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The unilateral spatial autoregressive process for
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Abstract

This paper proposes a generalized framework to analyze spatial count data under a unilateral

regular lattice structure based on thinning type models. We start from the simple spatial integer-

valued auto-regressive model of order 1. We extend this model in certain directions. First, we

consider various distributions as choices for the innovation distribution to allow for additional

overdispersion. Second, we allow for use of covariate information, leading to a non-stationary

model. Finally, we derive and use other models related to this simple one by considering simplifi-

cation on the existing model. Inference is based on conditional maximum likelihood approach. We

provide simulation results under different scenarios to understand the behaviour of the conditional

maximum likelihood. A real data application is also provided. Remarks on how the results extend

to other families of models are also given.

MSC: 62H11, 62M30.
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1 Introduction

Problems with spatial count data occur in several disciplines. For example, consider the

Human West Nile virus counts spread (Tevie, Bohara and Valdez, 2014), the infant death

syndrome for the counties in North Carolina (Cressie and Chan, 1989), the number of

vehicle burglary incidents in counties of Texas (Chun, 2014) and most recently, the cases

and/or deaths of COVID-19 outbreak.

Spatial data usually viewed as an aggregation or average of the events of interest

emanates from a lattice structure. There are two main broad ways of representing the

spatial observations (Cressie, 1993). The first, and most common way, is when the ob-
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servation is in the form of a single indexed variable obtained from an areal unit k within

some defined boundaries and in which case the spatial event is denoted as Yk, for the kth

areal unit. In the second way, the spatial count observation is indexed in two dimensional

forms, in terms of the location or site coordinate (or also termed as the latitude and

longitude position (i, j)), denoted as Yi j, situated over a regular or irregular grid. Under

both representations, the spatial count observation is supplemented by a neighbourhood

structure, defined by terms of areal units or sites within the lattice structure. The second

form of representation is useful since the two-dimensional representation considers all

border cells in the region of interest (see, e.g. Tjøstheim, 1978a; Basu and Reinsel,

1993). Details on these representations can be found in Cressie (1993, Chap 6).

In the analysis of spatial data, it is important to investigate the spatial dependence

between observations from the different neighbouring areal units or sites. Next, such

analysis can also shed light on the possible factors or effects influencing the spatial ob-

servations and these can include variables such as the distance metric, elevation, slope,

rock type and land use fault types (see, e.g. Tobler, 1969).

Several models have been studied in the literature to analyze spatial processes. The

majority of the literature treats spatial continuous or discrete processes involving areal

units, while only few papers consider the spatial data with a coordinate system, espe-

cially for the discrete case. Besides, such spatial observations are seen mostly in the

agricultural, disease mapping, environmental and in the field of criminology. Specifi-

cally, in agriculture, the plantation field is usually split into small areas or say, square

grids or cells with location (i, j) and wherein each cell, the investigator is interested on

the number of plants cultivated subject to factors influencing its cultivation (see Krui-

jer et al. (2007) and references therein) and along with how the plants in the different

neighbouring cells impact on the harvest in the (i, j)th position. Similarly in epidemiol-

ogy, researchers are often concerned on the factors influencing the number of infected

or death cases as a result of an outbreak of a virus in a region and how this is affecting

the number of cases in the neighbouring regions. Such data has been treated in Cressie

and Chan (1989), Wakefield (2007) while some more examples can be found in Law-

son et al. (1999) and Lawson and Williams (2001). Moreover, in environmental field,

the occurrences of road traffic accidents at different segments also illustrate spatial data

analysis. In fact, in a hotspot analysis conducted in Barcelona, it was shown, via the

local Moran statistics, that road accidents are concentrated in close neighbouring ar-

eas that have a complex road network systems with large roundabouts (Alvarez, 2020).

Some other related research include the works by Valverde and Jovanis (2008) and Sa-

tria and Castro (2016). Last but not least, Mburu and Bakillah (2016) reported on the

number of vehicle burglary incidents in small neighbouring regions of London which

were highly spatially autocorrelated. Their study also revealed several influential factors

such as unemployment and crimes in these areas of London.

Unsurprisingly, there is influx of models for the areal-type spatial data that include

mainly the class of conditional autoregressive (CAR) models (Besag, 1974) and its ex-

tensions to Intrinsic CAR (ICAR) (Besag and Kooperberg, 1995), the Besag-Yorke-
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Mollie (BYM) (Besag, Mollié and York, 1991) models and among several other ex-

tended CAR-based models; a review can be found in Obaromi (2019).

In fact, for the regular lattice data of discrete nature that are represented in terms

of the site coordinates, the only works appearing in the literature so far use the spatial

integer-valued auto-regressive model of order 1 (SINAR(1)) by Ghodsi, Shitan and Bak-

ouch (2012) and Ghodsi (2015). The model was constructed by introducing dependence

between the observation of interest with its unilateral spatial neighbouring observations

via the binomial thinning operator defined by Steutel and Harn (1979). The structure is

similar to the observation-driven integer-valued time series models defined in McKenzie

(1986). Properties of the model including asymptotic properties of the CML estimators

were thereon established and the spatial process was proven to be stationary and ergodic.

In the present paper we extend the model in certain directions. Firstly, we introduce

different distributions for the innovations to enlarge the model and allow for larger vari-

ance, usually observed in spatial data due to clustering effects. Secondly, we allow for

further spatial information to be used in the form of covariates that affect the model,

leading to a non-stationary model. For this new model we discuss inference based on

the CML. Moreover we discuss and apply some models related to the basic one that are

parsimonious and easier to interpret, while they allow for easier extension to a broader

family of models. Throughout the paper, some computational issues arising are also

discussed.

The remaining of the paper proceeds as follows: The basic model and its extensions

are described in Section 2. Simulations to further support the approach are provided in

Section 3. A real data application related to the new models is provided in Section 4.

Extensions of the current model and concluding remarks can be found in Section 5.

2 Generalised SINAR(1) model (GSINAR(1))

We consider spatial processes defined on a regular rectangular grid in two dimensions

with sites labelled (i, j), with an associated random variable Yi j defined at each site. Ex-

amples of such phenomena include data collected on a regular grid of size n1 ×n2 from

satellites and from agricultural field trials. The unilateral model (see, e.g. Tjøstheim,

1978b, 1983; Basu and Reinsel, 1993) defines the neighbouring sites that provide infor-

mation for the site (i, j), namely we denote as Si j the set of indices (k, ℓ) of sites that are

considered as neighbours of the site (i, j) and we define this as

Si j = {(k, ℓ) ∈ Z2 : k ≤ i, ℓ≤ j}−{(i, j)}.

Tjøstheim (1983) described the model of order (p1, p2) for continuous data as:

Yi j =
p1

∑
k=0

p2

∑
ℓ=0

φkℓYi−k, j−ℓ+ ǫi j,
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Yi−1, j−1 Yi−1, j Yi−1, j+1

Yi, j−1 Yi, j Yi, j+1

Yi+1, j−1 Yi+1, j Yi+1, j+1

Figure 1: A diagram representing the unilateral model. The arrows indicate which site influence the site
under consideration. Only sites located at the left and upper from the site into consideration influence the
site.

where φ00 = 0 and the errors ǫi j follow a N(0,σ2) distribution. The model of order

p1 = p2 = 1 is described in Basu and Reinsel (1993). In the present paper we restrict

our interest on this spatial structure, i.e. only of order 1. The assumed structure can be

seen in Figure 1. One can see that for each point, only three neighbouring points coming

from the upper left direction affect the point, implying a restricted spatial structure. In

other words the spatial effect is propagated from left to the right and from top to the

bottom only.

2.1 The stationary model

Ghodsi et al. (2012) extended the model for count data. Hence, they defined that the

spatial observation located at site coordinate (i, j) follows an auto-regressive equation

of the form:

Yi j = α1 ◦Yi−1, j +α2 ◦Yi, j−1 +α3 ◦Yi−1, j−1 + ǫi j, (1)

where i = 1, . . . ,n1, j = 1, . . . ,n2.

The dependence of Yi j on its neighbours as defined by set Si j is handled in equation

(1) through the binomial thinning operator “◦ ”. The binomial thinning mechanism em-

anates from the work of Steutel and Harn (1979) (see also Scotto, Weiß and Gouveia,

2015) for a summary of such operators) and is expressed as:

α◦Y =
Y

∑
s=1

Bs(α), (2)

where α ∈ [0,1], and Bs(α), s = 1, . . . ,Y are identically and independently distributed

Bernoulli r.v with P(Bs(α) = 1) = 1−P(Bs(α) = 0) = α. In parsimony, we impose the

assumption of independent thinning operator (Du and Li, 1991; Bu, McCabe and Hadri,

2006). In (1), {ǫi j}i=1,...,n1, j=1,...,n2
represents the corresponding innovation sequence of

independent non-negative integer-valued random variables with finite mean λǫ and finite

variance τ 2
ǫ and has a distributional form as Pǫi j

(·). Furthermore, at any position (i, j),

ǫi j is assumed to be independent of all Yi−k, j−ℓ. In this simple form, the model in (1) is

stationary if
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α1 +α2 +α3 < 1. (3)

Properties of this SINAR(1) model as well as estimation can be found in Ghodsi et al.

(2012) and Ghodsi (2015). The process in equation (1) is proven to be ergodic in Ghodsi

(2015) and Markovian in Pickard (1980).

2.2 The non-stationary model

Here, we extend the model to the non-stationary case by allowing site specific covariates

to influence the mean of the innovation process. We denote the mean and variance of the

innovation term as λi j and τ 2
ǫi j

respectively. We further consider λi j as a function of some

position-variant and invariant covariates i.e. λi j = f (xT

i jβββ) with xi j = [xi j1, . . . ,xi jp]
T and

regression coefficients βββ = [βββ0, . . . ,βββ p]
T. Note that a log function is a standard choice

for such cases leading to

logλi j = x
T

i jβββ.

We name this model as Generalized SINAR of order 1 (GSINAR(1)).

From the following binomial thinning properties,

E(α◦Y) = αE(Y )

V (α◦Y) = α(1−α)E(Y)+α2V (Y )

Cov(α1 ◦Y1,α2 ◦Y2) = α1α2Cov(Y1,Y2),α j ∈ (0,1), j = 1,2

and then we get the unconditional expectation of Yi j to be

E(Yi j) = µi j = α1µi−1, j +α2µi, j−1 +α3µi−1, j−1 +λi j. (4)

For the variance we get

V (Yi j) = σ2
i j = α1(1−α1)µi−1, j +α2

1σ
2
i−1, j

+α2(1−α2)µi−1, j +α2
2σ

2
i, j−1

+α3(1−α3)µi−1, j−1 +α2
3σ

2
i−1, j−1

+2α1α2Cov(Yi−1, j,Yi, j−1)

+2α1α3Cov(Yi−1, j,Yi−1, j−1)

+2α2α3Cov(Yi, j−1,Yi−1, j−1)+ τ 2
ǫi j
.

(5)

By letting γ(k, ℓ) = Cov(Yi−k, j−ℓ,Yi j), we obtain a difference equation of the form:

γ(k, ℓ) = α1γ(k−1, ℓ)+α2γ(k, ℓ−1)+α3γ(k−1, ℓ−1). (6)
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Closed form expressions for the above moments are difficult to obtain under non-statio-

nary conditions. Whilst, unless assuming weak-stationarity, that is, ǫi j has constant mean

λǫ and variance τ 2
ǫ , we obtain simple expression for the mean and variance with the

covariances obtained by solving the difference equation γ(k, ℓ) using the approach in

Basu and Reinsel (1993). However, the derivation of the covariance structure in equation

(6) is not required in the estimation of the model parameters when using the conditional

maximum likelihood equation illustrated as follows. Conditional on the neighbourhood

Si j, the probability mass function for the GSINAR(1) model is given by:

P(Yi j|Si j) = ∑R1
s1=0 ∑R2

s2=0 ∑R3
s3=0 pα1

(s1|Yi−1, j)pα2
(s2|Yi, j−1)pα3

(s3|Yi−1, j−1)

Pǫi j
(Yi j − s1 − s2 − s3),

(7)

where R1 = min{Yi−1, j,Yi j}, R2 = min{Yi, j−1,Yi j − s1} and R3 = min{Yi−1, j−1,Yi j − s1−

−s2} and pα(s|Y ) =
(

Y
s

)

αs(1−α)Y−s; s = 0,1, . . . ,Y , i.e. the probability mass function

of a binomial distribution. In the present paper we have considered different choices

for Pǫi j
(·). The standard assumption of a Poisson distribution limits the variability we

expect in the data (see Appendix). A natural improvement is to consider mixed Poisson

alternatives. We consider the negative binomial, Poisson-Inverse Gaussian as well as

the Poisson-Lindley in order to allow for quite different effects. Also, we consider the

COM-Poisson distribution in order to allow for a general model which accounts for

underdispersion if we need so. We postpone the details until section 3.

Therefore, the log conditional maximum likelihood (CML) equation is then given by:

ℓ(θθθ) = logL(θθθ) =
n1

∑
i=2

n2

∑
j=2

logP(Yi j|Si j), (8)

where θθθ = [α1,α2,α3,βββ,ν], ν refers to the dispersion parameter of the innovation dis-

tribution if it exists and βββ is the vector of regression coefficients for the mean of the

innovation. It can be seen in (Ghodsi, 2015) that

θ̂− θ ∼ N(0, I−1(θ)),

where I(θ) is the Hessian matrix. The CML equation in (8) is then maximized.

Some computational details are the following. We have used the optim function in

R. Note that the conditional distribution needs to derive the convolution of three binomi-

als plus the distribution of the innovation term. This can be computationally intensive.

We have reduced the computational burden by observing that the probabilities of the

binomial distribution are just the coefficients of a polynomial of order N where N is the

number of trials in the binomial. As such computing the convolution of two binomial

is equivalent to multiply two polynomials for which there are very fast procedures, like

those in the library pracma in R. This reduced the computational effort and improved

with respect to the errors produces by huge finite summations. Overall, maximization of

(8) was rather simple even for complicated innovation distributions.
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2.3 Related models

The general model in (1) has three parameters to introduce the spatial correlation, namely

α1, α2 and α3 that described the vertical, horizontal and diagonal dependence respec-

tively. One may eliminate some of the effects by setting the corresponding α parameter

equal to 0. For example setting α3 = 0 we assume no-upper diagonal effect, while set-

ting α2 = 0 we assume no horizontal effect. Such submodels can be very useful in order

to examine and interpret the underlying situation for a dataset. For example, we may test

and recognize which effect the vertical or horizontal is more important.

Another way to simplify the model is by assuming one common effect using the

same parameter α for all directional relationships. Such a model takes the following

form due to the properties of thinning operators:

Yi j = α◦ ∑
(k,ℓ)∈Si j

Yk,ℓ+ ǫi j. (9)

The model assumes that all neighbouring sites contribute the same to the structure. Such

a model resembles simple INAR(1) time series models. It has the advantage of having

less parameters to estimate and explain; all neighbours contribute the same. On the other

hand, this may be restrictive since the spatial effects may differ due to direction and thus

the model may fail to capture them correctly.

Model (9) allows for easy extensions to a general neighbouring structure. It is evi-

dent that by considering the set Si j defining the neighbouring sites, this model can be

generalized to a large extend including the non-regular lattice case which is more real-

istic in many applications. The model just assumes that all neighbours contribute to the

observation at hand. Properties of such models as well as estimation is straightforward

based on the results of the current section.

Finally, in the present paper we assume that the covariates enter in the model by

the mean of the innovations. One may consider that spatial correlation parameters α j

may relate to some covariate information through a logit link function. For example, we

can assume that logit(α1i j) = xT

i jδδδ1, where xi j is some covariate information for the site

(i, j) and δδδ1 some vector of regression coefficients. In this case we assume that each

point in space has a different spatial effect α1 depending on some characteristics xi j. For

example, we may assume that altitude can change the spatial effect, which makes sense

if we measure for example something which can be altered due to wind conditions. We

believe that such a model, while it has some potential is special cases, it can complicate

the model interpretation, especially if we have regression effects in both the mean and

the autocorrelation parameters.
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3 Simulation study

In this section, we perform simulation experiments, using equation (1), with differ-

ent innovation distributions namely the Poisson, Negative Binomial (NB), Poisson-

Lindley (PL), Conway-Maxwell Poisson (COM-Poisson / CMP) and Poisson-Inverse

Gaussian (PIG) with rate or mean parameters commonly indicated by a link predictor

λi j = exp(xT

i jβββ) and dispersion index ν. As it is described in more details in the Ap-

pendix, using a distribution for the innovations that allows over/under dispersion, we

also extend such properties to the observed spatial distribution and hence more realis-

tic and flexible fitting can be achieved. In the present paper we consider the following

distributions for the innovations.

• For Poisson innovations we assume that

P(ǫi j) =
e−λi jλ

ǫi j

i j

ǫi j!
;ǫi j = 0,1, . . . ;λi j ≥ 0.

• For NB innovations we use the following parametrization:

P(ǫi j) =
Γ(ν+ ǫi j)

Γ(ν)ǫi j!

(

λi j

λi j +ν

)ν( ν

λi j +ν

)ǫi j

;ǫi j = 0,1, . . . ;λi j ≥ 0,ν ≥ 0.

For this parametrization the mean is λi j and the variance λi j +λ2
i j/ν.

• For PL innovations we use

P(ǫi j) =
λ2(ǫi j +λi j +2)

(λi j +1)ǫi j+3
;ǫi j = 0,1, . . . ;λi j > 0.

The mean is (λi j +2)/(λi j(λi j +1)) while the variance is

λ3
i j +4λ2

i j +6λi j +2

λ2
i j(λi j +1)2

PL can have different shapes than the other Poisson mixtures like the NB and PIG

models.

• For COM-Poisson innovations we use

P(ǫi j) =
λ
ǫi j

i j

(ǫi j)!ν
1

Z(λi j,ν)
;ǫi j = 0,1, . . . ; j = 0,1, . . . ;λi j ≥ 0;ν ≥ 0,

where Z(λi j,ν) = ∑∞
j=0

λ
j
i j

j!ν
. Note that λi j is not the mean of the distribution; the

mean is hard to be written in closed form, but it is approximated by λ
1/ν
i j .
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• For PIG innovations we use the parameterization from the package actuar in R.

Namely the pmf is defined with parameters λ and dispersion ν as

P(ǫi j) =

(

2ν

π

)1/2

exp

(

ν

λi j

)

(ai j

ν

)−(x− 1
2 )

K
x− 1

2
(ai j), x = 0,1, . . . , λi j,ν > 0,

where a2
i j = 2ν

(

1+ ν

2λ2
i j

)

and Kx(a) is the modified Bessel function of the third

kind. The mean is λi j and the variance is λi j +λ3
i j/ν.

The choice of the distributions for the innovation term attempts to cover a range of

possible models. So, we have used the Poisson distribution as a starting point, two of

the most famous mixed Poisson ones (negative binomial and Poisson-Inverse Gaussian),

the COM-Poisson to allow for under-dispersion as well and finally the Poisson-Lindley

since this is a tractable mixed Poisson distribution with very different shapes.

In order to simulate the grid we followed the following approach: We added an ad-

ditional row and column with all values equal to 0, i.e. we set Y0 j =Yi0 = 0 for all i and

j. Then we simulated the grid Yi j, i = 1, . . . ,n1 +10 and j = 1, . . . ,n2 +10 based on the

model in (1) using the chosen innovation distribution. Then we rejected the rows and

columns from 0 up to 10 so as to keep the grid n1 ×n2.

3.1 Numerical Results: No covariates

For scenario 1, the simulation study assumes the following combinations of (α1,α2,α3,

λ,ν) and grids:

1. C1: (0.35, 0.15, 0.2, 5, 0.5) and grid 25 x 25

2. C2: (0.25, 0.25, 0.3, 3, 0.8) and grid 40 x 40

3. C3: (0.6, 0.2, 0.15, 7, 2) and grid 50 x 50

Note that for Poisson-Lindley and COM-Poisson cases parameter λ is not the mean

while ν has a different interpretation. So, in the simulations this is the value used to

simulate the data. For Poisson, negative binomial and Poisson-Inverse Gaussian, λ is

the mean and ν is the dispersion parameters, equal to 1 for the Poisson. Obviously for

ν → ∞ we get the Poisson distribution in such cases.

For each scenario 1000 replications were obtained. The simulated mean estimates,

their biases, root mean square errors (RMSEs) and standard deviations (SDs) are re-

ported. The results are displayed in Tables 1, 2 and 3.
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Table 1: Mean, Bias, RMSE and SD of estimates under different innovations under C1. Note that for
Poisson-Lindley and COM-Poisson case parameter λ is not the mean. In the simulations this is the value
used to simulate the data.

Innovation Estimates α̂1 α̂2 α̂3 λ̂ ν̂

Poisson

Mean 0.3503 0.1485 0.2018 4.9558
Bias 0.0003 −0.0015 0.0018 −0.0442

RMSE 0.0360 0.0425 0.0438 0.7580
SD 0.0350 0.0405 0.0338 0.7571

NB

Mean 0.3555 0.1502 0.2178 5.5005 0.5660
Bias 0.0055 0.0002 0.0178 0.5005 0.0660

RMSE 0.0521 0.0601 0.0489 0.7280 0.4180
SD 0.0355 0.0436 0.0426 0.6597 0.5296

PL

Mean 0.3477 0.1466 0.1969 5.0892
Bias −0.0023 −0.0034 −0.0031 0.0892

RMSE 0.0367 0.0538 0.0715 0.7141
SD 0.0369 0.0541 0.0719 0.7233

CMP

Mean 0.3557 0.1478 0.2035 4.2440 0.5770
Bias 0.0057 −0.0022 0.0035 −0.7560 0.0770

RMSE 0.0385 0.0502 0.0485 0.8524 0.5912
SD 0.0381 0.0402 0.0414 0.6915 0.5996

PIG

Mean 0.3414 0.1416 0.2101 4.8164 0.4990
Bias −0.0086 −0.0084 0.0101 0.1836 −0.0010

RMSE 0.0345 0.0350 0.0490 0.7839 0.5813
SD 0.0399 0.0111 0.0261 0.6781 0.5793

Table 2: Mean, Bias, RMSE and SD of estimates under different innovations under C2. Note that for
Poisson-Lindley and COM-Poisson case parameter λ is not the mean. In the simulations this is the value
used to simulate the data.

Innovation Estimates α̂1 α̂2 α̂3 λ̂ ν̂

Poisson

Mean 0.2500 0.2489 0.2989 3.0290
Bias 0.0000 −0.0011 −0.0011 0.0290

RMSE 0.0010 0.0009 0.0011 0.0172
SD 0.0008 0.0007 0.0010 0.0152

NB

Mean 0.2497 0.2505 0.3012 3.0389 0.7990
Bias −0.0003 0.0005 0.0012 0.0389 −0.0010

RMSE 0.0218 0.0238 0.0294 0.6433 0.2543
SD 0.0118 0.0218 0.0154 0.6354 0.2891

PL

Mean 0.2491 0.2479 0.2999 2.9990
Bias −0.0009 −0.0021 −0.0001 −0.0010

RMSE 0.0216 0.0216 0.0245 0.2654
SD 0.0206 0.0211 0.0204 0.2655

CMP

Mean 0.2487 0.2481 0.3009 3.0266 0.8009
Bias −0.0023 −0.0019 0.0009 0.0266 0.0009

RMSE 0.0223 0.0227 0.0239 0.4625 0.4728
SD 0.0222 0.0225 0.0209 0.4619 0.4731

PIG

Mean 0.2480 0.2488 0.2979 2.9901 0.8111
Bias −0.0020 −0.0012 −0.0021 −0.0099 0.0111

RMSE 0.0183 0.0176 0.0210 0.3014 0.4467
SD 0.0182 0.0106 0.0209 0.3004 0.4807
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Table 3: Mean, Bias, RMSE and SD of estimates under different innovations under C3. Note that for
Poisson-Lindley and COM-Poisson case parameter λ is not the mean. In the simulations this is the value
used to simulate the data.

Innovation Estimates α̂1 α̂2 α̂3 λ̂ ν̂

Poisson

Mean 0.5997 0.2070 0.1495 6.9875
Bias −0.0003 0.0070 −0.0005 −0.0125

RMSE 0.0009 0.0003 0.0010 0.0101
SD 0.0005 0.0003 0.0009 0.0100

NB

Mean 0.5996 0.2004 0.1511 6.9973 2.0010
Bias −0.0004 0.0004 0.0011 −0.0027 0.0010

RMSE 0.0211 0.0120 0.0151 0.0910 0.2170
SD 0.0218 0.0140 0.0170 0.0987 0.2281

PL

Mean 0.6067 0.2016 0.1503 6.9898
Bias 0.0067 0.0016 0.0003 −0.0102

RMSE 0.0207 0.0140 0.0133 0.0119
SD 0.0195 0.0134 0.0123 0.0102

CMP

Mean 0.5982 0.1918 0.1529 7.0131 2.0210
Bias −0.0018 −0.0082 0.0029 0.0131 0.0210

RMSE 0.0210 0.0130 0.0214 0.3798 0.3720
SD 0.0214 0.0134 0.0215 0.3898 0.3731

PIG

Mean 0.5991 0.1992 0.1499 6.9997 1.9830
Bias −0.0009 −0.0008 −0.0001 −0.0003 −0.0170

RMSE 0.0151 0.0116 0.0150 0.0998 0.5430
SD 0.0152 0.0115 0.0154 0.0950 0.4450

The simulation results illustrate that the estimates of the different parameters are

consistent. This remark is noticed for all the SINAR with the different innovation dis-

tributions and under the different combinations of C1, C2, C3. The simulations also

ensured that the estimates of the α̂’s satisfy the stability condition for stationarity given

in (3).

Note that in all replications almost no problems to maximize the log-likelihood were

detected. Some problems occurred in the COM-Poisson innovations. Problems are re-

lated to the built in functions dcomp and dcompoisson as they could not compute effi-

ciently the normalizing constant Z(λ,ν) in the COM-Poisson implementations in few

simulations.

3.2 Numerical Results: With covariates

For the case with covariates we have added a covariate, say, X for the different scenarios.

So we assume for the innovations that

logλi j = β0 +β1Xi j,

where the covariate Xi j was generated from a standard normal distribution. Again we

have checked different grids, namely 30× 30, 50× 50 and 80× 80 to see how the size
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of the grid scales up the variance and the biases (if any). We have used two scenarios:

• S1: α1 = 0.15,α2 = 0.1,α3 = 0.2,β0 = 0.6,β1 = 0.5,

• S2: α1 = 0.05,α2 = 0.1,α3 = 0.05,β0 = 0.1,β1 =−0.5.

One can see that the second scenario S2 has smaller spatial correlation parameters

closer to the lower boundary and hence we would like to see the behaviour. Now we

need to estimate all 5 parameters.
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Figure 2: Boxplots for all five parameters under scenario S1 for the three different grids. The horizontal
line represents the true value.

Figures 2 and 3 show the boxplots from 1000 replications under the two scenarios for

the different grids. We present results from the Poisson innovations case only and similar
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findings were obtained from the other models as well. The horizontal line represents the

true value. One can see that even in the smaller grid the CML estimates correctly the

true value. The variability as indicated by the boxplots reduces with the grid size as

expected. Also from the boxplots one can see that the shape is symmetrical and confront

with the asymptotic normality of the estimates.
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Figure 3: Boxplots for all five parameters under scenario S2 for the three different grids. The horizontal
line represents the true value.

As far as the computational issues are concerned, no problems were found when

fitting the models. As initial values we have used random value around the true ones,

i.e. we simulated initial values by adding a uniform random variable in the interval

(−0.05,0.05) to the true underlying values. For all runs we got convergence from optim

function. To obey the restrictions of the parameter space we used transformations on the

parameters.
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4 Applications - Beilschmiedia data

4.1 The data

In studies of biodiversity of tropical rainforests, it is of interest to study whether the

spatial patterns of the many different tree species can be related to spatial variations

in environmental variables concerning topography and soil properties. Beilschmiedia

dataset (Bei) in the spatstat package in R (Baddeley, Rubak and Turner, 2015) captures

the locations of 3605 trees in a tropical rain forest . The data cover a 1000 m × 500 m

rectangular sampling region in the tropical rainforest of Barro Colorado Island. This

data set is a part of a much larger data set containing positions of hundreds of thousands

of trees belonging to hundreds of species. More details about the data can be found in

Møller and Waagepetersen (2007).
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Figure 4: Spatial plot of Bei data.

A regular lattice of size 40 × 40 is created from the original dataset considering

the number of trees inside each cell. The mean and variance are 2.25 and 12.4 respec-

tively. The index of dispersion is 5.51 implying overdispersion that we cannot capture

by Poisson innovations. Fitting models that allow for overdispersion is important. Fig-

ure 4 represents a spatial plot of the Bei data. In particular one can see the position of

the trees in the lattice. The grey background depicts the observed counts and darker grey

areas are those with more trees. In addition, Table 4 shows some values of the sample

spatial autocorrelation of order k and ℓ for the Bei data. Here k refers to the horizontal

direction and ℓ to the vertical direction. One can see that the horizontal autocorrelations

are larger, supporting the use of a model like the one derived in section 2. The observed

counts in the 40×40 grid can be also seen in Figure 5.
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Table 4: Some values of the sample spatial autocorrelation for the Bei data.

k
ℓ 0 1 2 3 4

0 1.000 0.497 0.238 0.283 0.269
1 0.379 0.265 0.223 0.228 0.170
2 0.172 0.125 0.104 0.133 0.132
3 0.094 0.090 0.083 0.054 0.049
4 0.083 0.071 0.046 0.039 0.023

4.2 Results

To start with, we have fitted a series of models with different innovation distributions to

capture the different aspects of the data. The fitted model to the Bei data using the CML

estimation approach can be seen in Table 5.

Table 5: Comparison between different innovation distributions using Akaike information criterion (AIC):
Application to BEI count data.

Innovations α̂1 α̂2 α̂3 λ̂ ν̂ AIC

Poisson
Estimates 0.198 0.306 0.108 0.818

s.e (0.019) (0.013) (0.011) (0.034) 7179

NB
Estimates 0.151 0.225 0.053 1.209 0.205

s.e (0.056) (0.017) (0.015) (0.082) (0.018) 5342

PL
Estimates 0.119 0.223 0.008 1.070

s.e (0.016) (0.017) (0.015) (0.039) 5882

CMP
Estimates 0.113 0.212 0.002 0.594 0.001

s.e (0.017) (0.018) (0.015) (0.028) (0.042) 5732

PIG
Estimates 0.151 0.223 0.060 1.214 0.161

s.e (0.015) (0.016) (0.015) (0.097) (0.022) 5343

It is observed from Table 5 that the SINAR(1) model using NB innovation distribu-

tion yields the lowest AIC value and hence outperforms the other models with differ-

ent innovations. However, an interesting observation is that the PIG model has an AIC

value which is really close to the selected model. In fact this implies that we need an

overdispersed innovation distribution to capture the observed overdispersion. Note also

that for all models the dependence parameters α j are significant, supporting the usage

of spatial models. We can also observe that the α j are all positive values showing that

geographically nearby values of the variable of interest are more similar than those of

remote locations. Parameter α2 that measures the horizontal dependence is larger. Per-

haps this may relate to parameters associated with the lattice like the orientation with

respect prevailing winds that expand the vegetation to some particular direction. For the

COM-Poisson distribution, the model tends to a geometric distribution since parameter

ν is almost zero. This may explain why the fit is not that good.
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Table 6: Different models with negative binomial innovation distribution fitted to the Bei data. Models
assumes different (or not ta all) spatial dependence. The full model with all three kind of unilateral effects
is the chosen one.

Model Param Log-lik AIC

No restriction 5 −2666.22 5337.442
M1: α1 = α2 = α3 3 −2686.20 5375.406

M2: α3 = 0 4 −2674.75 5353.490
M3: α2 = 0 4 −2765.51 5535.024
M4: α1 = 0 4 −2717.78 5439.554

M5: α2 = α3 = 0: only verctical 3 −2802.29 5607.586
M6: α1 = α3 = 0: only horizontal 3 −2746.06 5495.128
M7: α1 = α2 = 0: only diagonal 3 −2840.98 5684.954

no spatial effect α1 = α2 = α3 = 0 2 −2938.80 5879.606

Table 6 presents for the chosen negative binomial case some more spatial scenarios

as mentioned in section 2.3. For example, model M1 assumes that all three α’s are the

same, while models M2 to M4 that one of the spatial correlations is not present i.e. we

set α j = 0 for j = 1,2,3 respectively. Actually we remove each time the vertical (M4),

horizontal (M3) and the diagonal effects (M2). Finally, models M5 to M7 suggest that

only one spatial effect suffices. The full model with all three kind of unilateral effects

is the chosen one as judged by AIC, revealing the underlying structure of the data. One

can see that the horizontal effect is larger as judged by the change in the LRT when we

remove each effect.

In addition we use some covariate information available. The Bei data set is accom-

panied by covariate data giving the elevation (altitude) and slope of elevation in the

study region. An important question arises is whether the intensity of Bei trees may be

viewed as a spatially varying function of the covariates. We have fitted different mod-

els to examine the improvement offered by the covariates. Both covariates were found

significant. The selected model can be seen in Table 7.

Table 7: Comparison between Poisson innovation and mixed Poisson innovations using Akaike information
criterion (AIC): Application to Bei count data with both covariates.

Innovations α̂1 α̂2 α̂3 β̂0 β̂1 β̂2 ν̂ AIC

Poisson
Estimates 0.187 0.286 0.102 -6.265 0.037 8.128

s.e (0.012) (0.013) (0.011) (0.671) (0.004) (0.478) 6940

NB
Estimates 0.146 0.219 0.055 -6.897 0.044 8.515 0.242

s.e (0.016) (0.017) (0.016) (1.507) (0.010) (1.327) (0.089) 5293

PL
Estimates 0.115 0.208 0.000 4.904 -0.029 -6.839

s.e (0.016) (0.017) (0.014) (0.645) (0.004) (0.546) 5716

CMP
Estimates 0.111 0.202 0.006 -2.162 0.010 2.089 0.001

s.e (0.016) (0.018) (0.015) (0.116) (0.001) (0.236) (0.031) 5626

PIG
Estimates 0.146 0.221 0.056 -15.053 0.097 16.539 0.210

s.e (0.016) (0.017) (0.015) (2.395) (0.016) (3.451) (0.0213) 5294
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It is observed from Table 7 that the SINAR(1) model using NB innovation distribu-

tion with covariates still yields the lowest AIC value and hence outperforms the other

models with different innovations by producing much better fit to the data. PIG is very

competitive to the NB.

We focus on the selected model with negative binomial innovations. From the results

of Table 7 one can see that both covariates are statistically significant, with positive sign,

hence increasing the altitude and the slope of elevation we obtain an increased number

of trees, having adjusted for the effect of neighbouring areas. From the α’s we see that

the larger effect comes from α2 that measures the horizontal dependence. All spatial

effects are statistically significant at 5%. The model implies a clear spatial dependence.

4.3 Goodness of Fit

In order to jude whether the fitted model is satisfactory we have worked a few ideas. To

start with, we derived the one step ahead predictions based on the models. Namely, we

derived for each data point

E(Yi j|Si j) = α̂1Yi−1, j + α̂2Yi, j−1 + α̂3Yi−1, j−1 + λ̂i j

and
log λ̂i j = β̂0 + β̂1X1i j + β̂2X2i j

Observed Expected value (Fitted)

0 10 20 30 40 50 60 70

Figure 5: The observed counts in the 40× 40 grid and the fitted based on the model. Fitted values are
expected values based on the conditional expectation.
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using the estimated parameters from the selected negative binomial model. The values

can be seen in Figure 5 together with the observed counts. We emphasize that the predic-

tions are the expected means that is why they cannot capture the extreme values. From

the plots one can see that the model captures in a great extend the pattern.

x

y

1 10 20 30 40

4
0

3
0

2
0

1
0

1

Points were predicted value is outside the 95% interval

Figure 6: Points in the grid that the true value was outside the 95% prediction interval created.

To further exploit the quality of the predictions we have created for each data point

(i, j) a 95% confidence interval for the prediction. To do so, we simulated 1000 values

from the predictive probability mass function as provided in (7) and then based on them

we created the intervals. Out of the 1521 values we predict (we did not predict the first

row and column) only 33 (2.1%) values were outside of the interval, implying that the

model was quite satisfactory. The values that lay outside the interval are depicted in

Figure 6. One can see again that we have failed to predict some of the extreme values as

one can see compared to the Figure 5.

Another important aspect of the model fitting lies on the ability of the model to

capture the spatial dependence structure. To check this aspect we simulated grids of the

same size 40× 40 from the selected negative binomial using the estimated parameters.

For each simulation we have estimated the spatial covariance at lags k and ℓ by

γ̂(k, ℓ) =
1

n

40

∑
i=k+1

40

∑
j=ℓ+1

(Yi j − Ȳ )(Yi+k, j+ℓ− Ȳ )
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and then we derived the spatial correlation at lag k and ℓ as

ρ̂(k, ℓ) =
γ̂(k, ℓ)

s2
Y

,

where Ȳ and s2
Y are the mean and the variance estimated from the data.

We have used lags k = 0,1,2 and ℓ= 0,1,2 and then we compared them with those

values observed from the data in order to see whether the observed dependence structure

could have been created by the model at hand. We show in Figure 7 the 95% confidence

intervals created by 1000 simulations and the dot indicates the observed value. We see

a good agreement. The two first values need perhaps improvement with a richer model

but overall the model captures the underlying structure in a reasonable way.
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Figure 7: Points in the grid that the true value was outside the 95% prediction interval created.

As a summary, we believe that the current model fits satisfactorily the observed spa-

tial structure.

5 Conclusion

This paper revisits and extends the simple stationary SINAR(1) model introduced by

Ghodsi et al. (2012) and Ghodsi (2015). The SINAR(1) model is the first research in the

modelling of the two dimensional unilateral spatial discrete data based on the thinning

mechanism that allows to model explicitly the discrete nature of the data.
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In the present paper we proposed some novel extensions of the existing SINAR(1)

model. These novelties in fact overcome two important limitations of the simple

SINAR(1). Firstly, in our model specification, we propose to model the data using

overdispersed innovation distributions, while simultaneously allow covariate informa-

tion to be used leading to a non-stationary model. While not treated in this version, one

may also use offset in the regression part, like population size values, if needed. We also

discuss parsimonious representations of the model at hand. The model parameters are

estimated using the CML approach.

We acknowledge some restrictions of the current model which we consider to im-

prove. The proposed model is based on the unilateral regular lattice case. One can extend

the model to capture several other cases. For the regular lattice case, define the set of

indices (k, ℓ) of the neighbouring observations for the (i, j) observation as Si j. Then, in

the general setting, the model can be written as for a general neighbourhood:

Yi j = ∑
(k,ℓ)∈Si j

αkℓ ◦Yk,ℓ+ ǫi j,

where are usual, the ǫi j are the innovations. Defining appropriately the sets Si j one can

derive other models at the expense of parsimony.

Finally consider the typical case in spatial data where observations are indexed sim-

ply as Yj to indicate the value at site j from a map with j = 1, . . . ,n sites, as for example

the different regions of a country. Define as S j the indices of its neighbours. In such case

the model of order 1 can have the form:

Yj = α◦ ∑
k∈S j

Yk + ǫ j

or equivalently if we define the n×n adjacency matrix W with elements wi j with values

equal to 1 if the sites i and j are neighbours and 0 otherwise, then we can write the

models as:

Yj = α◦ ∑
k 6= j

wk jYk + ǫ j

to mimic typical order 1 models for spatial continuous data. Such generalization will be

reported elsewhere.

Also note that in this paper we used only spatial model of first order. One may con-

sider SINAR(p) models with higher order effects. Such extension needs special care. It

is already known that simple INAR(p) models can have different interpretations /rep-

resentations, (see the different approaches in Alzaid and Al-Osh (1990) and Jin-Guan

and Yuan (1991)). Extending to a SINAR(p) model can have a large number of param-

eters making inference quite complex. Perhaps more parsimonious models like the one

in Section 2.3 are easier to extend to higher order.
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A Appendix section

Based on Ghodsi et al. (2012), for the case of a stationary model, we have for the

marginal stationary mean µY and the stationary variance σ2
Y that

µY =
µǫ

1−α1 −α2 −α3

and

σ2
Y =

µY

3

∑
i=1

αi(1−αi)+ τ 2
ǫ

1− (α1 +α2α3)λ− (α2+α1α3)η−α2
3

where η = α2+α3λ

1−α1λ
and

λ=
(1+α2

1 −α2
2 −α2

3)−
√

(1+α2
1 −α2

2 −α2
3)

2 −4(α1 +α2α3)2

2(α1 +α2α3)

In the formulas, µǫ and τ 2
ǫ are the mean and the variance of the innovations respectively.

Note a misprint in Ghodsi et al. (2012) for the variance. Define the index of dispersion

IDY = σ2
Y/µY . Dividing the variance with the mean, we get for the index of dispersion

of the spatial data that

IDY =
σ2

Y

µY

=

3

∑
i=1

αi(1−αi)+ IDǫ(1−α1 −α2 −α3)

1− (α1 +α2α3)λ− (α2+α1α3)η−α2
3

which relates directly the index of dispersion of the innovation distribution IDǫ to that

of the marginal, i.e. IDY . Since the denominator is positive and all the quantities in the

nominator also are positive, an increase of IDǫ will lead to increase of the IDY . Thus

assuming an overdispersed distribution for the innovations we can have much larger

overdispersion in the observed spatial data.

One can see that even for the Poisson innovations the index of dispersion is larger

than 1, however for reasonable values for counts this overdispersion is limited. The intro-

duction of overdispersed innovations increase a lot the overdispersion as one can see in

Figure 8. In Figure 8 the two axes depict the marginal mean and variance for a stationary

model given above. The different lines correspond to different levels of overdispersion

for the innovation distribution. We have used α1 = α2 = α3 = 0.2. The diagonal line

refers to the case of equidispersion. Therefore, above that line we get overdispersion

and below underdispersion. The red line (ID=1) corresponds to Poisson innovations.

One can see that in this case we get small overdispersion for the spatial case. Increasing

the overdispersion on the innovation, as for example considering a mixture of Poisson

we get larger overdispersion. Note that an underdispersed innovation distribution, like

the cases of COM-Poisson distribution, can lead to underdispersion.
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Figure 8: The marginal mean and variance for a stationary model. The different lines correspond to differ-
ent levels of overdispersion for the innovation distribution. for the plot α1 = α2 = α3 = 0.2. The diagonal
line refers to the case of equidispersion. ID implies the index of dispersion of the innovation distribution.
One can see that for Poisson (red line) we get small overdispersion. Increasing the overdispersion of the
innovations lead to increased overdispersion for the spatial distribution.
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