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Forecasting with two generalized integer-valued

autoregressive processes of order one in the

mutual random environment
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Abstract

In this article, we consider two univariate random environment integer-valued autoregressive pro-

cesses driven by the same hidden process. A model of this kind is capable of describing two

correlated non-stationary counting time series using its marginal variable parameter values. The

properties of the model are presented. Some parameter estimators are described and imple-

mented on the simulated time series. The introduction of this bivariate integer-valued autore-

gressive model with a random environment is justified at the end of the paper, where its real-life

data-fitting performance was checked and compared to some other appropriate models. The fore-

casting properties of the model are tested on a few data sets, and forecasting errors are discussed

through the residual analysis of the components that comprise the model.
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1 Introduction

After many scientific proposals of possible models of counting processes in the last

decades of the 20th century, so far the best results have been obtained by the thinning-

based integer-valued autoregressive models of order one (INAR(1)) introduced almost

simultaneously by McKenzie (1985) and Al-Osh and Alzaid (1987). For the first time,

they used an idea of defining the deterministic part of the counting process in a certain

moment, designated by Xn, for the given Xn−1 = xn−1, using the random sum of xn−1

independent and identically distributed (i.i.d.) Bernoulli variables. Precisely,

Xn =

xn−1∑

i=1

vi + εn,
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where {vi} is a counting sequence of i.i.d. Bernoulli random variables and εn are the

innovation process. It is assumed that εn and Xn−k are independent for all k > 0. The

INAR model of order one (INAR(1)) can be expressed such:

Xn = α◦ xn−1 + εn.

where the operator α ◦Xn−1|Xn−1 = xn−1 is equal to α ◦ xt−1 =
∑xn−1

i=1 vi, and it is called

the binomial thinning or binomial subsampling operator. The first addend of the model

above can be interpreted as a survival process. Therefore, these kinds of processes were

ideal for modeling counts generated by limited surviving entities. During the adaptation

of this INAR model to many different counting time series, many modifications and

generalizations were done. Some researchers were focused on the thinning operator,

and their innovative results can be found in Aly and Bouzar (1994), Latour (1998),

Zheng, Basawa and Datta (2006, 2007), Zhu and Joe (2006), Ristić, Bakouch and

Nastić (2009) and Zhu and Joe (2010). Even though Al-Osh and Aly (1992) as well as

Alzaid and Al-Osh (1993) focused on the marginal distribution of the process, other au-

thors preferred to concentrate on the distribution of the innovations, like Jazi, Jones and

Lai (2012a, 2012b), Fernández-Fontelo, Fontdecaba and Puig (2017). Also, a certain

modification of the innovation process was studied recently in Qi, Li and Zhu (2019).

Later, more attention was paid to the correlation characteristics of the observed pro-

cesses, i.e. the additional assumptions about the dependence in the counting sequence

were introduced. Initial results on the INAR models based on the thinning operator

defined using dependent counting sequences were given by Ristić, Nastić and Miletić

Ilić (2013). Also, the possibility of serially dependent innovations of the INAR model

was studied and well-presented in Weiß (2015). In addition, Weiß, Homburg and Puig

(2019) considered testing for zero inflation and overdispersion in INAR(1) models.

Parameter-driven models provided another approach to modeling counting processes.

A good insight into these models can be found in Fokianos (2011) and some recent

progress is presented in Chakraborty and Bhati (2016) (see also Chakraborty and Bhati,

2017) and Rydén (2017).

In addition to all the preceding models and given aspects of counting processes

construction, there were many other approaches which resulted, especially in the last

decade, with significant number of papers covering this area of time series research.

Although, a great majority of them referred to the problems of modeling stationary pro-

cesses, in the past years, some authors have been working to accommodate potential

patterns of trend and seasonality in INAR models. Significant results in this area can be

found in Moriña et al. (2011), Fernández-Fontelo et al. (2017).

Since non-stationarity may be noted in many real life situations, inspired by the

work of Tang and Wang (2014), and in order to provide more efficient INAR modeling,

a new random environment INAR process of order one (INAR(1) with variable marginal

distribution was introduced in Nastić, Laketa and Ristić (2016). This model was non-

stationary, which made it more applicable to counting processes in practice. The same
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authors also presented a higher-order r-states random environment non-stationary INAR

model, which can be found in Nastić, Laketa and Ristić (2019) and Laketa, Nastić and

Ristić (2018). Fernández-Fontelo et al. (2016) gave an under-reported data analysis with

INAR-hidden Markov chains. However, in the matter of modelling two correlated simul-

taneous integer-valued series, significant results were achieved by introducing bivariate

INAR models which can be found in Pedeli and Karlis (2011), Ristić et al. (2012) and

Popović, Ristić and Nastić (2016). The first model is based on the binomial thinning

operator, and the dependence between time series was introduced through the innova-

tion processes. The second model is based on the negative binomial thinning operator,

considering geometric marginal distribution with the same mean parameters. The last

model also has a geometric marginal distribution but assuming different mean parame-

ters. Besides, while in the first model, the dependence between the series is considered

in the innovation process, in the last two models, this dependence is considered in the

survival components, i.e. the components defined through the thinning operator.

In this article, we focus on the bivariate random environment INAR model which

is composed of the two univariate models discussed in Laketa et al. (2018). The two

univariate series follow the same hidden process which determines the states of the ob-

served processes. Thus, simultaneously with the observed process we have a Markov

process {Zn}, with a finite state space Er = {1,2, . . . ,r}, called the random state pro-

cess. Its realized values zn define marginal distribution parameter values. So, since each

value from Er corresponds to one state of the process environment, then the marginal

distribution is directly dependent on the possible random states of the observed process

environment. This can be found in nature every time we consider two random vari-

ables in the same circumstances. These variables do not have to be correlated directly,

but only through their distributions which depend on the same conditions, i.e. random

states. Also, considering such a bivariate model, we present its forecasting properties

by conducting the residual analysis of its univariate components.

Like all random environment INAR models, the model proposed here is good for the

data which are non-stationary (to be precise, they are part by part stationary), where we

can suppose that the conditions in which they are measured can change and affect the

measured values. So, this model is better than the other bivariate models for such data.

In the second section of this article, we give a short review of random environment

INAR models. Then, in the following section, we introduce the corresponding bivariate

model based on the realizations of the random environment process. Section 4 is mainly

devoted to moment-based estimators. Also, a brief construction of the likelihood-based

estimator is given. Section 5 deals with the residual analysis of the model. The quality

of defined estimators is confirmed using simulated series of different sizes, presented

in Section 6. The next section contains some real-life examples of the application of

the introduced model to certain counting processes, where the model performance is

compared to some other competitive bivariate INAR models. Also, the errors produced

by one-step-ahead forecasting are analysed. Finally, all the proofs of the theorems are

given in the Appendix.
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2 A short review of random environment INAR models

The first random environment integer-valued autoregressive model was introduced in

Nastić et al. (2016), and that is the random environment INAR(1) model. It is based on

the random environment process, which represents the conditions of the environment in

which the counting process is observed. Also, the corresponding process {Zn} is said to

be an r-state random environment process if it is a Markov chain of order one and takes

values from the set Er = {1,2, . . . ,r}. The main assumption of the observed process

is that the environment conditions have an effect on its marginal distribution. Thus, the

r-state random environment INAR(1) process with the determined geometric marginal

distribution, based on the negative binomial thinning operator (RrNGINAR(1)), is given

by the equation

Xn(zn) = α∗Xn−1(zn−1)+ εn(zn−1,zn), n ∈ N, (1)

where {zn} is a realization of the process {Zn}. The notation Xn(zn) is used to em-

phasize the fact that the distribution of Xn depends on zn. The value zn determines the

value µzn from the supposed set of marginal parameter values {µ1,µ1, . . . ,µr} where,

Xn(zn) has the geometric distribution with the expectation µzn , since we supposed that

its probability mass function (pmf) is defined as

P(Xn(zn) = x) =
µx

zn

(1+µzn)
x+1

, x ∈ N0.

Here we gave an explanation on how the observable component Xn of the process de-

pends on its latent component zn. In addition, the denotation α∗ stands for the negative

binomial thinning operator, which is defined by

α∗X =
X∑

i=1

Ui,

for an integer-valued random variable X , where α ∈ (0,1) and {Ui}, i ∈N, is a sequence

of i.i.d. random variables with pmf given by

P(Ui = u) =
αu

(1+α)u+1
, u ∈ N0.

In Laketa et al. (2018), this (RrNGINAR(1)) model is generalized, assuming that the re-

alized random environment sequence {zn} determines not only the marginal distribution

of the model, but also the order of the process and the thinning parameter value. In order

to accurately present the models from Laketa et al. (2018), the following sets should be

previously introduced: the set M = {µ1,µ2, . . . ,µr} which consists of the possible mean

values of the process in the corresponding states, the set A = {α1,α2, . . . ,αr} contain-

ing possible values of the thinning parameters corresponding to different states, and the

set P = {p1, p2, . . . , pr} considering the order of the process. For example, when zn = i,
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the RrNGINAR(1) model is in its i-th state, and this means that the counting process is

observed in the i-th environment state. Additionally, the model parameters in the i-th

state are µi, αi and pi. In fact, in Laketa et al. (2018) two different RrNGINAR are intro-

duced: RrNGINARmax(M ,A ,P) and RrNGINAR1(M ,A ,P). The set P contains

actually the maximal orders for all states. The difference between these models (the one

indexed by max, and other by 1) relies on the way of reaching these maximal orders.

Let explain now this in more details, starting from the general form of these two models

Xn(zn) =





αzn ∗Xn−1(zn−1)+ εn(zn−1,zn), w.p. φ
(zn)
1,Pn

,

αzn ∗Xn−2(zn−2)+ εn(zn−2,zn), w.p. φ
(zn)
2,Pn

,
...

...

αzn ∗Xn−Pn(zn−Pn)+ εn(zn−Pn,zn), w.p. φ
(zn)
Pn,Pn

,

, (2)

where Xn(zn) has geometric distribution with expectation µzn . Since the distribution

of the residuals would be complicated to obtain when Pn = pzn , Pn should be defined

differently. Thus, for the RrNGINARmax(M ,A ,P) model, named INAR process with

r-states, distribution parameters set M , thinning parameters set A and maximal order

set P, it holds that

Pn = min{pzn , p∗n},

p∗n = max{i ∈ {1,2, . . . ,n} : zn−1 = zn−2 = · · ·= zn−i}.

From here, when the state change occurs, zn 6= zn−1, the process order becomes one,

i.e. Pn = 1, and afterwards it starts rising by 1 in every moment of the process, until it

reaches its maximum value for that state, which equals pzn . Then it remains at maximum

until the process state changes again. The alternative way, for the other type of the

considered model (RrNGINAR1(M ,A ,P)), is letting the value Pn equal 1 (instead of

making it growing gradually), but still considering the value at the same moment at

when the previously explained model RrNGINARmax(M ,A ,P) reaches the maximal

order. Accordingly, for the RrNGINAR1(M ,A ,P) model, the only possible order

values corresponding to the process state i are 1 and pzn

Pn =

{
pzn , p∗n ≥ pzn

1, p∗n < pzn

This model is named the random environment INAR process with r-states, distribution

parameters set M , thinning parameters set A and the order set P.

If, as a special case, it holds that p1 = p2 = · · · = pr = 1, then both models are the

same and of order one. Also, the RrNGINAR(1) model is a special case of these two

models, when p1 = p2 = · · ·= pr = 1 and α1 = α2 = · · · = αr.

Explaining these two models from Laketa et al. (2018) further, let us now recall the

Theorem 1 from that paper, which makes a point about residual distribution (see Ap-

pendix for details). Considering the models in Laketa et al. (2018), we should com-
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prehend these random environment INAR models as an attempt of fitting counting pro-

cesses in time-varying conditions, which directly affect to certain parameters of the

observed process. As long as the conditions of the process environment do not change,

the process itself has the same (and unchanged) value of its latent component zn. How-

ever, when the environment eventually changes (e.g., social circumstances or economic

factors), then the random environment INAR models introduced in this paper adapt to

these changes. In fact, these models accommodate these environment changes by ad-

equately modifying the values of specific parameters, including even the order of the

process. Notice that these models are stationary while they are in the same state zn,

and their non-stationarity starts when changing this state. The latter is a consequence

of changing the marginal distribution of the models, the thinning operator value, and

the order of the process. When we observe the order, we notice that after the process

state is changed from zn−1 to zn, the process order is reduced to 1, which is necessary

because of the definition of the model. The way it reaches its value of pzn depends on

the model type (i.e., whether its type is “1” or “max”, which was explained earlier).

Finally, it should also be emphasized that we consider non-stationary processes, which

are “part-by-part stationary”, where each “part” corresponds to the period of a random

process {Zn} remaining in the same state.

3 Considered models

Now, we focus on the model introduced in this article. Let {Xn(zn)} and {Yn(zn)} be

the RrNGINAR1(M1,A1,P1) and RrNGINAR1(M2,A2,P2) processes, respectively,

where M1 = {µ1,µ2, . . . ,µr}, M2 = {ν1,ν2, . . . ,νr}, A1 = {α1,α2, . . . ,αr}, A2 = {β1,

β2, . . . ,βr} and P1 = P2 = {1}. Then, they are defined with the following relations

Xn(zn) = αzn ∗Xn−1(zn−1)+ εn(zn−1,zn), n ∈ N, (3)

Yn(zn) = βzn ∗Yn−1(zn−1)+ηn(zn−1,zn), n ∈ N. (4)

In order to give a precise definition of the processes introduced in (3) and (4), we add

some additional assumptions:

(C1) {εn(1,1)}, {εn(1,2)}, . . . , {εn(r,r)}, {ηn(1,1)}, {ηn(1,2)}, . . . , {ηn(r,r)} are mu-

tually independent for all n ∈ N0,

(C2) εm(i, j) and ηm(i, j) are independent of Yn(k) and Xn(k), respectively, for n < m

and for all i, j,k ∈ Er,

(C3) the covariance between Xn(zn) and Yn(zn) is the same as the covariance between

Xm(zm) and Ym(zm), when zn = zm.
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Based on the Theorem 1 from Laketa et al. (2018), the distributions of the innovation

series {εn} and {ηn} are given by the following relations:

εn(i, j)
d
=





Geom
(

µ j

1+µ j

)
, w.p. 1−

α jµi

µ j−α j
,

Geom
(

α j

1+α j

)
, w.p.

α jµi

µ j−α j
.

(5)

ηn(i, j)
d
=





Geom

(
ν j

1+ν j

)
, w.p. 1−

β jνi

ν j−β j
,

Geom

(
β j

1+β j

)
, w.p.

β jνi

ν j−β j
.

(6)

Now, we will present some new results of considered models. For the simplicity of no-

tation, in the following text, we shall use Xn and Yn instead of Xn(zn) and Yn(zn), respec-

tively. We will consider Xn = (Xn,Yn) as a bivariate process named BRrNGINAR(1).

Also, let us define vector µµµn =

[
µzn

νzn

]
and matrix An =

[
αzn 0

0 βzn

]
.

The following theorem explains the process correlation structure.

Theorem 1 (a) The covariance matrix of random variables Xn and Xn−k, k ∈ {0,1,

. . . ,n}, is given as

Cov(Xk,X0) = A1A2...AkCov(X0,X0), (7)

(b) The correlation matrix of random variables Xn and Xn−k, k ∈ {0,1, . . . ,n}, is given

as

Corr(Xk,X0) =



√

Var(X0)
Var(Xk)

0

0

√
Var(Y0)
Var(Yk)


A1A2...AkCorr(X0,X0), (8)

where Var(Xi) =
µzi

1+µzi
and Var(Yi) =

νzi
1+νzi

.

The proof is given in the Appendix.

Following theorem contains the results of the conditional expectations and variances.

Theorem 2 a) The conditional expectation of the random variable Xn+k on Xn is

given by

E (Xn+k|Xn) = An+1An+2...An+k [Xn −µµµn]+µµµn+k, k ∈ N0, (9)
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b) The conditional variance of Xn+k on Xn is given by

Var(Xn+k|Xn,Yn) =

{
αzn+1

(1+αzn+1
)

(
k

∏
s=2

α2
zn+s

I{k > 1}+ I{k = 1}

)

+
k−1∑

i=2

(
i−1

∏
s=1

αzn+s

)
αzn+i

(1+αzn+i
)

(
k

∏
s=i+1

α2
zn+s

)
I{k > 2}

+

(
k

∏
s=1

αzn+s

)
αzn+k

(1+αzn+k
)I{k > 1}

}
(Xn −µzn)

+µzn+k
(1+µzn+k

)−

(
k

∏
s=1

α2
zn+s

)
µzn(1+µzn),

and the conditional variance of Yn+k on Xn is analogous.

c) The conditional probability mass function is given by

P(Xn = xn,Yn = yn|Xn−1 = xn−1,Yn−1 = yn−1,Zn = zn,Zn−1 = zn−1)

= P(Xn = xn|Xn−1 = xn−1,Zn = zn,Zn−1 = zn−1)

·P(Yn = yn|Yn−1 = yn−1,Zn = zn,Zn−1 = zn−1),

where

P(Xn = xn|Xn−1 = xn−1,Zn = zn,Zn−1 = zn−1)

=

xn∑

k=0

(
xn−1 + k−1

xn−1 −1

)
αk

zn−1

(1+αzn−1
)k+xn−1

·

[(
1−

αznµzn−1

µzn −αzn

)
µxn−k

zn

(1+µzn)
xn−k+1

+
αznµzn−1

µzn −αzn

·
αxn−k

zn

(1+αzn)
xn−k

]
I{xn−1 6=0}

+

[(
1−

αznµzn−1

µzn −αzn

)
µxn

zn

(1+µzn)
xn+1

+
αznµzn−1

µzn −αzn

·
αxn

zn

(1+αzn)
xn

]
I{xn−1=0},

and the analogous formula holds for Yn.

The proofs are given in the Appendix.

Remark 1 Regarding the correlation between {Xn(zn)} and {Yn(zn)}, the following can

be said. Values of the processes {Xn(zn)} and {Yn(zn)} are determined by the random

process realization. Namely, certain parameter values of one component may only occur

with the corresponding parameter values of another component. This explains the cor-

relation between {Xn} and {Yn}, which cannot be calculated, since it is not a correlation

in the standard sense and definition. However, as {zn} is determined by the clustering

of the observed counting processes, it is actually this sequence, {zn}, that contains in-
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formation about this kind of correlation. Beside this, the standard covariance function

Cov(Xn,Ym), for some m,n ∈ N, can be different from zero, which is in fact used in the

section about the Yule-Walker method of estimation of the unknown process parameters.

4 Parameter estimation

Let X1,X2, . . . ,XN and Y1,Y2, . . . ,YN be samples from the RrNGINAR1(M1,A1,P1) and

RrNGINAR1(M2,A2,P2) processes, respectively, where M1 = {µ1,µ2, . . . ,µr}, M2 =
{ν1,ν2, . . . ,νr}, A1 = {α1,α2, . . . ,αr}, A2 = {β1,β2, . . . ,βr} and P1 = P2 = {1} are

the corresponding sets of unknown parameters. In the following subsections, two meth-

ods for parameter estimation are given: the Yule-Walker method and the conditional

maximum likelihood method.

4.1 Yule-Walker estimation

The Yule-Walker parameter estimators are defined matching theoretical and empirical

values of the correlation structure of the model. Recall that, usually the Yule-Walker

estimation method (YW) assumes that the process is stationary. Since this assumption

does not hold for the models with a random environment, because they have different

states, it is necessary to define the Yule-Walker estimators using some parts of the sam-

ple, which can be considered stationary.

Let us define the set Ik = {i ∈ {1,2, . . . ,N}|zi = zi+1 = k} of indices i of the process

elements Xi(zi) and Yi(zi) corresponding to the state k, whose followers Xi+1(zi+1) and

Yi+1(zi+1) are also in the same state k and denote its number of elements by nk = |Ik|.

µ̂k =
1

nk

∑

i∈Ik

Xi(k), γ̂
X ,k
0 =

1

nk

∑

i∈Ik

(Xi(k)− µ̂k)
2,

ν̂k =
1

nk

∑

i∈Ik

Yi(k), γ̂
Y,k
0 =

1

nk

∑

i∈Ik

(Yi(k)− ν̂k)
2,

γ̂
X ,k
1 =

1

nk

∑

i∈Ik

(Xi+1(k)− µ̂k)(Xi(k)− µ̂k),

γ̂
Y,k
1 =

1

nk

∑

i∈Ik

(Yi+1(k)− ν̂k)(Yi(k)− ν̂k),

γ̂
X ,Y,k
10 =

1

nk

∑

i∈Ik

(Xi+1(k)− µ̂k)(Yi(k)− ν̂k),
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γ̂
X ,Y,k
01 =

1

nk

∑

i∈Ik

(Yi+1(k)− ν̂k)(Xi(k)− µ̂k),

γ̂
X ,Y,k
00 =

1

nk

∑

i∈Ik

(Xi(k)− µ̂k)(Yi(k)− ν̂k),

where

γ
X ,k
1 =Cov(Xn,Xn+1), γ

Y,k
1 =Cov(Yn,Yn+1) if zn = zn+1 = k,

γ
X ,k
0 =Var(Xn), γ

Y,k
0 =Var(Yn) if zn = k,

γ
X ,Y,k
00 =Cov(Xn,Yn) if zn = k,

γ
X ,Y,k
01 =Cov(Xn,Yn+1), γ

X ,Y,k
10 =Cov(Xn+1,Yn) if zn = zn+1 = k.

These estimators are all strongly consistent, which can be shown by a similar proof as

in Nastić et al. (2016). From the covariance properties, analysed in the previous section,

it follows that

Cov(Xn+1(zn+1),Yn(zn)) = αzn+1
Cov(Xn(zn),Yn(zn)),

Cov(Xn+1(zn+1),Xn(zn)) = αzn+1
Cov(Xn(zn),Xn(zn)),

so we can write

αzn+1
=

1

2

(
Cov(Xn+1(zn+1),Yn(zn))

Cov(Xn(zn),Yn(zn))
+

Cov(Xn+1(zn+1),Xn(zn))

Cov(Xn(zn),Xn(zn))

)
.

Let us now consider Xn(zn), such that n ∈ Ik. Then,

αk =
1

2

(
Cov(Xn+1(k),Yn(k))

Cov(Xn(k),Yn(k))
+

Cov(Xn+1(k),Xn(k))

Cov(Xn(k),Xn(k))

)
.

Therefore, we can estimate αk in the following way

α̂k =
1

2

(
γ̂

X ,Y,k
10

γ̂
X ,Y,k
00

+
γ̂

X ,k
1

γ̂
X ,k
0

)
.

Similarly, we get

β̂k =
1

2

(
γ̂

X ,Y,k
01

γ̂
X ,Y,k
00

+
γ̂

Y,k
1

γ̂
Y,k
0

)
.

From the consistency of the modified sample covariances follows the consistency of α̂k

and β̂k.
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4.2 Conditional maximum likelihood estimation

We also consider likelihood-based estimation method (CML), where we conduct the

maximization of the log-likelihood function for the given sample {(X1(z1),Y1(z1)), . . . ,

(XN(zN),YN(zN))}. The function that needs to be maximized is of the form

logL =

N∑

i=2

logP((Xi,Yi) = (xi,yi)|(Xi−1,Yi−1) = (xi−1,yi−1)).

The conditional probability mass function is given by Theorem 2, where values X0 and

Y0 are treated as known. The maximization procedure is conducted numerically using

the optim function in the programming language R.

5 Analysis of prediction errors

In this section, we give the equations for the analysis of one-step-ahead prediction er-

rors. Since model’s prediction is conducted with two processes, survival and innovation,

we analyse the prediction errors of these two processes separately. Since these two pro-

cesses are unobservable, we will discuss their prediction errors in terms of conditional

expectations. Namely, knowing the realization of the processes {Xn} and {Yn} at the

moment n, we calculate the conditional expectations of survival and innovation pro-

cesses for that moment. This approach was discussed in detail in Freeland and McCabe

(2004) for the univariate case and in Popović, Nastić and Ristić (2018) for the bivariate

case. Here we use the similar methodology as in Popović et al. (2018). Notice that the

survival and the innovation processes are mutually independent for known realization of

the process {Zn}.

Knowing all states up to moment n, we want to determine P(αzn ∗ Xn−1(zn−1) =
m|Xn = xn,Yn = yn,Zn = zn,Xn−1 = xn−1,Yn−1 = yn−1,Zn−1 = zn−1) and P(εn(zn,zn−1) =

xn −m|Xn = xn,Yn = yn,Zn = zn,Xn−1 = xn−1,Yn−1 = yn−1,Zn−1 = zn−1), and similarly

for βzn ∗Yn−1(zn−1) and ηn(zn,zn−1). As stated above, we consider a model which is

based on a realization of the process {Zn} i.e. {zn}. Thus,

P(αzn ∗Xn−1(zn−1)=m|Xn=xn,Yn=yn,Zn=zn,Xn−1=xn−1,Yn−1 =yn−1,Zn−1=zn−1)

=
P(αzn ∗Xn−1(zn−1) = m,Xn = xn|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1)

P(Xn = xn|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1)
= f (m), (10)

where we have in mind that the survival component of the process Xn is independent

of Yn for known Xn, Xn−1, Zn and Zn−1. Function f (m) is introduced here for practical

reasons. The denominator is given in Theorem 2. Further, we calculate the nominator

having in mind the definition of the process Xn, i.e. Xn = αzn ∗Xn−1(zn−1)+εn(zn,zn−1).

Thus, for known Xn and Xn−1, the probability P(αzn ∗Xn−1(zn−1) = m,Xn = xn) is the
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same as P(αzn ∗Xn−1(zn−1) = m,εn(zn−1,zn) = xn −m). According to the definition of

the process, Xn−1 is independent from εn (statement (C2)), so the nominator of the above

equation is obtained as

P(αzn ∗Xn−1(zn−1) = m,εn(zn−1,zn) = xn −m|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1)

= P(NB(xn−1,αzn) = m) ·P(εn(zn−1,zn) = xn −m).

NB(xn−1,αzn) stands for a random variable with a negative binomial distribution with

stated parameters. The probability of the random variable εn(zn−1,zn) is given by equa-

tion (5) and it is equal to

P(εn(zn−1,zn) = xn −m) =

(
1−

αznµzn−1

µzn −αzn

)
µxn−m

zn

(1+µzn)
xn−m+1

+
αznµzn−1

µzn −αzn

αxn−m
zn

(1+αzn)
xn−m+1

.

Further, the conditional distribution of the innovation process can be obtained following

computations similar to those presented above for equation (10). Thus we have

P(εn(zn−1,zn) = m|Xn = xn,Yn = yn,Zn = zn,Xn−1 = xn−1,Yn−1 = yn−1,Zn−1 = zn−1)

= f (xn −m). (11)

By using equations (10) and (11), we can derive the conditional expectations for the

survival and innovation components, respectively. With Fn, we denote the σ-algebra

generated with (Xn,Yn,Zn), (Xn−1,Yn−1,Zn−1), . . . , (X0,Y0,Z0). Then, we have that

E(αzn ∗Xn−1(zn−1)|Fn) =
xn−1αzn−1

P(Xn = xn|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1)

·P(Xn = xn −1|Zn = zn,Xn−1 = xn−1 +1,Zn−1 = zn−1), (12)

and

E(εn(zn−1,zn)|Fn) =
1

P(Xn = xn|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1)

· [xnP(Xn = xn|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1)

−xn−1αzn−1
P(Xn = xn −1|Zn = zn,Xn−1 = xn−1 +1,Zn−1 = zn−1)

]
. (13)

The detailed derivations of equations (12) and (13) are given in Appendix. The analogue

equations stand for E(βzn ∗Yn−1(zn−1)|Fn) and E(ηn(zn,zn−1)|Fn).
According to equation (9), the one-step-ahead prediction error at moment n, denoted

as rn, is equal to
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rn = xn(zn)− (αznxn−1(zn−1)+µzn −αznµzn−1
)

= E(xn(zn)|Fn)−αznxn−1(zn−1)−µzn +αznµzn−1

= E(αzn ∗ xn−1(zn−1)+ εzn(zn−1,zn)|Fn)−αznxn−1(zn−1)−µzn +αznµzn−1

= E(αzn ∗ xn−1(zn−1)|Fn)−αznxn−1(zn−1)+E(εzn(zn−1,zn)|Fn)−µzn +αznµzn−1
.

We can conclude that the prediction error can be decomposed into two components. The

first one is the prediction error of the survival process rsur = E(αzn ∗Xn−1(zn−1)|Fn)−
αznXn−1(zn−1) and the second one is the prediction error of the innovation process rinn =

E(εzn(zn−1,zn)|Fn)−µzn +αznµzn−1
.

6 Model simulations

In this section, we test two methods for estimating the parameters of the BRrNGINAR(1)
model on simulated data sets. The first method is the conditional maximum likelihood

method where the conditional likelihood function can be obtained from Theorem 2,

statement c). The second one is the Yule-Walker method presented in Section 4.1.

We simulate 100 samples of lengths 100, 500, 1000 and 5000. Using the Monte

Carlo method, we generate a time series that evolves according to equations (3) and (4).

The values for εn and ηn are picked randomly from the distribution determined by equa-

tions (5) and (6), respectively. Further, the values for components αzn ∗Xn−1(zn−1) and

βzn ∗Yn−1(zn−1) are random numbers generated from the appropriate negative binomial

distribution (where we take X0 = ε0 and Y0 = η0 as initial values).

The following parameters were used for the simulation procedure: a) α1=0.1, α2=
0.2, β1=0.15, β2=0.25, µ1=1, µ2=2, ν1=1, ν2=3; b) α1=0.45, α2=0.5, β1=0.55,

β2 = 0.65, µ1 = 2, µ2 = 3, ν1 = 4, ν2 = 5; c) α1 = 0.1, α2 = 0.2, α3 = 0.25, β1 = 0.15,

β2=0.25, β3=0.25, µ1=1, µ2=2, µ3=3, ν1=1, ν2=2, ν3=3; d) α1=0.35, α2=0.4,

α3 =0.4, β1 =0.4, β2 =0.25, β3 =0.35, µ1 =2, µ2 =3 , µ3 =4, ν1 =3, ν2 =4 ν2 =5.

These values were chosen according to our experience in testing BRrNGINAR(1) as

well as other bivariate models. We tried to determine the sets of parameters that are most

likely to be found with real data sets. In all cases, we take into account the appropriate

boundaries for the thinning parameters. The random environment processes with 2 and

3 random states are considered. For the cases a) and b), the probability vector of states

is (0.5,0.5), while this vector has values (0.3,0.4,0.3) for cases c) and d), so all the

states are nearly equally probable. We set the transition probability matrix from state i

to state j as

[
0.7 0.3

0.3 0.7

]
for cases a) and b), and




0.4 0.3 0.3

0.3 0.4 0.3

0.3 0.3 0.4


 for cases c) and

d). They are chosen in such way that diagonal elements are the biggest in the matrices,

so that the corresponding processes stay in the same state long enough. The estimated

values obtained with the YW method are presented in Table 2 and Table 4, and with the
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CML method in Table 1 and Table 3. Besides the estimated values of the parameters,

there are also standard deviations of the estimates.

Table 1: Estimated values of unknown parameters for the BRrNGINAR(1) model with two states using the

conditional maximum likelihood method. The standard errors of estimates are given in the brackets.

a) α1=0.1 α2=0.2 β1=0.15 β2=0.25 µ1=1 µ2=2 ν1=1 ν2=3

100 0.1149 0.1879 0.1438 0.2118 0.9979 1.9679 0.9589 2.4212

(0.095) (0.0959) (0.078) (0.080) (0.145) (0.260) (0.129) (0.524)

500 0.1082 0.1982 0.1439 0.2345 1.0044 2.022 0.9773 2.715

(0.045) (0.058) (0.034) (0.046) (0.083) (0.162) (0.095) (0.367)

1000 0.099 0.202 0.1459 0.2423 1.0067 2.0106 0.9905 2.7554

(0.0337) (0.0350 (0.024) (0.036) (0.067) (0.123) (0.071) (0.327)

5000 0.0988 0.1909 0.1527 0.2441 1.0022 1.9972 0.9982 2.9955

(0.0138) (0.014) (0.012) (0.015) (0.022) (0.042) (0.028) (0.051)

b) α1=0.45 α2=0.5 β1=0.55 β2=0.65 µ1=2 µ2=3 ν1=4 ν2=5

100 0.4316 0.4454 0.5283 0.5894 1.989 2.9757 3.9493 4.9333

(0.057) (0.064) (0.064) (0.064) (0.159) (0.212) (0.248) (0.444)

500 0.4489 0.4745 0.5416 0.6257 2.0079 2.992 4.0002 4.9824

(0.041) (0.030) (0.040) (0.032) (0.103) (0.127) (0.133) (0.141)

1000 0.4516 0.4803 0.5444 0.6344 2.007 2.9871 4.0101 4.9915

(0.029) (0.025) (0.027) (0.027) (0.096) (0.109) (0.130) (0.155)

5000 0.4425 0.4877 0.5431 0.6401 1.985 2.988 3.9874 4.9854

(0.021) (0.012) (0.020) (0.014) (0.064) (0.065) (0.074) (0.092)

Table 2: Estimated values of unknown parameters for BRrNGINAR(1) model with two states using Yule-

Walker method. The standard errors of estimates are given in the brackets.

a) α1=0.1 α2=0.2 β1=0.15 β2=0.25 µ1=1 µ2=2 ν1=1 ν2=3

100 0.1681 0.2175 0.1671 0.2017 0.9671 1.9477 1.0168 2.8605

(0.123) (0.127) (0.127) (0.123) (0.247) (0.359) (0.214) (0.560)

500 0.1163 0.2004 0.1459 0.2382 1.0035 1.9938 1.0155 2.9531

(0.075) (0.079) (0.073) (0.074) (0.097) (0.186) (0.104) (0.262)

1000 0.1061 0.195 0.1516 0.2402 1.0007 1.9983 1.016 3.0034

(0.057) (0.058) (0.048) (0.055) (0.065) (0.119) (0.077) (0.221)

5000 0.1009 0.2029 0.1484 0.2529 0.994 1.9956 1.0003 3.0076

(0.025) (0.024) (0.025) (0.024) (0.027) (0.057) (0.031) (0.091)

b) α1=0.45 α2=0.5 β1=0.55 β2=0.65 µ1=2 µ2=3 ν1=4 ν2=5

100 0.4149 0.449 0.5316 0.5641 1.9574 2.972 4.0829 5.1293

(0.169) (0.169) (0.178) (0.159) (0.513) (0.739) (0.930) (1.279)

500 0.4409 0.4803 0.5359 0.6358 1.9907 2.9747 3.9991 5.0536

(0.085) (0.077) (0.076) (0.075) (0.235) (0.358) (0.447) (0.588)

1000 0.4457 0.4877 0.5396 0.6361 1.9744 2.9839 4.0285 5.0532

(0.064) (0.057) (0.054) (0.053) (0.163) (0.245) (0.288) (0.398)

5000 0.4472 0.4988 0.5477 0.6486 1.9963 2.9922 3.9944 5.0088

(0.027) (0.029) (0.025) (0.024) (0.064) (0.100) (0.130) (0.197)
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From the presented results, we can conclude that the estimates converge to the true

values with the growth of the sample length, which is followed by the decrease of the

standard deviation of the estimates. We can notice that both methods perform better

when the true values of the parameters are larger (this will be important when we discuss

the results from the application section). A probable reason for that is that when the

parameters take small values, the generated series have a lot of zeros. So, these methods

need bigger samples to estimate parameters of such “flattened” series.

The CML method provides good results even for samples of length 100. Also, there

is no influence on the estimates with respect to the number of random states. On the

other hand, the number of random states has a large impact on YW estimates when the

sample length is 100. When there are only two states, YW performs similarly as the

CML method. With three states, YW provides quite unprecise estimates for samples

of length 100. The reason for that lies in the fact that the correlation functions are

calculated on small sub-samples, thus their values are not very reliable. So, we can

notice large deviations from the true values in the test c). The estimates are much better

when the length of the sample is 500 or larger. The estimates of the parameters µi and

νi, i ∈ {1,2,3} converge very quickly with both methods, regardless of the number of

states.

The probability vector of states and the transition probability matrix are estimated

regardless of YW and CML methods. The probability vector is estimated by dividing

the number of occurrences of a state by the length of the sample, while for the transition

probability matrix, the number of transitions from state i to state j is divided by the

total number of occurrences of states i. This way, we obtain very precise results for all

studied samples, thus we omit a detailed discussion here.

We can conclude that CML is much more reliable for small samples (when the length

of series is 100). On the other hand, a disadvantage of the CML method is that CML es-

timates are obtained numerically, thus the CML method is much more time consuming.

The YM method provides estimates quite close to the real values when the sample size

is 500 or greater and, since it has the analytical solution, it proves to be a better choice

than CML for large samples.

The estimation procedure was conducted by using the Monte Carlo simulation. Thus,

for each of 100 sample paths we estimate the model parameters. So, for each of these

parameters, we get series of 100 values. The mean values and the sample standard

deviations of these series are presented respectively as the estimations and their standard

errors in Tables 1-4.

7 Application

This section is devoted to the practical aspect of the model. We test the model on a real

data set and compare the results to some other known bivariate models. The comparison

is based on the ability of the model to predict a value one step ahead for the observed
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time series. The goodness of fit is measured in terms of the root mean square error

(RMS). Also, we provide values for the Akaike information criterion (AIC), but since

we are focused on the forecasting ability of the model, the main attention is paid to the

values of RMS.

Parameters of the model are estimated using the conditional maximum likelihood

method. As we have concluded in the previous section, the YW method is not very

reliable for samples of length 100. Since the series that we deal with in this section have

between 105 and 144 observations, we will only use the CML method for parameter

estimation.

We compare the BRrNGINAR(1) model with three other bivariate models. Two of

these models are with constant coefficients and dependent innovation processes, where

one evolves under the Poisson bivariate distribution (BVPOIBINAR(1) model) and the

other evolves under the negative binomial distribution (BVNBIBINAR(1) model). Both

models were presented in Pedeli and Karlis (2011). The third model that we use for

comparison was presented in Popović et al. (2016), it has random coefficients and inde-

pendent innovation processes (BVGGINAR(1) model).

We test our model on three data sets. First, we consider the data set that contains

two series of different events observed in the same region. Then, we focus on bivariate

time series composed of data of the same event, observed in different regions. The

third test considers two series of data of the same type of event that evolve in the same

environment. In all three cases, we assume that the same factors influence both observed

series.

7.1 Different events observed in the same region

First, we will test our model on the same data series as in Popović et al. (2016). These

series are monthly counts of robberies (ROBB) and aggravated assaults (AGGASS)

from January 1990 to December 2001 (for more details about these time series, see

Popović et al. (2016)). The observed series together with their ACF and PACF are given

in Figure 1. The bar plots in Figure 1 imply a higher level of activities in the first half

compared to the end of the series. The series fluctuate around different means during

two periods, so the BRrNGINAR(1) model might be appropriate since it has the ability

to capture these changes of the frequency.

The results can be found in Table 5. It can be noticed that RMS for both series is the

lowest for the BRrNGINAR(1) model. For the observed series, we have detected two

states. According to this conclusion, we define the BRrNGINAR(1) model. For the

BRrNGINAR(1) model, the main drawback is the number of parameters, but as we can

see the model produces the lowest prediction errors, especially for the AGGASS series,

and the lowest AIC value.
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Table 5: Parameter estimates of INAR models, RMS and AIC for ROBB and AGGASS data series.

Model CML estimates RMS RMS AIC

ROBB AGGASS

BRrNGINAR(1)
α̂1 = 0.515(0.008), α̂2 = 0.568(0.021)

2.376 1.648 1044.45
β̂1 = 0.259(0.105), β̂2 = 0.37(0.059)

µ̂1 = 2.388(0.001), µ̂2 = 3.205(0.001)

ν̂1 = 1.117(0.001), ν̂2 = 2.018(0.001)

BVGGINAR(1)
α̂= 0.499(0.052), p̂ = 0.887(0.12), â = 2.877(0.328)

2.496 1.827 1065.83
β̂ = 0.281(0.058), q̂ = 0.805(0.192), b̂ = 1.765(0.187)

BVPOIBINAR(1)
α̂1 = 0.413(0.042), λ̂1 = 1.664(0.148)

2.541 1.857 1183.76
α̂2 = 0.21(0.053), λ̂2 = 1.389(0.128), φ̂= 0.443(0.107)

BVNBIBINAR(1)
α̂1 = 0.413(0.046), λ̂1 = 1.665(0.205)

2.541 1.88 1077.39
α̂2 = 0.169(0.061), λ̂2 = 1.461(0.182), β̂ = 0.883(0.176)

Figure 1: Bar plots, autocorrelation and partial autocorrelation functions of robberies and aggravated

assaults recorded in one police station.
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Table 5 contains the estimated values of model parameters as well as the standard

errors of these estimates. Since the estimates are obtained with the CML method, these

standard errors are computed as the square root of the diagonal elements of the inverse

of the Hessian (the optim function from the programming language R can return the

Hessian). The same holds for Table 6 and Table 7 that are going to be discussed in the

next two subsections.

Table 6: Parameter estimates of INAR models, RMS and AIC for SIMPASS-A and SIMPASS-B data series.

Model CML estimates RMS RMS AIC

SIMPASS-A SIMPASS-B

BRrNGINAR(1)
α̂1 = 0.502(0.131), α̂2 = 0.507(0.001)

1.448 2.164 1066.63
β̂1 = 0.52(0.088), β̂2 = 0.63(0.191)

µ̂1 = 1.768(0.001), µ̂2 = 2.485(0.001)

ν̂1 = 3.877(0.552), ν̂2 = 4.52(0.454)

BVGGINAR(1)
α̂= 0.492(0.001), p̂ = 0.558(0.075), â = 2.076(0.001)

1.612 2.48 1118.61
β̂ = 0.65(0.041), q̂ = 0.291(0.053), b̂ = 2.075(0.001)

BVPOIBINAR(1)
α̂1 = 0.315(0.065), λ̂1 = 1.544(0.171)

1.588 2.243 1053.74
α̂2 = 0.294(0.064), λ̂2 = 2.96(0.303), φ̂= 0.42(0.201)

BVNBIBINAR(1)
α̂1 = 0.33(0.067), λ̂1 = 1.512(0.183)

1.584 2.238 1043.91
α̂2 = 0.345(0.066), λ̂2 = 2.744(0.319), β̂ = 0.168(0.065)

Table 7: Parameter estimates of INAR models, RMS and AIC for Bitfinex and Kraken data series.

Model CML estimates RMS RMS AIC

Bitfinex Kraken

BRrNGINAR(1)
α̂1 = 0.819(0.001), α̂2 = 0.767(0.084)

9.611 4.142 1333.53
β̂1 = 0.83(0.001), β̂2 = 0.829(0.011)

µ̂1 = 20.782(1.647), µ̂2 = 24.362(1.619)

ν̂1 = 10.056(1.252), ν̂2 = 11.117(0.985)

BVGGINAR(1)
α̂= 0.497(0.012), p̂ = 0.783(0.069), â = 23.361(0.001)

11.415 4.727 1522.22
β̂ = 0.433(0.001), q̂ = 0.233(0.054), b̂ = 10.138(0.001)

BVPOIBINAR(1)
α̂1 = 0.515(0.022), λ̂1 = 11.409(0.583)

10.802 4.287 1603.54
α̂2 = 0.558(0.037), λ̂2 = 4.529(0.405), φ̂= 4.465(0.416)

BVNBIBINAR(1)
α̂1 = 0.611(0.023), λ̂1 = 9.142(1.141)

10.509 4.263 1273.17
α̂2 = 0.666(0.026), λ̂2 = 3.432(0.466), β̂ = 1.198(0.252)

7.2 The same event observed in the different regions

The BRrNGINAR(1) model evolves under hidden time series that represents certain

states of the observed series. Thus, the observed series are affected by some com-

mon factor. To find the most realistic scenario, we will focus on the time series of the

same event that took place in different regions. From the database that can be found

on website http://www.forecastingprinciples.com, we examine the number of

http://www.forecastingprinciples. com
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simple assaults recorded in two police stations located in Rochester. These data were

recorded from January 1990 to December 2000 in police stations number 36055009401

and 36055009602, so we denote the data series SIMPASS-A and SIMPASS-B, respec-

tively. The mean values of these series are 2.24 and 4.23, while the variances are 3.11

and 5.79, respectively. The correlation coefficient between the two series is 0.29. The

autocorrelation coefficients at lag one are 0.45 and 0.36 for SIMPASS-A and SIMPASS-

B, respectively.

The bar plots of the observed series are given in Figure 2. We can notice some

similar patterns in the evolution of these two series. The bar plots in Figure 2 imply a

higher rate of activities at the beginning compared to the end of the observed data. This

suggests the existence of two or more random states for the BRrNGINAR(1)model. The

BRrNGINAR(1) with two random states shows better performance than the model with

three random states in terms of RMS. Models with more than three random states are

not adequate for these series, since the observed data set is not long enough to properly

estimate all parameters of such models.

Figure 2: Bar plots for simple assaults recorded in the two police stations.

Since the random states have to be the same for both series, they are defined in

the following way. The step one is to determine states for each series separately. This

procedure is performed by using the quantiles of the observed series. Since we have

only two states, we use the median as the boundary for determining states. Then, the

states for the BRrNGINAR(1) model are determined as rounded average values of the

states from step one for each observed moment. The states are given in Figure 3. In

some cases, two observed values of one series have different states although they are

equal. This is the consequence of determining random states for both series. But, in

spite of this, it can be noticed that observed values are grouped into clusters.

Once again, we will compare the BRrNGINAR(1) model to three bivariate mod-

els mentioned above. The results are summarized in Table 6. We can notice that the

BRrNGINAR(1) model achieved a much lower RMS for both observed series. Since

we examine two time series of the same criminal activity, we can expect that the same

factors affect the generation of these series. For example, unemployment or lack of

police officers will encourage someone to commit a criminal act such as a simple as-
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sault. Our model is based on this assumption, and as such it provides the best results

from the forecasting point of view. We can notice that the AIC value is quite close to

the BVPOIBINAR(1) and BVNBIBINAR(1) models. Since the BRrNGINAR(1) model

depends on a larger number of parameters, it was expected to have a little bit larger value

of the AIC.

Figure 3: States for SIMPASS-A and SIMPASS-B data series. The state one is denoted with × and the state

two with ◦.

For the analysis of the prediction error made by the BRrNGINAR(1) model, we use

the approach discussed in Section 5. On the data sets SIMPASS-A and SIMPASS-B,

the model makes the root mean square errors of 1.448 and 2.164, respectively. It can be

said that these errors are produced by two sources, the prediction of the survival process

and the prediction of the innovation process. We measure the prediction error of the

survival component as the difference between the value calculated from equation (12)

and the first addend of equation (14) when k = 1. Similarly, the prediction error of the

innovation component is the difference between the value calculated from equation (13)

and the second addend of equation (14) when k = 1. The residuals are presented in

Figure 4.

The black line shows the series of the prediction errors created by the survival com-

ponent, while the gray one represents the error of the innovation component. The dots

are the actual prediction errors that we get when we apply the BRrNGINAR(1) model to

the two observed series. It can be noticed that the two components produce errors with

the opposite sign. Actually, the correlation coefficient between the two components

for SIMPASS-A series is -0.55, and for SIMPASS-B it is -0.75. As a result of these

negatively correlated errors, the actual prediction error is reduced. The most obvious

consequence of this kind of behaviour can be noticed on the tenth observed value of the

SIMPASS-A data set and on the seventh observed values of the SIMPASS-B data set.

It cannot be said that one or the other component produces larger errors. The be-

haviours of the survival and the innovation processes are quite similar. One of the most

probable reasons for this is that they are both driven by the same hidden process which

determines the states of the observed series.
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Figure 4: Prediction errors produced by the survival and the innovation processes.

7.3 The same type of event in the same environment

In order to more clearly motivate the introduction of the BRrNGINAR(1) model, we

give another example where we test the model on two time series that nowadays spark

a lot of interest among many people. Namely, we observe the volumes of two cryp-

tocurrencies traded on weekly bases. The data set contains the traded volumes from the

beginning of April 2017, until the end of March 2019, for cryptocurrencies Bitfinex and

Kraken. We denote the smallest fraction of a coin that can be traded as a unit. Since

these cryptocurrencies are traded in vary small fractions, the data that we present here

are in 1012 units. So, the average values of these series are 23.36 and 10.14, respectively

(which are actually 23.36× 1012 and 10.14× 1012 units). The standard deviations for

the two series are 14.93 and 5.64, respectively, while the correlation between the series

is 0.53. The autocorrelation coefficients on lag one are 0.71 and 0.64 for Bitfinex and

Kraken, respectively.

Both series are presented in Figure 5. From the bar plots, we can conclude that

similar factors influence weekly volumes for these two cryptocurrencies. We can clearly

distinguish periods of high and low trading intensity. Thus, a stationary model for these

two series would not be the best choice. Also, for the second series we can notice that

the three periods of high volumes are followed by low market activities, which is the
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usual trading behavior. These three peeks occurred on the last week of May 2017, the

second week of February 2018 and the last week of November 2018. Thus, we cannot

conclude that high trading volumes are connected to a specific time of year, nor that they

occur after a certain period.

Figure 5: Bar plots for weekly traded volumes of Bitfinex and Kraken cryptocurrencies.

Figure 6: States for weekly traded volumes of Bitfinex and Kraken cryptocurrencies. The state one is

denoted with × and the state two with ◦.

We notice two states of trading intensities for our model, which implies that we de-

fine the BRrNGINAR(1) with two random states, i.e. r = 2. These states are presented

in Figure 6. Similarly as in two previous examples, following these states, we esti-

mate the coefficient with the CML method and compare the results with the other three

mentioned models. The obtained results are given in Table 7.

The values in Table 7 suggest that the BRrNGINAR(1) model has the smallest RMS.

Thus, from the forecasting perspective, this model shows the best results. The advantage

of the BRrNGINAR(1) model can be noticed especially with Bitfinex series, and some

improvements are present with Kraken series as well. The reason for that probably lies

in the fact that the observed series is non-stationary. As we can see with Bitfinex series,

the BRrNGINAR(1) model estimated the mean value as µ̂1 = 20.782 and µ̂2 = 24.362,

depending on the state. Other tested models have only one parameter for modelling the

mean value. Even with the Kraken series where the difference between parameters ν̂1

and ν̂2 is not that big, we can see the improvements with RMS. The BRrNGINAR(1)
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model achieves the second best value of AIC, which is a consequence of a larger number

of parameters. Beside the fact that the number of parameters increases the AIC value,

the estimated values of all these parameters have some deviation from the real values

when the series are of length 105, as they are is this case. This fact also increases AIC

value to a certain extent, having in mind the definition of AIC.

The purpose of all this testing is not to point out one model as the best model, but

to demonstrate the type of series for which the BRrNGINAR(1) model is an adequate

one. All observed series have in common that they fluctuate around different means

during their evolution, which is expected to see when observing non-stationary series.

This kind of behaviour looks like the series have trend, but not trend that can be easily

captured with some linear or quadratic function, for example. These series take values

from different intervals in different time frames which can be captured (in some degree)

with the presented model.

8 Conclusion

The paper discusses a bivariate integer-valued autoregressive model of order one. The

model is composed of two univariate models driven by the same hidden process. This

hidden process is determined by the states that are assigned to the observed data. So, the

hidden process allows the model to adjust itself to environment changes. As such, the

model is non-stationary. Besides the main properties of the model, the focus is placed

on its forecasting ability. Through tests on real data sets, it was shown that the model

produces the smallest one-step-ahead prediction errors in terms of the root mean square

error. Also, prediction errors are analysed in more detail by investigating prediction

errors of each model component, the survival and the innovation component. These

two components produce negatively correlated one-step-ahead prediction errors. This

fact contributes to the reduction of the prediction errors which the model makes. The

model contains a large number of parameters, so it requires a little bit larger data set for

parameter estimation.

9 Appendix

Theorem 1

Proof.

a) Using the properties of the negative binomial thinning operator we have

Cov(Xk,Yl) = αzk
Cov(Xk−1,Yl), Cov(Xk,Xl) = αzk

Cov(Xk−1,Xl),
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Cov(Xk,Yl) = βzl
Cov(Xk,Yl−1), Cov(Xk,Xl) = βzl

Cov(Xk,Xl−1).

Now, from these equalities, we simply get what is required.

b) This is obvious, based on the results given in a) and the fact that correlation is

defined using the covariance.

Theorem 2

Proof. It holds that

E(Xn+k|Xn) =

(
k

∏
s=1

αzn+s

)
Xn +

k−1∑

l=1

(
k

∏
s=1

αzn+s

)
E(εn+l)+E(εn+k), (14)

from the properties of the negative binomial thinning operator. If we take into account

the distribution of the residuals, we get

E(Xn+k|Xn) =

(
k

∏
s=1

αzn+s

)
(Xn −µzn)+µzn+k

.

The analogous relation holds for the Y component, so the required relation in a) is valid.

For the proof of b), the recurrent relation

Var(Xn+k|Xn,Yn) = α2
zn+k

Var(Xn+k−1|Xn,Yn)

+αzn+k
(1+αzn+k

)E(Xn+k−1|Xn)+Var(εn+k)

is used.

The statement c) follows from the fact that Xn and Yn are independent for known Zn,

Xn−1, Yn−1 and Zn−1. Also, Zn is independent from Xn−1 and Yn−1 for known Zn−1. From

the definition of the process {(Xn,Yn)}, we have that

P(Xn = xn|Xn−1 = xn−1,Zn = zn,Zn−1 = zn−1) = P

(
xn−1∑

i=1

U
zn−1
i + εn(zn−1,zn) = xn

)
,

P(Yn = yn|Yn−1 = yn−1,Zn = zn,Zn−1 = zn−1) = P

(
yn−1∑

i=1

V
zn−1

i +ηn(zn−1,zn) = yn

)
.

Therefore, the statement c) is obtained using the above equations and properties of the

residuals.

Equation (12)

Proof. For simplicity, we will denote the probability mass function in the denominator

as P(Xn = xn|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1) = P(Xn = xn|zn,xn−1,zn−1). Now we
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have

E(αzn ∗Xn−1(zn−1)|Fn) =

xn∑

j=0

j · f ( j)

=

xn∑

j=0

j ·
P(NB(xn−1,αzn) = j) ·P(εn(zn−1,zn) = xn − j)

P(Xn = xn|zn,xn−1,zn−1)

=

∑xn
j=0 j

(
xn−1+ j−1

j

) α
j
zn−1

(1+αzn−1
)xn−1+ j P(εn(zn−1,zn) = xn − j)

P(Xn = xn|zn,xn−1,zn−1)

=

xn−1

αzn−1

1+αzn−1

∑xn
j=1

(
xn−1+ j−1

j−1

) α
j−1
zn−1

(1+αzn−1
)xn−1+ j−1 P(εn(zn−1,zn) = xn − j)

P(Xn = xn|zn,xn−1,zn−1)

=
xn−1

αzn−1

1+αzn−1

∑xn−1
j=0

(
xn−1+1+ j−1

j

) α
j
zn−1

(1+αzn−1
)xn−1+ j P(εn(zn−1,zn) = xn −1− j)

P(Xn = xn|zn,xn−1,zn−1)

= xn−1αzn−1

xn−1∑

j=0

(
xn−1+1+ j−1

j

) α
j
zn−1

(1+αzn−1
)xn−1+1+ j P(εn(zn−1,zn) = xn −1− j)

P(Xn = xn|zn,xn−1,zn−1)

=
xn−1αzn−1

P(Xn = xn|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1)

·P(Xn = xn −1|Zn = zn,Xn−1 = xn−1 +1,Zn−1 = zn−1),

Equation (13)

Proof. For simplicity, we will introduce the following notation P(A = a|Zn = zn,Xn−1 =

xn−1,Zn−1 = zn−1) = P(A = a|zn,xn−1,zn−1). Now we have

E(εn(zn−1,zn)|Fn) =

xn∑

i=0

i · f (xn − i) =

xn∑

i=0

(xn − i) · f (i)

=
1

P(Xn = xn|zn,xn−z,zn−1)

·

xn∑

i=0

(xn − i)P(εn(zn−1,zn) = xn − i|zn,xn−1,zn−1) ·P(α∗Xn−1(Zn−1) = i|zn,xn−1,zn−1)

=
1

P(Xn = xn|zn,xn−z,zn−1)
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·

[
xn

xn∑

i=0

P(εn(zn−1,zn) = xn − i|zn,xn−1,zn−1) ·P(α∗Xn−1(Zn−1) = i|zn,xn−1,zn−1)

−

xn∑

i=0

i ·P(εn(zn−1,zn) = xn − i|zn,xn−1,zn−1) ·P(α∗Xn−1(Zn−1) = i|zn,xn−1,zn−1)

]

=
1

P(Xn = xn|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1)

· [xnP(Xn = xn|Zn = zn,Xn−1 = xn−1,Zn−1 = zn−1)

−xn−1αzn−1
P(Xn = xn −1|Zn = zn,Xn−1 = xn−1 +1,Zn−1 = zn−1)

]
,

where the second term inside the brackets is derived in the same way as equation

(12).

Theorem 1 from Laketa et al. (2018)

Let {Xn(zn)} be the RrNGINARmax(M ,A ,P) or the RrNGINAR1(M ,A ,P) pro-

cess. Let us suppose that zn = j and zn−1 = i for some i and j ∈ Er. If 0 ≤ α j ≤
µ j

1+maxk∈Er µk
, then the distribution of the random variable εn(i, j) can be written as a

mixture of two geometric distributed random variables with means µ j and α j as follows

εn(i, j)
d
=





Geom
(

µ j

1+µ j

)
, w.p. 1−

α jµi

µ j−α j
,

Geom

(
α j

1+α j

)
, w.p.

α jµi

µ j−α j
.

(15)
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