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Independent increments in group sequential

tests: a review

KyungMann Kim1,∗ and Anastasios A. Tsiatis2

Abstract

In order to apply group sequential methods for interim analysis for early stopping in clinical trials,

the joint distribution of test statistics over time has to be known. Often the distribution is mul-

tivariate normal or asymptotically so, and an application of group sequential methods requires

multivariate integration to determine the group sequential boundaries. However, if the increments

between successive test statistics are independent, the multivariate integration reduces to a uni-

variate integration involving simple recursion based on convolution. This allows application of

standard group sequential methods. In this paper we review group sequential methods and the

development that established independent increments in test statistics for the primary outcomes

of longitudinal or failure time data.
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1 Introduction

In most chronic disease clinical trials, the primary outcome of interest is either longitu-

dinal data taken at successive follow-up visits with possibly missing data or failure time

data, i.e. time to an event such as death with possible right censoring. Typically partic-

ipants enter the study serially in a way known as staggered entry, and the final analysis

is conducted either after a pre-specified number of follow-up visits for each participant

for longitudinal data or after a pre-specified follow-up period or a pre-specified number

of events of interest for failure time data.

For ethical as well as practical reasons, these clinical trials are often monitored se-

quentially over time during the course of the study, and if a sufficiently large treatment

difference is observed at an interim analysis, they may be considered for early stopping

to avoid unnecessary experimentation on human subjects. Such an approach is known
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as a sequential method. When clinical trials are monitored in this way using a sequen-

tial method, multiplicity from repeatedly applying statistical testing over time has to be

accounted for to control the overall type I error probability at an acceptable significance

level. In order to determine the sequential boundaries that preserve the operating charac-

teristic of a statistical test applied repeatedly, the joint distribution of test statistics over

time has to be known.

For clinical trials in which the primary outcome of interest is taken only once from

each participant, the joint distribution of test statistics over time is simply a product of

the distributions of test statistics at each interim analysis as each participant contributes

data to the test statistics only once and the increments between successive test statistics

are independent. However, for the primary outcome that is either longitudinal or failure

time data, it is no longer the case as each participant possibly contributes outcome data

to test statistics more than once over interim analyses.

Modern-day clinical trials since the mid 1990s or even earlier have been routinely

monitored by data and safety monitoring boards or data monitoring committees to en-

sure the safety of participants and whether risks versus benefits are acceptable for con-

tinuing the study. This is accomplished using standard group sequential methods in in-

terim analyses for possible early stopping if there is clear statistical signal of differences

in efficacy of an investigational intervention as compared to a control intervention that

may include a placebo or standard of care or if there is major concerns for safety of par-

ticipants. This review article on independent increments in group sequential tests is an

attempt to describe the development of statistical methods for interim analyses leading

up to mid 1990s.

For longitudinal data, the joint distribution of test statistics over time has been inves-

tigated by many including Armitage, Stratton and Worthington (1985), Geary (1988),

Wei, Su and Lachin (1990a), Lee and DeMets (1991, 1992), Reboussin, Lan and DeMets

(1992), Su and Lachin (1992), Wu and Lan (1992), Gange and DeMets (1996), and

Lee, Kim and Tsiatis (1996). Likewise, for failure time data, the joint distribution of

test statistics over time has been investigated by many including Tsiatis (1981, 1982),

Gail, DeMets and Slud (1982), Slud and Wei (1982), Sellke and Siegmund (1983), Slud

(1994), Tsiatis, Rosner and Tritchler (1985), Gu and Lai (1991), Lin (1992), Gu and

Ying (1995), and Tsiatis, Boucher and Kim (1995).

Often the joint distribution turns out to be multivariate normal or at least asymptot-

ically so, and subsequently sequential methods require multivariate numerical integra-

tion. The MULNOR program by Schervish (1984) can be used to this end, but it involves

very intensive numerical computation. Also the program can handle multivariate inte-

grations of only up to seven dimensions, thus limiting the tests to be applied up to seven

times only.

If the increments between successive test statistics are independent, however, the

multivariate numerical integration reduces to univariate numerical integration involving

simple recursion based on convolution of two independent variables as noted by Ar-

mitage, McPherson and Rowe (1969) and McPherson and Armitage (1971). This is ob-



KyungMann Kim and Anastasios A. Tsiatis 225

viously the case when the outcomes are measured only once as noted earlier. Moreover,

this allows the use of standard group sequential methods such as by Pocock (1977),

O’Brien and Fleming (1979), and Lan and DeMets (1983) for design and analysis of

group sequential clinical trials.

The joint distributions established by these authors dealt with specific test statis-

tics under selected statistical models for longitudinal data and failure time data. Jenni-

son and Turnbull (1990) and Scharfstein, Tsiatis and Robins (1997), however, provided

generalized theory for independent increments in sequential test statistics. The former

considered the joint distribution of test statistics for treatment effect in the presence of

covariates in regression model setting, while the latter considered the joint distribution

of semiparametric-efficient test statistics.

The rest of this paper is organized as follows. In Section 2, we first review the his-

torical development of sequential methods including classical and the so-called group

sequential methods specifically for application in clinical trials as a background. We

then review repeated significance testing and univariate recursive numerical integration

when increments between successive test statistics are independent in contrast to the

multivariate numerical integration required for sequential test statistics with correlated

increments. In Section 3, we review the historical development for the joint distribu-

tion of sequential test statistics and independent increments for group sequential tests of

longitudinal data and failure time data. In Section 4, after introducing general notations

and formulation of the problem, we review joint distributions of sequentially computed

test statistics for general regression models of independent data and various parametric,

semiparametric and nonparametric models for longitudinal data and failure time data.

In Section 5, we briefly review how the error spending function and information frac-

tion is used for design and analysis of group sequential clinical trials and demonstrate

independent increments in sequential test statistics for longitudinal data and failure time

data using real clinical trials data and simulated data. We close with concluding remarks

and observations in Section 6.

2 Sequential methods

2.1 Early sequential methods

According to Armitage (1990), “[a] scientific investigation is sequential if its conduct

at any stage depends on the outcome at previous stages.” Probably the earliest applica-

tion of sequential methods can be found in Dodge and Romig (1929) in which “double

sampling schemes” are used in industrial batch sampling for quality monitoring. These

two-stage sequential methods were adapted in cancer drug screening trials, e.g. in Gehan

(1961), Lee et al. (1979), and Simon (1989). In a theoretical development, Stein (1945)

derived a sequential procedure that uses estimated variance from the first-stage sample

in choosing the size of the second-stage sample to achieve a desired power of a two-stage

t-test.
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For a fixed sample test of the null hypothesis H0 : θ = θ0 against the alternative

hypothesis H1 : θ = θ1, let f (x;θ) be the probability density or mass function for a

random variable X . According to Neyman and Pearson (1933), one rejects H0 in favor

of H1 if Ln > cα where

Ln =
n

∏
i=1

f (xi;θ1)

f (xi;θ0)

is the likelihood ratio. The critical value cα is determined for the test to be of size α.

Then the test is most powerful, that is, the type II error probability β is smallest amongst

all tests with size ≤ α.

(a) SPRT

(c) Restricted plan (d) RST plan

(b) Combination of two SPRTs
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Figure 1: Sequential boundaries from Fig. 6.1 in Armitage (1990).
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Following what came to be known as Neyman-Pearson’s fundamental lemma above,

Wald (1947) developed the sequential probability ratio test (SPRT) to discriminate be-

tween two simple hypotheses. Specifically Wald SPRT shows that when the sample size

is not fixed in advance, further improvement is possible. The best procedure in a certain

sense made precise by Wald and Wolfowitz (1948) is 1) to continue sampling as long as

B < Ln < A for some constant B < 1 < A and 2) to stop sampling and decide in favor of

H1 or H0 as soon as Ln > A or Ln < B, respectively, where

A ≈ 1−β

α
and B ≈ β

1−α
.

A specific case when θ0 = 0 and θ1 > 0 is a one-tailed test as shown in Fig. 1(a). There

are two different versions of its generalization for a two-tailed test with H1 : θ 6= 0.

One is a two-tailed test obtained by defining a density function f1 = ( f−+ f+)/2 where

f− and f+ are the probability density or mass functions corresponding to alternative

hypotheses H− : θ < 0 and H+ : θ > 0 in two directions as suggested by Wald (1947)

(Chapter 9). The other is a combination of two separate one-tailed tests, each with type

I error probability α/2, by Sobel and Wald (1949), as shown in Fig. 1(b).

One drawback of SPRTs is that sampling may continue indefinitely. A restricted plan

by Armitage (1957) is a modification of the two-tailed version of a SPRT by Sobel and

Wald (1949) to avoid this possibility by imposing a maximum sample size with the inner

wedge removed or pushed out as shown in Fig. 1(c). A similar sequential plan was later

developed by Armitage et al. (1969) as a repeated significance test plan as shown in

Fig. 1(d) and described in detail in Subsection 2.3 as a means to adjust the critical value

to account for multiple testing leading to a constant critical value. Of note, the operating

characteristics of these two sequential tests in Figs. 1(c) and 1(d) are very similar.

2.2 “Sampling to reach a foregone conclusion”

Let X1,X2, . . . be independent and identically distributed and drawn from N(µ,σ2) with

known variance σ2, and consider a statistical test of H0 : µ = 0 against H1 : µ 6= 0. For

a single sampling plan with a fixed sample size n, one would reject H0 if and only if

|Sn|> 1.96σ
√

n at a significance level α= 0.05 where Sn = ∑n
i=1 Xi.

A need for adjustment in the critical value for repeated testing is recognized by the

law of the iterated logarithm described here. Assume only that Xi, i = 1,2, . . . are simply

independent and identically distributed with mean µ and finite variance 0 < σ2 < ∞. In

addition assume that n is not fixed in advance, and data become available sequentially

one at a time. If Sn is computed for each n ≥ 1, |Sn| is certain to exceed 1.96σ
√

n for

some n, even if H0 is true, for the law of the iterated logarithm asserts that

limsup
n→∞

Sn −nµ

σ
√

2n loglogn
= 1 with probability 1.
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Thus an unscrupulous experimenter might be tempted to take a sample of size

N = inf{n ≥ 1 : |Sn|> 1.96σ
√

n},

and report as if it were a fixed sample size and claim rejection of H0 at a significance

level 0.05. However, the experimenter may have to spend some time in the process as

the expected sample size under this sampling scheme is E(N) = ∞.

That one can reach a nominal significance by testing repeatedly was aptly described

as “sampling to reach a foregone conclusion” by Anscombe (1954).

2.3 Repeated significance tests

Controversy regarding control of type I error probability depending on the approach, be

it Bayesian, likelihood-based, or frequentist, led Armitage et al. (1969) to evaluate the

type I error probability of the sequential testing procedure described above to settle the

score, so to speak. The numerical procedure for computing the type I error probability

is described below.

Assume as above that X1,X2, . . . are independent and identically distributed normal

random variables with mean µ and, without loss of generality, variance 1. To test H0 :

µ= 0 against H1 : µ 6= 0 at a significance level α, sampling is terminated the first time

when

|Sk|> bk

where b1,b2, . . . are boundary values. With the maximum number of observations K, the

boundary values have to satisfy the following:

Pr(|Sk|> bk for some k = 1, . . . ,K) = α

or equivalently

Pr(|S1| ≤ b1, . . . , |SK | ≤ bK) = 1−α.

The computation of these probabilities can be simplified by noting that fk, the probabil-

ity density function of Sk under H0 in the sequential procedure, satisfies the following

recursive definition base on convolution:

fk(s) =
∫ bk−1

−bk−1

fk−1(u)φ(s−u)du (2.1)

where f1 is the standard normal density function φ above. This is so because of the

independence between Sk−1 and Sk −Sk−1, i.e. independent increments in Sk.

With k⋆ denoting the random variable for when |Sk|> bk for the first time, the prob-

ability of stopping at or before k is
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Pk = Pr(k⋆ ≤ k) = 1−Pr(|S1| ≤ b1, . . . , |Sk| ≤ bk) = 1−
∫ bk

−bk

fk(u)du

and the probability of stopping at k⋆ = k, i.e. the exit probability Pr(k⋆ = k), is simply

Pk −Pk−1 = Pr(|S1| ≤ b1, . . . , |Sk−1| ≤ bk−1, |Sk|> bk)

=
∫ bk−1

−bk−1

fk−1(u){1−Φ(bk−u)+Φ(−bk−u)}du (2.2)

where Φ is the standard normal distribution function. The overall significance of the

sequential procedure is determined by

α= 1−
∫ bK

−bK

fK(u)du.

The recursive definition of fk above allows direct computation of these probabilities us-

ing standard numerical integration methods, e.g. a Newton-Cotes formula of the second

order, i.e. Simpson’s rule. This same computational procedure works when µ 6= 0 with

Xk replaced by Xk −µ. The above observation led to the notion of repeated significance

tests as described in Armitage et al. (1969), which in turn paved the way for development

of group sequential methods for clinical trials.

2.4 Group sequential methods for clinical trials

Following the seminal work on sequential analysis by Wald (1947), Bross (1952) and

Armitage (1954) appear to have been the first to advocate the use of sequential methods

in clinical trials. Different from other settings where savings in sample size was the

primary motivation for using sequential methods, it was ethical imperatives in clinical

trials in considering early termination to avoid unnecessary experimentation on human

subjects in the presence of clear evidence of benefits or harms of interventions.

Suppose that response to treatment is a normal random variable with means µA and

µB for treatments A and B, respectively, and known variance σ2, a typical two-sample

problem. Consider a test of H0 : µA = µB against H1 : µA 6= µB or, equivalently, H0 : δ= 0

against H1 : δ 6= 0 where δ = µA −µB. A fixed sample size test with a significance level

α= 0.05 with n participants on each treatment rejects H0 when

Z =

∣∣∣∣∣
X̄A − X̄B√

2σ2/n

∣∣∣∣∣> 1.96

where X̄A and X̄B denote the sample means.

Group sequential designs call for monitoring of accumulating data over time period-

ically after groups of observations become available using sequential tests. Wald (1947)

(pp 101–103) refers to taking groups of observations and applying SPRTs for binary
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outcome. One strategy of a group sequential test is to reject the null hypothesis of no

treatment difference if, at any of the interim analyses, the test statistic becomes suffi-

ciently large; otherwise, do not reject (accept) the null hypothesis.

Consider examining the accumulating data after a group of every 2n observations, n

on each treatment, become available, namely,

Yj =
X̄A j − X̄B j√

2σ2/n
∼ N(δ⋆,1)

where δ⋆ = δ/
√

2σ2/n, for up to a maximum of K analyses for a maximum of 2nK

observations. With the score statistics

Sk =
k

∑
j=1

Yj =
k

∑
j=1

X̄A j − X̄B j√
2σ2/n

∼ N(δ⋆k,k) (2.3)

or the Wald statistics

Zk = Sk/k1/2 ∼ N(δ∗k1/2,1), (2.4)

a group sequential test rejects H0 for the first time when

|Sk|> bk or equivalently |Zk|> ck.

Figure 2: Group sequential critical values from Fig. 1 in DeMets and Lan (1984).
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Hence, if we want a level α test, we choose the boundary values, b1, . . . ,bK , or equiv-

alently the critical values, c1, . . . ,cK, such that, under H0,

Pr(|S1| ≤ b1, . . . , |SK | ≤ bK) = Pr(|Z1| ≤ c1, . . . , |ZK | ≤ cK) = 1−α. (2.5)

Note that there is an equal increment of statistical information in sample size, i.e. 2n,

between sequentially computed test statistics and that the increments are independent so

that the computational procedure by Armitage et al. (1969) can be used in this type of

group sequential tests.

Several group sequential methods are used for determining the boundary or the crit-

ical values. These values for Pocock (1977) and O’Brien and Fleming (1979) group se-

quential methods are obtained by solving (2.5) under the conditions of c1 = · · ·= cK and

b1 = · · ·= bK , respectively (see Fig. 2). Note that Pocock’s method is the group sequen-

tial version of the repeated significance test method discussed in Subsection 2.3. One

practical drawback of these methods is that they depend on the assumption of equal sam-

ple size or more generally, equal amount of statistics information, accumulated between

two successive analyses. Otherwise the group sequential methods by Pocock (1977) and

O’Brien and Fleming (1979) cannot be applied. In order to address this situation, a flex-

ible approach was proposed by Slud and Wei (1982) in which the boundary values, bk,

k = 1, . . .K, are determined with prespecified αk, k = 1, . . . ,K, such that αk = Pk −Pk−1

in (2.2) under the null hypothesis and ∑K
k=1αk =α, the overall significance level. A prac-

tical downside to this approach is the arbitrariness in specifying αks and the possibility

of the group sequential test not meeting the criterion for early stopping at an interim

analysis and meeting the criterion at the next interim analysis with the increment in the

statistical information between the two interim analyses in the opposite direction, an

obvious logical inconsistency.

Generalizing the idea in Slud and Wei (1982), Lan and DeMets (1983) introduced

the notion of “alpha spending” instead of arbitrarily specifying αks. As a method of

allocating the type I error probability α into αks as in Slud and Wei (1982), Lan and

DeMets (1983) instead proposed allocating the type I error probability α according to an

“error spending function,” α⋆(t), which is a nondecreasing function of the information

time or fraction t, 0 ≤ t ≤ 1, defined below with α⋆(0) = 0 and α⋆(1) = α. For k =

1, . . . ,K, the type I error probability allocated for the kth interim analysis is determined

as αk = α⋆(tk)−α⋆(tk−1) where t0 = 0 and tK = 1 so that ∑K
k=1αk = α. For a one-tailed

Pocock (1977) and O’Brien and Fleming (1979) procedures, Lan and DeMets (1983)

proposed α⋆
P(t) = α log{1+ (e− 1)t} and α⋆

OF(t) = 2{1−Φ(zα/2/
√

t)}, respectively,

where zγ is the upper γ quantile of the standard normal distribution. The information

fraction t is the fraction of statistical information corresponding to an interim analysis

relative to the maximum information required. For example, tk = k/K for the group

sequential tests with equal samples of size n between two successive analyses as in the

score statistics in (2.3). If we consider unequal sample sizes nk between the (k− 1)th

and the kth interim analyses, tk = nk/nK instead.
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Figure 3: Cumulative type I error probability for group sequential tests with α= 0.05.

The cumulative type I error probabilities for the Pocock (P) and O’Brien-Fleming

(OF) group sequential procedures with K = 5 and α = 0.05 and the error spending

functions α⋆
P(t) for Pocock (P-type) and α⋆

OF(t) for O’Brien-Fleming (OF-type) from

above are plotted in Fig. 3 to indicate similarities between the standard group sequential

methods and group sequential methods based on the suitably chosen error spending

functions.

From a historical perspective, Pocock (1977), following the repeated significance

test of Armitage et al. (1969), popularized the group sequential methods for clinical

trials with normal outcome. However, it was Elfring and Schultz (1973) who first coined

the term “group sequential designs” for clinical trials with binary outcome. Jennison

and Turnbull (1990) present a detailed review of group sequential methods including

comparisons of methods by Pocock (1977), O’Brien and Fleming (1979), Slud and Wei

(1982), and Lan and DeMets (1983).

2.5 Covariance under independent increments

As noted earlier in Subsection 2.3, in order to apply group sequential methods, one has

to solve the following multivariate integral

∫ b1

−b1

· · ·
∫ bK

−bK

f (s1, . . . ,sK)ds1 · · ·dsK = 1−α

where f is the joint density function of the sequential test statistics. However, if the

following holds
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Cov(Sk,Sl) = Var(Sk) or equivalently Cov(Sk−1,Sk −Sk−1) = 0

for 1 ≤ k ≤ l ≤ K with S0 = 0, i.e. if the sequential test statistics have independent

increments, the multivariate integration above becomes univariate integration involving

simple recursion based on convolution as indicated in (2.1).

To assess the joint distributions of Sk in (2.3) or Zk in (2.4), 1 ≤ k ≤ K, consider the

fully sequential setting again as in Subsection 2.3. From the standard normal theory and

the independent increments structure of Sk, it follows that the joint distribution of the

score statistics Sk, 1 ≤ k ≤ K, is multivariate normal with marginals Sk ∼ N(µk,k) and

covariance

Cov(Sk,Sl) = k = Var(Sk), 1 ≤ k ≤ l ≤ K.

Since Sk is equivalent to the Wald statistic Zk = Sk/k1/2 = Sk/
√

Var(Sk), the correspond-

ing joint distribution of the Wald statistics Zk, 1 ≤ k ≤ K, are found to be multivariate

normal with marginals Zk ∼ N(µk1/2,1) and

Cov(Zk,Zl) =
√

k/l =
√

Var(Sk)/Var(Sl), 1 ≤ k ≤ l ≤ K.

Hence, any one of the two conditions above gives an independent increments structure

of the sequential test statistics. For the two-sample group sequential test as described in

Subsection 2.4, replacing µ with δ∗, these results also hold.

More generally, three different test statistics can be considered as in Jennison and

Turnbull (1997). For 1 ≤ k ≤ l ≤ K, the following holds:

θ̂k
a∼ N(θ,I−1

k (θ)) and Cov(θ̂k, θ̂l) = Var(θ̂l) = I
−1
l (θ) (2.6)

for the maximum likelihood estimates where Ik(θ) is the Fisher information;

Sk
a∼ N(θIk(θ),Ik(θ)) and Cov(Sk,Sl) = Var(Sk) = Ik(θ) (2.7)

for the score statistics; and

Zk
a∼ N(θI

1/2

k (θ),1) and Cov(Zk,Zl) =
√

Ik(θ)/Il(θ) (2.8)

for the Wald statistics Zk = θ̂k/SE(θ̂k) where SE stands for standard error.

Note that these distributional properties of the sequential test statistics are still true

under the general alternatives as well as the null hypothesis, and hence power of the

sequential tests can also be evaluated through the univariate integration technique as in

McPherson and Armitage (1971). When the underlying distribution is not normal, we

consider a class of local alternatives {µn}, where
√

nµn → δ 6= 0. Then normality and

an independent increments structure of the sequentially computed test statistics can be

established asymptotically under the null and a class of local alternatives so that the

standard sequential procedures described in this section are still applicable asymptoti-

cally.
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2.6 Intuition about independent increments

With normal outcome, it is intuitive that group sequential test statistics would have in-

dependent increments, thus allowing application of the classical group sequential meth-

ods. With time to event outcome, it is unclear since each participant contributes follow-

up data possibly multiple times over group sequential tests. With longitudinal outcome,

again it is unclear since each participant contributes follow-up data multiple times longi-

tudinally. Both with longitudinal data and failure time data, a participant contributes data

more than once over the course of study in group sequential tests and as a consequence

it is not intuitive why sequential tests statistics would have independent increments.

As summarized in Jennison and Turnbull (1990), independent increments structures

have been found to hold in many circumstances case by case. Scharfstein et al. (1997)

showed with great generality that the efficient score statistics in parametric and semi-

parametric models have an independent increments structure. Jennison and Turnbull

(1997) also gave a unified explanation based on efficiency of the test statistics for the

independent increments structure. For instance, in our fully sequential setting, since

the sample mean X̄k is the maximum likelihood estimator, or least squares estimator

of µ, the corresponding sequential score and Wald tests, Sk and Zk, have an indepen-

dent increments structure following their theorems. In this review paper, we consider

the group sequential score tests with independent increments derived from several esti-

mating methods such as the maximum likelihood and least squares method. For some

of them, the independent increments structures are explained by efficiency of the test

statistics, while it is not for others.

3 Joint distributions of sequential test statistics

In this section we provide a review of the historical development of independent incre-

ments in group sequential tests used in clinical trials with longitudinal data and failure

time data as the primary endpoint of interest for evaluation of efficacy of intervention.

The emphasis on these types of outcome data is because of the fact that they are widely

used in clinical trials in chronic diseases. But more importantly it is not intuitive as to

why some group sequential tests for these types of outcome data have an independent

increments structure while others do not. This is in contrast to the settings in which

outcome data are measured only once from each participant, which intuitively have an

independent increment structure.

3.1 Longitudinal data

The joint distribution of sequential test statistics for longitudinal data has been inves-

tigated by many authors for application of group sequential methods in clinical trials

with such outcome data: Armitage et al. (1985), Geary (1988), Lee and DeMets (1991),

Reboussin et al. (1992), and Wu and Lan (1992) based on parametric models; Lee and
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DeMets (1992) based on linear rank tests; Su and Lachin (1992) based on a multivariate

generalization of the Hodges and Lehmann (1963) estimator of a location shift; Wei et

al. (1990a), Gange and DeMets (1996), and Lee et al. (1996) based on semiparamet-

ric models in generalized estimation equations; and Spiessens et al. (2002) based on a

random-effects model for longitudinal ordinal outcome. Lee (1994) and Spiessens et al.

(2000) provide review of some of these sequential tests for longitudinal data.

When the primary outcome is longitudinal data with repeated measurements, each

participant can contribute outcome data to test statistics more than once. Thus it is not

intuitively obvious that sequential test statistics can have independent increments due to

apparent correlation among repeated measurements from the same participant. Indeed

the joint distributions of the sequential test statistics by Armitage et al. (1985), Geary

(1988), Wei et al. (1990a), Lee and DeMets (1992), and Su and Lachin (1992), all turn

out to have correlated increments. But as summarized below, properly formulated test

statistics and semiparametric-efficient tests for longitudinal data under various paramet-

ric and semiparametric models have independent increments.

Under a linear mixed-effects model of Laird and Ware (1982), Lee and DeMets

(1991) show that the asymptotic joint distribution of the sequential test statistics for

comparing the rates of change computed over time is multivariate normal under miss-

ing at random and includes as special cases those by Armitage et al. (1985) and Geary

(1988). Later Reboussin et al. (1992) showed that the test statistics of Lee and DeMets

(1991) have an independent increments structure.

In order to account for informative drop-out, Wu and Lan (1992) proposed group

sequential tests to compare areas under the response change curves between two treat-

ments based on the two-stage random effects model of Wu and Bailey (1989). It is

shown that when the response curve is linear and drop-out non-informative, the test by

Wu and Lan (1992) reduces to that by Lee and DeMets (1991) above and that the joint

distribution of the test statistics computed over time has independent increments.

Wei et al. (1990a), Gange and DeMets (1996), and Lee et al. (1996) all proposed a

group sequential test based on a semiparametric model using the generalized estimating

equations approach of Liang and Zeger (1986). Wei et al. (1990a) assume an indepen-

dence model for the working variance for repeated measures, while Gange and DeMets

(1996) and Lee et al. (1996) assume that the covariance matrix for repeated measures

is correctly specified or consistently estimated by the working covariance matrix as in

Liang et al. (1992).

As indicated by Scharfstein et al. (1997), the joint distribution of the sequentially

computed score statistics based on an independence model by Wei et al. (1990a) results

in correlated increments as the test is not semiparametric efficient. Gange and DeMets

(1996) show that the joint distribution of the regression estimators, i.e. estimators based

on the generalized estimating equations, over time is asymptotically multivariate normal

with independent increments, while Lee et al. (1996) show that the joint distributions of

the sequentially computed score and Wald statistics both are asymptotically multivariate

normal with independent increments.
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As noted above, standard group sequential methods can be used if one uses an effi-

cient test statistics over time. With random-effects models for ordinal longitudinal data,

a Wald-type test can be used with standard group sequential methods. Spiessens et al.

(2002) show that, even when the random-effects distribution is misspecified, the joint

distribution of the Wald-type test computed over time is asymptotically multivariate

normal and showed through simulation studies that a sandwich-type correction to the

covariate matrix leads to an approximately independent increments structure.

3.2 Failure time data

Many authors also investigated the joint distribution of sequential test statistics for fail-

ure time data under various settings for application of group sequential methods: Tsiatis

(1981) and Sellke and Siegmund (1983) under the proportional hazards model; Gail et

al. (1982) for two-sample logrank score test; Tsiatis (1982), Slud (1994), and Gu and

Lai (1991) for general linear rank tests; Slud and Wei (1982) for the modified Wilcoxon

statistics, i.e. a generalized Wilcoxon test by Gehan (1965); Tsiatis et al. (1985) and

Gu and Ying (1995) under the proportional hazards model with covariate adjustment;

Lin (1992) for logrank tests adjusting for covariates under the accelerated failure time

model; and Tsiatis et al. (1995) for general parametric survival models.

When failure time is a primary outcome, each participant can contribute statistical

information to group sequential tests more than once before event of interest or random

censoring occurs. Hence it seems natural for the increments in successive test statistics

to be correlated. Indeed the joint distributions of the test statistics over time by Slud and

Wei (1982) for Gehan’s test by Gehan (1965) and by Lin (1992) for the logrank test

under the accelerated failure time model turn out to have correlated increments. In the

case of a general class of linear rank tests, Tsiatis (1982) provides the condition for the

weight function under which the joint distribution of the linear rank tests computed over

time has independent increments.

Tsiatis (1981) was the first to develop the joint distribution of sequential test statistics

and establish independent increments for a sequential test for failure time data. First

the asymptotic joint distribution of the sequentially computed score statistics for the

proportional hazards model was established and shown to to converge asymptotically

to a multivariate Gaussian process with independent increments when participants enter

randomly throughout the course of the trial. This allows group sequential methods to be

based on the logrank test as a special case of the efficient scores test for the proportional

hazards model in clinical trials with failure time data subject to random censoring, thus

proving the conjecture made earlier in Armitage (1975) (pp 140–143).

Gail et al. (1982) investigated the operating characteristics of the logrank score test,

computed after fixed numbers of events and applied to various group sequential meth-

ods, using simulation studies. They show empirically that the joint distribution of the

logrank score test computed over time follows a multivariate normal distribution with

independent increments reasonably well in a realistic setting in clinical trials.
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Tsiatis (1982) generalizes the results in Tsiatis (1981) to a general class of nonpara-

metric linear rank tests statistics and shows that the asymptotic joint distribution of the

sequential test statistics within this general class of nonparametric tests is a multivari-

ate normal distribution. This general class of nonparametric tests is characterized by a

random function corresponding to the weight functions described by Tarone and Ware

(1977) and Prentice and Marek (1979) and as a special case includes a constant weight

for the logrank test, a weight function for the modified Wilcoxon test which is the sur-

vival function.

Sellke and Siegmund (1983) show that the score process of the partial likelihood and

the maximum partial likelihood estimator under the proportional hazards model behave

asymptotically like a Brownian motion. This relies on the approximation of the score

process by a suitable martingale and a random rescaling of time based on the observed

Fisher information. As such, the resulting joint distributions of the score process and the

maximum partial likelihood estimator over time both have independent increments.

Slud (1994) shows that under the null hypothesis of no difference in survival distri-

butions the sequentially computed logrank statistics of Mantel (1966) have exactly un-

correlated increments under very general patterns of enrollment, allocation to treatment

and lost to follow-up in clinical trials. Gu and Lai (1991) considers the general class

of linear rank test statistics investigated in Tsiatis (1982) and develops a general weak

convergence theory for the joint distribution of the sequential linear rank test statistics

for two sample problems in a realistic clinical trial setting.

Tsiatis et al. (1985) investigates the joint distribution of the sequentially computed

efficient scores for the treatment effect derived from a partial likelihood under the pro-

portional hazards model with adjustment for other covariates. They show that the se-

quential efficient scores test for the treatment effect in the presence of other covariates

has asymptotically the same joint distribution as the sequentially computed ordinary lo-

grank test with no covariates. The motivation for this work was the efficiency gain in

the test by adjusting for the effects of other covariates. Gu and Ying (1995) show that

a general Cox-type partial likelihood score process for staggered entry with covariate

adjustment is asymptotically equivalent to a Gaussian process with independent incre-

ments, including the case in which the covariates being adjusted for are not independent

of the covariates of primary interest, typically a randomized treatment indicator.

Tsiatis et al. (1995) consider the joint distribution of sequentially computed score

statistics and the maximum likelihood estimator in parametric models for failure time

data in the presence of nuisance parameters. By representing the sequentially computed

score test as a stochastic integral of a counting process martingale, they drive the asymp-

totic joint distribution of the test statistics over time and show that the joint distributions

of the score test and the maximum likelihood estimator are multivariate normal with in-

dependent increments. This work and the work by Lee et al. (1996) served as a seed for

group sequential methods based on semiparametric efficient test statistics by Scharfstein

et al. (1997).
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Scharfstein et al. (1997) noted that joint distributions of many group sequential statis-

tics used to analyze longitudinal or failure time data are asymptotically multivariate nor-

mal with an independent increments structure. This limiting distribution arises naturally

when one uses an efficient test statistic to test a single parameter in a semiparametric

model. They develop most general results based on semiparametric efficient tests and

show that many previously developed cases of independent increments structure are a

special case of a semiparametric efficient test.

4 Independent increments

In this section we review most general cases of independent increments for sequential

tests for longitudinal and failure time data. First we define some notations and consider

the formulation of the problem.

Consider a group sequential study with a maximum number of K interim analyses

at calendar times tk, k = 1, . . . ,K. We allow staggered entry of subjects and denote nk

to be the number of subjects who have entered the study at the kth interim analysis.

Let Yik be the outcome of the ith subject. When repeated measures are made as in a

longitudinal study, let Yik = (Yi1k, . . . ,Yi,dik ,k)
T where dik denote the number of repeated

measures of the ith subjects. At each k, Yik, i = 1, . . . ,nk, are assumed to be independent.

Let Xik = (Zik,Wik) denote a dik × p dimensional covariate (design) matrix including a

treatment indicator Zik and p−1 time-varying covariate vectors Wik, and let θ = (γ,βT)T

denote a corresponding parameter vector which consists of a treatment effect parameter

γ and covariate effect parameters β. The total number of subjects at the last analysis is

set as nK = n, and let Ti be the entry time of the ith subject.

Our primary interest is focused on the group sequential tests with independent incre-

ments for the hypotheses of

H0 : γ = 0 vs H1 : γ 6= 0 (4.1)

where the parameters β are regarded as nuisance parameters adjusting for covariates.

A test for the hypotheses in (4.1) is obtained from the “score” vector. At the kth in-

terim analysis, let the p dimensional score vector or, more generally, “estimating equa-

tions” to be used to estimate θ, be denoted by

Sk(θ) =
nk

∑
i=1

Sik(θ), (4.2)

and let θ̂k denote the estimator of θ satisfying Sk(θ̂k) = 0 if it exists. For example, in the

fully sequential method described in Subsection 2.3, we can consider a kind of score

vector Sk(µ) = ∑k
i=1(Xi−µ). By solving the estimating equation Sk(µ̂k) = 0, it produces

the estimator µ̂k = X̄k and the Wald test µ̂k/SE(µ̂k) = Sk/
√

k, where SE stands for stan-

dard error. Note that, under the null hypothesis of µ = 0, the score vector becomes the

score test Sk = Sk(0) which is equivalent to the Wald test.
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In fact, the score vector given by (4.2) contains several important estimating equa-

tion vectors such as the efficient score vector in (4.11) defined by differentiating a log-

likelihood with respect to θ and the “least squares” score vector (4.5) obtained from the

least squares estimation method. In the sequel, the explicit form of score vectors will be

defined case by case.

To construct a sequential score statistics in the presence of nuisance parameters β,

we partition, under the null hypothesis of γ = 0, the score vector (4.2) as

Sk(θ)|γ=0 = (Sk,γ(β),Sk,β(β)
T)T

where Sk,γ(β) denotes a score function with respect to the treatment effects parameter

γ and Sk,β(β) denotes a (p− 1) dimensional score vector with respect to the nuisance

parameters β. Then as test statistics at the kth interim analysis, one can use the score

statistics Sk,γ(β̂k) and Wald statistics γ̂k/SE(γ̂k) where β̂k is the restricted estimator of

β computed under the null hypothesis and γ̂k is the estimator of γ obtained by solv-

ing Sk(θ̂k) = 0. Though both the Wald and the score tests can be used to test the null

hypothesis, we will use mainly the score tests for convenience.

The score statistics Sk,γ(β̂k) are usually expressed, at least approximately, as a lin-

ear combination of the scores Sk,γ(β) and Sk,β(β) so that the joint distribution and the

independent increment structure of the sequentially computed score statistics can be es-

tablished by the distributional properties of Sk,γ(β) and Sk,β(β). For example, the Taylor

expansions of Sk,γ(β̂k) and Sk,β(β̂k) at β = β0, when applicable, yield

Sk,γ(β̂k)≃ Sk,γ(β0)+S′
k,γ(β0)(β̂k −β0),

0 = Sk,β(β̂k)≃ Sk,β(β0)+S′
k,β(β0)(β̂k −β0),

where S′
k,γ(β0) = ∂Sk,γ(β)/∂β|β=β0

and S′
k,β(β0) = ∂Sk,β(β)/∂β|β=β0

. They are com-

bined yielding

Sk,γ(β̂k)≃ Sk,γ(β0)−S′
k,γ(β0){S′

k,β(β0)}−1Sk,β(β0).

Since the score vector (4.2) depends only on observations accumulated up to stage k and

it has a form of sum of independent observations, so do Sk,γ(β) and Sk,β(β). Even in

the case of repeated measurement (dik ≥ 2), we can define Sik(θ) to accomodate the de-

pendency in Yik through such a method used in the generalized least squares estimation,

and hence the structure of sum of independent observations will still hold. Therefore,

applying the central limit theorem, the joint distribution of the sequential score statistics

Sk,γ(β̂k) as well as those of Sk,γ(β) and Sk,β(β) would be a (asymptotic) multivariate

normal distribution under some regularity conditions, and also they are expected to have

the independent increment structure. If it is the case, the standard group sequential meth-

ods described in Subsection 2.4 can be applied to the score statistics Sk,γ(β̂k) to carry

out testing for the null hypothesis.
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In the asymptotic approach, to avoid the problem caused when nk are random, we

assume the data structure described in Scharfstein et al. (1997). That is, at the kth interim

analysis, consider the accumulated data set {Yik, i = 1, . . . ,nk} as {(Yik, I(Ti ≤ tk)), i =

1, . . . ,n} where I(Ti ≤ tk) is defined as 1 if the ith patient has entered the study by the

time of the kth interim analysis and 0 otherwise. Then the score vector (4.2) can be

written as

Sk(θ) =
n

∑
i=1

Sik(θ)I(Ti ≤ tk), (4.3)

and we can establish the asymptotic results based on the total sample size n. With this

in mind, we will use the expression of (4.2) rather than that of (4.3).

The more detailed theory of maximum likelihood and generalized least squares es-

timation can be found, for example, in Cox and Hinkley (1974) and McCullagh and

Nelder (1989), respectively.

4.1 Parametric regression models for independent data

We start with the simple model for independent data. Consider a regression model be-

low:

Yik = Xikθ+ ǫik

= Zikγ+Wikβ+ ǫik, i = 1, . . . ,nk ; k = 1, . . . ,K, (4.4)

where the independent error terms ǫik have a common distribution function F and a

common density function f with mean zero and varianceσ2. Then the usual least squares

score vector, at the kth interim analysis, is defined by

Sk(θ) =
nk

∑
i=1

X
T

ik(Yik −Xikθ). (4.5)

From (4.5), the partitioned scores of Sk(θ) under the null hypothesis of γ = 0 in the

presence of a nuisance parameter β are given by

Sk,γ(β) =
nk

∑
i=1

Zik(Yik −Wikβ) (4.6)

and

Sk,β(β) =
nk

∑
i=1

W
T

ik(Yik −Wikβ). (4.7)
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Under the null hypothesis, the restricted estimator of β satisfying Sk,β(β̂k) = 0 in (4.7)

is the least squares estimator denoted by

β̂k =

(
nk

∑
i=1

W
T

ikWik

)−1
nk

∑
i=1

W
T

ikYik.

Plugging it into (4.6), the score statistics Sk,γ(β̂k) are written as a linear combination of

observations Yik as follows:

Sk,γ(β̂k) =
nk

∑
i=1

Zik(Yik −Wikβ̂k)

=
nk

∑
i=1

ZikYik −
(

nk

∑
i=1

ZikWik

)(
nk

∑
i=1

W
T

ikWik

)−1
nk

∑
i=1

W
T

ikYik. (4.8)

Note that we can also express the score statistics (4.8) as one having a form of (4.6),

Sk,γ(β̂k) = Sk,γ(0)−S′
k,γ(0){S′

k,β(0)}−1Sk,β(0)

or equivalently,

Sk,γ(β̂k) = Sk,γ(0)−Γk,γβΓ−1
k,ββSk,β(0) (4.9)

where Γk,γβ and Γk,ββ are submatrices of the partitioned matrix

Γk = Var{(Sk,γ(0),Sk,β(0)
T)T}=

[
Γk,γγ Γk,γβ

Γk,βγ Γk,ββ

]
. (4.10)

From the equation (4.8), (4.9) and (4.10), we have

E{Sk,γ(β̂k)}= γIk

and

Var{Sk,γ(β̂k)}= Ik

where

Ik =Γk,γγ−Γk,γβΓ−1
k,ββΓk,βγ =





nk

∑
i=1

Z2
ik −

(
nk

∑
i=1

ZikWik

)(
nk

∑
i=1

W
T

ikWik

)−1(
nk

∑
i=1

ZikWik

)T


σ2.

To show the independent increments structure of Sk,γ(β̂k), we first express Sl,γ(0) and

Sl,β(0) in the equations (4.9) as sums of two independent variables,

Sl,γ(0) = Sk,γ(0)+{Sl,γ(0)−Sk,γ(0)}
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and

Sl,β(0) = Sk,β(0)+{Sl,β(0)−Sk,β(0)}

for k ≤ l. Then we can show that

Cov{Sk,γ(0),Sl,γ(0)}= Var{Sk,γ(0)}= Γk,γγ ,

Cov{Sk,β(0),Sl,β(0)}= Var{Sk,β(0)}= Γk,ββ

Cov{Sk,γ(0),Sl,β(0)}= Cov{Sl,γ(0),Sk,β(0)}= Cov{Sk,γ(0),Sk,β(0)}= Γk,γβ,

and

Var{Sl,β(0)}= Var{Sk,β(0)}= Γk,ββ.

These equations produce the independent increments such that

Cov{Sk,γ(β̂k),Sl,β(β̂l)}= Ik = Var{Sk,γ(β̂k)}.

We established the independent increments structure of sequentially computed score

statistics Sk,γ(β̂k) without normality assumption for the error distribution. Hence, one

might construct the exact sequential tests by replacing the normal density function with

an underlying density function f in the methods given in Subsection 2.3. If the asymp-

totic methods are preferred for a non-normal distribution, we can use the asymptotic re-

sults established by the multivariate central limit theorem and the Cramér-Wold device.

That is, the asymptotic joint distribution of the sequential score statistics n−1/2Sk,γ(β̂k),
k = 1, . . . ,K}, under the null hypothesis, is multivariate normal with mean 0 and covari-

ance matrix

CovA{n−1/2Sk,γ(β̂k),n
−1/2Sl,β(β̂l)}= VarA{n−1/2Sk,γ(β̂k)}= Īk, 1 ≤ k ≤ l ≤ K,

where CovA and VarA denote asymptotic covariance and variance matrices and

Īk = lim
n→∞

n−1Ik.

Further, under a class of local alternatives {γn}, where
√

nγn → δ 6= 0, we can show

that the asymptotic distribution of n−1/2Sk,γ(β̂k) is normal with mean δĪk and the same

variance as under the null hypothesis.

It should be mentioned that the variance σ2 has been assumed known. In addition to

the known variance case, the asymptotic results are still valid if there exists a consistent

estimator of the variance when unknown. Although there are some exact tests such as

exact t, χ2 and F tests proposed by Jennison and Turnbull (1991), we restrict our at-

tention to two cases: the known variance case and the unknown variance case where a

consistent estimator exists.

For the regression model (4.4), the score vector (4.5) coincides with the efficient

score vector based on the likelihood function when the underlying distribution is normal.
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As shown in Jennison and Turnbull (1997) and Scharfstein et al. (1997), the asymptotic

joint distribution of the sequentially computed efficient score statistics is multivariate

normal with independent increments for more general models.

To summarize their results, we consider the model given in Jennison and Turnbull

(1997) where Yik has a density function fik(yik;θ) satisfying some regularity conditions

necessary to establish the asymptotic results. Then, for observation i, defining the effi-

cient score Sik(θ) and information matrix Iik as

Sik(θ) =
∂

∂θ
log fik(Yik;θ) (4.11)

and

Iik(θ) = E

{
− ∂

∂θ
Sik(θ)

T

}
,

we have, at the kth interim analysis, the efficient score vector Sk(θ) = ∑nk
i=1 Sik(θ) and

information matrix Ik(θ) = ∑nk
i=1 Iik(θ). Note that Ik(θ) = Var{Sk(θ)}. Further, taking

β̂k as the restricted maximum likelihood estimator of β under the null hypothesis, the

efficient score statistics Sk,γ(β̂k) can be approximated as, for a fixed β0 of β,

Sk,γ(β̂k)≃ Sk,γ(β0)− Ik,γβI−1
k,ββSk,β(β0)

where Ik,γβ and Ik,ββ are submatrices of the partitioned matrix

Ik{(0,β′
0)

′}= Var{(Sk,γ(β0),Sk,β(β0)
T)T}=

[
Ik,γγ Ik,γβ

Ik,βγ Ik,ββ

]
.

Therefore, by applying the same arguments as those for the least squares method, it

can be shown that the asymptotic joint distribution of the sequential score statistics

n−1/2Sk,γ(β̂k), k = 1, . . . ,K}, is multivariate normal with mean µ and covariance matrix

CovA{n−1/2Sk,γ(β̂k),n
−1/2Sl,β(β̂l)}= Īk, 1 ≤ k ≤ l ≤ K,

where Īk = limn→∞ n−1(Ik,γγ − Ik,γβI−1
k,ββIk,βγ) and µ is 0 under the null hypothesis and

δĪk under local alternatives. The variance matrix Īk can be replaced by the consistent

estimator based on sample information matrices

Îik{(0, β̂T

k)
T}= − ∂

∂θ
Sik(θ)

T

∣∣∣∣
γ=0,β=β̂k

.
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4.2 Longitudinal data

In this subsection, we review selected recently developed methods for group sequen-

tial tests which, when properly formulated, turn out to have independent increments,

starting with parametric models followed by semiparametric models. We still consider

the regression model (4.4) and discuss methods based on the generalized least squares

estimates and generalized estimating equations rather than the maximum likelihood es-

timates.

4.2.1 Parametric regression models

For the model (4.4), assume dik ≥ 1 and ǫik has mean 0 and variance matrix Vik. Then,

based on the generalized least squares methods, the score vector Sk(θ), the generalized

least squares estimator β̂k of β under the null hypothesis and score statistics Sk,γ(β̂k) are

given by

Sk(θ) =
nk

∑
i=1

X
T

ikV
−1
ik (Yik −Xikθ) , (4.12)

β̂k =

(
nk

∑
i=1

W
T

ikV
−1
ik Wik

)−1
nk

∑
i=1

W
T

ikV
−1

ik Yik,

and

Sk,γ(β̂k) =
nk

∑
i=1

Z
T

ikV
−1

ik (Yik −Wikβ̂k)

=
nk

∑
i=1

Z
T

ikV
−1

ik Yik −
(

nk

∑
i=1

Z
T

ikV
−1

ik Wik

)(
nk

∑
i=1

W
T

ikV
−1

ik Wik

)−1
nk

∑
i=1

W
T

ikV
−1
ik Yik.

The partitioned scores Sk,γ(β), Sk,β(β) of Sk(θ) under the null and variance Ik of Sk,γ(β̂k)

are similarly defined as

Sk,γ(β) =
nk

∑
i=1

Z
T

ikV
−1

ik (Yik −Wikβ),

Sk,β(β) =
nk

∑
i=1

W
T

ikV
−1

ik (Yik −Wikβ)

and

Ik = Γk,γγ −Γk,γβΓ−1
k,ββΓk,βγ

=
nk

∑
i=1

Z
T

ikV
−1

ik Zik −
(

nk

∑
i=1

Z
T

ikV
−1

ik Wik

)(
nk

∑
i=1

W
T

ikV
−1

ik Wik

)−1(
nk

∑
i=1

Z
T

ikV
−1
ik Wik

)T

(4.13)

where Γk is defined and partitioned the same as (4.10).
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Following the arguments developed by Lee, Kim and Tsiatis (1996), we can es-

tablish the joint distribution of sequentially computed score statistics n−1/2Sk,γ(β̂k),
k = 1, . . . ,K, and can show an independent increments structure. When the underly-

ing distribution is normal, the joint distribution of Sk,γ(β̂k), k = 1, . . . ,K, is multivariate

normal with mean µ and

Cov{Sk,γ(β̂k),Sl,β(β̂l)}= Var{Sk,γ(β̂k)}= Ik, 1 ≤ k ≤ l ≤ K

where µ is 0 under H0 and δĪk under local alternatives. Furthermore, under suitable reg-

ularity conditions for a non-normal underlying distribution, the asymptotic joint distri-

bution of n−1/2Sk,γ(β̂k), k = 1, . . . ,K, is multivariate normal with mean µ and covariance

matrix

CovA{n−1/2Sk,γ(β̂k),n
−1/2Sl,β(β̂l)}= VarA{n−1/2Sk,γ(β̂k)}= Īk, 1 ≤ k ≤ l ≤ K

where Īk = limn→∞ n−1Ik and µ is 0 under H0 and δĪk under local alternatives. When Ik

or Īk is unknown, a consistent estimator can be obtained from (4.13) by substituting Vik

with (Yik −Xikθ̂k)(Yik −Xikθ̂k)
T where θ̂k is the generalized least squares estimator of θ.

A random effects model can be also applied to construct a sequential procedure to

test the null hypothesis H0 : γ = 0. Instead of the model (4.4), consider a random effects

model

Yik = Zikγ+Wikβi + ǫik, i = 1, . . . ,nk and k = 1, . . . ,K

where γ is a fixed effect parameter, ǫik ∼N(0,Σik) and βi ∼N(β,Σβ) are all independent.

The parameter βi can be interpreted as participant effects parameter. This model can also

be written as Yik = Zikγ+Wikβ+Wikβ
∗
i + ǫik where β is also fixed and β∗

i ∼ N(0,Σβ) so

that it is included in the model (4.4) with Vik =WikΣβWT

ik +Σik.

4.2.2 Semiparametric models

In this subsubsection, we review the results of Lee et al. (1996). Assume that at the kth

interim analysis, the marginal mean of Yik given Xik is

E(Yik|Xik) = µik(θ) = g(Xik,θ)

where g is a known function. Denote a working variance to be used instead of the un-

known true variance Vik = Var(Yik|Xik) by vik(θ,α) with additional variance parameters

α. Then, the score vector or generalized estimating equations has the form

Sk(θ,α) =
nk

∑
i=1

Sik(θ,α) =
nk

∑
i=1

Dik(θ)
T
v−1

ik (θ,α)(Yik −µik(θ))
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where Dik(θ)= ∂µik(θ)/∂θ. Note that this score vector is reduced to (4.12) whenµik(θ)=

Xikθ and vik(θ,α) = Vik, and hence, it can be regarded as a generalization of the least

squares methods in Subsection 4.1.

When a consistent estimator α̂ of α is available, Liang and Zeger (1986) showed that

Sk(θ, α̂) is asymptotically equivalent to Sk(θ,α), and hence the asymptotic properties

regarding the inference on θ remain unchanged when using Sk(θ, α̂) instead of Sk(θ,α).

We assume that α is known or a consistent estimator α̂ is available, and denote gen-

eralized estimating equations estimators of θ for both cases as the same θ̂k. Note that

θ̂k is consistent. For more details about estimation of α, refer to, for example, Crowder

(1995) and Lee et al. (1996).

Partition Sk(θ,α) as {Sk,γ(γ,β,α),Sk,β(γ,β,α)
T}T and let β̂k be the restricted gener-

alized estimating equations estimator of β under the null hypothesis. Then, as shown

by Rotnitzky and Jewell (1990), it can be shown that the score statistic Sk,γ(0, β̂k,α) is

asymptotically equivalent to Tk(0,β,α) where

Tk(γ,β,α) = Sk,γ(γ,β,α)−Γk,γβΓ−1
k,ββSk,β(γ,β,α) (4.14)

and Γk,γβ and Γk,ββ are submatrices of the partitioned matrix of Γk,

Γk = lim
n→∞

n−1
nk

∑
i=1

Dik(θ)
T
v−1

ik (θ,α)Dik(θ) =

[
Γk,γγ Γk,γβ

Γk,βγ Γk,ββ

]
.

That is,

Sk,γ(0, β̂k,α) ≃ Sk,γ(0,β,α)−Γ0k,γβΓ−1
0k,ββSk,β(0,β,α) = Tk(0,β,α) (4.15)

where the subscript 0 means “evaluated at γ = 0”, or equivalently, “evaluated under the

null hypothesis”.

Since the score vector n−1/2Sk(θ,α) has a form of sum of independent variables, the

asymptotic distribution of n−1/2Sk(θα) is multivariate normal with mean 0 and variance

Ωk = lim
n→∞

n−1
nk

∑
i=1

Dik(θ)
T
v−1

ik (θ,α)Vik v−1
ik (θ,α)Dik(θ).

By asymptotic normality of n−1/2Sk(θ,α) together with the linear equation (4.14), the

asymptotic joint distribution of {n−1/2Tk(γ,β,α),k = 1, . . . ,K} becomes multivariate

normal with mean 0. The asymptotic covariance of n−1/2Tk(γ,β,α) and n−1/2Tl(γ,β,α),
for k ≤ l, is given by

Mkl = Ωkl,γγ +Γk,γβΓ−1
k,ββΩkl,ββΓ−1

l,ββΓl,βγ −Ωkl,γβΓ−1
l,ββΓl,βγ −Γk,γβΓ−1

k,ββΩkl,βγ
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where Ωkl,γγ , Ωkl,γβ , Ωkl,βγ and Ωkl,ββ are submatrices of the partitioned matrix

Ωkl =

[
Ωkl,γγ Ωkl,γβ

Ωkl,βγ Ωkl,ββ

]

and

Ωkl = lim
n→∞

n−1
nk

∑
i=1

Dik(θ)
T
v−1

ik (θ,α)Vikl v−1
il (θ,α)Dil(θ).

Note that Vikl denotes the true covariance matrix of Yik and Yil . When the true variance

functions are correctly specified, as shown in Lee et al. (1996), the asymptotic covari-

ances Mkl (1 ≤ k ≤ l ≤ K) are reduced to Ik,

Ik = Γk,γγ −Γk,γβΓ−1
k,ββΓk,βγ = VarA{n−1/2Tk(γ,β,α)},

indicating an asymptotic independent increments structure.

By applying similar arguments to the equation (4.15), it can be shown that the asymp-

totic joint distribution of sequential score statistics n−1Sk,γ(0, β̂k,α), k = 1, . . . ,K, is

multivariate normal with mean 0 and covariance M0kl , k, l = 1, . . . ,K. Furthermore, with

a correct specification of the variance functions, we have M0kl = I0k = VarA

{n−1/2Sk,γ(0, β̂k,α)}, which establish an asymptotic independent increments structure

of sequentially computed score statistics.

The asymptotic variances Γk and Ωk can be estimated consistently by evaluating

Dik(θ) and vik(θ,α) at the consistent estimators α̂ and θ̂k and by substituting {Yik −
µik(θ̂k)}{Yik − µik(θ̂k)}T for Vik. Under the null hypothesis, we use θ̂k = (0, β̂T

k)
T. As

pointed out by Lee et al. (1996), these consistent estimators also lead to an asymp-

totic independent increments structure of sequentially computed n−1/2Tk(γ,β,α) and

n−1Sk,γ(0, β̂k,α) when the variance functions are correctly specified.

4.3 Failure time data

In this subsection, we review the results for a general parametric model, Cox propor-

tional hazards model by Cox (1972), and accelerated failure time model of Lin (1992),

in the framework of counting process and martingale integration which can be referred

to, for example, Fleming and Harrington (1991) and Anderson et al. (1993)

First, consider the notations for failure time data. Assume that n patients enter the

trial at times e1, . . . ,en which are considered as constants. Each patient i has a poten-

tial failure time Ti, potential censoring time Ci, treatment indicator Zi and covariate

vector Wi = (Wi1, · · · ,Wip). It is assumed that Ti and Ci are conditionally independent

given {Zi,Wi} and {Ti,Ci,Zi,Wi}, i = 1, . . . ,n, are identically and independently dis-

tributed. If the data were analyzed at time t, the observable random variables would be

{Xi(t),∆i(t),Zi,Wi} for all i = 1, . . . ,n such that ei ≤ t. Here Xi(t) = min(Ti,Ci, t −ei) is

the time to failure or censoring, and ∆i(t) = I{Ti < min(Ci, t − ei)} denotes the failure
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indicator. For simplicity, we assume that the covariate vector Wi is time-invariant, but

the same results are obtained for a time-varying covariate, as shown in Gu and Ying

(1995) for the proportional hazards model.

We assume a hazard function λ(u,Zi,Wi,θ) with θ = (γ,βT)T where γ is a treatment

effect parameter and β is a vector of nuisance parameters denoting covariate effects.

As in the previous sections, we are interested in testing the null hypotheses (4.1). For

notational simplicity, we set Ri = (Zi,W
T

i )
T.

It is convenient to express the failure time data in terms of counting process notation.

Define the counting process of observed death for the ith patient at analysis time t by

Ni(u, t) = I{Xi(t) ≤ u,∆i(t) = 1} for u ≥ 0. Note that whenever ei > t, Ni(u, t) = 0

for u ≥ 0 and when ei ≤ t, Ni(u, t) = Ni(t, t) for u ≥ t. Similarly, the at-risk process

Yi(u, t) = I{Xi(t)≥ u}, which is the indicator of whether the ith patient is at risk u units

after entry into the study if the data were analyzed at calendar time t.

With the filtration F(u), u ≥ 0, defined by Tsiatis et al. (1995), denote the F(u)

martingale process associated with Ni(u, t) by

Mi(u, t) = Ni(u, t)−
∫ u

0
λ(x,Ri,θ)Yi(x, t)dx.

Also, following the same procedure as in Tsiatis et al. (1995), we define the count-

ing process of death observed between two successive analysis times tk and tk−1 as

DNi(u, t1) = Ni(u, t1) and DNi(u, tk) = Ni(u, tk)−Ni(u, tk−1), k = 2, . . . ,K, where t1 <

· · ·< tK denote the analysis times. Let DYi(u, tk) =Yi(u, tk)−Yi(u, tk−1), then the martin-

gale process associated with DNi(u, t) can be written by

DMi(u, t) = DNi(u, t)−
∫ u

0
λ(x,Ri,θ)DYi(x, t)dx.

Note that since any two processes of DNi(u, tk), k = 1, . . . ,K, will not take jumps at the

same time, DMi(u, tk) and DMi(u, tl) are orthogonal, that is, Cov{DMi(u, tk),DMi(u, tl)}=
0 if k 6= l. Also, note that Mi(u, tk) = ∑k

j=1 DMi(u, t j) for k = 1, . . . ,K. So far, we defined

the data structure, and related counting processes and martingales. We will use this com-

mon notations in the next subsubsections.

4.3.1 Parametric regression models

Assume that the hazard function λ(u,Ri,θ) is known, then using standard results for

failure time data, the likelihood of the data available at time t is proportional to

L(t,θ) = Π(i:ei<t)[λ{Xi(t),Ri,θ}]∆i(t) exp

{
−
∫ Xi(t)

0
λ(u,Ri,θ)du

}
.
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With the counting process notations, we can express the score vector at analysis time t

as

S(t,θ) =
n

∑
i=1

∫ ∞

0
h(u,Ri,θ){dNi(u, t)−dµi(u, t,θ)}

=
n

∑
i=1

∫ ∞

0
h(u,Ri,θ)dMi(u, t) (4.16)

or equivalently, at analysis time tk,

S(tk,θ) =
k

∑
j=1

n

∑
i=1

∫ ∞

0
h(u,Ri,θ){dDNi(u, t j)−dDµi(u, t,θ)}

=
k

∑
j=1

n

∑
i=1

∫ ∞

0
h(u,Ri,θ)dDMi(u, t j) (4.17)

where

h(u,Ri,θ) = ∂ logλ(u,Ri,θ)/∂θ,

dµi(u, t,θ) = λ(u,Ri,θ)Yi(u, t)du

and

dDµi(u, t,θ) = λ(u,Ri,θ)DYi(u, t)du.

Denote the part taken from the second sum in (4.17) by S j. Then, by the standard ar-

guments for counting processes, e.g. in Fleming and Harrington (1991), the vector of

martingale integrals S j is also martingale, and we have

E{dNi(u, t)|Ri}= dµi(u, t,θ)

and

E{dDNi(u, t)|Ri}= dDµi(u, t,θ)

so that

E{dMi(u, t)|Ri}= E{dDMi(u, t)|Ri}= 0,

Var{dNi(u, t)|Ri}= Var{dMi(u, t)|Ri}= dµi(u, t,θ),

and

Var{dDNi(u, t)|Ri}= Var{dDMi(u, t)|Ri}= dDµi(u, t,θ).

Hence, S j has mean 0 and variance

Var(S j) =
n

∑
i=1

∫ ∞

0
h(u,Ri,θ)h(u,Ri,θ)

T
dDµi(u, t j,θ).
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Furthermore, since Cov{DMi(u, tk),DMi(u, tl)} = 0 if k 6= l and observations are inde-

pendent, S j, j = 1, . . . ,k, are uncorrelated, and hence the score vector S(tk,θ) has a sim-

ilar form to (4.2), sum of uncorrelated variables. Applying the martingale central limit

theorem, we can show that the asymptotic joint distribution of n−1/2S(tk,θ), k = 1, . . . ,K,

is multivariate normal with mean 0. It can also be shown that

CovA{n−1/2S(tk,θ),n
−1/2S(tl,θ)}= VarA{n−1/2S(tk,θ)}= Γ(tk), 1 ≤ k ≤ l ≤ K,

which indicates an independent increments structure. Here the asymptotic variance

Γ(tk) = lim
n→∞

∫ ∞

0
n−1

n

∑
i=1

h(u,Ri,θ)h(u,Ri,θ)
T
dµi(u, tk,θ). (4.18)

Now, partition the score vector S(t,θ) as {Sγ(t,γ,β),Sβ(t,γ,β)
T}T, where Sγ(t,γ,β) =

∂ logL(t,γ,β)/∂γ and Sβ(t,γ,β) = ∂ logL(t,γ,β)/∂β. Then the score test of the null

hypothesis H0 : γ = 0 in the presence of nuisance parameters β, evaluated at calendar

time t, is given by Sγ(t,0, β̂t) where β̂t is the restricted maximum likelihood estimator

of β when γ = 0. Using standard results of likelihood theory, Cox and Hinkley (1974,

Sec 9.3), the score test Sγ(t,0, β̂t) is asymptotically equivalent to

T (t,0,β) = Sγ(t,0,β)−Γγβ(t)Γ−1
ββ(t)Sβ(t,0,β)

where Γγβ and Γββ are submatrices of the partitioned matrix of Γ0(t), which is Γ(t) in

(4.18) evaluated at γ = 0,

Γ0(t) =

[
Γγγ(t) Γγβ(t)

Γβγ(t) Γββ(t)

]
.

Since n−1/2T (t,0,β) is a linear combination of the elements of the score vector n−1/2

S(t,θ), which converges in distribution to a multivariate normal with independent in-

crements, this implies that n−1/2T (t,0,β) also converges in distribution to a normal

with mean µ and variance I(t), where I(t) = Γγγ(t)−Γγβ(t)Γ−1
ββ(t)Γβγ(t), and µ = 0

under the null hypothesis and µ= δI(t) under the local alternatives defined in Subsub-

section 4.2.1. Therefore, following the same arguments as in the previous sections, we

can show that the asymptotic joint distribution of {n−1/2Sγ(tk,0, β̂tk
),k = 1, . . . ,K} is

multivariate normal with mean µ and covariance (1 ≤ k ≤ l ≤ K)

CovA{n−1/2Sγ(tk,0, β̂tk
),n−1/2Sγ(tl,0, β̂tl

)}= VarA{n−1/2Sγ(tk,0, β̂tk
)}= I(tk), (4.19)

which implies an independent increments structure of the asymptotic joint distribution.

Note that h(u,Ri,θ) does not depend on the calendar time t, and this make it much

easier to establish the independent increments structure in (4.18) and (4.19). In fact,

it can be shown that when we use a weighted score vector with a weight function
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Q(u, t,θ) which converges in probability to a function q(u, t,θ), the independent in-

crements structure holds as long as q(u, t,θ) does not depend on the calendar time t.

Therefore, choosing a suitable weight function, we can construct a group sequential test

having asymptotic normality and independent increments structure. This may be par-

ticularly useful when the efficient test is difficult to be built explicitly, as found in the

accelerated failure time model. For weighted tests, the limiting optimal weight function

is proportional to the limit of h(u,Ri,θ) = ∂ logλ(u,Ri,θ)/∂θ because the score vec-

tors in (4.16) and (4.17) are efficient scores. Tsiatis (1982) and Lin (1992) also showed,

for the proportional hazards model and accelerated failure time model, that the limiting

weight functions preserve the independent increments structure.

It is also interesting to note that the score vectors given by (4.16) and (4.17) can be

regarded as the score vectors based on the generalized estimating equations accommo-

dating time dependent structure of the failure time data by a stochastic integral. Consid-

ering dNi(u, t) as the ith observation and expressing h(u,Ri,θ) in (4.16) as

h(u,Ri,θ) = {∂dµi(u, t,θ)/∂θ}/Var{dNi(u, t)|Ri},

we have the generalized estimating equations

S(t,θ) =
n

∑
i=1

∫ ∞

0
n−1{∂dµi(u, t,θ)/∂θ} [Var{dNi(u, t)|Ri}]−1 {dNi(u, t)−dµi(u, t,θ)}.

In this framework, choosing a weight function corresponds to choosing a working vari-

ance.

4.3.2 Proportional hazards models

Consider the Cox proportional hazards model where the hazard function λ(u,Ri,θ) is

given by

λ(u,Ri,θ) = λ0(u)exp(θT
Ri)

where λ0 is an arbitrary baseline hazard fuction. We can express the score vector based

on the partial likelihood (Cox, 1975) at the analysis time t as

U(t,θ) =
n

∑
i=1

∫ ∞

0
{Ri − R̄(u, t,θ)}dNi(u, t)

=
n

∑
i=1

∫ ∞

0
{Ri − R̄(u, t,θ)}dMi(u, t) (4.20)

where R̄(u, t,θ) = ∑n
i=1 RiYi(u, t)exp(θTRi)/∑n

i=1Yi(u, t)exp(θTRi).

The partial likelihood score vector (4.20) has the same form as the maximum likeli-

hood score vector (4.16) if h(u,Ri,θ) in (4.16) is replaced with Ri − R̄(u, t,θ). Though

Ri − R̄(u, t,θ) may depend on the calendar time t, as shown in Jennison and Turnbull
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(1997), the independent increments structure of the score vector U(t,θ) still holds.

Therefore, the arguments in Subsubsection 4.3.1 can be applied to produce the following

results:

Denote the score test statistic for the null hypothesis by Uγ(t,0, β̂) where Uγ(t,γ,β)
is the first element of the partitioned score vector U(t,θ) = {Uγ(t,γ,β),Uβ(t,γ,β)

T}T

and β̂ is the restricted maximum partial likelihood estimator of β when γ = 0. Then the

asymptotic joint distribution of {n−1/2Uγ(tk,0, β̂tk
),k = 1, . . . ,K} is multivariate normal

with mean µ and covariance (1 ≤ k ≤ l ≤ K)

CovA{n−1/2Uγ(tk,0, β̂tk
),n−1/2Uγ(tl,0, β̂tl

)}= VarA{n−1/2Uγ(tk,0, β̂tk
)}= I(tk),

which implies an independent increments structure of the asymptotic joint distribution.

Here, I(t) = Γγγ(t)−Γγβ(t)Γ−1
ββ(t)Γβγ(t) and

Γ0(t) =

[
Γγγ(t) Γγβ(t)
Γβγ(t) Γββ(t)

]
,

which is obtained by evaluating, at γ = 0, Γ(t),

Γ(t) = lim
n→∞

∫ ∞

0
n−1

n

∑
i=1

{Ri − R̄(u, t,θ)}{Ri− R̄(u, t,θ)}T
Yi(u, t)λ0(u)exp(θT

Ri)du.

The variance matrix I(t) can be consistently estimated by substituting β and λ0(u) in

Γ0(t) with β̂t and the Breslow estimator evaluated under the null hypothesis,

λ̂0(u,0, β̂t) =
n

∑
i=1

dNi(u, t)/
n

∑
i=1

Yi(u, t)exp(β̂T

tWi).

In general, the Breslow estimator is given by

λ̂0(u, θ̂) =
n

∑
i=1

dNi(u, t)/
n

∑
i=1

Yi(u, t)exp(θ̂T
Ri)

where θ̂ is the maximum partial likelihood estimator of θ, and if there are no covariates,

it becomes the Nelson-Aalen estimator by Aalen (1978).

As mentioned in Subsection 4.1, we can consider the weighted score vector UQ(t,θ)

with a weight function Q(u, t,θ),

UQ(t,θ) =
n

∑
i=1

∫ ∞

0
Q(u, t,θ){Ri− R̄(u, t,θ)}dNi(u, t),

and we can show that the independent increments structure of sequentially computed

score statistics holds when Q(u, t,θ) converges in probability to a limit q(u,θ) free of t.
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When there are no covariates, the weighted score vector leads to the well known two-

sample weighted logrank tests which were studied by Tsiatis (1982).

For a given θ, let λ̂0(u,θ) denote the Breslow estimator. Then, comparing the partial

likelihood score vector (4.20) with the maximum likelihood score vector (4.16), we can

show that U(t,θ) = S(t,θ, λ̂0) where S(t,θ, λ̂0) is the score vector obtained by replacing

λ0(u) with λ̂0(u,θ) in (4.16) or (4.17). It seems that the score vector (4.16) can also be

expressed in the generalized estimating equations framework as

U(t,θ) =
n

∑
i=1

∫ ∞

0
{∂dµ̂i(u, t,θ)/∂θ}

[
V̂ar{dNi(u, t)|Ri}

]−1{dNi(u, t)−dµi(u, t,θ)}

where dµ̂i(u, t,θ) = V̂ar{dNi(u, t)|Ri} = Yi(u, t)λ̂0(u,θ)exp(θTRi). By the consistency

of the Breslow estimator λ̂0(u,θ), this score vector can be regarded as the generalized

estimating equations score vector obtained when the true variances are consistently es-

timated.

4.3.3 Accelerated failure time models

Consider the linear model

Ti = θT
Ri + ǫi, i = 1, . . . ,n

where ǫi are independent with a common hazard function λ0. Here, Tis are usually log

transformed observation of the original nonnegative failure time data so that they are

allowed to have negative values. Further, assume that the treatment indicator Zi is inde-

pendent of the covariates Wi as in usual clinical trials.

For a given λ0, the efficient score vector (4.16) can be written as

S(t,θ) =
n

∑
i=1

∫ ∞

−∞
Ri{λ′

0(u− θT
Ri)/λ0(u− θT

Ri)}{dNi(u, t)−Yi(u, t)λ0(u− θT
Ri)du}.

When λ0 is unknown, replacing λ0(u) with λ̂0(u, t,θ) and λ′
0(u)/λ0(u) with a weight

function Q(u,θ), we have

S(t,θ, λ̂0) =
n

∑
i=1

∫ ∞

−∞
Q(u,θ)Ri{dNi(u+ θT

Ri, t)−Yi(u+ θT
Ri, t)λ̂0(u,θ)du},

where λ̂0(u, t,θ)du = ∑n
i=1 dNi(u+ θTRi, t)/∑n

i=1Yi(u+ θTRi, t) is a Nelson-Aalen type

estimator of λ0(u) at the analysis time t. Furthermore, let

R̄(u, t,θ) =
n

∑
i=1

RiYi(u+ θT
Ri, t)/

n

∑
i=1

Yi(u+ θT
Ri, t).
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Then S(t,θ, λ̂0) is equivalent to a rank score vector

U(t,θ) =
n

∑
i=1

∫ ∞

−∞
Q(u,θ){Ri− R̄(u, t,θ)}dNi(u+ θT

Ri, t)

=
n

∑
i=1

∫ ∞

−∞
Q(u,θ){Ri− R̄(u, t,θ)}dMi(u+ θT

Ri, t) (4.21)

where Mi(u+ θTRi, t) = Ni(u+ θTRi, t)−
∫ u
−∞ Yi(x+ θTRi, t)λ0(x)dx is a martingale asso-

ciated with the counting process Ni(u+ θTRi, t) of the residual Xi(t)− θTRi. This class

of linear rank tests (4.21) were studied by Tsiatis (1990), Ritov (1990), Wei, Ying and

Lin (1990b), and Lin (1992). As shown in Tsiatis (1990), note that the limiting opti-

mal weight function is proportional to λ′
0(u)/λ0(u). This rank score vector can also be

interpreted in the generalized estimating equations framework, as described in Subsub-

section 4.3.2.

At a glance, it seems that the rank score (4.21) has the same form as those of ef-

ficient scores for the parametric model and the proportional hazards model, and hence

that the same arguments as discussed in the previous sections can be applied. However,

as pointed out in several researches such as Tsiatis (1990) and Lin, Wei and Ying (1998),

because the rank score is a step function of θ, any exact solution of U(t, θ̂) = 0 may not

exist. Therefore, θ̂ is defined as a value θ for which U(t,θ) changes sign or as a mini-

mizer of ‖ U(t,θ) ‖ where ‖ a ‖= (aTa)1/2. For more discussions on this minimization

problem, refer to Wei et al. (1990b) and Lin et al. (1998).

For simplicity, assume Q(u,θ) = 1 temporarily and let Ei(t,β) = Xi(t)−βTWi for i =

1, . . . ,n. Further, define N∗
i (u, t) = ∆i(t)I{Ei(t,β) ≤ u} and Y ∗

i (u, t) = I{Ei(t,β) ≥ u}.

Then, under the null hypothesis, U(t,θ) is partitioned as

Uγ(t,β) =
n

∑
i=1

∫ ∞

−∞
{Zi − Z̄(u, t,β)}dN∗

i (u, t)

=
n

∑
i=1

∫ ∞

−∞
{Zi − Z̄(u, t,β)}dM∗

i (u, t)

and

Uβ(t,β) =
n

∑
i=1

∫ ∞

−∞
{Wi −W̄ (u, t,β)}dN∗

i (u, t)

=
n

∑
i=1

∫ ∞

−∞
{Wi −W̄ (u, t,β)}dM∗

i (u, t)

where

Z̄(u, t,β) =
n

∑
i=1

ZiY
∗

i (u, t)/
n

∑
i=1

Y ∗
i (u, t),
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W̄ (u, t,β) =
n

∑
i=1

WiY
∗

i (u, t)/
n

∑
i=1

Y ∗
i (u, t)

and

M∗
i (u, t) = N∗

i (u, t)−
∫ u

−∞
Y ∗

i (x, t)λ0(x)dx,

which is a martingale. Note that the score function Uγ(t,β) has the same form as the

score functions Sγ(t,0,β) and Uγ(t,0,β) in Subsubsections 4.3.1 and 4.3.2, respectively,

so that we can apply the similar arguments to establish the asymptotic results of Uγ(t,β).

That is, the asymptotic joint distribution of {n−1/2Uγ(tk,β),k = 1, . . . ,K} is multivariate

normal with mean 0 and covariance (1 ≤ k ≤ l ≤ K)

CovA{n−1/2Uγ(tk,β),n
−1/2Uγ(tl,β)}= VarA{n−1/2Uγ(tk,β)}= I(tk),

where

I(t) = lim
n→∞

n−1
n

∑
i=1

∫ ∞

−∞
{Zi − Z̄(u, t,β)}2Y ∗

i (u, t)λ0(u)du. (4.22)

Since the rank score U(t,θ) is a step function of θ, we can not apply the usual Taylor

expansions to find out a test statistic asymptotically equivalent to Uγ(t, β̂t), where the

restricted estimator β̂t is the minimizer of ‖ Uβ(t,β) ‖. Under the assumption of in-

dependence of Zi and Wi, however, Lin (1992) showed that Uγ(t, β̂t) is asymptotically

equivalent to Uγ(t,β). In this case, as shown in Lin (1992), we can simplify I(t) in

(4.22). Note that Z̄(u, t,β) converges in probability to µz = E(Zi) and

E

{∫ ∞

−∞
Y ∗

i (u, t)λ0(u)du

}
= E{Ni(∞, t)}= Pr{∆i(t) = 1}.

Furthermore, Zi are independent of the other variables so that I(t) = σ2
z Pr{∆i(t) = 1},

where σ2
z = E{(Zi − µz)

2}. Hence, we have that the asymptotic joint distribution of

{n−1/2Uγ(tk, β̂tk
),k = 1, . . . ,K} is multivariate normal with mean 0 and covariance ma-

trix {σ2(tk, tl);k, l = 1, . . . ,K} where σ2(t, t ′) = σ2(t, t) = σ2
z Pr{∆i(t)= 1} for t ≤ t ′. Un-

der the null hypothesis, denote Q(u,θ) and λ̂0(u, t,θ) by Q(u,β) and λ̂0(u, t,β). Then,

for a given weight function Q(u,β), the variance function σ2(t, t) can be consistently

estimated by

Î(t) = n−1
n

∑
i=1

∫ ∞

−∞
Q2(u, β̂t){Zi − Z̄(u, t, β̂t)}2Y ∗

i (u, t, β̂t)λ̂0(u, t, β̂t)du

= n−1

∫ ∞

−∞
Q2(u, β̂t)

{
∑n

i=1 Z2
jY

∗
j (u, t, β̂t)

∑n
i=1Y ∗

j (u, t, β̂t)
− Z̄2(u, t, β̂t)

}
n

∑
i=1

dN∗
i (u, t, β̂t)

where Y ∗
i (u, t, β̂t) and N∗

i (u, t, β̂t) are obtained by substituting β with β̂t in Y ∗
i (u, t) and

N∗
i (u, t), respectively.



256 Independent increments in group sequential tests: a review

5 Examples

5.1 Error spending based on information

As mentioned in Subsection 2.4, standard group sequential methods by Pocock (1977)

and O’Brien and Fleming (1979) require equal increments of information at each in-

terim analysis and a pre-specification of the maximum number of analyses. However,

these conditions are often not met in practice. The error spending function approach of

Lan and DeMets (1983) guarantees an overall type I error probability to a desired signif-

icance level without having to fix the number and times of repeated analyses in advance.

When designing a study, the number and times of repeated analyses have to be fixed

at least tentatively based on the projected duration of enrollment and follow-up and the

desired frequency of interim analyses for possible early stopping. This is an issue of par-

ticular interest in designing clinical trials with failure time data. A natural approach is to

use the notion of statistical information and design the trial as a maximum information

trial as in Kim et al. (1995), Lee et al. (1996), and Scharfstein et al. (1997).

At the kth interim analysis, k = 1, . . . ,K, denote the standardized score statistics by

Sk = S(β̂k)/SE{S(β̂k)} and the standardized Wald test by Wk = γ̂k/SE(γ̂k) for testing the

null hypothesis γ = 0 in the presence of the nuisance parameters β, where S(β̂k) is the

usual score statistics presented in the previous sections with the restricted estimator β̂k of

β under the null hypothesis. For the Wald test, γ̂k is obtained from the estimating equa-

tions such as the maximum likelihood estimating equations, the least squares estimating

equations, the generalized estimating equations and the rank type estimating equations

described in the previous sections. Then the information Ik at the kth interim analy-

sis is defined by Ik,u = Var{S(β̂k)} for the score test and Ik,e = {Var(γ̂k)}−1 for Wald

test. The information Ik can be estimated by replacing Var with V̂ar. We denote it as Îk.

For an error spending function α⋆(t) described in Subsection 2.4, we can use the

information fraction tk for the kth interim analysis given by a ratio of the information at

the kth interim analysis to the maximum information IK predetermined by design, i.e.

tk = Ik/IK . At the time of the kth interim analysis, Ik is obtained from the test statistics.

The maximum information is defined as

IK =

(
zα/2 + zβ

γA

)2

IF (5.1)

where α and 1− β are the type I error and the power to be required, respectively; γA

denotes the treatment effects under the alternative hypothesis; and IF is the so-called

inflation factor. The required inflation in statistical information to compensate for the

loss of power through multiple testing was discussed by Kim and DeMets (1987). The

inflation factor IF is determined as a function of α, β and the number K and timing

of repeated testing and depends on the selected error spending function or the group

sequential method. Scharfstein et al. (1997) also provide a table of the inflation factors
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for methods by Pocock (1977) and O’Brien and Fleming (1979) under various design

schemes.

For a given IK in (5.1), the critical value ck is calculated by solving the equation

Pr(|Z1| ≤ c1, . . . , |Zk−1| ≤ ck−1, |Zk|> ck) = α⋆(tk)−α⋆(tk−1), (5.2)

where (Z1, . . . ,ZK) is multivariate normal with mean 0 and covariance

(Ik/Il)
1/2 , 1 ≤ k ≤ l ≤ K. (5.3)

Reboussin et al. (2000) provided programs for calculating group sequential boundaries

using the Lan and DeMets (1983) method. The boundary values bk,u for the score test

Sk and bk,e for the Wald test Wk are obtained by replacing tk in (5.2) with tk,u and tk,e,

and replacing Ik/Il in (5.3) with Îk,u/Îl,u and Îk,e/Îl,e, respectively. Here tk,u = Îk,u/IK and

tk,e = Îk,e/IK. If |Sk|> bk,u for the score test and |Wk| > bk,e for the Wald test, one stops

and rejects the null hypothesis. Note that the covariance (5.3) implies the independent

increments structure so that we can use the recursion formula in Subsection 2.3.

5.2 Longitudinal data

To examine the finite sample properties of the “score” test and the Wald test for the

semiparametric model for longitudinal data, we use a semiparametric model suggested

by the data from the National Cooperative Gallstone Study (NCGS) in Schoenfield et al.

(1981). For illustration, we consider only the comparison of cholesterol levels between

the placebo (305 patients) group and the high-dose chenodiol (305 patients) group.

The four repeated cholesterol values are modeled as a linear function of the baseline

cholesterol value (Bi) and the treatment indicator (Ti) for i = 1, . . . ,n and j = 1 : 4 and

the kth interim analysis as

E(Yi jk|Xik) = β1Ti +β0 jIi jk +β1 jIi jkBi.

The estimated covariance matrix of the score test statistics and the Wald test statistics

over time are, respectively, as follows:




0.1027 0.1044 0.1064 0.1075

0.1490 0.1497 0.1495

0.1927 0.1824

0.2217




and 


8.8741 6.2173 5.0184 4.3387

6.1136 4.8675 4.1597

4.9627 4.0206

4.1814


 .
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These results confirm empirically the independent increments structure in the sequential

test statistics as noted in (2.7) and (2.6) from (2.8), respectively.

5.3 Failure Time data

We describe a simulation study reported in Tsiatis et al. (1995) to illustrate how the

group sequential tests for parametric model for failure time data work with moderate

sample sizes that are typical in clinical trials. In the simulation, 100 patients were entered

uniformly over a 10 year period, and each patient entering the trial in a staggered fashion

was randomly allocated with equal probability to one of two treatments indicated by

Z = 0 or 1. A failure time Wi for patient i was obtained as a function of treatment

assignment Zi and trial entry time Ei by generating an exponentially distributed random

variable given by the exponential model with the hazard rate

λ(u|Z,E,β,θ) = exp(θ1 +βZ + θ2E)

which is a function of both treatment and entry time. We considered a test of the null

hypothesis of no treatment difference, β = 0, with the nuisance parameters θ1 = 0 and

θ2 = 0.1.

We analyzed the accumulating data at four times after equal increments in calendar

time, i.e. t = 2.5,5.0,7.5, and 10 years, using all the data available at those times. At

each of the four times, we calculated the maximum likelihood estimate β̂(t), the score

statistic S0{t,β = 0, θ̂(β = 0)}, and the observed information {I00(t)}−1. The maximum

information was set equal to the average {I00(10)}−1 obtained from 10,000 repetitions.

To empirically examine the type I error probability, we recorded the proportion of

rejections for both the score test and the Wald test, using the Pocock and O’Brien-

Fleming type error spending functions at the 0.05 level of significance in another set of

10,000 repetitions. With the group-sequential test based on the Pocock type error spend-

ing function α⋆
P(t), 598 and 525 of the 10,000 simulations rejected the null hypothesis

for the score test and Wald test, respectively. With the group-sequential test based on the

O’Brien-Fleming type error spending function α⋆
OF(t) = 2{1−Φ(zα/2/

√
t)}, 531 and

519 of the 10,000 simulations rejected the null hypothesis for the score test and the Wald

test, respectively. These results seem to suggest that the Wald test produces the type I

error probability close to the target significance level as compared to the score test. Also

O’Brien-Fleming type group sequential test produces the type I error probability close

to the target significance level as compared to the Pocock type group sequential test.

In order to verify the independent increments structure in the sequentially computed

test statistics, we computed the empirical correlation matrix of the increments of the

score test and the Wald test pre-multiplied by the observed information matrix. They are
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


1 −0.0169 0.0011 0.0002

1 −0.0059 0.0003

1 −0.0176

1




for the score test and




1 0.0054 −0.0028 −0.0007

1 −0.0032 −0.0025

1 −0.0159

1




for the Wald test. In both the score test and the Wald test, the simulation results appear to

confirm the theory, as indicated by the off-diagonal entries being all very close to zero.

As a second example, we consider the Children’s Cancer Group study 251 (CCG

251) in which 508 eligible children with untreated acute myeloid leukemia were en-

rolled between September 1979 and October 1983 in a staggered entry to receive an

induction chemotherapy followed by either allogeneic bone marrow transplant or main-

tenance chemotherapy as reported in Lee and Sather (1995). Post-remission treatment

was determined by whether patient had an HLA-matching sibling donor or not without

randomization.

A total of 340 children achieved remission and were subsequently allocated to either

transplant or chemotherapy. The primary outcome was disease-free survival from the

end of induction chemotherapy. As there was apparent cure of disease in a substantial

portion of children (30-45%), we analyzed disease-free survival using the mixture model

with cure, also known as the cure rate model given by the survival function

S(t|Z,β,θ) = νZ +(1−νZ)HZ(t)

where the cure probability νZ is parametrized as

νZ =
exp(α+βZ)

1+ exp(α+βZ)

and

HZ(t) = exp{−exp(γo +γ1Z)t}δ.

Here β is the parameter of interest and θ = (α,γ0,γ1,δ)
′ is the nuisance parameter.

The study was originally conducted as a fixed sample trial. In order to illustrate the

application of group sequential methods using the O’Brien-Fleming type error spending

function α⋆
OF(t) = 2{1−Φ(zα/2/

√
t)}, we applied the score test and the Wald test at

yearly intervals starting in October 1982 for three times with 255, 324, and 340 chil-

dren. Tables 1 and 2 summarize the results for the score test and the Wald-type test,

respectively.
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Table 1: Interim Analyses of CCG 251 with the Score Test.

Reject

k β̂ V̂ar(β̂) tk α⋆
OF(t) |S(tk)| ck H0

1 2.77 4.63 0.307 0.0001 1.29 3.88 No

2 5.97 6.80 0.451 0.0017 2.29 3.14 No

3 9.50 13.38 0.888 0.0348 2.60 2.18 Yes

Table 2: Interim Analyses of CCG 251 with the Wald Test.

Reject

k β̂ V̂ar(β̂) tk α⋆
OF(t) |W (tk)| ck H0

1 0.515 0.177 0.374 0.0005 1.22 3.48 No

2 0.748 0.125 0.532 0.0043 2.12 2.87 No

3 0.684 0.071 0.931 0.0404 2.56 2.17 Yes

Unlike in Lee and Sather (1995) where the critical values had to be determined us-

ing multivariate normal integration as in Schervish (1984), the critical values in Tables

1 and 2 were determined using univariate normal integration thanks to independent in-

crements. Note that the different test resulted in different estimates of the information

fractions at each of the three interim analyses. With both the score test and the Wald test,

the trial would have been terminated early in October 1984 with less than full informa-

tion of 0.888 and 0.931, respectively.

6 Discussion

After the theoretical development in sequential analysis with the seminal work of Wald

(1947), ethical imperatives of having to avoid unnecessary experimentation with human

subjects in clinical trials motivated early pioneers such as Peter Armitage leading rapid

development of sequential methods for clinical trials, e.g. including the first edition

of the textbook “Sequential Medical Trials” by Peter Armitage in 1960. Soon there

was a recognition, however, that classical sequential methods were not very realistic in

most clinical trials and subsequently group sequential methods started to appear in the

literature in 1970s.

In order for group sequential methods to be applied correctly, the joint distribution of

sequential test statistics computed over time has to be known to determine the group se-

quential boundaries. In many settings the joint distribution turned out to be a multivariate

normal distribution or asymptotically so. This required multivariate normal integration

which can be challenging and applicable for up to seven dimensions. However, if the

joint distribution has an independent increments structure in its covariance matrix, the

multivariate integration reduces to univariate integration involving simple recursion in

successive test statistics.
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Many authors established the multivariate normality of the joint distributions of se-

quential test statistics. Many joint distributions turned out to have correlated increments

between successive test statistics requiring multivariate normal integration. Examples

include tests by Armitage et al. (1985), Geary (1988), Wei et al. (1990a), Lee and

DeMets (1992), and Su and Lachin (1992) for longitudinal data and Gehan’s test by

Slud and Wei (1982) and logrank test under the accelerated failure model by Lin (1992)

for failure time data.

Fortunately, joint distributions of many useful test statistics computed over time turn

out to have independent increments, thus requiring only univariate integration based on

convolution of two independent random variables. Independence of increments in the

joint distribution of sequential test statistics was conjectured in Armitage (1975), but

the theoretical development started with the initial work in Tsiatis (1981), followed by

many noted in Section 3, and culminating with the most general results by Jennison and

Turnbull (1997) and Scharfstein et al. (1997).

The limited simulation studies and the real clinical trials data analysis reported here

show that the joint distributions of the sequential test statistics investigated have inde-

pendent increments even for moderate sample sizes. This affirms that standard group

sequential methods can be readily applied in interim analysis for possible early stop-

ping of clinical trials in chronic diseases with the very common primary outcome of

longitudinal data and failure time data.
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