Triangle: Language, Literature, Computation, n. 1, 2010
Publicacions Universitat Rovira i Virgili - ISSN: 2013-939X
https://revistes.urv.cat/index.php/triangle

Logic Programming for Linguistics:

A short introduction to Prolog, and Logic
Grammars with Constraints as an easy way to
Syntax and Semantics

Henning Christiansen

CBIT Institute, Roskilde University, Denmark
http:/ /www.ruc.dk/~henning/, henning@ruc.dk

Introduction

This article gives a short introduction on how to get started with logic pro-
gramming in Prolog that does not require any previous programming expe-
rience. The presentation is aimed at students of linguistics, but it does not
go deeper into linguistics than any student who has some ideas of what a
computer is, can follow the text. I cannot, of course, cover all aspects of logic
programming in this text, and so we give references to other sources with
more details.

Students of linguistics must have a very good motivation to spend time
on programming, and I show here how logic programming can be used for
modelling different linguistic phenomena. When modelling language in this
way, as opposed to using only paper and pencil, your models go live: you
can run and test your models and you can use them as automatic language
analyzers. This way you will get a better understanding of the dynamics
of languages, and you can check whether you model expresses what you
intend.

32 Henning Christiansen

Based on Prolog, I also introduce Definite Clause Grammars which is in-
tegrated in most Prolog systems: You can write a grammar in a straightfor-
ward notation, perhaps include different syntactic, semantic and pragmatic
features — and with no additional effort, you can use it as an automatic
language analyzer.

I show also another important extension to Prolog, called Constraint
Handling Rules, which boosts these grammars with capabilities for captur-
ing semantics and pragmatics by abductive reasoning, in a way that I claim
is considerably simpler than mainstream formalisms; this part is to a large
extent based on my own research.

Hardcore linguists may object that these approaches are too simplistic —
and they are right (of course, they are always right ;-) — but this simplicity,
I will reply, provides exposure to linguistic phenomena in a clarified and
distilled form which is difficult to obtain by other means.

Finally I apologize for any errors, omissions, misspellings and mistakes,
which I'm sure there are plenty of, as this article has been produced in a
very short time. I am glad to receive any comments and questions.

All example programs can be downloaded from the following website:
http:/ /www.ruc.dk/~henning/LP-for-Linguists.

' TRIANGLE 1 e September 2010

Logic Programming for Linguistics 33

1 Prolog: Programming without programming

Prolog is one of the easiest programming languages to use for a beginner
in programming: You only need to learn a few simple basic structures, and
you can start on your own. Programs are given as plain text files which you
can edit with any plain text editor.

1.1 Prolog, lesson 1: A program as a knowledge base of facts

The following is our first Prolog program; we will assume that it is kept in
a file named royal.!

% Danish Royal Family

parent (margrethe, frederik).
parent (margrethe, joachim).
parent (henrik, frederik).
parent (henrik, joachim).
parent (mary, christian).
parent (mary, isabella).
parent (frederik, christian).
parent (frederik, isabella).
parent (alexandra, nicolai).
parent (alexandra, felix).
parent (joachim, nicolai).
parent (joachim, felix).
parent(marie, little_henrik).
parent(joachim, little_henrik).

The very first character in the program “%” indicates that the rest of that
line is a comment. The rest of this program consists of facts, in this example
listing the parental relationships for a part of the Danish royal family. The
meaning of the program is not that the program should be executed from
beginning to end, one instruction at a time, but it is to be understood as a
knowledge base.

! In some operation systems, it will best to give the file name an extension, e.g.
royal.txt. The extension “.pl” is also common, but this makes many systems
believe that the file is a Per]l program, which is something completely different.

' TRIANGLE 1 e September 2010

34 Henning Christiansen

I suppose this meaning becomes clear to you, simply by looking at the
program. You will also observe that these facts are written in a fixed for-
mat; here parent is called a predicate, and the names that appear, such as
margrethe, are examples of constant symbols or, for short, constants.? Tt is
important to notice that each fact must be ended with a period “.”.

We can run a program by asking queries. A query is a sort of question
that the Prolog system tries to answer as good as it can. We will try some ex-
amples. The following shows a dialogue with a computer that has a version
of Prolog installed; we assume that it is started by the command prolog, but
this may vary; before you start, be sure to be in the directory that contains
the program file royal. The following is a listing of the command window
after a dialogue between a user and the Prolog system.

$ prolog

| 7- [royall.

% compiling directory/royal...
yes

| ?- parent(margrethe, frederik).
yes

| 7?- parent(margrethe, obama).

no

| ?- parent(margrethe, juan_carlos).
no

| ?- parent(margrethe, X).

X = frederik 7 ;
X = joachim 7 ;
no

| ?- parent(X,felix).
X = alexandra 7 ;

X = joachim 7 ;
no

| 7- halt.

$

2 Some books and manuals also use the term, an atom, which is a bit misleading
since an atom is something different in the mathematical logic on which Prolog
is based.

' TRIANGLE 1 e September 2010

Logic Programming for Linguistics 35

You cannot see who (user or computer) wrote which part of the text, but I
will explain. The $ sign is the prompt from the computer’s operating system,
and the user starts Prolog by typing the command prolog. Where you see
................ ”, you will typically get a message saying which Prolog
system and version you are using, but this is not interesting. The symbols
“| 7-" are printed by the system, meaning that it expects input from the
user. Our nice user first loads the program by writing “ [royall.”;? this is
the general syntax for loading in programs; notice the terminating period,
and that is the same for any query that you type following “| 7-”, and you
should also type end-of-line at the end. Now the system gives a response,
saying that it has accepted the program. which is now ready in its memory.

Now we can start asking queries, and assume that our nice user types
“parent (margrethe, frederik)”. When typed in like this, you should un-
derstand this as a question “Is it true that ...”; here the system answers “yes”,
which means that it has found out that, this is indeed true according to the
program.? In this case, it is easy for us to check that Prolog was right since
the query matches a fact in the program. Let us try a more advanced query,
“parent (margrethe, juan_carlos)”. Here the system replies “no” mean-
ing that the query cannot be shown to be true according to the program; we
can easily check that this conclusion is correct.’

31f your computer requires files with an extension as in “royal.txt” or
“royal.pl”, it often works to load the file without writing the extension, | 7-
[royall. If that does not work, you may need to write the extension as well, e.g.,
| 7- [’royal.txt’]. Notice when you do this that single quotes are essential,
otherwise Prolog gets confused by the period and emits a weird error messsage,
You may notice the dubious usage of “true” and “truth”; what I mean here is
not that something is true in the real world, but it is a logical consequence of the
program. In fact, the computer has no coupling between the constant margrethe
and a real living person, who happens to be Her Majesty, the Queen of Denmark.
This meaning is reserved for humans, based on our intuition and knowledge
about the world; if the program is wrong according to the real world, its answers
will of course be wrong. The other way round, whether or not the program is
correct, we can say that it defines a set of possible worlds, and something is stated
to be true by Prolog only when it is true in all those possible worlds. However,
this is too philosophical for us, so I shall leave it for now.
Notice that Prolog considers anything to be false, as indicated by “no”, that cannot
be shown to be correct by the program. This is also problematic as something
might be true in the real world even if it is not mentioned in the program. In
fact, it is difficult to imagine a program that contains all the knowledge about

'S

o1

' TRIANGLE 1 e September 2010

36 Henning Christiansen

Now our nice user tries something really advanced, namely to use a
variable in the query “parent (margrethe, X).”; notice that variables are
indicated by initial capital letter whereas a constant starts with a small letter.
The meaning of such a query is a request for “which values of the variable
makes my query true”. So when our nice user queries “parent (margrethe,
X).”, it means that she wants to know which people that have margrethe
as a parent. As it appears, the systems tells the nice user that there are
two possibilities, namely X=frederik and X=joachim; also this time we can
compare with the program text, that this is indeed a sound conclusion.

You should be aware that after each answer, when Prolog states a ques-
tion mark “?” as shown, it should be understood as “do you want another
solution?”. Here our nice user needs to type a semicolon “;” if she wants to
confirm that she wants another solution; the final “no” should be taken as
“no more answers”. If the first answer is sufficient, simply type end-of-line
after the question mark.

The next query also uses a variable, but in a different position, namely
for asking who are the parents of felix. It is important to learn from
these example, that in Prolog, no specific positions of a predicate should
be thought of as specific for “input” and others specific for “output”; you
can use them as you please.

Finally, the query “halt.” is a command to Prolog that we want to stop
and return to the operating system.

1.2 Prolog, lesson 2: Using variables to combine information and writing
rules

As I wrote above, using a variable in a query was a suggestion for the system
to fill in constants, so that the query becomes true. In fact, we can use several
variables in a query and also, the same variable can appear several times.
Let us consider an example, and assume that our nice user is interested
to know, who the queen’s grandchildren are; obviously, this information is

the real world. So “false” in Prolog’s terms does not mean that it is really false,
but rather that the program does not contain information about it. So it might be
more correct to have the system state “I don’t know” rather than “no”, but that
is too difficult to say; “no” is easier, and as soon as you know what a “no” means,
this should not be a problem. — I promised in the last footnote not to include any
more philosophical discussion, so this is definitely the very last footnote of this
kind.

' TRIANGLE 1 e September 2010

Logic Programming for Linguistics 37

embedded in the program, but not in an explicit way. She now starts the
system again, loads the program, and tries the following query.

| ?- parent(margrethe,X), parent(X,Y).

This is asking for pairs of values of X and Y which makes the query true. In
other words, X should be a child of margrethe, and Y should be the child of
the aforementioned child, i.e., Y should be a grandchild of margrethe. Let
us see Prolog’s answers when our nice user types semicolons after each to
get more.

= frederik,

= christian ? ;

= frederik,

= isabella 7 ;

= joachim,

nicolai 7 ;

= joachim,

= felix 7?7 ;

= joachim,

= little_henrik 7 ;

MR R XXX
Il

=
o

It may be a bit difficult to read when you see everything at the same time,
but each answer is ended by the semicolon typed by the user. So for exam-
ple, isabella is a grandchild of margrethe because isabella has frederik
as a parent, and frederik has margrethe as a parent.

Our nice user may become a bit tired both from writing the complicated
expressions, each time having to get the Xs and Ys right, and from seeing
margrethe’s. There is a remedy in Prolog to this namely the possibility of
defining a rule as part of the program. Our nice user suggests this rule:

grandparent (X,Z) : - parent(X, Y), parent(Y, Z).

She adds it to the program file and reads in the program file once again to
test it. She now types in the following query and a number of semicolons to
get the following answers.

?7- grandparent (margrethe,X) .

= christian 7 ;

I
X
X isabella 7 ;
X = nicolai 7 ;

' TRIANGLE 1 e September 2010

38 Henning Christiansen

X = felix 7 ;
X = little_henrik 7 ;
no

As it appears, this is exactly what she wants. The meaning of the rule
is straightforward: in order to evaluate grandparent(X,Z) for which the
program has no facts, evaluate instead parent (X, Y), parent(Y, Z).,and
return what was found for X and Z, thus saying nothing about the values of
Y as it is completely local to the body of the clause.

Notice that we used the variable names freely as we liked. When using
an X as the query, we do not have to consider whether the rule uses X for
some other purpose; and if we have several rules in the program, their dif-
ferent uses of X do not get mixed up. So when, in the example above, we
wrote margrethe in the query where the rule uses X, and we wrote also X
in the query where the rule uses Z, they do not get mixed up. The system is
clever enough to replace variables and values so everything works out the
right way.

This finishes Prolog lesson 1 and 2, which is the core of Prolog and with
which you can already write a lot of interesting programs.

1.3 Prolog, lesson 3: The rest of Prolog, with a focus on lists

Prolog includes a lot of other things, of which the most important are:

e a lot of standard built-in predicates so you do not need to write them
yourself every time; any comprehensive Prolog textbook or manual will
tell you about them,

e structures, so that we can use structural information in predicates, and
not only constants such as “margrethe”; a special kind of structures is
lists that I will show below as they are important for language process-
ing,

e some devices which makes it possible for you to affect the way Prolog is
searching in its knowledge base for rules and facts in order to answer the
queries; this can give essential speed-up to large programs but I ignore
all that in this article.

The following is an an example of a Prolog list.

[once, upon, a, time]

' TRIANGLE 1 e September 2010

Logic Programming for Linguistics 39

It includes four constants, and as you see, I anticipate the use of lists to
represent text. Prolog gives us some notation to work with lists, as we show
in the following program.

first(H, [H | _1).
rest(R, [_ | R]).

Firstly, the underline character is used as a so-called anonymous vari-
able; it adds nothing conceptually new to what we have already seen and
is not restricted to lists. It can be used for a variable that we only use once
in a rule (so there is no reason to give it an explicit name (think!)), which
means that we do not care about its actual value. The vertical bar inside the
list brackets is a special notation for lists, and separates the first element
from the list of remaining elements. So for example, when [once, upon,
a, time] is matched with [A|B], it will lead to A=once and B=[upon, a,
time]. Here are some queries to the program above together with its an-
swers; the program is in a file called firstlast.

$ prolog

| ?- [firstlast].

% compiling directory/firstlast...
yes

| 7- first(F, [once, upon, a, timel).
F = once 7

yes

| 7- rest(R, [once, upon, a, timel).
R = [upon,a,time] 7

yes

| ?- halt.

$

I'will not spend more time on this example, but instead show a linguistically
inspired example. I will later introduce a grammar notation which makes it
easier to write, but now our point is to illustrate the use of lists for language.
The following program (file sheeps) uses Prolog and its list notation to
define a grammar for sheeps’ utterances.

sheeptalk([]).

sheeptalk ([M|Ms]):- sheepsound(M), sheeptalk(Ms).
sheepsound (mah) .

sheepsound (meeeeeh) .

' TRIANGLE 1 e September 2010

40 Henning Christiansen

The first rule tells that sheep can keep quiet when necessary, [1 is a no-
tation for the empty list. The second rule explains in a recursive way that
sheeptalk consists of sheepsounds. In practice this means that it will clip
off one atom at a time and check if it is a sheepsound, i.e., mah or meeeeeh.
The following shows it at work.

$ prolog

| ?7- [sheeps].

% compiling directory/sheeps...
yes

| 7- sheeptalk([mah,mah,meeeeeh]).
yes

| ?- sheeptalk([mah,mah,mouuuuuuuuuuuuuuuh]).
no

| 7- halt.

$

This is the essence of language analysis in Prolog; notice that you can think
of such a program as a grammar, and that Prolog can automatically use it
as an analyzer. And with a bit of imagination, you may be able to see that
we can extend this with different predicates for nouns, verbs, adjectives,
etc., and that an elaborate set of rules can express how some natural sen-
tences may look like. However, in the next section, I will introduce a special
grammar notation that most Prolog systems can use.

1.4 More reading

There are several good books that introduce to and go in depth with Pro-
log; for computer science students, I have good experience of using Bratko’s
book [3], but the first half of the book is also fairly accessible to other peo-
ple. The online, and now also paperback, book [2] may be easier to access
for linguists. I will also refer to my own course notes [10] which are bi-
ased towards applications in artificial intelligence, including computational
linguistics, and databases; if you skip the very few mathematical formulas
that appear occasionally, it can give you an easily read (hmmm, well, fairy
easily read) introduction to these areas. The notes have the advantage that
they also introduce Constraint Handling Rules, which we apply to semantic-
pragmatic analysis below.

' TRIANGLE 1 e September 2010

Logic Programming for Linguistics 41

Prolog was originally developed by a research group in Marseilles led
by Alain Colmerauer in the 1970s, and spreading of ot was strongly pro-
moted by D.H.D. Warren’s first efficient implementation of Prolog [36] and
R.A. Kowalski’s book from 1979 [29]; since 1982, there have been annual
conferences, ICLP, International Conference on Logic Programming.

2 Definite Clause Grammars

Now you have understood the basic mechanics of Prolog, I will introduce
you to its grammar notation, called Definite Clause Grammars or DCGs among
friends, by means of an example. You can write such rules directly in your
Prolog program files, and you can mix Prolog and DCGs whenever you
wish.

2.1 DCG, lesson 1: The basic grammar notation and syntax analysis

The sheeps program shown above can be written alternatively using gram-
mar rules as follows; we assume it is contained in a file sheepsGrammar.

sheeptalk--> [].

sheeptalk--> sheepsound, sheeptalk.
sheepsound--> [mah].

sheepsound--> [meeeeeh] .

You can see that we avoid explicitly clipping off constants one at a time,
and we do not have to write list arguments explicitly. In a grammar, we may
use nonterminal (symbol)s such as sheeptalk, and terminal symbols that are
written in square brackets (i.e., the list notation re-used). In fact Prolog will
translate, behind you back, a grammar such as sheepsGrammar into a Prolog
program that resembles the sheeps Prolog program that I showed above.
To query a grammar, i.e., to use it to analyse text, we need to use a special
built-in predicate called phrase. It is shown at work below:

$ prolog

| 7- [sheepsGrammar] .

% compiling directory/sheepsGrammar. ..

| 7- phrase(sheeptalk, [mah,mah,meeeeeh]).
yes

' TRIANGLE 1 e September 2010

42 Henning Christiansen

| ?- phrase(sheeptalk, [mah,mah,mounuuuuuuuuuuuuuh]) .
no

| ?- halt.

$

As you can see, DCGs provide a formal grammar notation, and you can use
the Prolog system to tests examples to convince yourself that the grammar
actually expresses what you have in mind. I claim that this is a very good
reason for students of linguistics to work with these tools.

2.2 DCG, lesson 2: Adding features

A grammar can do more than just say yes and no, because we can add all
kinds of features to the nonterminals, in a very similar way to how we used
arguments for the predicates.

I will use a simplistic extension to the sheepsGrammar to illustrate this.
I will consider how much grass a sheep needs to eat in order to perform
a given speech; let us assume that a sheep needs one lump of grass to say
mah and three lumps to say meeeeeh. For each syntactic phrase, we attach
a feature that counts the total number of lumps for that phrase. This can
be expressed as follows; you should notice the following details: the curly
brackets {- - -} inside a grammar rule indicate a piece of Prolog code that
should be interpreted whenever the given rule applies, and secondly Pro-
log’s strange way of doing arithmetic by the “is” construction used below
in order to perform an addition. Let the file sheepsGrammarGrass contain
the following grammar.

sheeptalk(0)-->[].

sheeptalk(C)--> sheepsound(C1), sheeptalk(C2), {C is C1+C2}.
sheepsound (1) --> [mah].

sheepsound(3)--> [meeeeeh].

It works as follows.

$ prolog

| ?- [sheepsGrammarGrass].

% compiling directory/sheepsGrammar. ..

| 7- phrase(sheeptalk(C), [mah,mah,meeeeeh]).
C=567

' TRIANGLE 1 e September 2010

Logic Programming for Linguistics 43

yes
| 7- halt.
$

Finally I show a more interesting grammar for a subset of English; here I
add a feature for number whenever it is relevant, and express the constraint
that the number for noun phrase must match the number for the following
verb phrase. Notice that number (indicated by variables called “N”) can as-
sume the values plus and sing. We write the grammar in the text file called
english as follows.

s --> np(N), v(N), np().

np(N) --> noun(N).

np(plur) --> noun(_), [and], np().
noun(sing) --> [joachim].
noun(sing) --> [alexandral.
noun(sing) --> [marie].

noun(plur) --> [dogs].

v(sing) --> [likes].

v(plur) --> [like].

The following queries show it at work; I suggest that you inspect each query
in detail and understand exactly why it answers as it does.

| 7- [english].

% compiling directory/english...

| 7- phrase(s, [joachim,likes,dogs]).

yes

| 7- phrase(s, [joachim,like,dogs]).

no

| 7- phrase(s, [marie,and,alexandra,likes,joachim]).
no

| 7- phrase(s, [marie,and,alexandra,like,joachim]).
yes

| ?- halt.

$

You can also extend your grammar with structures that represent syntax
trees, so that when you analyze a sentence, you get as a result the tree that

' TRIANGLE 1 e September 2010

44 Henning Christiansen

represents the phrase structure of that sentence. It is straightforward to do
so, and you can do it yourself, provided that you find a textbook or good
course notes and read about structures in Prolog.

2.3 More reading

Definite clause grammars (DCG) were first presented in 1975 by A. Colmer-
auer [18] under the name of grammaires de métamorphose, and they got their
final shape and name as DCGs in 1980 [31]. Any good Prolog textbook will
have a section on Definite Clause Grammars, and they are included in vir-
tually all available Prolog systems.

3 A brief introduction to Constraint Handling Rules, CHR,
and their application for abductive reasoning

The term abduction usually refers to a kind of criminal act, quite different
from the specific meaning that what I use it for here, and abductive reason-
ing sounds weird to most people.

I first give an introduction to the topic taken from [10], and then I in-
troduce the language of Constraint Handling Rules by means of a few ex-
amples of how they can be used for adding abductive reasoning to Prolog.
Then, I combine this with the grammar notation introduced above.

You may find the name and term “constraints” a bit confusing; this is a
consequence of the application that CHR was originally designed for, which
we discuss briefly in section 3.4 below.

Most applications of abductions, including the methods I introduce be-
low, are used for diagnosis and planning; I will not go into such examples
here, but you may try to think about the similarities between language in-
terpretation and diagnosis.

3.1 Deduction, abduction, and induction in logic programming

The philosopher C.S.Peirce (1839-1914) is considered a pioneer in the under-
standing of human reasoning, especially in the specific context of scientific
discovery. His work is often cited in computer science literature but prob-
ably only a few computer scientists have read Peirce’s original work. I rec-
ommend [21] as an overview of Peirce’s influence seen from the perspective
of computer science.

' TRIANGLE 1 e September 2010

Logic Programming for Linguistics 45

Peirce postulated three principles as the fundamental ones:

Deduction, reasoning within the knowledge we have already, i.e., from
those facts we know and those rules and regularities of the world that
we are familiar with. E.g., reasoning from causes to effects:

“If you make a fire in the living room, you will burn down the house.”
Induction, finding general rules from the regularities that we have ex-
perienced in the facts that we know; these rules can be used later for
prediction:

“Every time I made a fire in my living room, the house burnt down, aha, ... the
next time I make a fire in my living room, the house will burn down too”.
Abduction, reasoning from observed results to the basic facts from
which they follow. Quite often it means from an observed effect to pro-
duce a qualified guess for a possible cause:

“The house burnt down. Perhaps my cousin made a fire in the living room
again.

In fact, Peirce had alternative theories and definitions of abduction and in-
duction; I have adopted the so-called syllogistic version, cf. [21]. I can repli-
cate the three in logic programming terms:

A Prolog system is a purely deductive engine. It takes a program of rules
and facts, and it can calculate or check the logical consequences of that
program.

Induction is difficult; methods for so-called inductive logic programming
(ILP) have been developed, and by means of a lot of statistics and other
complicated machinery, they synthesize rules from collections of “facts”
and “observations”. I can refer to [4]° for an overview of different appli-
cations. Inductive logic programming has been successfully applied for
molecular biology concerned with protein molecule shapes and human
genealogy. See [30] for an in-depth treatment of ILP methods.
Abductive logic programming; roughly means from a claim of goal that
is required to be true (i.e., being a consequence of the program), to ex-
tend to program with facts so that the goal becomes true. See [27] for
an overview. Abduction has many applications; I may mention planning
(e.g., the goal is “successful project ended” and the facts to be derived
are the detailed steps of a plan to achieve that goal), diagnosis (goal

6 A bit old; if you are interested, you should search for more recent

overview papers and consult proceedings of the recent ILP conferences; see
http:/ /www.informatik.uni-trier.de/~ley/db/conf/ilp /index html.

' TRIANGLE 1 e September 2010

46 Henning Christiansen

is observed symptoms, the facts to be derived comprise the diagnosis,
i.e., which specific components of the organism or technical system that
malfunction). An important area for abduction is language processing,
especially discourse analysis (the discourse represents the observations,
the facts to be derived constitute an interpretation of that discourse). We
will look into some of these in more detail below and give references.

However, we should be aware that while deduction is a logically sound way
of reasoning, this is generally not the case for abduction and induction. Let
me make a simple analysis for abduction. Assume a logical knowledge base
{a = ¢,b — ¢} where the arrow means logical implication. If we know ¢,
an abductive argument may propose that a is the case. However, this is not
necessarily true as it might that b is the case and not a. Or it could even
be the case that none of a and b are the case, and that there is another and
unknown explanation for c. Abduction is often described as reasoning to the
best explanation. i.e., best with respect to the knowledge we have available.

3.2 Introducing Constraint Handling Rules by examples of abduction

Constraint Handling Rules [22], CHR, is a declarative, rule-based language
for writing constraint solvers and is now included as an extension of several
versions of Prolog. Operationally and implementation-wise, CHR extends
Prolog with a constraint store, and the rules of a CHR program serve as
rewriting rules over constraint stores. CHR is declarative in the sense that
its rules can be understood as logical formulas. I show first a program in
Prolog that does not use CHR and we analyze its deficiencies; it is given as
the file happy1.

happy (X) : - rich(X).
happy (X) : - professor(X), has(X,nice_students).

It is supposed to describe how someone can become happy, which, however,
does not fit exactly with Prolog’s mode of working, as we will see. We ask
now the following query with the intension of finding out how someone
with the name henning can be happy.

| 7- happy(henning) .

! Existence error in user:rich/1

! procedure user:rich/1 does not exist
! goal: wuser:rich(henning)

' TRIANGLE 1 e September 2010

Logic Programming for Linguistics 47

It goes wrong because Prolog needs to investigate calls to rich, which is
not defined by any facts or rules. By giving a suitable command to Prolog
(which I don’t show here), we can get rid of the error message, so that a call
to a predicate with zero facts and rules always fails (as opposed to crashing),
which is more in accordance with a logical meaning of the Prolog program.”
In this case we would get the answer no instead since the predicates rich,
professor and has are all empty, but this is still not satisfactory according
to our intension with the query.

What we wanted to achieve, was one or more explanations of how we
could get the conclusion happy (henning), and to do this, we must make a
part of the program dynamic in the sense that the system should be able
to add facts to see if that made the goal succeed. Now you may see the
relationship with abductive reasoning, which, as I have shown, is beyond
plain Prolog’s capabilities.

We can now use CHR to declare the predicates rich, professor and
has as constraints, in the sense that they are now governed by the CHR
system. We do this in the next version of the program, happy?2; the first line
is necessary for making CHR available.

:- use_module(library(chr)).

:- chr_constraint rich/1, prof/1, has/2.
happy (X) :- rich(X).

happy (X) : - professor(X), has(X,nice_students).

Having these predicates declared as constraints will have the effect that they
1) are not unknown anymore, and 2) whenever they are called, the system
will add the calls to its constraint store. At the end, the collected constraint
store is printed out as part of the answer. We test the happy2 program and
get the following results.®

7 There is a very good reason, though, why Prolog as default emits an error message

rather than silently failing if a non-existing predicate is called. Can you imagine, if
you have a very big program over several thousand lines, and you have misspelled
one occurrence of a predicate; the error message will help you to locate the error
while a failure would make it almost impossible to detect if, e.g., the program
simply answers “no”.
Important note concerning SWI Prolog: Some older versions do not print out
the constraint store when the program finishes; if you experience this problem,
check the manual for the version you are using, to find the command that makes
it print the constraint store. Otherwise, there is not much fun in using CHR for
abduction!

)

' TRIANGLE 1 e September 2010

48 Henning Christiansen

| ?- happy(henning).
rich(henning) 7 ;
professor(henning),
has(henning,nice_students) 7 ;
no

As you can see, the two alternative answers say that there are two ways that
happy (henning) can be true, namely if either the constraint store contains
rich(henning) or, alternatively, professor(henning) and has(henning,
nice_students).

I will relate these answers to abductive reasoning as follows:

If we forget everything about CHR and type in, say, rich (henning)
as a part of the program, then happy (henning) will succeed, i.e., answer “yes”.

However, we can improve this program even further and make it better to
reflect the real world. It is a fact that university professors are much lower
paid than people in the industry with less education, and we always com-
plain about this. We should somehow express this in our program, and here
the rules of CHR come in handy. Rules in CHR operate on the constraint
store, and a rule fires, whenever the total set of constraints in the store makes
it possible for that rule to apply. We show this in an improved version of the
program, happy3.

:- use_module(library(chr)).

:- chr_constraint rich/1, prof/1, has/2.

prof (X), rich(X) ==> fail.

happy (X) : - rich(X).

happy (X) : - professor(X), has(X,nice_students).

The construction written with “==>"is a CHR rule of the kind called a prop-
agation rule. The meaning is that when its head (the left hand side) matches
constraints in the store, the body (right hand side) is executed; in the exam-
ple the body amounts to “fail” which will cause the system to try another
branch. Now let us see how this program works; notice that the program
does not know that professor (henning), so we need to state this as part of
the query to get the right answers.

| 7- happy(henning), professor (henning).
professor(henning),

professor(henning),

has (henning,nice_students) 7 ;

' TRIANGLE 1 e September 2010

Logic Programming for Linguistics 49

no

Here we get only one answer, namely that professor (henning) and has
(henning,nice_students). The alternative postulation a professor to be
rich is removed due to the CHR rule. You may notice that the constraint
professor (henning) is repeated in the answer; this is due to some techni-
cal reasons that I will not spend time on explaining, it does not mean any
thing.

This last example basically shows the part of CHR that you need to know
how to use it for abductive language interpretation, as shown below.

Finally, I will comment on some terminological confusion that appears
because this way of doing, involves usages from different areas.

o “Constraint” refers in CHR context to predicates that have been declared
in as such, and that are treated by the system in a special way. We use
CHR constraints here for what in the tradition of abductive reasoning is
called abducibles.

o “Integrity constraint” refers in database theory and in abductive reason-
ing not to the simple piece of information, but to general knowledge
about the world, about what is possible and what is not. Above, we used
a CHR rule to describe an integrity constraint.

e Finally, as you have noticed, Prolog rules and CHR rules are something
completely different, so referring to “a rule” may be ambiguous.

3.3 Details of CHR

Most of my readers may skip this subsection as you can make interesting
linguistic applications, by generalizing from the examples above. The rest of
this section is taken verbatim from [10], and may contain a few terms that
you may be unfamiliar with.

CHR takes over the basic syntactic and semantic notions from Prolog
and extends them with its specific kinds of rules. The execution of CHR
programs is based on a constraint store, and the effect of applying a rule is
to change the effect of the store. For a program written in a combination
of Prolog and CHR, the system switches between two tow. When a Prolog
goal is called, it is executed in the usual top-down (or goal-directed) way,
and when a Prolog rule calls a CHR constraint, this will be added to the
constraint store — then the CHR rules apply as far as possible, and control
then returns to the next Prolog goal.

' TRIANGLE 1 e September 2010

50 Henning Christiansen

Technically speaking, CHR constraints are first-order atoms whose pred-
icates are designated constraint predicates, and a constraint store is a set of
such constraints, possible including variables that are understood existen-
tially quantified at the outermost level. A constraint solver is defined in
terms of rules which can be of the following two kinds.

Simplification rules: ¢y, ...,c, <=> Guard | ¢yq1,...,Cm

Propagation rules: ¢y, ...,c, ==> Guard | ¢y41,...,Cm

The c’s are atoms that represent constraints, possibly with variables, and
a simplification rule works by replacing in the constraint store, a possible
set of constraints that matches the pattern given by the head cy, . ..c, by the
constraints given by the body c,41,...,cn, although only if the condition
given by Guard holds. A propagation rule executes in a similar way but
without removing the head constraints from the store. What is to the left of
the arrow symbols is called the head® and what is to the right of the guard
the body. The declarative semantics is hinted by the applied arrow symbols
(bi-implication, resp., implication formulas, with variables assumed to be
universally quantified) and it can be shown that the indicated procedural
semantics agrees with this. This is CHR explained in a nutshell.

CHR provides a third kind of rules, called simpagation rules, which can
be thought of as a combination of the two or, alternatively, as an abbrevation
for a specific form of simplification rules.

Simpagation rules: c1,...,¢; \ ¢i11,...cn <=> Guard | c,41,...,Cm

which can be thought of as: ¢y, ...,¢c, <=> Guard | c¢1,...,¢,Cp41,---,Cm

In other words, when applied, cy,...,c; stays in the constraint store and
Cit1,---,Cn are removed.

In practice, the body of CHR rules can include any executable Prolog ex-
pression including various control structures and calls to Prolog predicates.
Similarly, Prolog rules and queries can make calls to constraints which, then,
may activate the CHR rules.

The guards can be any combination of predicates (built-in or defined by
the programmer) that test the variables in the head, but in general guards
should not change the values of these variables or call other constraints;
in these cases, the semantics gets complicated, see references given above if

9 Some authors call each constraint to the left of the arrow a head, and with that
terminology, CHR has multi-headed rules.

' TRIANGLE 1 e September 2010

Logic Programming for Linguistics 51

you are interested in the details. Finally, guards can be left out together with
the vertical bar, corresponding to a guard that always evaluates to true.

The following example of a CHR program is adapted from the reference
manual [33]; from a knowledge representation point of view it may seem a
bit strange, but it shows the main ideas. It defines a a little constraint solver
for a single constraint leq with the intuitive meaning of less-than-or-equal.
The predicate is declared to be an infix operator to enhance reading, but this
is not necessary (X leq Y could be written equivalently as 1eq(X,Y)).

:- use_module(library(chr)).
handler leq_handler.
constraints leq/2.

:- op(500, xfx, leq).

X leq Y <=> X=Y | true.

Xleq Y, Y leq X <=> X=Y.

X leq Y \ X leq Y <=> true.
XleqY , Y leq Z ==> X leq Z.

The first line loads the CHR library which makes the syntax and facilities
used in the file available. The handler directive is not very interesting but
is required. Next, the constraint predicates are declared as such (here only
one such predicate) and this informs the Prolog system that occurrences of
these predicates should be treated in a special way.

The program consists of four rules, one propagation, two simplifications,
and one simpagation. The first simplification describes the transitivity of the
leq constraints. If, for example, the constraints a leq b and b leq c are
called, this rule can fire and will produce a new constraint a leq c (which
in turn may activate other rules).

The second rule is a simplification rule which will remove the two con-
straints and unify the arguments. Intuitively, the rule says that if some X is
less than or equal to some Y and the reverse also holds, then they should
be considered equal (antisymmetry). With constraint store {a leq Z, Z leq
a}, the rule can apply, by removing the two constraints and unifying vari-
able Z with the constant symbols a.

Consider a slightly different example, the constraint store {a leq b, b
leq a}. Again, the rule can apply, by removing the two constraints from
the store and calling a=b. This will fail as a and b are two different constant
symbols.

' TRIANGLE 1 e September 2010

52 Henning Christiansen

Notice that CHR is a so-called committed choice language in the sense that
when a rule has been called, a failure as exemplified above will not result
in backtracking. Le., in the example, the observed failure will not add {a
leq b, b leq a} back to the constraint store so other and perhaps more
successful rules may be tried out. However, when CHR is combined with
Prolog, a failure such as the one shown will cause Prolog to backtrack, i.e.,
it will undo the addition of the last of the two, say b leq a, and go back to
the most recent choice point.

The simplification rule X leq Y <=> X=Y | true will remove any leq
constraint from the store with two identical arguments. This illustrates a
fundamental difference between Prolog and CHR. Where Prolog uses uni-
fication when one of its rules is applied to some goal, CHR uses so-called
matching. This means that the mentioned rule will apply to a leq a but
not to a leq Z. In contrast, the application of Prolog rule p(X,X):---- to
p(a,Z) will result in a=Z before the body is entered.

The third rule in the program above is a simpagation rule X leq Y \ X
leq Y <=> true which serves the purpose of removing duplicate con-
straints from the store.

We consider the following query and see how the constraint store
changes.

?- C leq A, B 1leq C, A leq B.

Calling the first constraint triggers no rule and we get the constraint store {C
leq A}. Calling the next one will trigger the transitivity rule (the last rule),
and we get {C leq A, B leq C, B leq A}. The last call in the query will
trigger a sequence of events. When A leq Bis added to the constraint store,
it reacts, so to speak, with B leq A and the second rule applies, removing
the two but resulting in the unification of A and B; for the sake of clarity,
let us call the common variable, which is referred to by both A and B, V1.
Now the constraint store is {C leq V1, V1 leq C}. The same rule can apply
once again, unifying C and V1, so that the result returned for the query is
the empty constraint store and the bindings A=B=C.

In general, when a query is given to a CHR program (or a program
written in the combined language of CHR plus Prolog), the system will
print out the final constraint store together with Prolog’s normal answer
substitution. An alternative solution can be asked for as in traditional Prolog
by typing a semicolon.

' TRIANGLE 1 e September 2010

Logic Programming for Linguistics 53

I end the presentation of CHR by showing a few simple examples taken
from the CHR web site [5]. This program by Thom Frithwirth evaluates the
greatest common divisor of positive numbers.

:- use_module(library(chr)).
handler gcd.
constraints gcd/1.

ged(0) <=> true.
ged(M) \ ged(M) <=> N=<M | L is M-N, gcd(L).

Here are a few test queries.

7- gecd(2),gcd(3).
7- X is 37x11x11x7*3, Y is 11x7*5%3, Z is 37*11%5, gcd(X),
gecd(Y), gcd(2).

The following program generates the prime numbers between 1 and # when
given the query ?- primes(n). It was written by Thom Frithwirth and
adapted by Christian Holzbaur.

:- use_module(library(chr)).
handler primes.
constraints primes/1, prime/1.

primes(1) <=> true.
primes(N) <=> N>1 | M is N-1, prime(N), primes(M).
prime(I) \ prime(J) <=> J mod I =:= 0 | true.

3.4 More reading

Constraint Handling Rules (CHR) were developed by T. Frithwirth from
around 1992, first publication [24], in order to have a declarative language
for writing constraint solvers for, e.g., working with arithmetic in logic pro-
gramming. Later, it turned out that CHR was suited to a much wider class
of applications as illustrated in the present article. The use of CHR for ab-
ductive reasoning was discovered by S. Abdennadher and myself in 2000 [1]
and later the ideas have been refined in my own work, largely in an inspir-
ing collaboration with Veronica Dahl, see, e.g., [6,11-15].

' TRIANGLE 1 e September 2010

54 Henning Christiansen

A recent book [23] gives a thorough, mainly theoretical treatment of all
aspects of CHR, and the collection [32] gives an overview of recent applica-
tions and developments concerning CHR. See also [22,25] for good overview
papers and the CHR website
http:/ /www.cs kuleuven.be/ ~dtai/projects/CHR.

Since 2004, there have been annual workshops on CHR.

4 Language interpretation as abduction in Prolog+CHR

Now we have all the tools for doing abductive language interpretation: We
have the DCG grammar notation for the syntax, and I will show how CHR
can take care of a large portion of the semantic-pragmatic analysis. In fact, it
is interesting to see how the use of abduction tends to remove the borderline
between semantics and pragmatics.

4.1 Introducing abductive interpretation by examples

The following example was developed when I gave a talk for students at
GRLMC in Tarragona, so that sets the context for the example. It may be
possible that some people attend the talk while others are away; further-
more, we will be interested in who is able to see whom. Note that the exam-
ple is not always perfect from an intuitive point of view, but its shows the
method.

We make a first suggestion for a grammar that uses CHR to extract (a
selected part of) the meaning of a given discourse. In this version, in file
discoursel, we do not include any CHR rules. Notice that instead of having
a general rule for sentences, we have specialized rules for the different sort
of sentences that we want to analyze. This is not essential, but made in order
to simplify this example; for larger applications, it may be advisable to use
a more homogeneous format.

:- use_module(library(chr)).

:- chr_constraint at/2, sees/2.

story --> [1 ; s, [’.°], story.

s --> np(X), [sees], np(Y), {sees(X,Y)}.

s --> np(X), [is,at], np(E), {at(E,X)}.

s --> np(X), [is,on,vacation], {at(vacation,X)}.
np(pedro) --> [pedro].

' TRIANGLE 1 e September 2010

Logic Programming for Linguistics 55

np(maria) --> [maria].

np(loli) --> [lolil.

np(grimc) --> [grimc].
np(hennings_talk) --> [hennings,talk].
np(vacation) --> [vacation].

Let us show a few examples of using this grammar for language analy-
sis. The following query analyzes a very simple sentence and represents its
meaning as a CHR constraint.

| 7- phrase(story, [pedro,is,at,grimc,’.’]).
at(grlmc,pedro) 7 ;
no

Let us try another, longer discourse:

phrase(story, [pedro,sees,maria,’.’, pedro,sees,loli,’.’,
pedro,is,at,grlmc,’.’, maria,is,at,hennings,
talk,’.’,lo0li,is,on,vacation,’.’]).

at(vacation,loli),

at(hennings_talk,maria),

at (grlmc,pedro),

sees(pedro,loli),

sees(pedro,maria) 7 ;

no

It appears that each sentence is “translated” into a formal form, but there is
not much semantic-pragmatic processing involved. So let us add a few CHR
rules to express a bit of simple every-day knowledge. The first rule says that
if someone is at GRLMC, he or she is also in Tarragona; the next one says
that anyone can only be in one location (it uses a so-called simpagation rule
which removes that last of the matched in constraints, so that we avoid
duplicate constraints). Next we express that if someone is at my talk, he or
she is also at GRLMC, and finally, if someone is on vacation, he or she is not
in Tarragona.!”

10 The diff constraint is a device that ensures that two items need to be different
for the rest of the discourse. You may use instead Prolog’s built-in dif (one f)
instead, but my handcrafted version gives more readable output. It can be defined
as follows; you do not need to read this; I include it for completeness only and to
indicate that I have not hidden any code under the carpet to get it to work.

' TRIANGLE 1 e September 2010

56 Henning Christiansen

at(grlmc,X) ==> in(tarragona,X).

in(Loc1,X) \ in(Loc2,X) <=> Locl=Loc2.

at (hennings_talk,X) ==> at(grlmc,X).
at(vacation,X) ==> in(Loc,X), diff(Loc,tarragona).

During an analysis of the discourse, these rules will fire as soon as they
can and do some simple reasoning on the constraint store as the analysis
proceeds. The program discourse2 also contains these rules.

| ?- phrase(story, [pedro,sees,maria,’.’, pedro,sees,loli,
’.?,pedro,is,at,grlmc,’.’, maria,is,at,
hennings,talk, ’.’,loli,is,on,vacation,’.’]).

at(vacation,loli),

at(grlmc,maria),

at(hennings_talk,maria),

at(grlmc,pedro),

in(_A,lo0li),

in(tarragona,maria),

in(tarragona,pedro),

sees(pedro,loli),

sees(pedro,maria),

diff(_A,tarragona) 7 ;

no

As it appears, the meaning extracted from the discourse now also in-
cludes for each person, in which place he or she is. Note that 1oli is in
some place, referred to be a variable written by the system as “_A”; we do
not know where this place is, except that it is not tarragona.

We will now make one last extension, discourse3, of the program to
indicate who can see whom. If you are able to see someone then you are
both in the same place, e.g., Tarragona, or you contact the person using
skype. The following CHR rule needs a bit of explanation. The semicolon
in the body signifies a logical “or” so that the system will try out both
possibilities if asked for more answer or if the first alternative leads to a

:- chr_constraint diff/2.

diff (X,X) <=> fail.

diff(A,B) \ diff(A,B) <=> true.
diff(A,B) \ diff(B,A) <=> true.
diff(A,B) <=> ?=(A4,B) | true.

' TRIANGLE 1 e September 2010

Logic Programming for Linguistics 57

failure. Secondly, you should ignore the irrelevant “true |” in the rule:
there is a design bug in the CHR syntax so that when you use a semicolon
in the body, you need to write it like this; there is no reason to make any
effort to understand why.

see(X,Y) ==> true | (in(L,X), in(L,Y) ;
in(Lx,X), in(Ly,Y), diff(Lx,Ly), skypes(X,Y)).

Let us try the usual query again with the program that contains all the rules
shown so far.

| 7- phrase(story, [pedro,sees,maria,’.’, pedro,sees,loli,
’.?,pedro,is,at,grlmc,’.’, maria,is,at,
hennings,talk, ’.’,loli,is,on,vacation,’.’]).

at(vacation,loli),
at(grlmc,maria),

at (hennings_talk,maria),
at (grlmc,pedro),
in(_A,lo0li),
in(tarragona,maria),
in(tarragona,pedro),
see(pedro,loli),
see(pedro,maria),
skypes (pedro,loli),
diff(tarragona,_A) 7 ;
no

We notice that the only answer is one in which Pedro sees Loli via skype,
since the other option that they are in the same place is not possible: Pedro
is in Tarragona and Loli is somewhere which is not Tarragona. This exam-
ple has illustrated how the CHR rules can process the bits of information
generated for each sentence and form it in into a knowledge base, that also
contains knowledge that is not expressed directly in the discourse, but is
somehow necessary for the discourse to be made.

There are still a few imperfections in this grammar, for example that the
sees relationship is not symmetric, but we would expect that if A sees B
then B also sees A; this is easy to repair (when you are familiar with CHR),
but there is no reason to spend more time on this here.

' TRIANGLE 1 e September 2010

58 Henning Christiansen

4.2 More reading

The principle of seeing language interpretation as abduction was first for-
mulated in [26], which is a highly referenced paper from 1993. Abduction in
logic programming was studied from around 1990 or before with [28] as a
central reference; see the following overview papers [20,27]. The use of ab-
duction implemented with CHR starts around 2000 with my own work; the
first references are [6,7]. Later I developed these ideas together with Veron-
ica Dahl, which led to the combined use of DCG and CHR as demonstrated
above. The work with Veronica also resulted in the Hyprolog system which
is briefly described next.

In [16,17], we have developed a realistic example of a CHR based gram-
mar, which reads so-called use cases and produces UML diagrams. Use
cases are used for the sort of system analysis that is made for the develop-
ment of complex computerized systems that are typically used in large and
complex organizations; use cases are small stories about what goes in the
organization. A UML diagram, on the other hand, is a graphical represen-
tation of which classes of objects appear and their mutual relationships.

5 One step further: Hyprolog

Hyprolog is a system thought out by Veronica Dahl and myself, which
puts an additional set of facilities on top of Prolog+DCG+CHR. The syntax
for declaring abducible predicates is different (in Hyprolog, we call them
abducibles rather than chr_constraints), and a few more aspects of ab-
duction not described here are supported. Most notably, Hyprolog includes
so-called assumptions that work very much like abducibles, but they also
reflect the time which is implicit in a discourse — some things are said be-
fore and after certain other things — and they have explicit creation and
applications.

I will not explain Hyprolog in detail, but you can refer to the arti-
cles [13,14] and the Hyprolog User’s Guide which is available at [9] to-
gether with source code and examples. First we describe these new devices,
assumptions, and then we sketch a larger example available from [9].

5.1 Assumptions: Like abduction but with time

The text in this subsection is taken from [14], written together with Veronica
Dahl.

' TRIANGLE 1 e September 2010

Logic Programming for Linguistics 59

Assumptive logic programs [19] are logic programs augmented with a)
linear, intuitionistic and timeless implications scoped over the current con-
tinuation, and b) implicit multiple accumulators, particularly useful to make
the input and output strings invisible when a program describes a grammar
(in which case we talk of Assumption Grammars [19]). More precisely, we
use the kind of linear implications called affine implications, in which as-
sumptions can be consumed at most once, rather than exactly once as in
linear logic. Although intuitively easy to grasp and to use, the formal se-
mantics of assumptions is relatively complicated, basically proof theoretic
and based on linear logic [19, 34, 35]. Here we use a more recent and ho-
mogeneous syntax for assumptions introduced in [8]; we do not consider
accumulators, and we note that Assumption Grammars can be obtained by
applying the operators below within a DCG.

+h(a) Assert linear assumption for subsequent proof steps.
Linear means “can be used once”.

*h(a) Assert intuitionistic assumption for subsequent
proof steps. Intuitionistic means “can be used any
number of times”.

-h(X) Expectation: consume/apply existing int. assumption.
=+h(a), =*h(X), =-h(X) | Timeless versions of the above, meaning that order of
assertion of assumptions and their application or
consumption can be arbitrary.

A sequential expectation cannot be met by timeless assumption and vice
versa, even when they have the same name. In [35], a query cannot succeed
with a state which contains an unsatisfied expectation; for simplicity (and to
comply with our implementation), this is not enforced in HYPROLOG but
can be tested explicitly using a primitive called expections_satisfied. As-
sumption grammars have been used for natural language problems such as
free word order, anaphora, coordination, and for knowledge based systems
and internet applications.

5.2 Sketch of an example Hyprolog program

A grammar for a subset of English is available at the Hyprolog web-
site [9], click “Sample Hyprolog programs” and then “shootingLucky-
LukeAdvanced”.!! It includes pronoun resolution, in which we only allow

11 There are some mistakes in the version at the Hyprolog website. A corrected one
is available at http:/ /www.ruc.dk/~henning/LP-for-Linguists.

' TRIANGLE 1 e September 2010

60 Henning Christiansen

backward references, so that “he” can only refer to a male character which
has already been mentioned, and “they” can only refer to a group of at
least two people already mentioned. The sentence in question refers to a
world where people are shooting at each other, and those who have been
shot, cannot shoot after that event. Each event is time-stamped according to
the sentence in which it appears.!?> Here is an example of a query and its
answer; as we see there is only one possible answer.

| ?- phrase(discourse, [luckyLuke,shoots,jackDalton,
calamityJane,shoots,averellDalton,
they, shoot,joeDalton]).

event (2, shooting, [calamityJane,luckyLuke],joeDalton),

event (1,shooting,calamityJane,averellDalton),

event (0, shooting,luckyLuke, jackDalton),

dead(2,joeDalton),

dead(1,averellDalton),

dead (0, jackDalton),

alive(2,luckyLuke),

alive(2,calamityJane),

alive(1l,calamityJane),

alive(0,luckyLuke),

’*acting’ (masc,joeDalton),

’¥acting’ (masc,averellDalton),

’¥acting’ (fem,calamityJane),

’*acting’ (masc,jackDalton),

’¥acting’ (masc,luckyLuke) 7 ;

no

| 7-

For example, you can see that “they” in the last sentence refers to Calamity
Jane and Lucky Luke as they are the only persons mentioned still alive at the
time for the shooting. Assumptions such as ’*acting’ (masc, jackDalton)
are used for pronoun resolution that also involves the semantic reasoning
that only live people can shoot.

As a final example, we illustrate how we can add a context to a discourse,
which corresponds to the everyday situation that some amount of common
knowledge is assumed, when a conversation begins.

12 This time-stamping may not be so elegant; I believe it should be possible to get
rid of it by using assumptions in the right way.

' TRIANGLE 1 e September 2010

Logic Programming for Linguistics 61

We can define a context in terms of a Prolog rule, which calls certain
constraints and assumptions; here we show only the assumptions in the
initial context.

duckville: -
*acting(masc,huey) ,*acting(masc,dewey),
*acting(masc,louie), *acting(masc,donald),

*xacting(fem,daisy) .
We can use it as follows, where it is applied to pronoun resolution.

| ?7- duckville, phrase(discourse, [she,shoots,donald]).
event (0,shooting,daisy,donald),
dead(0,donald),

alive(0,daisy),
?

Note that this principle for setting up an initial context can also be used
without the Hyprolog system, so that you can extend the examples shown
in the previous sections (avoiding assumptions, of course, which is specific
to Hyprolog).

5.3 More reading

The Hyprolog system is the result of my collaboration with Veronica
Dahl [13,14], and I have made an implementation which is available at my
website, http://www.ruc.dk/~henning /hyprolog/ [9]; there are many ex-
amples here that may be useful to inspect. The assumptions in Hyprolog
are inspired by Veronica’s earlier work [19,34].

6 A few Prolog and CHR systems

There are several good Prolog systems around, some of which may be
downloaded for free, but not all include CHR (and occasionally not even
DCG).

All examples shown above run in both SICStus Prolog, www.sics.se/
sicstus, and SWI Prolog www.swi-prolog.org. SWI is free, but SICStus costs
money, although it is available in a test version for 30 days; check if your
institution has a site license for SICStus.

You may find a list of all Prologs that support CHR at
http:/ /www.cs. kuleuven.be/ ~dtai/projects/CHR/.

' TRIANGLE 1 e September 2010

62

Henning Christiansen

References

10.

11.

12.

13.

. Slim Abdennadher and Henning Christiansen. An experimental CLP plat-

form for integrity constraints and abduction. In Proceedings of FQAS2000, Flex-
ible Query Answering Systems: Advances in Soft Computing series, pages 141-152.
Physica-Verlag (Springer), 2000.

Patrick Blackburn, Johan Bos, and Kristina Striegnitz. Learn Prolog Now!, vol-
ume 7 of Texts in Computing. College Publications, 2006. Find also an online
version at http://www.learnprolognow.org/.

Ivan Bratko. Prolog (3rd ed.): programming for artificial intelligence. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

Ivan Bratko and Stephen Muggleton. Applications of inductive logic program-
ming. Commun. ACM, 38(11):65-70, 1995.

CHR web. The programming language CHR, Constraint Handling Rules; official
web pages. http://www.cs.kuleuven.ac.be/“dtai/projects/CHR/

Henning Christiansen. Abductive language interpretation as bottom-up deduc-
tion. In Shuly Wintner, editor, Natural Language Understanding and Logic Program-
ming, volume 92 of Datalogiske Skrifter, pages 33-47, Roskilde, Denmark, July 28
2002.

Henning Christiansen. Logical grammars based on constraint handling rules. In
Peter J. Stuckey, editor, ICLP, volume 2401 of Lecture Notes in Computer Science,
page 481. Springer, 2002.

Henning Christiansen. CHR Grammars. Int’l Journal on Theory and Practice of
Logic Programming, 5(4-5):467-501, 2005.

Henning Christiansen. HYPROLOG: a logic programming language with ab-
duction and assumptions, 2005. Website with source code, User’s Guide and
examples, http:/ /www.ruc.dk/~henning/hyprolog/.

Henning Christiansen. Logic programming as a framework for knowledge
representation and artificial intelligence. Teaching note for the course “Ar-
tificial Intelligence and Intelligent Systems”, Roskilde University, Denmark,
http:/ /www.ruc.dk/~henning /KIIS07 / CourseMaterial / CourseNote.pdf, 2006.
Henning Christiansen. Implementing probabilistic abductive logic program-
ming with constraint handling rules. In Schrijvers and Frithwirth [32], pages
85-118.

Henning Christiansen. Executable specifications for hypothesis-based reasoning
with prolog and constraint handling rules. |. Applied Logic, 7(3):341-362, 2009.
Henning Christiansen and Veronica Dahl. Assumptions and abduction in Pro-
log. In Elvira Albert, Michael Hanus, Petra Hofstedt, and Peter Van Roy, editors,
3rd International Workshop on Multiparadigm Constraint Programming Languages,
MultiCPL'04; At the 20th International Conference on Logic Programming, ICLP’04
Saint-Malo, France, 6-10 September, 2004, pages 87-101, 2004.

' TRIANGLE 1 e September 2010

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Logic Programming for Linguistics 63

Henning Christiansen and Verénica Dahl. HYPROLOG: A new logic program-
ming language with assumptions and abduction. In Maurizio Gabbrielli and
Gopal Gupta, editors, ICLP, volume 3668 of Lecture Notes in Computer Science,
pages 159-173. Springer, 2005.

Henning Christiansen and Verénica Dahl. Meaning in Context. In Anind Dey,
Boicho Kokinov, David Leake, and Roy Turner, editors, Proceedings of Fifth Inter-
national and Interdisciplinary Conference on Modeling and Using Context (CONTEXT-
05), volume 3554 of Lecture Notes in Artificial Intelligence, pages 97-111, 2005.
Henning Christiansen, Christian Theil Have, and Knut Tveitane. From use cases
to UML class diagrams using logic grammars and constraints. In G. Angelova,
K. Bontcheva, R. Mitkov, N. Nicolov, and N. Nikolov, editors, RANLP 2007, In-
ternational Conference: Recent Advances in Natural Language Processing: Proceedings,
pages 128-132. Shoumen, Bulgaria: INCOMA Ltd, 2007.

Henning Christiansen, Christian Theil Have, and Knut Tveitane. Reasoning
about use cases using logic grammars and constraints. In Henning Christiansen
and Jergen Villadsen, editors, Proceedings of the 4th International Workshop on Con-
straints and Language Processing, CSLP 2007, volume 113 of Computer Science Re-
search Report, pages 40-52. Roskilde University, 2007.

Alain Colmerauer. Metamorphosis grammars. In Leonard Bolc, editor, Natural
Language Communication with Computers, volume 63 of Lecture Notes in Computer
Science, pages 133-189. Springer, 1978. (Translation of an earlier report from 1975
in French: Les grammaires de métamorphose).

Verénica Dahl, Paul Tarau, and Renwei Li. Assumption grammars for processing
natural language. In ICLP, pages 256-270, 1997.

Marc Denecker and Antonis C. Kakas. Abduction in logic programming. In An-
tonis C. Kakas and Fariba Sadri, editors, Computational Logic: Logic Programming
and Beyond, volume 2407 of Lecture Notes in Computer Science, pages 402—436.
Springer, 2002.

Peter A. Flach and Antonis C. Kakas, editors. Abduction and Induction: Essays on
their relation and integration. Kluwer Academic Publishers, April 2000.

Thom Frithwirth. Theory and practice of constraint handling rules, special issue
on constraint logic programming. Journal of Logic Programming, 37(1-3):95-138,
October 1998.

Thom Frithwirth. Constraint Handling Rules. Cambridge University Press, Au-
gust 2009.

Thom W. Frithwirth. User-defined constraint handling. In David Scott Warren,
editor, ICLP, pages 837-838. MIT Press, 1993.

Thom W. Frithwirth. Constraint handling rules: the story so far. In Annalisa
Bossi and Michael J. Maher, editors, PPDP, pages 13-14. ACM, 2006.

Jerry R. Hobbs, Mark E. Stickel, Douglas E. Appelt, and Paul A. Martin. Inter-
pretation as abduction. Artificial Intelligence, 63(1-2):69-142, 1993.

' TRIANGLE 1 e September 2010

64

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

Henning Christiansen

A.C. Kakas, R.A. Kowalski, and F. Toni. The role of abduction in logic pro-
gramming. Handbook of Logic in Artificial Intelligence and Logic Programming, vol.
5, Gabbay, D.M, Hogger, C.J., Robinson, J.A., (eds.), Oxford University Press,
pages 235-324, 1998.

Antonis C. Kakas and Paolo Mancarella. Database updates through abduction.
In Dennis McLeod, Ron Sacks-Davis, and Hans-Jorg Schek, editors, VLDB, pages
650-661. Morgan Kaufmann, 1990.

Robert A. Kowalski. Logic for problem solving. Elsevier North Holland, 1979.
Shan-Hwei Nienhuys-Cheng and Ronald de Wolf, editors. Foundations of In-
ductive Logic Programming, volume 1228 of Lecture Notes in Computer Science.
Springer, 1997.

Fernando C. N. Pereira and David H. D. Warren. Definite clause grammars for
language analysis - a survey of the formalism and a comparison with augmented
transition networks. Artificial Intelligence, 13(3):231-278, 1980.

Tom Schrijvers and Thom W. Frithwirth, editors. Constraint Handling Rules, Cur-
rent Research Topics, volume 5388 of Lecture Notes in Computer Science. Springer,
2008.

Swedish Institute of Computer Science. SICStus Prolog user’s manual, Version
3.12. Most recent version available at http://www.sics.se/isl, 2004.

Paul Tarau, Verdnica Dahl, and Andrew Fall. Backtrackable state with linear as-
sumptions, continuations and hidden accumulator grammars. In John W. Lloyd,
editor, Logic Programming, Proceedings of the 1995 International Symposium, page
642. MIT Press, 1995.

Paul Tarau, Verdnica Dahl, and Andrew Fall. Backtrackable state with linear
affine implication and assumption grammars. In Joxan Jaffar and Roland H. C.
Yap, editors, ASIAN, volume 1179 of Lecture Notes in Computer Science, pages
53-63. Springer, 1996.

David H. D. Warren. An abstract prolog instruction set. Technical Report 309,
Al Center, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, Oct
1983.

' TRIANGLE 1 e September 2010

