs 125

L is the language consisting of pictures of the form in Figure 1, where
white square is interpreted as a and black as x.

Fig. 1. Rectangles of a’s surrounded by x’s

Example 2. Let V = {x, .}, I =


x . .
x . .
x x x

 ,

Rc =

{
p1 :

#
.

#
λ

λ
$c

#
.

#
λ

λ

p2 :
.
.

#
λ

λ
$c

.

.
#

λ

λ

p3 :
.
x

#
λ

λ
$c

.
x

#
λ

λ

p4 :
x
#

#
λ

λ
$c

x
#

#
λ

λ

}
Rr =

{
q1 : # x # λ λ $r # x # λ λ

q2 : x . # λ λ $r x . # λ λ

q3 : . . # λ λ $r . . # λ λ

q4 : . # # λ λ $r . # # λ λ
}

L is the picture language consisting of all m× n arrays describing token
L of x′s.

TRIANGLE 6 • December 2011

126 K.G. Subramanian, A. Roslin, P.H. Chandra

x
x
x
x
x
x
x x x x x x

x
x
x
x
x
x
x x x x x x

Fig. 2. Array describing token L Token L of x’s

Example 3. Let V = {a, b}, I =
{

a b
b a

}
,

Rc =

{
p1 :

b
a

#
λ

λ
$

b
a

#
λ

λ

p2 :
#
b

#
λ

λ
$

#
b

#
λ

λ

p3 :
a
#

#
λ

λ
$

a
#

#
λ

λ

p4 :
a
b

#
λ

λ
$

a
b

#
λ

λ

}
,

Rr =
{

q1 : a b # λ λ $ a b # λ λ

q2 : b a # λ λ $ b a # λ λ

q3 : # b # λ λ $ # b # λ λ

q4 : a # # λ λ $ a # # λ λ
}

L is the language consisting of all “chessboards" with even side-length.
i.e. pictures of the form in 2.
The picture or pattern of Figure 2 can be represented by an array M, where

TRIANGLE 6 • December 2011

On Special forms of Splicing on Arrays and Graphs 127

Fig. 3. Chessboard Pattern

M =

a b a b a b a b a b
b a b a b a b a b a
a b a b a b a b a b
b a b a b a b a b a
a b a b a b a b a b
b a b a b a b a b a

where ‘a’ stands for black and ‘b’ for white.
We now compare the generative power of Simple array splicing sys-

tems with other picture description models. The class LOC [5] of local pic-
ture array languages described by 2×2 “windows" and the class of two-
dimensional right-linear languages described by 2RLG [5, 15] are two of the
basic classes in the hierarchy of picture array describing grammars.

Theorem 1. The classes LOC [5] of local array languages and L(SASL) of Simple
array splicing languages are incomparable but not disjoint.

Proof: The picture language M consisting of all m× n arrays (m ≥ 2, n ≥ 2)
describing token L of 1’s is in LOC [2]. It is also described by a Simple array
splicing system S = (V, Rc, Rr, I) as in example 2.

It is known [5] that the picture language L of all rectangular arrays over
V = {a} with 3 columns is not in LOC. In fact, it is not possible to fix the

number of columns only one symbol, as the block
[

a a
a a

]
can be moved

without restriction on the columns. But it is generated by a Simple array
splicing system where

TRIANGLE 6 • December 2011

128 K.G. Subramanian, A. Roslin, P.H. Chandra

I =


a a a
a a a
a a a

,

Rr =
{

q1 : a a # λ λ $ a a # λ λ

q2 : # a # λ λ $ # a # λ λ

q3 : a # # λ λ $ a # # λ λ
}

and Rc = ∅

It is known [5] that the picture language of square images in which di-
agonal positions carry symbol 1 but the remaining positions carry symbol
0 is in LOC. But it is not in SAS. Since row and column splicing are inde-
pendently done, it is clear that arrays with a proportion between rows and
columns and in particular pictures with only square size cannot be gener-
ated by any SAS.

Theorem 2. The class L(SASL) of Simple array splicing languages and L(2RLG)
[5,15] of picture languages generated by two dimensional right linear grammars are
incomparable but not disjoint.

Proof: The picture language of "chessboards" with even side-length (Figure
3) is also generated by a SAS (Example 2.3) and is known to be generated
by a 2RLG [5,15].

The picture language L1 consisting of arrays describing token H (Figure
4)cannot be generated by any 2RLG, as the horizontal row of x’s cannot be
maintained by any 2RLG [5,15]. But the language consisting of picture ar-
rays describing token H with three rows and any number of columns can
be generated by the following SAS :

Let V = {x, .}, I =


x . . x
x x x x
x . . x

,

Rc =

{
p1 :

.
x

#
λ

λ
$

.
x

#
λ

λ

p3 :
x
.

#
λ

λ
$

x
.

#
λ

λ

TRIANGLE 6 • December 2011

On Special forms of Splicing on Arrays and Graphs 129

x x
x x
x x x x x x
x x
x x
x x

x x
x x
x x
x x x x x x
x x
x x

Fig. 4. Token H

p4 :
#
.

#
λ

λ
$

#
.

#
λ

λ

p5 :
.
#

#
λ

λ
$

.
#

#
λ

λ

}
and Rr = ∅

The picture language L2 = {((ab)p ∪ (ba)q)m / p, q, m ≥ 1} cannot be de-
scribed by any SAS. This is due to the fact that the column splicing of any
two arrays ((ab)p)m and ((ba)q)m will yield an array which is not in L2. But
it is generated by the following 2RLG.

Σ = {a, b} ;

ΣI = {A1, A2, A3, A4} ;

Vh = {S, X} ;

Rh = {S→ A1 A2X; S→ A3 A4Y; X → A1 A2X; Y → A3 A4Y;

X → A1 A2; Y → A3 A4} ;

Vv = {A1, A2, A3, A4} ;

Rv = {A1 → aA1; A1 → a; A2 → bA2; A2 → b; A3 → bA3; A3 → b;

A4 → aA4; A4 → a}

Remark 1. We have the following relationship among SAS, LOC, 2RLG as
seen from Theorems 1 and 2.

Note that the picture language of “chessboards" with even side-length is
generated by a SAS (Example 2.3) and is known to be generated by a 2RLG
[5]. It is also a local language.Thus it is a picture language in all the three
classes.

TRIANGLE 6 • December 2011

130 K.G. Subramanian, A. Roslin, P.H. Chandra

SAS

LOC 2RLG

Fig. 5. Relationship among SAS, LOC, 2RLG

In fact the set T of 2× 2 windows describing this language is:

T =



b a # # # #
a, b #, # #, # #, a b, b a

b a # a b b a a b b a
a, b #, # #, # #, b a, a b

1 0 0 0 # a b #
1 1, 1 1, # b, a #



3 Simple Tree Splicing Systems

We now introduce the notion of Simple splicing on trees as an application of
the simple splicing rules introduced in [11]. The splicing of trees considered
here is a special form of a general notion of splicing of trees considered in
[13].

We consider labelled rooted trees T which are connected cycle-free
graphs with a designated node r called the root of the tree and a label l(v)
for every node v. Since there is a unique simple path from the root r to any
other node v in T, this determines a direction to the edges of the tree and
thus tree is viewed as a directed graph with a precedence relationship such
that every node has zero or more descendant nodes. A node with a zero
descendant is called a leaf and any other node is called an interior node.
A subtree of a given tree T is also a labelled rooted tree with its root as an

TRIANGLE 6 • December 2011

On Special forms of Splicing on Arrays and Graphs 131

interior vertex of tree.

It is usual to denote a tree T with root label a and subtrees T1, ..., Tn with
root labels b1, ..., bn in linear form as given below T = a(T1, ..., Tn). We call a
labelled rooted tree T with labels in a set V, simply as a tree T over V. The
yield of a tree T is a string obtained by reading the labels of the leaves from
left to right.

Example 4. Let V = (a, b, c). let T be a tree T = c(a, c(a, c(a, c, b), b), b). The
yield of tree T is a3cb3.

We now introduce the notion of simple splicing of two trees, by consid-
ering simple splicing rules used in the splicing of words[11].

Definition 4. Let V be an alphabet. Let r be a simple splicing rule r = (c # λ $ c # λ)

where c ∈ V. Let T1 and T2 be two trees such that c is a root label of a subtree T
′
1 of

T1 and a subtree T
′
2 of T2. We say that a tree T3 is obtained by simple tree splicing

of T1 with T2, if T3 is the tree obtained from T1 removing the subtree T
′
1 with root

v having label c and attaching T
′
2 at the node v.

A simple tree splicing system S = (V, A, R) where Vis an alphabet, A
is a finite set of trees over V and R is a finite set of simple tree splicing
rules. The tree language T(S) consists of all trees obtained from the trees in
A by repeatedly applying the tree splicing rules of R. The string language
associated with the system S is the set L(S) of words which are the yields
of the trees in T(S).

Example 5. Let V = (a, b, c). let T be a tree T = c(a, c, b). Let S = (V, T, r)
where r = c#λ$c#λ. On splicing T with itself we obtain a tree T

′
=

c(a, c(a, c, b), b). Repeatedly using the splicing operation, we obtain a set of
trees c(a, c, b), c(a, c(a, c, b), b), c(a, c(a, c(a, c, b)b)b), ... which constitutes the
tree language T(S). The string language of S is L(S) = ancbn : n ≥ 1.

We exhibit the relation between the set of derivation trees of a context
free grammar and the tree language of a simple tree splicing system.

TRIANGLE 6 • December 2011

132 K.G. Subramanian, A. Roslin, P.H. Chandra

Theorem 3. Given a context free language G = (VN , VT , P, S), there exists a sim-
ple tree splicing system S such that the tree language T(S) is exactly the set of
derivation trees of G. As a consequence the context free language L(G) generated
by G is simply the string language of L(S)

Proof : Assume that the given CFG is in Chomsky Normal Form with rules
of the form A → BC or A → a where A, B, C are non-terminals and a is a
terminal. For each rule A → BC we associate a tree A(B, C). For each rule
A → a we associate a tree A(a). A corresponding simple tree splicing sys-
tem S is constructed as follows : S = (VN ∪ VT , A

′
, R) where A

′
consists of

trees associated with the rules of P. R consists of simple splicing rules of
the form X#λ$X#λ whenever X is the left hand side of a rule in G and is
a symbol in the right hand side of a rule in G. It is straight forward to see
that T(S) consists of exactly the derivation trees of G.

Remark 2. It is known that the string language of a simple H system [11] is
regular. It is of interest to note from the theorem 3.1 that the string language
of a simple tree splicing system is context free and thus the generative power
of the simple splicing rules is increased when they are applied on the tree
structures.

4 Conclusion

In this paper a theoretical study of a special class of H Array Splicing Sys-
tems [2] with “Simple" array splicing rules, is made. Although the rules are
“simple", the generating power of the picture generating SAS or tree gen-
erating STS is reasonably higher. It remains to examine other properties of
these systems such as characterizations etc. as in the string case.

Acknowledgement

The first author K.G. Subramanian gratefully acknowledges support for this
research by a FRGS grant of the Universiti Sains Malaysia.

TRIANGLE 6 • December 2011

On Special forms of Splicing on Arrays and Graphs 133

References

1. R. Ceterchi, K.G. Subramanian, Simple Circular Splicing Systems, Romanian Jour-
nal of Inform. Sci. and Tech. 6 (2003) 121-134.

2. P. Helen Chandra, K.G. Subramanian and D.G. Thomas, Parallel Splicing on
Images, Int. J. Pattern Recognition and Artificial Intelligence, 18(6) (2004) 1071-1091.

3. N.G. David, K.G. Subramanian, D.G. Thomas, A note on Graph Splicing Lan-
guages, Lecture Notes in Comp. Sci. 2340 (2002) 381-390.

4. R. Freund, Splicing Systems on Graphs, Proc. Intelligence in Neural and Biological
Systems, IEEE Press (1995) 189-194.

5. D. Giammarresi and A. Restivo, Two-dimensional languages, In “Handbook of
Formal Languages" Vol.3, Eds. G. Rozenberg and A. Salomaa, Springer Verlag,
(1997) 215 - 267.

6. A. Habel, Hyperedge Replacement: Grammars and Languages, Lecture Notes in
Comp. Sci., Springer-verlag (1992).

7. T. Head, Formal language theory and DNA: an analysis of the generative capac-
ity of specific recombinant behaviours, Bull. Math. Biology 49 (1987) 737 -759.

8. T. Head, Gh. Păun and D. Pixton, Language theory and molecular genetics: Gen-
erative mechanisms suggested by DNA recombination, In “Handbook of Formal
Languages" Vol.2, Eds. G. Rozenberg and A. Salomaa, Springer Verlag, (1997) 295
- 360.

9. K. Krithivasan, Splicing Systems-The Graph Model, Proc. of the Workshop on
Molecular Computing,Chennai, (1998) 33-59.

10. K. Krithivasan, V.T. Chakaravarthy and R. Rama, Array splicing systems, In
“ New Trends in Formal languages, Control Cooperation and Combinatorics", Eds.
Gh.Paun and A. Salomaa, Lecture Notes in Computer Science 1218, Springer Ver-
lag, 1997, 346 - 365.

11. Mateescu M., Gh. Păun , G. Rozenberg and A. Salomaa, Simple Splicing Systems,
Discrete Applied Math., 84 (1998) 145-163.

12. A. Rosenfeld, and R. Siromoney, Picture languages - a survey, Languages of design
1 (1993) 229-245.

13. Y. Sakakibara, C. Ferretti Splicing on tree-like structures. Theoretical Computer
Science, 210(2), pp.227-243, 1999.

14. A. Salomaa, Formal Languages, Academic Press, New York, 1973.
15. G. Siromoney, R. Siromoney and K. Krithivasan, Abstract families of matrices

and picture languages, Computer Graphics and Image Processing 1 (1972) 234 - 307.
16. K.G. Subramanian and R. Siromoney, On Array Grammars and Lan-

guages,Cybernetics and Systems, 18 (1987) 77-98.
17. K. G. Subramanian, R. Siromoney, V. Rajkumar Dare, A. Saoudi, Basic Puzzle

Languages, International Journal of Pattern Recognition and Artificial Intelligence, 9
(1995) 763-775.

TRIANGLE 6 • December 2011

134 K.G. Subramanian, A. Roslin, P.H. Chandra

18. K.G. Subramanian, P Systems and Picture Languages, Lecture Notes in Computer
Science 4664, Springer (2007) 99-109.

19. K.G. Subramanian, D. L. Van, P. Helen Chandra and N. D. Quyen, Array Gram-
mars with Contextual Operations, Fundamenta Informaticae, 83(4) (2008) 411-428.

20. P.S. Wang, Array Grammars, Patterns and Recognizers, (Ed) World Scientific Pub.
Co., 1989.

TRIANGLE 6 • December 2011

