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Abstract

The introduction of Electric Vehicles (EVs) in modern fleets facilitates green road transportation.

However, the driving ranges of EVs are limited by the duration of their batteries, which arise

new operational challenges. Hybrid fleets of gas and EVs might be heterogeneous both in loading

capacities as well as in driving-range capabilities, which makes the design of efficient routing plans

a difficult task. In this paper, we propose a new Multi-Round Iterated Greedy (MRIG) metaheuristic

to solve the Heterogeneous Vehicle Routing Problem with Multiple Driving ranges and loading

capacities (HeVRPMD). MRIG uses a successive approximations method to offer the decision

maker a set of alternative fleet configurations, with different distance-based costs and green levels.

The numerical experiments show that MRIG is able to outperform previous works dealing with the

homogeneous version of the problem, which assumes the same loading capacity for all vehicles

in the fleet. The numerical experiments also confirm that the proposed MRIG approach extends

previous works by solving a more realistic HeVRPMD and provides the decision-maker with fleets

with higher green levels.
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1 Introduction

Transportation is one of the main activities in modern supply chains, and accordingly,

it has a significant effect on the customer level of satisfaction (Crainic, 2000). Like-

wise, CO2 and greenhouse-gas emissions play an important role in producing the side
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effects (externalities) of noise pollution, air pollution, and traffic congestion (Faulin

et al., 2019). Therefore, enterprises must consider both customer satisfaction and en-

vironmental impact when planning their transportation operations. In fact, some gov-

ernments are making noticeable efforts for promoting ‘green’ (environment-friendly)

policies. One of these policies is related to shifting from Internal-Combustion-Engine

Vehicles (ICEVs) to zero-emission Electric Vehicles (EVs) or, at least, to Plug-in Hy-

brid Electric Vehicles (PHEVs) (Mattila and Antikainen, 2011). Both ICEVs and PHEVs

consume oil and produce a higher percentage of CO2, greenhouse emissions, and other

pollutant effects compared to EVs. It is then clear that a shift from a fossil fuel fleet to

an electric-powered fleet is necessary to reduce pollutant emissions in cities. Also, by

introducing special taxes, governments are approving policies aimed at decreasing the

pollution level generated by transportation (Faulin, Lera-López and Juan, 2011). Other

ways of promoting green technologies refer to offer incentives for companies to reduce

carbon footprint, diminish the risk associated with the dependence on oil-based energy

sources, make more affordable the acquisition of EVs, and develop alternative-energy

technologies (Williams et al., 2012). Therefore, from both an environmental and energy

standpoints, the use of EVs should be a first priority for the reduction of primary energy

consumption.

Although EVs show many advantages regarding the use of a greener energy, this

technology is currently facing some drawbacks. In particular, these vehicles make use

of electronic batteries, which limit their driving-range capabilities. These batteries have

long-recharge processing times and cannot be charged in classical service stations on the

road (Chan et al., 2009; Wirasingha, Schofield and Emadi, 2008; Ferreira et al., 2011;

Achtnicht, Bühler and Hermeling, 2012). On the contrary, the driving ranges of ICEVs

and PHEVs are assumed to be unlimited as they can be easily refueled at any station

along their route. With EVs becoming more prevalent among current fleets of vehicles,

an efficient routing of hybrid fleets of vehicles with multiple driving-ranges is an emer-

gent challenge in the transportation industry. Thus, the Vehicle Routing Problem with

Multiple Driving ranges (VRPMD) takes into account a hybrid fleet of EVs, PHEVs,

and ICEVs. However, the different vehicles of the fleet are assumed to have the same

loading capacity.

In this paper, we propose a more realistic model by also considering heterogeneous

fleets of vehicles in terms of loading capacity and driving ranges. The novel model

is called the Heterogeneous Vehicle Routing Problem with Multiple Driving ranges

(HeVRPMD). To solve this new model, we propose a Multi-Round Iterated Greedy

(MRIG) metaheuristic based on a successive approximations method. The final solution

for the heterogeneous case is obtained by solving a series of homogeneous cases and

then combining the resulting partial solutions into a global one. In order to validate the

performance of the MRIG metaheuristic, we first solve the homogeneous VRPMD and

compare our results with the ones published in existing literature. Then, we extend the

MRIG metaheuristic to solve the HeVRPMD. To solve this problem, we create a new

set of instances based on the classical ones for the heterogeneous fleet vehicle routing
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problem with unlimited driving ranges. The performance of the new metaheuristic is

evaluated considering the distance-based costs and the green level of the fleet config-

urations. The green level of the fleet is measured by using two novel correlated green

indexes. The first green index measures how green a fleet configuration is based on the

fraction of ‘green’ vehicles in the fleet. The second green index directly computes the

estimated environmental cost associated with the use of each vehicle in the fleet. The rest

of the paper is organised as follows. First, we review the related literature in Section 2.

Then, Section 3 provides the mathematical optimization model. The MRIG metaheuris-

tic is described in Section 4. Section 5 presents the definition of the proposed green

indexes and the computational experiments. The obtained results for the homogeneous

case are analysed in Section 6, while the ones associated with the heterogeneous case

are discussed in Section 7. Finally, some conclusions are provided in Section 8.

2 Literature review

The classical vehicle routing problem (VRP) and its variants have received extensive

attention from practitioners and the research community (Laporte, 2009). While most

VRP articles assume a fleet of homogeneous vehicles to serve the customers, in real-life

it is usual to consider heterogeneous fleets of vehicles in terms of loading capacity (Koç

et al., 2016; Dell’Amico et al., 2007; Dominguez et al., 2016). This section focuses on

reviewing the following two streams of research: the green VRP and the VRP with a

heterogeneous fleet of vehicles. The green VRP is a relatively recent variant of the VRP

having the goal of reducing greenhouse gas emissions by considering alternative fuel-

powered vehicle fleets, such as electricity (Erdoğan and Miller-Hooks, 2012). In addi-

tion to the reduction of the amount of gas emissions, the use of electricity imposes some

restrictions, such as the limited driving-range autonomy. As a result, most of the electric

VRP literature reports on alternative fuel stations to recharge the battery. In this context,

Erdoğan and Miller-Hooks (2012); Schneider, Stenger and Goeke (2014) and Montoya

et al. (2014) presented a green VRP considering alternative fuel stations to refill the

tank or recharge the battery, while Jie et al. (2019) and Verma (2018) proposed another

remedy to meet EVs’ limited driving ranges . In these research papers, EVs should visit

battery swapping stations to swap their batteries before their battery power runs out or

their driving ranges terminate. Likewise, Lin, Zhou and Wolfson (2016) considered the

vehicle load effect on the battery consumption while designing the optimal routing plan.

Additionally, Keskin and Çatay (2016) included a partial recharging feature for electric

VRP with time windows. This partial-recharging assumption has been included to make

recharging times shorter. Also related to this research line, Felipe et al. (2014) proposed

an electric VRP model which determines the amount of energy recharged and the tech-

nology used. A detailed review on the challenges of electric vehicles in logistics and

transportation can be found in Juan et al. (2016).
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The second stream of research addressed in this study is the heterogeneous VRP. As

stated before, using a heterogeneous fleet of vehicles makes the model more realistic. In

this regard, the use of hybrid fleets combining EVs, ICEVs, and PHEVs is a promising

research area. Hiermann et al. (2016) and Vaz Penna et al. (2016) proposed an opti-

mization problem combining the fleet size, mix VRP with time windows, and the use

of EVs. The fleet size and mix VRP only cover conventional vehicles but they distin-

guish different types of vehicles according to their transportation capacity, battery size,

and fixed cost. Goeke and Schneider (2015) incorporated an energy consumption model

including speed, gradient, and cargo load distribution into a fleet size and mix VRP

with time windows and the use of EVs. Despite the recent advances on EV-related tech-

nology and infrastructure, the development of recharging facilities throughout the road

transportation networks might be only an option on the long run. Therefore, the travel

range still remains as one of the main issues concerning the use of EVs in transportation

activities. This issue has been addressed in Almouhanna et al. (2020), by discussing a

location routing problem with constrained distance which is used EVs in the location

and routing decisions. They developed a heuristic and a metaheuristic to minimize the

total cost, which includes the opening cost of depots, the variable distance-based cost

of vehicles, and the fixed cost of using vehicles. In Juan, Goentzel and Bektas (2014b),

the authors addressed this issue by solving a VRP variant which considers a hybrid

fleet of vehicles with multiple driving ranges and assume that all vehicles are homo-

geneous in terms of loading capacity. The use of multiple driving ranges is due to the

fact that vehicles use different energy sources or even alternative battery types. These

authors developed a Multi-Round Heuristic (MRH) that iteratively builds a solution for

the problem. In Reyes-Rubiano et al. (2019), authors studied a VRP including homoge-

neous fleet of electric vehicles with a limited loading capacity and driving ranges and

stochastic travel times. The authors proposed a simheuristic algorithm to design reliable

routing plans in order to minimize the expected timebased cost required to complete the

freight distribution plan.

A research stream related to the VRP with multiple driving ranges is the distance-

constrained VRP. Few papers have studied the distance-constrained VRP. Among them,

we can highlight the works of Kek, Cheu and Meng (2008), Li, Simchi-Levi and Des-

rochers (1992), and Laporte, Desrochers and Nobert (1984). In the context of alterna-

tive fuel-powered vehicle fleets, Erdoğan and Miller-Hooks (2012) developed a similar

model to a distance-constrained VRP by considering a single driving range limitation

on the tour duration. The VRP and its variants are NP-hard problems and different ap-

proaches, from exact methods to heuristics and metaheuristics, have been employed to

solve them (Hokama, Miyazawa and Xavier, 2016; François et al., 2016; Andreatta

et al., 2016). Soft computing based methods are very frequent when solving the VRP

family of optimization problems. Authors of Brito et al. (2015) used fuzzy logic as a

way of defining the constraints of the VRP optimization problem and made use of ant

colony optimization as the solving strategy. Fuzzy logic was also used to define pref-

erence information of customers with respect to the satisfaction for a service time in a
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multi-objective optimization problem using a solving strategy based on a genetic algo-

rithm Ghannadpour et al. (2014). Genetic algorithms, both single- and multi-objective,

have been widely used for VRPs and their variants. Karakatič and Podgorelec (2015)

presented a complete review on the use of genetic algorithms for multi-depot VRPS. Re-

cently, Pierre and Zakaria (2017) proposed a genetic algorithm with additional stochastic

rules for a VRP with time windows and AbdAllah, Essam and Sarker (2017) presented

an enhanced genetic algorithm that tries to increase both diversity and the capability

to escape from local optima to solve a dynamic VRP in which not all customers are

known in advance, but are revealed as the system progresses. The research developed in

this paper extends previous work in two main directions. First, it proposes a new MRIG

metaheuristic which outperforms the existing approaches for the homogeneous version

of the problem – i.e., assuming that all vehicles have the same loading capacity. Sec-

ondly, it extends this MRIG metaheuristic so it can deal with the heterogeneous version

of the problem too.

3 HeVRPMD optimization model

In this section, we describe the proposed HeVRPMD model, which considers a hetero-

geneous fleet of vehicles with respect to loading capacities as well as driving ranges.

This VRP model can be seen as a combination of two distinct problems: (i) the VRP

considering heterogeneous fleets of vehicles in terms of loading capacity Baldacci, Bat-

tarra and Vigo (2008); and (ii) the VRP with multiple driving ranges (VRPMD), where

fleets are hybrid in terms of driving range but all vehicles are assumed to have the same

loading capacity (Juan et al., 2014b). In the next subsections, we define the mathemati-

cal optimization model for the HeVRPMD. The proposed model aims to find alternative

‘green’ fleet configurations with minimum distance-based cost. The concept of green

refers to the fact that we give priority to the use of small-size EVs over medium-size

EVs, large-size ICEVs and PHEVs. In addition, as in many other vehicle routing prob-

lems, the following constraints need also to be fulfilled: (i) each route starts and ends at

the depot, and it is associated with a vehicle type; (ii) each customer belongs to exactly

one route; and (iii) loading capacities and driving ranges of the vehicles are never ex-

ceeded – notice that the considered vehicles are heterogeneous both in loading capacity

and driving range.

A model representation of the HeVRPMD can be a directed graph G = (N,A) con-

sisting of a set N of n+1 nodes, N = {0,1, . . . ,n} and a set A = {(i, j) : i, j ∈ N, i 6= j}

which represents the arcs connecting pairs of nodes. Node 0 denotes the depot, where

the vehicle fleets are located, and the remaining nodes represent the n customers. Each

customer i has a known demand qi > 0. We denote the distance-based cost associated

with traveling from node i to node j by di j, with di j = d ji ≥ 0. In addition, there is a

set K of k different types of vehicles, K = {1,2, . . . ,k}. The number of vehicles for each

type is assumed to be unlimited. Each vehicle of type l has a loading capacity Ql as
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well as a maximum driving range T l . Three different decision variables are used in the

model: (i) a binary decision variable xl
i j, which takes the value of 1 if vehicle l ∈ K trav-

els from node i to j, and 0 otherwise; and (ii) two continuous decision variables ul
i and

vl
i which represent the cumulative amount of load carried and distance traveled, respec-

tively, by vehicle l ∈ K when leaving customer i ∈ N\{0}. The objective function is the

minimization of total distance-based cost, subject to:

1. Satisfying all customers’ demands.

2. Balancing of flows between nodes.

3. Loading capacity of vehicles.

4. Driving ranges of the vehicles.

5. Non-negativity and binary constraints.

To define the constraints we used the model provided by (Baldacci et al., 2008) to

define the set of constraints related to items 1 to 3, and the model introduced by (Juan

et al., 2014b) to define the set of constraints related to driving ranges of the vehicles.

The objective function of the optimization model is defined in Equation 1. This func-

tion calculates the total distance-based cost of all used vehicles by adding the traveled

distance by each vehicle l over all arcs (i, j) ∈ A:

Minimize z = ∑
l∈K

∑
(i, j)∈A

di jx
l
i j (1)

The constraints of the HeVRPMD model are defined from Equation 2 to 9. Equations 2

ensures that every customer is visited exactly once by a single vehicle:

∑
l∈K

∑
j∈N,i6= j

xl
i j = 1 ∀i ∈ N\{0} (2)

Equation 3 guarantees the flow conservation from and to a given customer node using

a vehicle of type l. By doing so, a connection between node i and node j ∈ N\{i} is

assured:

∑
j∈N,i6= j

xl
i j− ∑

j∈N,i6= j

xl
ji = 0 ∀i ∈ N\{0}, l ∈ K (3)

Equations 4 and 5 ensure that the total load capacity of a vehicle type l on each tour does

not exceed the vehicle capacity Ql . More precisely, Equation 4 ensures that the load of

the vehicle in the next node j depends on the load of the vehicle in the previous node i

as well as on the demand of node j. As a result, the last node on a tour will denote the

total amount of load carried by the vehicle:

ul
i ≤ ul

j−q jx
l
i j +Ql(1− xl

i j) ∀l ∈ K, i ∈ N, j ∈ N\{0}, i 6= j (4)



Sara Hatami, Majid Eskandarpour, Manuel Chica, Angel A. Juan and Djamila Ouelhadj 147

Equation 5 ensures that load ul
i is always greater than zero and less than the maximum

capacity Ql for a vehicle of type l:

0≤ ul
i ≤ Ql ∀l ∈ K, i ∈ N\{0} (5)

Constraints 6 and 7 guarantee that the total length of the route does not exceed the

maximum range of vehicle l. Constraint 6 restricts the route travelled up to customer

j (v j) to be larger than the route travelled up to previous visited node i (vi) plus the

distance travelled between customer node i to customer j.

0≤ vl
i ≤ vl

j−di jx
l
i j +T l(1− xl

i j) ∀l ∈ K, i ∈ N, j ∈ N\{0}, i 6= j (6)

Constraint 7 ensures that the current route travelled to be smaller than the maximum

driving range of vehicle type l ∈ K minus the route traveled between node i ∈ N and

node j ∈ N.

0≤ vl
i ≤ T l−di jx

l
i j ∀l ∈ K,∀(i, j) ∈ N, i 6= j (7)

Notice that constraints 4 to 7 in our model forbid sub-tours in the solution. In fact,

similar constraints have been widely used in the VRP literature in order to eliminate

sub-tours Erdoğan and Miller-Hooks (2012); Feillet (2010). Finally, Equations 8 and 9

guarantee the binary and non-negativity conditions of the decision variables:

xl
i j ∈ 0,1 ∀l ∈ K,∀(i, j) ∈ A (8)

ul
i,v

l
i ≥ 0 ∀l ∈ K,∀i ∈ N\{0} (9)

Even for small-scale instances of the homogeneous (simplified) version of this problem,

it is not possible to obtain solutions in reasonable computing times using commercial

optimization packages such as CPLEX. Therefore, in the remaining of this paper, we

propose the use of a metaheuristic algorithm as the most effective way to deal with both

the homogeneous and the heterogeneous versions.

4 The MRIG metaheuristic

This section describes the proposed MRIG metaheuristic to solve both the homogeneous

VRPMD and its heterogeneous version. This algorithm is inspired by the successive

approximations method proposed by Juan et al. (2014a) to solve the heterogeneous VRP.

Accordingly, MRIG is a multi-round approach that solves the global heterogeneous VRP

by dividing it into different homogeneous VRP. The main components of the algorithm

are the construction of the initial solution, local improvement, and acceptance criterion.

Each round of the MRIG approach consists of an optimization routing algorithm, run
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inside an Iterated Greedy (IG) framework. At each round, the algorithm first selects

a new subset of nodes and a new type of vehicles, thus defining a homogeneous fleet

VRPMD. Then, the routing algorithm integrated into the IG framework searches for a

near-optimal solution for the selected subset of nodes and vehicle type. Additionally,

and in order to facilitate the generation of solutions with different fleet configurations,

a penalty-based diversification mechanism is integrated within MRIG. This mechanism

is applied after the construction of the initial solution and before the local improvement

of the selected subset of nodes of the route. The penalty mechanism is applied for all

the iterations of the algorithm and slightly modifies the initial driving range of each

vehicle at random. This diversification technique has been extensively used in some

metaheuristic approaches such tabu search and others. Mathematically, the penalty cost

modifies the driving range of a vehicle of type l (T l) to a new driving range value with

random noise (T l′ ), always with a variation below the 10% of the initial driving value of

the vehicle.

The routing algorithm of the MRIG extends and enhances the popular Clarke and

Wright’s savings heuristic (Clarke and Wright, 1964), and the savings list of edges. One

of the advantages of using this routing algorithm is that it does not require any complex

parameter fine-tuning and is efficient to solve VRP, as reported in Quintero-Araujo et al.

(2017); Ferone et al. (2019). Another important component of the MRIG is the heuristic.

This heuristic is relatively simple, yet effective, which has obtained high-quality results

in areas such as scheduling (Ruiz and Stützle, 2007), arc routing problems (González-

Martı́n et al., 2012), and vehicle routing problems (Ruiz and Stützle, 2008; Chebbi and

Chaouachi, 2015), among others. In a nutshell, it generates a sequence of promising

solutions by iterating over greedy constructive heuristics using two main phases: de-

struction (some solution components are removed from a complete solution), and recon-

struction (a greedy constructive heuristic is applied to reconstruct a complete solution).

Once a candidate solution has been completed, an acceptance criterion decides whether

or not the new constructed solution will replace the reference solution. Figure 1 shows

a flowchart to illustrate the MRIG algorithm and its main components.

4.1 Construction of the initial candidate solution

The first step of the algorithm uses a multi-round process with a routing algorithm to

obtain the initial solution. This routing algorithm is applied to each round of the process

for each type of vehicle among the unused vehicles. This also means that assuming

an unlimited fleet of vehicles of the same type and with the same loading capacity, a

homogeneous VRPMD is solved for the nodes which are not yet served.

Thus, for example, a multi-round process will typically need three rounds to generate

a global feasible solution when facing a problem with a fleet configuration composed

of ICEs, PHEVs, and two types of EVs with two different battery capacities. The three

rounds are associated with the unlimited range ICEs and PHEVs, medium range EVs

with larger batteries, and short range EVs with smaller batteries, respectively. At each
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Figure 1: Diagram of the multi-round algorithm to build the initial candidate solution.

round of the solving method, a different homogeneous fleet capacitated VRP with a

route length restrictions (CVRP*) is solved. The maximum route distance considered

for each round is given by the maximum driving range of the corresponding unused

vehicles. In the first round, when the problem specification includes unlimited driving-

range vehicles (ICEs and PHEVs), no restriction is assumed on the route length, and the

VRP is solved. In the remaining two rounds, when limited driving range vehicles are

available, a CVRP* is solved considering the maximum route distance for the vehicles

in this specific round (Belloso, Juan and Faulin, 2019). After solving the successive

CVRP* with different types of vehicles and different driving ranges, the solution with

the minimum distance-based cost is selected as the incumbent best solution. To produce

the new solution, a ratio p of the routes of the current best solution are randomly selected

to be discarded. The remaining 1− p routes are saved as partial solutions. The algorithm

releases the associated nodes of the discarded routes and the same constructive process

is used again to create the sub-solutions from these nodes which belong to the discarded

routes. When all the nodes are served, the complete candidate solution, referred to as πC,

is built by merging the partial best sub-solutions obtained by the rounds of the algorithm.

The process of the initial candidate solution construction is shown in Figure 2.
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Figure 2: Flowchart of the MRIG algorithm and its main components.

4.2 Improvement phase

The second step of MRIG consists of two local search operators: destruction and recon-

struction. The goal of this step is to improve the distance-based cost of the candidate

solution, πC. In the destruction phase, a sub-set of nodes, D, from the total n nodes is

selected by using a ratio d ∈ [0,1]. This subset of nodes is removed from the routes and

inserted into an archive list in the order they were selected. Note that, by following this

process, there will not be any empty route (i.e., each route has at least one node). This

destruction procedure explained in Algorithm 1, returns the list of removed nodes D as

well as the list of routes containing the non-removed nodes. We denote τr to be the list

of nodes assigned to route r ∈ R of a candidate solution πC.

During the construction phase, all the nodes of sub-set D are selected one by one

according to the list order. Later, they are re-inserted into the existing routes. Among all
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Algorithm 1 Destruction πC(d)

i← 0
while i < ⌊dn⌋ do

r← Route randomly selected
a← Node randomly selected among the remaining nodes in the route r
if |τr|> 1 then

D← Insert node a
τr ← Remove node a from τr

i← i+1
end if

end while
return D and all τr,r ∈ R

the possible position, the chosen location for each node is the one in the route with the

smallest distance-based cost. This process is repeated ⌊dn⌋ times, until all the nodes of

D are re-inserted, thus leaving D empty.

4.3 Acceptance criterion

Finally, MRIG uses an acceptance criterion that allows it to accept, from time to time,

a degradation of the base solution. The criterion adds more diversity into the search

and prevents the algorithm from getting stuck in a local optima. The acceptance crite-

rion is applied once the improvement of the candidate solution, πC, has been completed.

Therefore, this step determines if the new generated solution should replace the base

solution πI even if it has a higher cost. The acceptance criterion of worse solutions is

based on the probabilistic acceptance criterion of simulated annealing (Ruiz and Stützle,

2008; Yu and Lin, 2015; Wang et al., 2015). In MRIG, the acceptance criterion works

as follows. Let C(πI) denotes the distance-based cost of the current base solution πI. The

newly generated solution, πC, is automatically accepted as the updated base solution if

C(πC) < C(πI). Otherwise, the solution πC is accepted as an update of the base solution

only if a certain criterion is met. This criterion relies on a probabilistic mechanism that

takes into account the so-called temperature parameter and the change in the objective

function value. It is defined in Equation 10, where random is a random number uni-

formly distributed between 0 and 1, and Temp is the temperature parameter originally

proposed by Osman and Potts (1989):

random≤ e
−

C(πC)−C(πI )
Temp (10)

Hatami, Ruiz and Andrés-Romano (2015) simplified the latter acceptance mechanism

by considering two aspects. First, they eliminated the Temp factor. Secondly, the prob-

ability of accepting a worse solution in the original mechanism of Equation 10 only de-

pends on the difference between C(πC) and C(πI). This dependency provokes that the dif-

ference could be the same for instances with non-similar deterioration levels in terms of

relative values. In order to solve this potential shortcoming, the difference, C(πC)−C(πI),
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is substituted by the Relative Percentage Difference (RPD) between the cost values of

these two solutions. RPD value is obtained by RPD(πC,πI) =
C(πC )−C(πI )

C(πI )
× 100. The

improved criterion is simple and it does not need any parameter fine-tuning process.

Therefore, we use it in the MRIG metaheuristic as shown in Equation 11.

random≤ e−RPD(πC,πI) (11)

5 Computational experiments

This section describes the experimental setup to evaluate the performance of MRIG.

First, we describe how we evaluate the costs of the solutions (Section 5.1), as well as two

new green indexes (Section 5.2). Secondly, Section 5.3 shows the benchmark instances

used for the experiments.

5.1 Distance-based cost evaluation

Three types of vehicles are considered in the experiments: (i) large range ICEVs and

PHEVs with no driving range limitations; (ii) medium range EVs, which have an auton-

omy of 200 distance units; and (iii) small range EVs, with an autonomy of 100 distance

units. These three types of vehicles are denoted by L, M, and S, respectively. Accord-

ingly, a fleet configuration for each problem instance is represented by S/M/L (i.e., the

number of vehicles of each type). In the computational experiments, the distance-based

cost associated with the fleet configuration is computed. An analysis on how the substi-

tution of ICEVs/PHEVs by EVs increases the distance-based cost is also provided.

5.2 Green indexes for fleet configurations

In order to compare the performance of MRIG with previous results from the literature,

we have considered that one configuration is greener than another if: (i) it substitutes

vehicles of type L by vehicles of type M or S, where S is always preferred over M; or (ii)

vehicles of type M are substituted by vehicles of type S without increasing the number

of vehicles of type L.

As mentioned before, vehicles of type S and M are EVs. It is assumed that a vehicle

of type S has a lower driving range and a lower loading capacity than a vehicle of type

M. A vehicle of type S can easily access high congested streets with limited parking

space in many cities, and it is constrained to a lesser degree by the existence of traffic

congestion or lack of parking areas than other larger-size vehicles (Juan et al., 2016).

For these reasons, a vehicle of type S is considered greener than one of type M. In order

to compare the green level of two different fleet configurations, we introduce two novel

indexes. The first one, GI1, is defined by Equation 12 and measures the fraction of S and

M vehicles with respect to all vehicles in the fleet:
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GI1 =
S+ωM

S+M+L
(12)

where ω ∈ (0,1), and S, M, and L, denote the number of vehicles of each type. In the

numerical experiments, we have set ω to 0.7, since the idea is that using a larger fraction

of type M vehicles contributes to make the fleet greener, but not as much as using a

larger fraction of vehicles of type S (considered to be the ‘greenest’ ones). Notice that

this index will take the value of 0 whenever all the vehicles in the fleet are of type L (i.e.,

ICEVs or PHEVs), while it will take the value of 1 only when all the vehicles in the fleet

are of type S (i.e., the greenest possible EVs). The second proposed index, GI2, directly

considers the environmental cost associated with using each type of vehicle. This index

measures environmental unit cost for each fleet configuration. It is assumed that vehicles

of type L have an associated cost of α monetary units. The environmental unit costs for

vehicles of type M and S, which are less pollutant than type L, are set to β and γ, with

α> β > γ > 0. This index is defined by Equation 13. When applying this GI2 index to

a practical scenario, these cost values are required to be set based on additional data on

the specific characteristics of each vehicle type. In our numerical experimentation we set

α= 100, β = 30, and γ = 10. These values are based on a preliminary experimentation

where we tested different sets of values from the expert knowledge of a routing business

collaborator. For example, in our experimental scenario, each vehicle of type L produces

10 times more environmental units than vehicles of type S; and each vehicle of type M

is 3 times more pollutant than a vehicle of type S.

GI2 = γS+βM+αL (13)

These two green indexes offer alternative ways of measuring the degree of environment-

friendly associated with a given fleet configuration. The idea here is that GI1 can be used

as a proxy for index GI2 in those real-life situations in which estimating the exact val-

ues of α, β, and γ cannot be easily achieved due to the lack of accurate data. Figure 3

illustrates, for some of the solutions obtained in the numerical experiments which are

discussed in the next section, the existence of a strong linear relationship between both

indexes. Note that, in all the analysed instances, the determination coefficient is above

90%, which guarantees that – at least for the set of instances and numerical values con-

sidered in the experiments – GI1 could be used to accurately estimate the value of GI2,

if necessary.

5.3 Problem instances and computing resources

We have used 33 classical VRP instances to validate our solving approach for both the

VRPMD and HeVRPMD scenarios. These instances have been selected from a large set

of instances available at http://www.branchandcut.org.The criteria we used to select

these instances were to include those ones with detailed information on routes for the

optimal or pseudo-optimal solution and having between 22 and 135 nodes. The charac-
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teristics of these instances are also different among them (e.g., the number of nodes, the

vehicle capacity, the location of the depot with respect to the clients, and their scattered

or clustered topology). In addition, we need to set different loading capacities for the

vehicles in the HeVRPMD scenario. To achieve this we assume that the fixed capacity

in classical VRP instances, Q0, corresponds to a vehicle of type M. Accordingly, the ca-

pacity associated with vehicles of types S and L is set to 0.8Q0 and 1.25Q0, respectively.

MRIG was implemented using the Java programming language and run on an Intelr

Core™i5 CPU M520 2.40GHz with 4GB RAM, and Windows 7 Pro as the operating

system. The experimental results for each instance are obtained after 30 runs using dif-

ferent seeds for the random number generation. Our stopping criterion is the maximum

CPU time, set to 300 seconds, which allows enough iterations for the metaheuristic to

reach a good convergence for the majority of the instances. Finally, the p parameter of

the initial solution construction is set to 0.6, while the d parameter of the destruction

operator is set to 0.5. These values were obtained after a preliminary experimentation,

according to the statistical learning methodology proposed in Calvet et al. (2016).

Figure 3: Linear relationship between GI1 and GI2 for four problem instances.
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6 Analysis of results for the homogeneous VRPMD

To the best of our knowledge, the only algorithm considered in the literature to solve the

homogeneous version of the VRPMD is the MRH one proposed in Juan et al. (2014b).

The authors evaluated the performance of their MRH algorithm using 20 CVRP in-

stances. In our paper, the number of instances tested has been increased up to 33, in-

cluding the original 20 plus 13 additional ones. This allows us to directly compare the

performance of our approach with the ones already published. The results are presented

in Tables 1-3. These tables show the following information for each instance: its name,

number of customers, vehicle capacity, and the distance-based cost of the best known

solution (BKS) for the homogeneous VRP – without considering driving-range limita-

tions – as provided in http://www.branchandcut.org. Also, these tables show a set of

diverse feasible fleet configurations (FleetCFG) shown by S/M/L those are found by

the MRIG and MRH algorithms. For each instance, more than one feasible configuration

has been found. However, only those solutions offering better values, either in distance-

based cost or in green level, have been included in the tables. Notice that the “greener”

configuration is considered. A configuration is greener than the other if it substitutes

vehicles of type L by vehicles of type M or S (with S preferred over M), or vehicles of

type M by vehicles of type S (without increasing the number of vehicles of type L). The

associated distance-based cost for each fleet configuration, DBCost, is also included.

The RPD column in each table shows the gap between the BKS and the distance-based

costs provided by both algorithms. The best distance-based cost for each instance, and

the associated gaps are indicated in bold. The last column of both tables shows the “di-

versified ratio”, which is the ratio between the number of fleet configurations obtained

using MRIG and MRH. Notice that, on the average, our MRIG provides 1.95 times more

diversified fleet configurations than the MRH algorithm. In addition, the best distance-

based cost obtained by MRIG is better than or equal to the one obtained by MRH in

80% of the instances.

Figure 4 illustrates the comparison using boxplots between three alternative solutions

(A, B, and C) provided by both algorithms to show the gap differences with respect

to the BKS of the problem. MRH-A and MRIG-A denote the best solution – in terms

of distance-based cost – provided by each algorithm. Similarly, MRH-B and MRIG-B

refer to alternative solutions that are greener than the previous ones. Finally, MRH-C

and MRIG-C are solutions even greener than the ones provided by configuration B.

Notice that solutions A provided by algorithms MRH and MRIG perform quite well

in terms of their associated distance-based costs, since they offer very low gaps with

respect to the BKS for the classical VRP – which is not considering any range constraint.

As expected, the distance-based-cost gap with respect to the BKS increases as greener

fleet configurations (suffixes B and C) are used. However, the average gap associated to

MRIG is noticeably lower than the one associated to MRH for both B and C alternative

configurations.
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Figure 4: Visual comparison using boxplots of three alternative solutions (A, B, and C) found by MRIG and

MRH.

Being able to select among different fleet configurations enriches the decision-making

process. Thus, for example, the set of fleet configurations found by MRIG are more di-

versified and greener than those found by MRH in instance F-n135-k7. Moreover, MRIG

can solve the instance using less vehicles of type L (ICEVs or PHEVs), since these are

substituted by vehicles of types S and M (small- and medium-range EVs). Likewise,

for the same fleet configuration, MRIG can find routes with a lower distance-based

cost. For example, the greenest fleet configuration obtained by MRH is 3/2/2, i.e.: it

includes 3 vehicles of type S, 2 vehicles of type M, and 2 vehicles of type L. The asso-

ciated distance-based cost is 1,190.07. For the same instance, MRIG was able to find a

solution with an associated distance-based cost of 1,175.68 using the same fleet config-

uration. Furthermore, MRIG could find greener fleet configurations, such as 1/5/1 and

2/4/1, where the number of type L vehicles is decreased even further.
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Table 1: Experimental results for 20 classical VRP instances

Instance

name

Number of

nodes
Capacity BKS

MRH MRIG RPD
Diversified

RatioFleet CFG.
DBCost

Fleet CFG.
DBCost MRH MRIG

S/M/L S/M/L

A-n32-k5 32 100 787.81
2/1/2 787.08 2/1/2 787.08 0.00 0.00

1
1/3/1 829.41 1/3/1 829.41 5.38 5,38

A-n38-k5 38 100 734.18

0/5/0 733.95 0/5/0 733.95 0.00 0.00

1.25

1/3/1 734.18 1/3/1 734.18 0.03 0,03

1/4/0 735.05 1/4/0 735.05 0.15 0,15

3/3/0 763.13 3/3/0 755.89 3.97 2,99

1/5/0 733.95 - -

A-n65-k9 65 100 1181.69

1/8/0 1183.31 1/8/0 1181.69 0.14 0.00

1

2/7/0 1191.27 2/7/0 1188.03 0.81 0.54

5/5/0 1276.21 5/5/0 1280.81 8.00 8.39

3/6/1 1238.33 3/6/1 1226.60 4.79 3.80

4/6/0 1253.81 4/6/0 1230.52 6.10 4.13

3/5/1 1297.31 3/6/0 1233.86 - -

A-n80-k10 80 100 1766.50

2/5/3 1776.19 2/5/3 1775.75 0.55 0.52

2.5

1/7/2 1785.05 1/7/2 1785.04 1.05 1.05

2/6/2 1794.42 - -

0/9/1 1994.16 - -

2/8/1 2016.21 - -

B-n50-k7 50 100 744.78

2/5/0 744.23 2/5/0 744.23 0.00 0.00

1.67

3/4/0 744.67 3/4/0 744.67 0.06 0.06

4/3/0 751.24 4/3/0 750.42 0.94 0.83

5/2/0 785.01 - -

6/1/1 836.38 - -

B-n52-k7 52 100 750.08

4/2/1 752.63 4/2/1 750.03 0.35 0.00

1.53/4/0 756.71 3/4/0 756.71 0.89 0.89

5/0/3 899.58 - -

B-n57-k9 57 100 1603.63

0/4/5 1602.29 0/4/5 1602.29 0.00 0.00

1.6

0/5/4 1603.37 0/5/4 1603.37 0.07 0.07

0/6/3 1631.66 0/6/3 1631.85 1.83 1.84

1/3/5 1642.53 1/3/5 1636.34 2.51 2.13

1/4/4 1646.65 1/4/4 1637.44 2.77 2.19

1/5/3 1650.87 - -

2/2/6 1694.09 - -

0/7/2 1707.81 - -

B-n78-k10 78 100 1229.27

4/6/0 1253.10 4/6/0 1245.64 1.94 1.33

0.6

6/5/0 1292.60 6/5/0 1288.67 5.15 4.83

3/7/0 1251.83 3/7/0 1246.21 1.84 1.38

4/5/1 1236.33 0.57 -

4/4/2 1252.76 - -

E-n22-k4 22 6000 375.28

2/2/0 375.28 2/2/0 375.28 0.00 0.00

2
3/1/0 383.52 3/1/0 383.52 2.20 2.20

1/3/0 386.03 - -

6/0/0 519.13 - -

E-n30-k3 30 4500 535.80

1/3/0 505.01 1/3/0 505.01 0.00 0.00

4
2/1/1 579.78 - -

3/0/2 597.65 - -

3/1/1 633.37 - -



158 Green hybrid fleets using electric vehicles: solving the heterogeneous vehicle routing problem...

Table 2: Continued - Experimental results for 20 classical VRP instances

Instance

name

Number of

nodes
Capacity BKS

MRH MRIG RPD
Diversified

RatioFleet CFG.
DBCost

Fleet CFG.
DBCost MRH MRIG

S/M/L S/M/L

E-n51-k5 51 160 524.94

3/2/0 524.63 3/2/0 524.61 0.00 0.00

35/1/0 556.92 - -

6/0/0 578.01 - -

E-n76-k10 76 140 837.36

7/3/0 845.80 7/3/0 842.57 1.01 0.62

4
8/2/0 856.70 8/2/0 848.73 2.31 1.36

11/0/0 854.42 9/1/0 864.70 - -

10/0/0 879.88 - -

E-n76-k14 76 100 1026.71

13/2/0 1031.94 13/2/0 1043.48 0.51 1.63

1.5

14/1/0 1041.58 14/1/0 1044.28 1.45 1.71

13/1/0 1043.29 13/1/0 1060.05 1.61 3.25

15/0/0 1045.77 15/0/0 1050,79 1.86 2.35

12/3/0 1038.48 1.15

14/0/0 1075.74 - -

F-n135-k7 135 2210 1170.65

3/1/3 1175.73 3/1/3 1168.01 0.66 0.00

2.5

3/2/2 1190.07 3/2/2 1175.68 1.89 0.66

2/3/2 1171.18 - -

1/5/1 1215.14 - -

2/4/1 1241.70 - -

M-n101-k10 101 200 819.81

8/2/0 821.11 8/2/0 819.56 0.19 0.00

39/1/0 847.42 - -

10/1/0 868.31 - -

M-n121-k7 121 200 1045.16

2/3/2 1047.96 2/3/2 1044.64 0.32 0.00

2
1/7/0 1274.60 1/7/0 1287.52 22.01 23.25

3/2/3 1050.66 - -

1/5/1 1129.40 - -

P-n50-k10 50 100 699.56 10/0/0 700.66 10/0/0 700.66 0.16 0.16 1

P-n55-k15 55 70 991.48 16/0/0 952.02 16/0/0 953.18 0.00 0.12 1

P-n70-k10 70 135 830.02

8/2/0 834.38 8/2/0 843.63 0.53 1.64

2.5

10/0/0 841.56 10/0/0 851.39 1.39 2.57

6/4/0 841.42 - 1.37

9/1/0 844.35 - -

7/3/0 842.36 - -

P-n76-k5 76 280
635.04

1/4/0 638.44 1/4/0 636.40 0.55 0.23

1.3
2/3/0 647.51 2/3/0 653.07 1.97 2.85

4/2/0 696.63 4/2/0 666.60 9.71 4.98

0/5/0 634.97 - 0.00

Average
2.08 1.92

1.95
0.28 0.26
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Table 3: Experimental results for 13 additional VRP instances

Instance name Number of nodes Capacity BKS
MRIG

RPD

Fleet CFG. S/M/L Cost

A-n45-k7 45 100 1147.28

2/2/3 1146.77 0.00

1/4/2 1154.43 0.67

2/3/2 1155.60 0.77

1/5/1 1191.29 3.88

0/5/2 1174.01 2.38

0/6/1 1230.27 7.28

1/7/0 1463.93 27.66

2/4/1 1186.46 3.46

A-n55-k9 55 100 1074.46

3/6/0 1074.46 0.00

4/5/0 1092.88 1.71

6/4/0 1150.04 7.03

A-n60-k9 60 100 1355.8 2/6/1 1357.72 0.14

A-n61-k9 61 100 1039.08

4/6/0 1040.31 0.12

5/5/0 1045.40 0.61

6/4/0 1057.00 1.72

7/3/0 1091.31 5.03

E-n33-k4 33 8000 838.72
0/2/2 837.67 0.00

0/3/1 847.37 1.16

E-n76-k7 76 220 687.60

3/4/0 690.20 0.38

4/3/0 695.26 1.11

5/2/0 705.97 2.67

6/1/0 733.74 6.71

F-n45-k4 45 2010 724.57
1/2/1 723.54 0.00

2/0/2 792.37 9.51

F-n72-k4 72 30000 248.81 4/0/0 241.97 0.00

P-n22-k8 22 3000 601.42
8/1/0 588.79 0.00

9/0/0 647.63 9.99

P-n40-k5 40 140 461.73 5/0/0 461.73 0.00

P-n65-k10 65 130 796.67 10/0/0 797.82 0.14

P-n76-k4 76 350 598.22
0/4/0 600.55 0.39

1/3/0 618.53 3.40

P-n101-k4 101 400 692.28

0/3/1 691.29 0.00

0/4/0 694.67 0.49

1/1/2 703.91 1.83

1/2/1 700.88 1.39

2/3/0 729.90 5.59

Regarding the 13 new instances analysed in this work, the results obtained with our

MRIG approach are provided in Table 3. Notice that even considering the driving-range

limitation, the distance-based cost of the best solution provided by the MRIG in 300

seconds is always similar to the classical BKS for the unconstrained problem. In other

words, using an algorithm such as MRIG, it is frequently possible to find alternative so-

lutions for the VRPMD with greener fleet configurations while, at the same time, these
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solutions offer reasonably low distance-based costs – i.e., similar to the best ones that

can be obtained for the classical VRP without driving-range limitations. Table 3 also

shows that, in 9 out of 13 instances, the MRIG algorithm was able to generate alterna-

tive solutions with greener fleet configurations using less large vehicles. Even in these

cases, the associated distance-based costs obtained by our algorithm are reasonably low.

All in all, this section has shown that our algorithm is able to outperform the previ-

ous existing one for solving the homogeneous version of the VRPMD, both in terms

of distance-based cost as well as in terms of green level of the solutions. Also, from a

managerial perspective, the message is clear: (i) the introduction of EVs – with limited

driving range – in transportation fleets does not have to cause a significant increase in

distance-based costs (at least as far as an intelligent algorithm is used to optimize the

associated routing problem); and (ii) among the different routing plans that such an algo-

rithm can generate in just a few minutes, it is usually possible to choose one that offers

a low distance-based cost while, at the same time, employs less contaminant vehicles.

Despite the clear advantages of our approach, being a metaheuristic algorithm it cannot

guarantee the optimality of the best-found solution. In addition, there is not a unique

way of measuring the green level of a routing solution, since this is still a controversial

concept in the scientific literature Juan et al. (2016).

7 Analysis of results for the heterogeneous HeVRPMD

The proposed algorithm is not only able to outperform the state-of-the-art results for

the homogeneous VRPMD, but it can also solve the realistic heterogeneous version of

the problem (i.e., HeVRPMD). Tables 4 to 6 show the results obtained by the algorithm

when solving the HeVRPMD problem. These tables show the instance name and load-

ing capacity in the homogeneous case Q0 (first column), the best known solution (BKS)

for the classical VRP without driving range limitations (second column), and loading

capacities V S-V M-V L for small, medium, and large vehicles, respectively (third col-

umn). As stated in Section 5.3, heterogeneous instances were generated by considering

V S = 0.8Q0, V M = Q0, and V L = 1.25Q0. The MRIG algorithm provides, for each het-

erogeneous instance, a set of solutions. The solution with the minimum distance-based

cost (DBCost) found by the MRIG is shown in bold and therefore, its corresponding

RPD value is 0. Apart from the solution with the minimum DBCost, two sets of three

solutions each are shown (SetGI1 and SetGI2). These three different fleet configurations

are shown based on the minimum, medium, and maximum number of large vehicles,

noted by Ls, Lm, and Ll , respectively. Green indexes GI1 and GI2 are shown for all the

solutions (sixth and seventh columns for those of SetGI1 and, 11-th and 12-th columns

for those of SetGI2). Therefore, Tables 4 to 6 report between six or seven solutions for

each instance, depending on the case the minimum DBCost solution also belongs to

the set of “green” solutions. At the end of Table 6, the average RPD values are also

shown. About 42% of the solutions provided by MRIG reach the maximum green level
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Table 4: Experimental results for the HeVRPMD.

SetGI1 SetGI2

Instance

name (Q0)

BKS

Cost
VS-VM-VL

Fleet CFG.

S/M/L
DBCost GI1 GI2 RPD

Fleet CFG.

S/M/L
DBCost GI1 GI2 RPD

A-n32-k5(100) 787.81 80-100-125

1/0/3 687.58 0.25 310 0.00

0/0/4Ls 730.19 0.00 400 6.20 0/0/5Ls 1151.57 0.00 500 67.48

1/1/2Lm 695.44 0.43 240 1.14 1/1/3Lm 726.91 0.34 340 5.72

4/2/1Ll 830.40 0.77 200 20.77 2/2/1Ll 738.58 0.68 180 7.42

A-n38-k5(100) 734.18 80-100-125

0/0/4Ls 644.25 0.00 400 0.00 0/1/5Ls 1235.46 0.12 530 91.77

2/1/3Lm 672.16 0.45 350 4.33 2/0/3Lm 676.67 0.40 320 5.03

6/3/0Ll 903.39 0.90 150 40.22 3/3/0Ll 780.15 0.85 120 21.09

A-n45-k7(100) 1147.28 80-100-125

1/0/5 990.18 0.17 510 0.00

0/0/6Ls 1079.11 0.00 600 8.98 1/1/7Ls 1663.92 0.19 740 68.04

3/1/5Lm 1167.23 0.41 560 17.88 2/2/4Lm 1100.33 0.43 480 11.12

5/7/0Ll 1675.26 0.83 260 69.19 1/7/0Ll 1459.94 0.74 220 47.44

A-n55-k9(100) 1074.46 80-100-125

0/0/7Ls 942.84 0.00 700 0.00 1/0/8Ls 1326.54 0.11 810 40.70

4/0/6Lm 1014.94 0.40 640 7.65 1/3/4Lm 968.22 0.39 500 2.69

8/4/0Ll 1272.33 0.90 200 34.95 8/4/0Ll 1272.33 0.90 200 34.95

A-n60-k9(100) 1355.8 80-100-125

0/1/6 1153.56 0.10 630 0.00

0/0/7Ls 1164.19 0.00 700 0.92 0/1/8Ls 1697.11 0.08 830 47.12

2/2/5Lm 1184.15 0.38 580 2.65 1/2/5Lm 1175.03 0.30 570 1.86

5/6/1Ll 1422.37 0.77 330 23.30 2/6/1Ll 1334.07 0.69 300 15.65

A-n61-k9(100) 1039.08 80-100-125

1/0/7 909.60 0.13 710 0.00

0/0/8Ls 935.72 0.00 800 2.87 2/0/8Ls 1323.97 0.20 820 45.55

4/1/5Lm 965.43 0.47 570 6.14 4/2/4Lm 988.82 0.54 500 8.71

11/3/0Ll 1311.24 0.94 200 44.15 9/3/0Ll 1230.46 0.93 180 35.27

A-n65-k9(100) 1181.69 80-100-125

1/0/7 1051.34 0.13 710 0.00

0/0/8Ls 1068.09 0.00 800 1.59 1/1/8Ls 1604.55 0.17 840 52.62

4/0/5Lm 1142.82 0.44 540 8.70 1/4/4Lm 1081.21 0.42 530 2.84

8/5/0Ll 1464.39 0.88 230 39.29 7/5/0Ll 1398.35 0.88 220 33.01

A-n80-k10(100 1766.5 80-100-125

0/1/7 1511.77 0.09 730 0.00

0/0/8Ls 1516.03 0.00 800 0.28 0/0/10Ls 2368.14 0.00 1000 56.65

4/0/7Lm 1674.59 0.36 740 10.77 1/2/6Lm 1533.72 0.27 670 1.45

3/8/1Ll 1948.24 0.72 370 28.87 1/8/1Ll 1857.37 0.66 350 22.86

B-n50-k7(100) 744.78 80-100-125

2/0/4 615.88 0.33 420 0.00

0/0/5Ls 619.18 0.00 500 0.54 1/0/6Ls 952.27 0.14 610 54.62

0/4/2Lm 643.47 0.47 320 4.48 1/2/3Lm 623.59 0.40 370 1.25

9/2/0Ll 950.75 0.95 150 54.37 7/2/0Ll 848.22 0.93 130 37.73

B-n52-k7(100) 750.08 80-100-125

0/0/5Ls 650.00 0.00 500 0.00 1/0/6Ls 948.90 0.14 610 45.98

3/0/4Lm 686.33 0.43 430 5.59 2/2/3Lm 662.08 0.49 380 1.86

5/4/0Ll 802.93 0.87 170 23.53 3/4/0Ll 773.18 0.83 150 18.95

B-n57-k9(100) 1603.63 80-100-125

0/0/7Ls 1317.27 0.00 700 0.00 0/0/9Ls 2183.29 0.00 900 65.74

2/1/6Lm 1337.82 0.30 650 1.56 1/1/6Lm 1324.36 0.21 640 0.54

1/9/2Ll 2013.19 0.61 480 52.83 0/6/2Ll 1565.40 0.53 380 18,84

B-n78-k10(100) 1229.27 80-100-125

0/0/8Ls 1048.11 0.00 800 0.00 0/1/9Ls 1718.67 0.07 930 63.98

4/1/6Lm 1124.33 0.43 670 7.27 2/2/5Lm 1066.13 0.38 580 1.72

6/6/0Ll 1327.24 0.85 240 26.63 6/6/0Ll 1327.24 0.85 240 26.63

E-n22-k4(6000) 375.28 4800-6000-7500

1/1/2 369.19 0.43 240 0.00

0/0/3Ls 377.68 0.00 300 2.30 1/1/3Ls 439.38 0.34 340 19.01

2/0/2Lm 376.90 0.50 220 2.09 1/3/1Lm 373.37 0.62 200 1.13

6/0/0Ll 533.15 1.00 60 44.41 6/0/0Ll 533.15 1.00 60 44.41
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Table 5: Continued - Experimental results for the HeVRPMD.

SetGI1 SetGI2

Instance

name (Q0)

BKS

Cost
VS-VM-VL

Fleet CFG.

S/M/L
DBCost GI1 GI2 RPD

Fleet CFG.

S/M/L
DBCost GI1 GI2 RPD

E-n30-k3 (4500) 535.8 3600-4500-5625

0/1/2 477.66 0.23 230 0.00

0/0/3Ls 507.64 0.00 300 6.28 1/0/4Ls 922.54 0.20 410 93.14

1/1/2Lm 480.54 0.43 240 0.60 2/1/2Lm 480.54 0.54 250 0.60

3/3/0Ll 507.17 0.85 120 6.18 0/3/0Ll 550.91 0.70 90 15.33

E-n33-k4(8000) 838.72 6400-8000-10000

0/0/3Ls 704.32 0.00 300 0.00 1/0/4Ls 930.78 0.20 410 32.15

1/2/3Lm 856.47 0.40 370 21.60 0/0/3Lm 704.32 0.00 300 0.00

2/3/1Ll 998.74 0.68 210 41.80 0/3/1Ll 829.35 0.53 190 17.75

E-n51-k5(160) 524.94 128-160-200

0/0/4Ls 497.74 0.00 400 0.00 1/1/4Ls 656.74 0.28 440 31.94

3/0/3Lm 522.59 0.50 330 4.99 2/1/2Lm 520.60 0.54 250 4.59

7/0/0Ll 598.69 1.00 70 20.28 7/0/0Ll 598.69 1.00 70 20.28

E-n76-k7(220) 687.60 176-220-275

1/0/5 648.07 0.17 510 0.00

0/0/6Ls 1083.78 0.00 600 67.23 0/0/6Ls 1083.78 0.00 600 67.23

4/0/4Lm 695.36 0.50 440 7.30 2/1/3Lm 667.59 0.40 350 3.01

9/0/0Ll 791.22 1.00 90 22.09 9/0/0Ll 791.22 1.00 90 22.09

E-n76-k10(140) 837.36 112-140-175

0/0/8Ls 757.81 0.00 800 0.00 1/1/8Ls 903.53 0.17 840 19.23

5/0/5Lm 824.65 0.50 550 8.82 1/6/3Lm 819.66 0.52 490 8.16

18/0/0Ll 1235.73 1.00 180 63.07 13/0/0Ll 986.11 1.00 130 30.13

E-n76-k14(100) 1026.71 80-100-125

1/0/11 902.69 0.08 1110 0.00

0/0/12Ll 930.71 0.00 1200 3.10 18/0/0Ls 1251.03 1.00 180 38.59

8/0/8Lm 990.48 0.50 880 9.73 4/5/5Lm 988.25 0.54 690 9.48

19/0/0Ls 1238.74 1.00 190 37.23 1/0/12Ll 946.84 0.08 1210 4.89

F-n45-k4 (2010) 724.57 1608-2010-2512

0/0/3Ls 690.89 0.00 300 0.00 2/0/4Ls 1126.57 0.33 420 63.06

2/0/3Lm 714.90 0.40 320 3.48 0/3/2Lm 810.13 0.42 290 17.26

4/2/1Ll 744.86 0.77 200 7.81 3/1/1Ll 860.73 0.74 160 24.58

F-n72-k4(30000) 248.81 24000-30000-37500

0/3/1 237.53 0.53 190 0.00

1/0/3Ls 242.82 0.25 310 2.23 3/0/3Ls 269.56 0.50 330 13.48

2/0/3Lm 250.35 0.40 320 5.40 0/3/1Lm 237.53 0.53 190 0.00

5/0/0Ll 270.60 1.00 50 13.92 5/0/0Ll 270.60 1.00 50 13.92

F-n135-k7(2210) 1170.65 1768-2210-2762

1/0/5 1053.07 0.17 510 0.00

0/0/6Ls 1070.75 0.00 600 1.68 2/0/7Ls 1838.11 0.22 720 74.55

4/0/5Lm 1206.49 0.44 540 14.57 1/2/4Lm 1071.17 0.34 470 1.72

10/2/1Ll 1455.24 0.83 260 38.19 4/3/1Ll 1217.92 0.76 230 15.65

M-n101-k10(200) 819.81 60-200-250

1/0/7 757.61 0.13 710 0.00

0/0/8Ls 787.39 0.00 800 3.93 0/0/8Ls 787.39 0.00 800 3.93

4/2/5Lm 861.15 0.49 600 13.67 4/1/4Lm 790.40 0.52 470 4.33

14/1/0Ll 1122.67 0.98 170 48.19 11/1/0Ll 1014.53 0.98 140 33.91

M-n121-k7(200) 1045.16 60-200-250

1/0/5 953.34 0.17 510 0.00

0/0/6Ls 965.17 0.00 600 1.24 3/0/7Ls 1680.06 0.30 730 76.23

4/0/6Lm 1537.13 0.40 640 61.24 1/2/4Lm 967.07 0.34 470 1.44

4/7/0Ll 1393.23 0.81 250 46.14 1/7/0Ll 1289.11 0.74 220 35.22

P-n22-k8(3000) 601.42 2400-3000-3750

1/1/5 507.16 0.24 540 0.00

0/0/7Ls 524.97 0.00 700 3.51 0/0/7Ls 524.97 0.00 700 3.51

3/2/4Lm 536.91 0.49 490 5.87 2/3/3Lm 541.46 0.51 410 6.76

14/1/0Ll 876.21 0.98 170 72.77 10/1/0Ll 783.15 0.97 130 54.42
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Table 6: Continued - Experimental results for the HeVRPMD.

SetGI1 SetGI2

Instance

name (Q0)

BKS

Cost
VS-VM-VL

Fleet CFG.

S/M/L
DBCost GI1 GI2 RPD

Fleet CFG.

S/M/L
DBCost GI1 GI2 RPD

P-n40-k5(140) 461.73 112-140-175

0/1/3 431.67 0.18 330 0.00

0/0/4Ls 432.23 0.00 400 0.13 2/0/4Ls 584.80 0.33 420 35.47

3/0/3Lm 457.78 0.50 330 6.05 4/0/2Lm 463.83 0.67 240 7.45

6/0/0Ll 514.97 1.00 60 19.30 6/0/0Ll 514.97 1.00 60 19.30

P-n50-k10(100) 699.56 80-100-125

0/0/8Ls 607.39 0.00 800 0.00 0/1/8Ls 658.36 0.08 830 8.39

5/0/5Lm 669.00 0.50 550 10.14 0/6/3Lm 657.15 0.47 480 8.19

13/0/0Ll 805.71 1.00 130 32.65 13/0/0Ll 805.71 1.00 130 32.65

P-n55-k15(70) 991.48 56-70-87

0/0/13Ls 824.21 0.00 1300 0.00 0/1/13Ls 883.51 0.05 1330 7.20

8/0/8Lm 915.58 0.50 880 11.09 3/8/4Lm 919.94 0.57 670 11.62

20/0/0Ll 1126.70 1.00 200 36.70 20/0/0Ll 1126.70 1.00 200 36.70

P-n65-k10(130) 796.67 104-130-162

0/0/8Ls 726.51 0.00 800 0.00 3/0/8Ls 831.83 0.27 830 14.50

5/0/5Lm 779.95 0.50 550 7.36 0/6/3Lm 766.30 0.47 480 5.48

13/0/0Ll 931.96 1.00 130 28.28 13/0/0Ll 931.96 1.00 130 28.28

P-n70-k10(135) 830.02 108-135-196

0/0/8Ls 760.93 0.00 800 0.00 1/1/8Ls 916.60 0.17 840 20.46

5/0/5Lm 821.68 0.50 550 7.98 1/6/3Lm 812.82 0.52 490 6.82

13/0/0Ll 969.13 1.00 130 27.36 13/0/0Ll 969.13 1.00 130 27.36

P-n76-k4(350)
598.22 280-350-437

1/1/2 594.64 0.43 240 0.00

0/0/4Ls 695.78 0.00 400 17.01 2/1/4Ls 935.17 0.39 450 57.27

2/0/2Lm 606.86 0.50 220 2.06 0/2/2Lm 597.13 0.35 260 0.42

8/0/0Ll 744.71 1.00 80 25.24 8/0/0Ll 744.71 1.00 80 25.24

P-n76-k5(280) 635.04 224-280-350

0/0/4Ls 601.29 0.00 400 0.00 2/0/5Ls 974.60 0.29 520 62.09

3/0/3Lm 632.18 0.50 160 5.14 1/3/2Lm 646.81 0.52 300 7.57

8/0/0Ll 767.63 1.00 80 27.66 8/0/0Ll 767.63 1.00 80 27.66

P-n101-k4(400) 692.28 320-400-500

0/0/3Ls 679.68 0.00 300 0.00 3/1/4Ls 983.43 0.46 460 44.69

2/0/2Lm 711.54 0.50 220 4.69 2/2/2Lm 690.92 0.57 280 1.65

11/0/0Ll 1004.26 1.00 110 47.76 11/0/0Ll 1004.26 1.00 110 47.76

Average

3.94Ls 45.04Ls

8.85Lm 4.62Lm

35.31Ll 27.19Ll

regarding index GI1. Moreover, MRIG is able to provide routes with a lower cost than

the ones in the homogeneous case. This is due to an increase in the loading capacity

of vehicles of type L. For a randomly selected subset of 20 instances, Figure 5 shows

a scatter-plot of distance-based cost (DBCost) versus green level (as measured by the

GI1 index). The left point (circle) in each panel represents the best solution in terms

of distance-based cost, while the right point (square) represents an alternative ‘greener’

solution (i.e., one with a higher value of GI1). Notice that it is usually possible to choose

a greener solution without having to assume a noticeable increase in the distance-based

cost (instances E-n76-k10, F-n72-k4, P-n101-k4, or P-n40-k5 are good examples). Just

in a few cases (e.g., instance M-n121-k7), a noticeable increase in the green level might

also require paying a much higher distance-based cost.

Finally, Figure 6 illustrates eight alternative fleet configurations for the A-n45-k7

instance. The auxiliary index GI2i = 1/GI2 has been employed instead of GI2 to fa-
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Figure 5: A comparison of best DBCost solutions (circles) and ‘greener’ alternatives (squares).

Figure 6: Cost and green indexes values of eight alternative fleet configurations for instance A-n45-k7.
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cilitate the readability of the figure (i.e., higher values of both GI1 and GI2i represent

greener configurations). In this figure, we can see that the best configuration, in terms of

distance-based cost, is 2/2/3. However, the green level of the other solutions is higher.

Therefore, the decision-maker could prefer alternative configurations such as 2/3/2 and

2/4/1. The latter two solutions offer greener configurations without a significant in-

crease in distance-based cost. This illustrative plot shows how decision-makers can ben-

efit from being able to choose from alternative fleet configurations with different green

levels.

8 Conclusion and future work

The paper has introduced a realistic version of the vehicle routing problem in which hy-

brid fleets of gas and electric vehicles are considered. The introduction of electric vehi-

cles in the model offers clear benefits in terms of making transportation more environment-

friendly. However, due to the limited driving-range capabilities of electric batteries, the

use of these vehicles also imposes new challenges that need to be solved. We have

proposed a novel metaheuristic, MRIG, to solve both the homogeneous and heteroge-

neous version of the vehicle routing problem with multiple driving ranges. Our MRIG

algorithm has outperformed the state-of-the-art results in the case of the homogeneous

version. In addition, our approach has been able to solve the heterogeneous version too.

This version considers hybrid fleets of vehicles with both different driving ranges and

loading capacities.

The metaheuristic is designed to generate a set of fleet configurations with different

green levels including small- and medium-driving range electric vehicles instead of gas-

fueled vehicles. This solution can be used by decision-makers to help them choose the

fleet configuration that fits best with their needs among a set of provided solutions. In

some cases, greener configurations might have a higher distance-based cost, but the

extensive experiments carried out in this paper showed that it is frequently possible to

choose a greener configuration without a significant increase in the distance-based cost.

We highlight here some research directions to extend this work, based on considering

more realistic variants thus, following a common trend in logistics Solos, Tassopoulos

and Beligiannis (2016); Solano-Charris, Prins and Santos (2015). First, we aim to design

a multi-objective optimization problem and method Martin et al. (2009) to optimize both

the distance-based cost and green level of the fleet configuration. Additionally, we will

consider the development of a stochastic model and the corresponding solving approach

in the presence of uncertainty (e.g., random demands or random traveling times).
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