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Modelling multivariate, overdispersed count data

with correlated and non-normal heterogeneity

effects

Iraj Kazemi1 and Fatemeh Hassanzadeh2

Abstract

Mixed Poisson models are most relevant to the analysis of longitudinal count data in various

disciplines. A conventional specification of such models relies on the normality of unobserved

heterogeneity effects. In practice, such an assumption may be invalid, and non-normal cases are

appealing. In this paper, we propose a modelling strategy by allowing the vector of effects to fol-

low the multivariate skew-normal distribution. It can produce dependence between the correlated

longitudinal counts by imposing several structures of mixing priors. In a Bayesian setting, the es-

timation process proceeds by sampling variants from the posterior distributions. We highlight the

usefulness of our approach by conducting a simulation study and analysing two real-life data sets

taken from the German Socioeconomic Panel and the US Centers for Disease Control and Pre-

vention. By a comparative study, we indicate that the new approach can produce more reliable

results compared to traditional mixed models to fit correlated count data.
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1 Introduction

An important class of models for count data, in the presence of over-dispersion, is the

mixed Poisson. The class includes several popular mixed-Poisson models in terms of

choosing mixing priors for unobserved heterogeneity effects. The normal mixing prior

was originally introduced by Bulmer (1974) and developed by many others, such as

Guo and Trivedi (2002), Miller (2007), and Montesinos et al. (2017) among others. The

mixing strategy generates a marginal distribution of longer-tailed than the routinely used

Gamma prior, which creates the negative binomial (NB) model (Gonzales-Barron and

Butler, 2011). It is also useful in analysing specific over-dispersed count response vari-
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ables (Izsák, 2008; Williams and Ebel, 2012). A familiar list of several mixed Poisson

distributions is presented by Karlis and Xekalaki (2005), Nadarajah and Kotz (2006a),

and Nadarajah and Kotz (2006b). Further models detailed in Kuba and Panholzer (2016)

and Cameron and Trivedi (2013).

Count data analysis may involve dealing with both the occurrence of over-dispersion

and the correlation between repeated outcomes. A comprehensive overview of the dis-

crete correlated data analysis is provided by Molenberghs, Verbeke and Demetrio (2007)

with a discussion on computational issues and the inclusion of many practical applica-

tions. In longitudinal studies, the presence of heterogeneity effects is an indication of

correlated responses of each subject over time and possibly a sign of over-dispersion. In

this scenario, a regular choice to explain variability is the Poisson-multivariate normal

(PMN) model, wherein the distribution of effects is assumed to be multivariate nor-

mal (e.g., see Chib and Winkelmann, 2001; El-Basyouny and Sayed, 2009; Wu, Deng

and Ramakrishnan, 2018). Then, the problem turns to solving an intractable marginal

likelihood and requiring advanced computational techniques, such as the Markov chain

Monte Carlo (MCMC) in the Bayesian framework.

The associated literature reveals that the multivariate normal is the most adopted

mixing prior distribution to the heterogeneity effects. However, it is unlikely to lead al-

ways to the best-fitted model. It was our leading motivation to extend the PMN model

by setting the multivariate skew-normal mixing prior (Azzalini, 1985; Sahu, Dey and

Branco, 2003) for the conditional mean of the Poisson model. The proposed Poisson

multivariate skew-normal (PMSN) regression model includes a vector of skewness pa-

rameters. Thus we can directly introduce it through an additional hierarchy level to the

PMN model. Also, depending on the specific multivariate skew-normal mixing prior,

we can define various types of the PMSN model. The proposed model includes Pois-

son and the PMN as its special cases. Also, the PMSN model reduces to the Poisson

skew-normal (PSN) model when unobserved heterogeneity effects are assumed to be

independent by introducing a skew-normal mixing prior distribution to the structure of

the mixed Poisson model. Specifically, our findings show that the proposed model with

various values of the skewness parameter has different performances. In particular, over-

dispersion in counts increases as the value of the skewness parameter increases. Results

reveal that the PSN over-dispersion is less (more) than the Poisson normal (PN) over-

dispersion provided that the skewness parameter being negative (positive). It illustrates

that the PSN regression model may be more flexible than the PN model if a count data

set exhibits over-dispersion.

From a Bayesian perspective, the proposed models can appear hierarchically to ease

the implementation of the Gibbs sampler technique. Also, we use a stochastic represen-

tation for the conditional mean of the Poisson regression. It simplifies Bayesian compu-

tations due to having the complete conditional posteriors, involved in the Gibbs sampler,

in closed forms of known distributions. The Bayesian analysis of correlated count data

by fitting the PMN model (e.g., Rizzato et al., 2016) is a specific case of our proposed

model. The model fitting is performed by OpenBugs software version 3.2.3, which is
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an excellent platform for Bayesian inference using the Gibbs sampler algorithm (e.g.,

Lunn et al., 2009).

The article is organized as follows. In Section 2, we introduce the PSN model with

independent heterogeneity effects for the analysis of count data. In Section 3, mixed-

Poisson models with various multivariate skew-normal mixing priors are illustrated for

longitudinal count data. In this section, we also emphasize the identification issue in

mixed-Poisson models. In Section 4, we present Bayesian mixed models hierarchically

to derive the complete conditional posteriors required to implement the Gibbs sampling

approach. In Section 5, we conduct a simulation study to compare proposed models

with some competing ones. In Section 6, we fit proposed models for the specific data

sets taken from follow up studies on the national medical expenditure survey and the

polio data. Section 7 gives some concluding remarks.

2 A new modelling methodology to the count data analysis

Assume that the count response Yit , conditioned on the effect uit for subject i = 1, · · · ,n
and at time t = 1, · · · ,T , follows a Poisson distribution with mean exp(θit), where

θit = x′itβββ + uit , xit is a k-dimensional vector of covariates, and βββ is a k-dimensional

vector of coefficients. Moreover, the effects uit , defined on the whole real line, are as-

sumed to follow a common probability distribution function (pdf) G(uit |ηηη), where ηηη is a

vector of parameters that characterize G(·). The marginal density of Yit is called a mixed

Poisson density with the probability mass function (pmf) given by integrating out the ef-

fects uit . The normal mixing prior for uit leads to the well-known Poisson normal (PN)

model. Here, we extend the methodology by letting the mixing prior be skew-normally

distributed with the following specification.

Definition 1 The random variable uit , for subject i = 1, · · · ,n and at time t = 1, · · · ,T ,

follows the skew-normal distribution, denoted by uit
iid∼ SN

(

ξ,σ2,δ
)

, if the density func-

tion of uit is given by

gSN

(

uit |ξ,σ2,δ
)

= 2ϕ
(

uit |ξ,σ2 + δ2
)

Φ
(

δ (uit − ξ)
σ
√
σ2 + δ2

)

, (1)

with location parameter ξ ∈R, scale parameterσ2 ∈R
+ and skewness parameter δ ∈R,

where ϕ(·) denotes the pdf of N
(

ξ,σ2 + δ2
)

and Φ(·) denotes the cumulative density

function (cdf) of the standard normal (Azzalini, 1985; Sahu et al., 2003).

Using usual statistical methods the following basic properties of density (1) hold.
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Properties 1

i. For δ = 0, the original normal mixing prior is retrieved; for δ > 0, positively

skewed and for δ < 0, negatively skewed mixing priors are obtained. Figure 1

confirms these results.

ii. The hierarchical representation of uit is shown to be uit |zit
ind∼ N

(

ξ+ δzit ,σ
2
)

with

Zit
iid∼ HN (0,1), where HN denotes the half-normal distribution. This property

helps us to generate a random variable that follows the skew-normal distribution

and consequently to implement the McMC approach easily.

iii. The r-th moment of wit = exp(uit), for any real r, is finite and equivalent to the

moment generating function (MGF) of the skew-normal distribution. This is ex-

plicitly given by mr = E (wr
it) = 2Φ(δr)exp(rξ+ 1

2
r2
(

σ2 + δ2
)

). In particular, the

mean and variance of w are µw = m1 and σ2
w = m2 −m2

1, respectively.

Without loss of generality, we set ξ = 0 then in what follows we use notation SN
(

σ2,δ
)

for simplicity. This defines the Poisson skew-normal (PSN) regression model as follows,

where ′ denotes vector transpose.

Definition 2 Let for subject i = 1,2, · · · ,n and at time t = 1,2, · · · ,T the count variable

Yit |uit
ind∼ Pois(exp(θit)), where θit = x′itβββ+uit and uit

iid∼ SN
(

σ2,δ
)

. Then, the pmf of Yit

is of the form

fPSN

(

yit |βββ,σ2,δ
)

=
∫ ∞

−∞
fPois (yit |uit ,βββ)gSN

(

uit |σ2,δ
)

duit , (2)

where fPois (yit |uit ,βββ) is the conditional pmf of Poisson given uit . We denote Yit
ind∼ PSN

(

βββ,σ2,δ
)

.

Clearly, the PN model is a special case of (2) when δ = 0. Let µit = exp(x′itβββ). By

conducting algebraic operations, some properties of (2) are shown below in which any

clear proof is omitted.

Properties 2

i. The mean and variance of Yit are shown to be E (Yit) = µitµw and var(Yit) =
µit

(

µw +µitσ
2
w

)

so that the heterogeneity factor is
(

µw +µitσ
2
w

)

/µw.

ii. The PSN is unimodal.

Proof. Since the skew-normal is unimodal thus the marginal mixed Poisson is also

unimodal (Holgate, 1970).

iii. The PSN tends to Pois(µit) as both σ2 and δ tend to zero.

Proof. The normal mixing prior is regained for uit as δ→ 0. Then, using the trans-

formation vit = exp(uit/σ), the pmf (2) can be written as Evit
{ fPois (yit |µitv

σ
it )},
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where vit is log-normally distributed with fvit
(vit) = 2ϕ(log(vit)), vit ∈R+. Taking

limit as σ2 → 0+ this expectation becomes fPois (yit |µit).

iv. For fixed µit and non-zero δ, let σ2 → 0+. Then (2) tends to a mixed Poisson

density with a truncated normal mixing density supported on the left-bounded

interval (0,∞), for δ > 0, and on the right bounded interval (−∞,0), for δ < 0.

Proof. We first derive the limiting case of gSN

(

uit |σ2,δ
)

as σ2 → 0+. It is easy to

show that the density tends to g1 (uit |δ) = 2ϕ
(

uit |0,δ2
)

for sign(uitδ) = 1, and to

0 otherwise, where sign(·) denotes the sign function. Thus, the random variable

Yit follows a mixed Poisson (2) with the mixing prior g1.

v. For fixed µit and σ2 the probability Pr (Yit = 0) is a decreasing function of δ.

Proof. By setting yit = 0 in (2) and taking the transformation Zit = log(wit), the

first derivative of the probability of zero is given by

∂
∂δ

fPSN

(

0|βββ,σ2,δ
)

=
σ2

√
σ2 + δ2

EZit

(

Zite
−µit e

Zit
)

,

where Zit ∼ N
(

0,σ2
)

. The involved expectation is shown to be negative. Then,

after some manipulation twice of this expectation turns into E

(

|Zit |e−µit e
|Zit |
)

−

E
(

|Zit |e−µit e
−|Zit |

)

. This expression is negative since the first expectation is less

than the second one. This property is also illustrated by Figure 1.

vi. The probability of Yit being zero is greater than the corresponding probability for

a Poisson distribution with the same mean µitµw.

Proof. We have fPSN

(

0|βββ,σ2,δ
)

=Ewit
(e−µitwit ) and by using the Jensen’s inequal-

ity, this becomes greater than e−µitµw = fPois (0|µitµw).

Figure 1 indicates the pmf of PSN for µit ≡ µ = 3, σ2 = 1 and δ = −2,−1,0,1,2. It is

seen that the PSN is skewed right. Also, the tail of the PSN distribution is longer than

Figure 1: (a) Probability density functions of the skew-normal distribution (b) Probability mass

functions of the PSN distribution.
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the tail of the PN distribution for positive values of δ, while is shorter for negative values

of δ. Furthermore, the probability of zero counts increases as δ decreases.

The dispersion index, defined by the ratio of the variance to the mean, is given by

DIit

(

µit ,σ
2,δ
)

=
var(Yit)

E (Yit)
= 1+µite

1
2(σ

2+δ2)

{

Φ(2δ)e(σ
2+δ2)−2Φ2 (δ)

Φ(δ)

}

. (3)

This indicates that DIit > 1, with strict inequality if the mixing distribution is non-

degenerate, i.e., the mixing strategy can deal with additional variation present in count

data. If δ = 0 then (3) reduces to the DI of the PN regression model, denoted by

DIit

(

µit ,σ
2,0
)

. The difference between the dispersion index of two densities,

DDIit

(

µit ,σ
2,δ
)

= DIit

(

µit ,σ
2,δ
)

−DIit

(

µit ,σ
2,0
)

, is shown in Figure 2. Negative and

positive values of DDIit show an advantage over the PN model. This indicates that the

proposed model is more flexible than the PN model for dealing with over-dispersion in

count data. Specifically, we set µit ≡ µ= 3, σ2 = 1 and δ ∈ (−1,1) that gives DDI (δ) ∈
(−2.446,47.769). Figure 2 illustrates that the PSN dispersion index is more than the PN

dispersion index provided that δ > 0 while the difference DDI (δ) is negative for δ < 0.

The differences increase as δ increases. We can also show by graphical techniques that if

δ < 0 then the quantity DDI (δ) is positive over σ2 ∈
(

0,σ2
0

)

for some small σ2
0 , whereas

it is always negative over an interval σ2 ∈
(

σ2
0 ,∞
)

. For any fixed δ the absolute value of

DDI(δ) increases as σ2 increases. Also, DDI(δ) < 0 for δ < 0, while DDI(δ) > 0 for

δ > 0. These graphics are not shown here to save space.

Figure 2: Difference between the DIs for (a) negative and (b) positive values of δ.
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3 The proposed multivariate strategy for correlated count data

In longitudinal studies to count data, responses of each subject over time are usually

correlated due to the existence of subject heterogeneity effects. Also, there may be evi-

dence of over-dispersion in the structure of count responses. In many applications, there

are situations where over-dispersion and the correlation between repeated outcomes can

simultaneously occur. Here, we propose the multivariate skew-normal mixing prior dis-

tribution in the mean structure of mixed Poisson models to make a more adaptable anal-

ysis of correlated count responses. This strategy proceeds within the context of Bayesian

hierarchical modelling together with several constructed specifications to fit related re-

gression models. The specification of these proposed Poisson multivariate skew-normal

(PMSN) models relies mostly on making different assumptions for the underlying mul-

tivariate skew-normal mixing priors.

3.1 The multivariate skew-normal mixing priors

Definition 3 A T-dimensional random vector u follows the multivariate skew-normal

distribution with location vector ξξξ ∈ R
T , positive-definite scale matrix V, and skewness

vector δδδ = (δ1,δ2, · · · ,δT )
′ ∈ R

T , if its pdf is of the form

f (ui|ξξξ,V,δδδ) = 2ϕT

(

ui|ξξξ,V + δδδδδδ′
)

Φ

(

δδδ′V−1 (ui − ξξξ)
√

1+ δδδ′V−1δδδ

)

, (4)

where ϕT (.) is the pdf of T-variate normal and Φ(·) is the standard normal cdf. We

denote ui ∼ SNT (ξξξ,V,δδδ).

The density function (4) defines an attractive alternative to the multivariate skew-

normal distribution introduced previously by Sahu et al. (2003) since instead of the

evaluation of complex function ΦT (·), one needs only to compute one dimensional in-

tegral Φ(·). The Poisson multivariate normal (PMN) model is a special case of (4) when

δδδ = 0.

Properties 3 The following properties hold for ui ∼ SNT (ξξξ,V,δδδ):

i. The hierarchical representation is given by

ui|Zi = zi
ind∼ NT (ξξξ+ δδδzi,V) with Zi

iid∼ HN (0,1) , (5)

Thus, the mean vector and covariance matrix of ui can be derived relatively easy.

We obtain E (ui) = ξξξ+ δδδ
√

2
π
,and var(ui) = V+

(

1− 2
π

)

δδδδδδ′.
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ii. For any vector r =(r1, · · · ,rT )
′ ∈ R

T the MGF is found to be

E

(

er′ui

)

= 2Φ(r′δδδ)exp

{

r′ξξξ+
1

2
r′Vr+

(

δδδ′r
)2

}

. (6)

Now, let wit = exp(uit) be an element of the vector wi = (wi1, · · · ,wiT )
′
. Equation

(6) is equivalent to E
(

∏T
t=1 w

rt
it

)

which shows that all moments of wit , including

E (wi) = µµµw =
(

µwi1
, · · · ,µwiT

)′
and var(wi) = Dw, can be found easily. Specifi-

cally, putting the t-th element of r equal to one and zero otherwise, gives µwit
, and

when rt = rs = 1 and 0 otherwise, E (witwis) is attained. In fact, we derive

µwit
= 2Φ(δt)e

1
2(δ

2
t +σtt), (7)

σwts = 2e
1
2(δ

2
t +δ

2
s +σtt+σss)

{

eδtδs+σtsΦ(δt + δs)−2Φ(δt)Φ(δs)
}

,

where the σwts and σts are, respectively, elements of Dw and V.

iii. Let c = a′ui for any a ∈R
T then c follows the univariate skew-normal distribution,

i.e. c ∼ SN (a′ξξξ,a′Va,a′δδδ).

Without loss of generality, in what follows we set ξξξ = 0 and denote ui ∼ SNT (V,δδδ)

for simplicity. In model multivariate skew-normal specified by (4) no specific form of

V and δδδ is introduced in the data analysis process. It is mostly advisable in practice

to explore possible causes of heterogeneity by allowing some specific forms for the

uit’s. Without having any knowledge on the source of heterogeneity, a priori justification

is to allow uit’s being into the one-way random effects framework. More specifically,

let the ui be of the familiar form ui = αi1T + εεεi, where 1T denotes a unit vector of

order T, the αi represent the heterogeneity effects and the εεεi = (εi1, · · · ,εiT )
′
denote the

residual terms that may reflect time-varying effects such as the effect of unobserved

omitted covariates. In this setting, we specify the following types of the multivariate

skew-normal distribution.

Remark 1 For the above specified multivariate skew-normal model, let αi
iid∼ N

(

0,σ2
α

)

and εεεi
iid∼ SNT (Vε,δδδ) be all mutually independent. Then ui

iid∼ SNT (D,δδδ) where D =
σ2
α1T 1′T +Vε.

For the case with Vε diagonal, we obtain

corr(wit ,wis) =
eδtδs+σ

2
αΦ(δt + δs)−2Φ(δt)Φ(δs)

√

eσtt+δ2
t +σ

2
αΦ(2δt)−2Φ2 (δt)

√

eσss+δ2
s +σ

2
αΦ(2δs)−2Φ2 (δs)

, (8)

for any t 6= s. Note that, the correlation coefficient (8) may take negative or positive

values in the interval (-1,1).
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Remark 2 For the familiar form ui = αi1T +εεεi, let αi
iid∼ SN

(

σ2
α,δ
)

and εεεi
iid∼ NT (0,Vε)

be all mutually independent. Then ui
iid∼ SNT (D,δ1T ).

The correlation between wit and wis is a special case of (8) when δt and δs are replaced

by constant δ for all t,s.

3.2 The Poisson multivariate skew-normal model

Let Yit be the response variable and uit be the corresponding heterogeneity effect of

subject i at time period t for i = 1,2, · · · ,n and t = 1,2, · · · ,T . The scheme of a PSN

regression model in (2) allows for over-dispersion in the Poisson model but without tak-

ing into account the correlation among events. A common way to deal with this issue is

to allow the vector ui = (ui1, · · · ,uiT )
′

to follow a multivariate distribution with corre-

lation amongst ui1, · · · ,uiT , and consequently induce correlated Yi1, · · · ,YiT . A frequent

assumption is multivariate normality of the ui. An alternative is to utilize a multivariate

skew-normal distribution. Several versions of the multivariate skew-normal distribution,

originally introduced by Azzalini and Dalla Valle (1996), have appeared in the literature.

We present below a slight alteration of this distribution and provide its main properties

that are related to our current work.

Definition 4 Let the response vectors Yi = {Yit} of order T be independent for subjects

i= 1, · · · ,n and each Yit conditioned on the effect ui follows Poisson with the conditional

mean exp(θit), where θit = x′itβββ+uit and ui = {uit} iid∼ SNT (V,δδδ). Then the marginal pmf

of Yi is given by

fPMSN (yi|βββ,V,δδδ) =
∫

RT

T

∏
t=1

fPois (yit |uit ,βββ)gMSN (ui|V,δδδ)dui, (9)

where gMSN (ui|V,δδδ) denotes the multivariate skew-normal density function for the i-th

subject. We denote (9) as model PMSN1.

The solution of (9) is not generally available in closed form. Thus, an MCMC scheme

is implemented later to make statistical inferences. Furthermore, through standard cal-

culation (see the supplementary Appendix A) we can straightforwardly show that

E (Yi) = Miµµµw, and var(Yi) = MiDwMi +MiMw, (10)

where Mw and Mi are diagonal matrices with the elements µwit
and µit for t = 1,2, · · · ,T ,

respectively. The corresponding correlation coefficients between counts Yit and Yis are
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given by

corr(Yit ,Yis) = corr(wit ,wis)

√

µit

µit +
µwit
σwtt

√

µis

µis +
µwis
σwss

, (11)

for all i, t, and s. Equation (11) shows that the two correlations corr(Yit ,Yis) and

corr(wit ,wis) have the same sign and that |corr(Yit ,Yis)| < |corr(wit ,wis)|. Also, nega-

tive and positive correlations are allowed by using these mixed models. This fact gives

an advantage over other multivariate models for discrete outcomes such as multinomial

or negative multinomial models that allow only positive correlation. We specify below

two types of the PMSN1 model.

Definition 5 Let ui
iid∼ SNT (D,δδδ). We denote the corresponding model as PMSN2.

The mean vector and covariance matrix of Yi are derived to be particular cases of

(10) and setting (7) in which the scalar σts, for t,s = 1,2, · · · ,T , turns into σts + σ2
α,

i.e. elements of D. In this model, the corresponding correlation coefficient may take

negative or positive values.

Definition 6 Let ui
iid∼ SNT (D,δ1T ). We denote the corresponding model as PMSN3.

By utilizing the correlation between wit and wis, the resultant equation is always

positive showing that PMSN3 permits only positive correlation between events. For a

model with only constant term (no explanatory variable) Equations (10) can be sim-

plified as var(Yit) = cµvµψ + c2
(

σ2
ψσ

2
v +µ

2
vσ

2
ψ+µ

2
ψσ

2
v

)

, cov(Yit ,Yis) = c2µ2
vσ

2
ψ, t 6= s

where c = exp(β0) and parameters µv, σ2
v , µψ and σ2

ψ denote, correspondingly,means

and variances of vit = exp(εit) and ψi = exp(αi) in ui = αi1T + εεεi. It follows that

corr(Yit ,Yis) =
cµ2

vσ
2
ψ

1+ c
(

σ2
ψσ

2
v +µ

2
vσ

2
ψ+µ

2
ψσ

2
v

) , t 6= s. (12)

If the estimate of (12) is statistically significant then the PMSN model fits better to the

data set than the standard Poisson regression model.

3.3 An alternative to deal with the identification issue

In the literature of mixed Poisson models the identification is usually addressed by al-

lowing a restriction to the estimation process in order to make estimable the model

parameters. To clarify this, let the count Yit , for subject i = 1,2, · · · ,n and at time t =

1,2, · · · ,T , follows the PSN distribution in (2), where log(E(Yit)) = x′itβββ+ log(µw). A

common approach used by many researchers (e.g. see Balakrishnan and Peng, 2006)

is to reparameterize the mixing distribution such that µw = 1 to ensure that the loga-
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rithm of the marginal expectation of counts is x′itβββ. This is equivalent to solving the

nonlinear equation 2Φ(δ) = exp
{

−0.5
(

δ2 +σ2
)}

for δ. However, this method does

not work well when the expectation of exponentiated unobserved heterogeneity has a

complex structure. Also, it may cause difficulties in the process of optimization rou-

tines for the reparameterized model. Thus, we use an alternative trick by setting the

regression parameter β0 to be equal to log(µw). A similar trick can be done for models

PMSN1–PMSN3 by setting β0t = log(µwt ) since µwt depends on time t.

4 The computational scheme

This section develops an operational MCMC scheme for the Bayesian analysis of the

proposed regression models. We utilize the Bayesian data-augmentation method (e.g.,

Albert and Chib, 1993), which lets us generate the heterogeneity effects along with other

known quantities in the simulation process. We use the hierarchical representation of all

models to write down the joint likelihood of responses and heterogeneity effects. This

representation is quite useful to estimate parameters by using the MCMC technique. To

complete the model specifications from a Bayesian perspective, we assume that all pa-

rameters are independent. Then, we assign conditionally semi-conjugate priors to these

parameters. This choice simplifies computations since the complete conditional poste-

riors involved in the Gibbs sampler are mostly closed forms of known distributions and

hence easy for simulation. It this section, we let Zit
iid∼ HN (0,1) and Zi

iid∼ HN (0,1).

4.1 Bayesian computation for independent data

To fit the PSN model, we use the data augmentation to θit based on the hierarchical

representation of the skew-normal distribution given in Properties 1 (ii). The related

hierarchical form becomes

Yit |θit
ind∼ Pois(exp(θit)) , (13)

θit |zit ,βββ,σ
2,δ

ind∼ N
(

x′itβββ+ δzit ,σ
2
)

,

for subject i = 1,2, · · · ,n and at time t = 1,2, · · · ,T . By adopting all parameters to

be independent, we assign the priors βββ ∼ Nk

(

βββ0,Vβββ

)

, δ ∼ N
(

δ0,σ
2
δ

)

, and an inverse-

Gamma, IG(ν0,ν0), for σ2, where all hyperparameters are known. The joint posterior

density of βββ, σ2 , δ, θθθ = (θθθ1, · · · ,θθθn)
′

and z = (z1, · · · ,zn)
′

with θθθi = (θi1, · · · ,θiT )
′

and

zi = (zi1, · · · ,ziT )
′
is then given by

π
(

βββ,σ2, δ,θθθ,z
)

∝
n

∏
i=1

T

∏
t=1

fPois (yit |θi)ϕ
(

θit |x′itβββ+ δzit ,σ
2
)

(14)

ϕ(zit |0,1) I (zit > 0) × ϕk

(

βββ|βββ0,Vβββ

)

ϕ
(

δ|δ0,σ
2
δ

)

fIG

(

σ2|ν0,ν0

)

.
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The marginal posterior is derived by integrating out θθθ and z from (14). This posterior

is analytically intractable and the solution requires implementing advanced numerical

integration techniques or utilizing the MCMC procedures, such as Gibbs sampling. The

Gibbs sampling algorithm simulates iteratively from the complete conditional poste-

rior distribution of each unknown stochastic parameter, or quantity, conditioned on the

remaining parameters and unknown quantities. The complete conditional posterior dis-

tributions are given in the supplementary Appendix B.

4.2 Bayesian computation for the correlated data

Here, we use the following hierarchical representation of the defined models. The Gibbs

sampling to fit model PMSN1 is implemented as follows.

The PMSN1 model. Consider the hierarchical form

Yit |θit
iid∼ Pois(exp(θit)) , (15)

θθθi|zi,βββ,V,δδδ
ind∼ NT (Xiβββ+ δδδzi,V) ,

for subject i = 1,2, · · · ,n and at time t = 1,2, · · · ,T . Assuming the multivariate normal

prior for βββ, the inverse-Wishart IWT (Ω,m) for matrix V, and NT (δδδ0,Vδδδ) for the vector

of skewness parameters δδδ, where all hyper-parameters are assumed to be known, we

derive the related complete conditional posteriors as given in the supplementary Ap-

pendix B. The specification of models PMSN2 and PMSN3 are given below by using

the multivariate skew-normal mixing prior.

The PMSN2 model. The hierarchical form of PMSN2 is

Yit |θit
ind∼ Pois(exp(θit)) , (16)

θθθi|αi,zi,βββ,Vε,δδδ
ind∼ NT (Xiβββ+αi1T + δδδzi,Vε) ,

αi
iid∼ N

(

0,σ2
α

)

.

The PMSN3 model. The hierarchical form of PMSN3 is

Yit |θit
ind∼ Pois(exp(θit)) , (17)

θθθi|αi,zi,βββ,Vε,δ
ind∼ NT (Xiβββ+αi1T ,Vε) ,

αi|zi
ind∼ N

(

δzi,σ
2
α

)

.

The Bayesian computational details of mixed Poisson models PMSN2 and PMSN3,

including priors and complete conditional posteriors, are given in supplementary Ap-

pendix B. All complete conditional posteriors, except for θθθ, appear in closed forms

of known distributions and thus random samples can easily be generated. However,
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drawing samples from the posterior of θθθ maybe done by the accept-reject algorithm

(Gilks and Wild, 1992) or by the Metropolis-Hastings algorithm within the Gibbs sam-

pler (Chib and Greenberg, 1995). Thus, the Gibbs sampler proceeds by simulating a se-

quence of samples from the complete conditional posteriors. The sampler simulates iter-

atively from these posteriors by running a sufficient burn-in period until convergence to

stationary distributions occurs. Then, the average of samples for each parameter is used

as its Bayes estimate. Convergence is monitored via MCMC chain histories, Gelman-

Rubin diagnostic, autocorrelation, and density plots.

5 Comparative studies using simulation

We conduct two simulation studies to highlight the usefulness of proposed models.

Specifically, we design Monte Carlo experiments to underline the important role of the

skewness parameter and the structure of covariance matrices. We also make compar-

isons between competing models. To implement the Gibbs sampler, the following in-

dependent priors are adopted: N(0,100) for the regression coefficients as well as for

δ, Uniform(−1,1) for ρ, and Inverse-Gamma(0.01,0.01) for the variance components.

Using the OpenBUGs software version 3.2.3, we run 10,000 samples after removing

5,000 burn-in until the convergence occurs. There was no evidence of lack of conver-

gence based on examinations of histories, Gelman-Rubin diagnostic, kernel density, and

autocorrelation plots. Also, by using various values of hyperparameters, we obtained

similar results, which implies that posterior estimates are not sensitive to the prior in

this Bayesian analysis.

a. The simulated model is PMSN1: We generated 1,000 independent Monte Carlo

data sets from model PMSN1 with n = 100 sample size. Consider the longitudinal data

model

Yit |θit
ind∼ Pois(exp(θit)) with θit = β0 +β1Xi1 +β2Xit2 +uit , (18)

for subject i = 1,2, · · · ,100 and at time t = 1,2, · · · ,5. Random counts are generated

according to (9), where ui
iid∼ SN2 (V,δδδ) with δδδ′ = δ1′5 and V =

{

σ2ρ|t−s|} for t,s =

1,2, · · · ,5. The time-constant covariate Xi1 is generated by Bernoulli(0.5) and the time-

varying covariate Xit2 by N (0,1). For all experiments, θit was computed by setting

β1 = −1 and β2 = 1. We set ρ = 0.5, σ2 = 0.36, and δ = −0.8, 0, 0.8. Taking into ac-

count the identification issue, we obtain β0 =−0.36,0.18 and 0.96, respectively. Results

are reported in Tables 1 and 2 along with the fitted standard Poisson model for compari-

son. Biases and the mean squared error (MSE ×10) of estimates are computed. Smaller

values of the MSE indicate a better fit.

In each generation, the variance of Y differs considerably from the mean of Y , unlike

the conventional Poisson density. Figure 3 illustrates this feature for δ= 0.8 and the first

100 generations. This shows strong evidence of over-dispersion. Thus, fitting mixed

Poisson models may be more appropriate to this data set.
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Figure 3: The first 100 generations of model PMSN1 with δ = 0.8.

Therefore, we fit the hypothetical models PMN with V =
{

σ2ρ|t−s|} and PMSN2

with D =σ2
α151′5 +σ

2I5, where δδδ = δ15.

Table 1: Biases and MSEs(×10) for the proposed models.

Poisson PMN PMSN1 PMSN2

δ Bias MSE Bias MSE Bias MSE Bias MSE

−0.8 β0 -0.017 3.404 0.582 2.629 -0.021 0.005 0.038 0.016

β1 -0.117 2.138 -0.512 2.036 -0.013 0.004 -0.140 0.199

β2 -0.036 0.713 -0.155 0.160 -0.003 0.001 -0.031 0.010

σ2 0.085 0.031 -0.001 0.001 -0.035 0.013

δ -0.012 0.004 0.107 0.116

ρ 0.156 0.244 -0.019 0.007

0 β0 0.018 0.904 0.002 0.001 <0.001 0.001 -0.076 0.059

β1 -0.012 0.202 -0.002 0.001 <0.001 0.001 -0.010 0.003

β2 -0.004 0.002 -0.001 0.001 <0.001 0.001 0.006 0.002

σ2 0.004 0.002 0.012 0.002 -0.095 0.090

δ -0.014 0.003 -0.042 0.019

ρ -0.050 0.029 -0.025 0.008

0.8 β0 -0.060 2.037 -0.478 2.284 -0.002 0.001 -0.174 0.304

β1 0.032 0.311 0.487 2.374 -0.007 0.002 0.123 0.153

β2 -0.018 0.210 0.107 0.115 -0.010 0.001 0.035 0.013

σ2 0.287 0.825 -0.040 0.017 0.168 0.284

δ -0.017 0.004 -0.233 0.545

ρ -0.080 0.064 -0.004 0.006

Results, after the convergence is achieved, are reported in Table 1. Note that, we let

δδδ = δ15 which implies equivalence of PMSN2 and PMSN3 models. Also, the concern

was to illustrate the impact of ignoring dependency between the uit’s for t = 1,2, · · · ,T .

Thus, PSN was not fitted. For δ = 0, the PMSN1 performs as well as the PMN model.

This finding shows that the PMSN1 is a flexible model since it can cover either sym-

metric or asymmetric data, depending on the values of its skewness parameter. For

δ = −0.8,0.8 and based on MSEs, the PMSN models, PMSN1 and PMSN2, are bet-
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ter fitted than the conventional Poisson and PMN models. This finding does suggest the

importance of identifying the correlation of the heterogeneity effects. To make a fur-

ther comparison, we compute the relative efficiency r = MSEM/MSEPMSN1, where M

denotes the competitive regression model. Efficiency values, shown in Table 2, are re-

markably greater than 1, illustrating that the PMSN1 estimates are efficient compared to

the parameter estimates in the hypothetical regression models.

Table 2: Relative efficiencies of estimates in the longitudinal study.

δ β̂0 β̂1 β̂2 σ̂2 δ̂ ρ̂

−0.8 Poisson 680.8 534.5 713.0

PMN 525.8 509.0 160.0 31.0 34.8

PMSN2 3.2 49.7 10.0 13.0 29.0

0 Poisson 904.0 202.0 2.0

PMN 1.0 1.0 1.0 2.0 3.6

PMSN2 59.0 3.0 2.0 45.0 6.3

0.8 Poisson 2037.0 155.5 210.0

PMN 2284.0 1187.0 115.0 48.5 10.667

PMSN2 304.0 76.5 13.0 16.7 136.2

b. The simulated model is PMSN2: Here, a simulation study is conducted to dis-

tinguish the performance of the PMSN1 model with V =
{

σ2ρt−s
}

, for t,s = 1,2, when

response values are generated according to the PMSN2 model. We sampled data from

(9) where θit is given in (18) and ui
iid∼ SN2 (D,δδδ) with δδδ′ = (δ1,δ2) and D= σ2

α1T 1′T +Vε.

Also, the covariates Xi1 and Xit2 are generated respectively from a Bernoulli(0.5) and

a standard normal distribution. We set β1 = −1, β2 = 1, σ2
α = 0.25, δ = −4,1, and

the variance components σ2
ε,1 = σ2

ε,2 = 0.25 and σε,12 = 0.75 for Vε. Now, the cor-

relation between observations is negative. Taking into account the identification is-

sue, we obtain β0 = −0.65 and 2, respectively. All parameters are estimated using the

PMSN1 model. The posterior means (each with standard deviation) of estimates are

obtained as β̃0 =−0.663(0.031),2.063(0.033), β̃1 =−1.0090.030, β̃2 = 1.008(0.016),
δ̃1 =−4.144(0.069), δ̃2 = 0.987(0.026), ρ̃= 0.507(0.012), and σ̃2 = 2.035(0.056). We

observe that the bias of each regression coefficient and skewness parameter is small.

Thus, the evidence again recommends that the regression model PMSN1 is appropriate

to analyse the data.

6 Empirical studies

This section considers two examples taken from the literature that have been previously

analysed by several authors. We fit the proposed models using the OpenBugs software.

Priors for the regression coefficients and the skewness parameter were assumed to be
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independent, each distributed normally with zero mean and 0.001 precision, variance

components distributed as inverse-Gamma distribution with parameters both equal to

0.1. The model fitting process has carried out for 10,000 iterations after discarding the

first 5,000 iterations to ensure us the convergence has occurred. There was no evidence

of lack of convergence due to examinations of histories, Gelman-Rubin diagnostic, ker-

nel density, and autocorrelation plots. For illustration, the supplementary Appendix B

shows posterior plots of the PMSN2 and β5 for the health reform data.

A popular model selection in the Bayesian framework is the deviance information

criterion (DIC). However, the DIC in OpenBugs is based on the conditional likelihood

given the random effects. To compare the fitted models marginally we alternatively com-

pute the Akaike information criterion, AIC (θθθ) = D(θθθ)+2p, and the Bayesian informa-

tion criterion, BIC (θθθ) = D(θθθ)+ p log(n), where the deviance D(θθθ) = −2logL(θθθ), p

and n denote the number of parameters and sample size, respectively. To estimate D(θθθ),
we use the deviance evaluated at the Bayes estimates of parameters θθθ, where L(θθθ) is

taken as the underlying marginal likelihood. Smaller values of these criteria indicate

better fit.

6.1 Polio incidence

The Polio data set is taken from the US Centers for Disease Control and Prevention.

The response variable is the monthly number of poliomyelitis cases (Y ), over the years

1970 to 1983. The data were previously analysed by several researchers, such as Zeger

(1988), Oh and Lim (2001), Davis and Wu (2009), Fokianos and Fried (2012) and Kang

and Lee (2014) between others. We fit a similar model as given by Zeger (1988), and Oh

and Lim (2001) by noting that the regression model is organized in terms of a re-centred

version of time t, such that it can be easily convenient within the usual framework of

the cross-sectional data model. The model includes an intercept, a time trend, and some

trigonometric components at periods 6 and 12 months. Fitting a Poisson model, the ratio

of deviance to degrees-of-freedom was 1.925, illustrating evidence of over-dispersion.

Thus, the Poisson model is not suitable to fit the data. We now fit the PSN regression

model, for n = 1, already specified in Section 2. Specifically, let Yt |ut
ind∼ Pois(exp(θt))

for t = 1, · · · ,168, where

θt = β0 +β1t∗×10−3 +β2 cos

(

2πt∗

6

)

+β3 sin

(

2πt∗

6

)

+ β4 cos

(

2πt∗

12

)

+β5 sin

(

2πt∗

12

)

+β6yt−1 +ut ,

and t∗ = t−73 is used to locate the intercept term at January 1976 as in Zeger’s analysis.

We also analyse the polio incidence rates using the PN model; i.e. ut
iid∼ N

(

0,σ2
)

. Bayes

estimates, standard deviations, 95% confidence intervals, and some information criteria

for models comparison are given in Table 3.
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Table 3: Posterior summary statistics for parameters of fitted models.

Model Poisson PN PSN

Est(s.d.)

(95% CI)

Est(s.d.)

(95% CI)

Est(s.d.)

(95% CI)

β0
0.046(0.088)

(-0.131,0.215)

0.220(0.068)

(0.108,0.374)

0.031(0.084)

(-0.119,0.217)

β1
-3.753(1.441)

(-6.554,-0.9409)

-4.160(1.816)

(-7.754,-0.663)

-3.508(1.956)

(-7.378,0.299)

β2

0.101(0.103)

(-0.099,0.304)

0.130(0.129)

(-0.119,0.386)

0.125(0.140)

(-0.144,0.403)

β3

-0.410(0.102)

(-0.612,-0.211)

-0.348(0.127)

(-0.596,-0.099)

-0.358(0.137)

(-0.629,-0.090)

β4
-0.181(0.098)

(-0.376,0.010)

-0.125(0.125)

(-0.369,0.122)

-0.140(0.134)

(-0.398,0.126)

β5

-0.464(0.0.111)

(-0.686,-0.250)

-0.443(0.136)

(-0.712,-0.185)

-0.457(0.147)

(-0.750,-0.164)

β6

0.092(0.025)

(0.041,0.140)

0.059(0.038)

(-0.019,0.131)

0.104(0.041)

(0.018,0.181)

σ2 0.440(0.137)

(0.217,0.750)

0.502(0.145)

(0.260,0.829)

δ
-0.296(0.069)

(-0.437,-0.149)

-2logL 531.5 511.9 499.2

AIC 545.5 527.9 517.2

BIC 567.3 552.8 545.3

Results show that the PSN is the best-fitted while the PN is the second one. The

parameter δ differs significantly from 0 based on its confidence interval, and a negative

direction of the difference exists. It again supports our claim that the PSN model is

more appropriate for the polio data. The Bayesian results differ somewhat for the PSN

and Poisson models. Standard deviations for the PSN model are larger, up to 14% and

51%, than those for the PN and Poisson models.

One objective in the analysis of polio data is to investigate whether or not the in-

cidence of polio has been decreasing since 1970. This is indicated by the sign of the

regression coefficient β1. Under the PSN model, the negative sign of the trend term in-

dicates that there is a long term decrease in the number of poliomyelitis cases during the

observation period. This finding goes along with results achieved by Davis, Dunsmuir

and Wang (2000) and Farrell, MacGibbon and Tomberlin (2007). We also note that the

state dependence parameter β6 is significant in the PSN model, which implies the con-

tribution of the lagged response on prediction, while the PN model does not make such

a conclusion.
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6.2 Health reform data

The health-care reform data is taken from the German Socio-Economic Panel for the

years 1995-1999. The main aim of the study was to investigate whether the number

of physician visits by patients decreased after the reform. The data were analysed by

Winkelmann (2004), who noted that the number of visits dropped by about 10% on

average. Rabe-Hesketh and Skrondal (2012) fitted a PLN regression model on the impact

of the 1997 health reform on the number of doctor visits. Then, several studies analysed

the data for various purposes (e.g., Van Ophem, 2011). Our data consist of a subset

taken from Rabe-Hesketh and Skrondal (2012) and are available in Stata and R software

packages. We drop all missing values from the data, giving a subsample of 1,418 women

who were employed full time the year before and after the reform.

The response variable is the utilization of health services, as measured by the self-

reported number of patient visits to a physician’s office three months before the inter-

view. Covariates include an indicator variable for the interview being during the year

after the reform versus the year before the reform, centred age in years, person educa-

tion in years, an indicator for being married, a binary variable for self-reported current

health, being classified as ‘very poor’ or ‘poor’ (versus ‘very good’; ‘good’ or ‘fair’),

and the centred logarithm of household income.

The standard Poisson model makes the unrealistic assumption that the number of

doctor visits before the reform is independent of the number of visits after the reform

for the same person, given the included covariates. A fit of this model gives the ra-

tio of deviance to the degrees-of-freedom equals 3.698, illustrating strong evidence of

over-dispersion and suggests fitting alternative models. Thus, we propose fitting mixed

Poisson regression models with the following specifications. The counts Yit , conditioned

on the effects uit for subject i = 1,2, · · · ,709 and at time t = 1, 2, are taken to be inde-

pendent Pois(exp(θit)) where

θit = β0 +β1reformit +β2 ageit +β3 educit +β4 marriedit

+β5 badhit +β6 logincit +uit .

We fit PMSN1-PMSN3, PSN, PMN, and PN as competitive models and let u′
i =(ui1,ui2),

V = σ2

(

1 ρ

ρ 1

)

and D =σ2
α121′2 +σ

2I2. The heterogeneity effects in PN and PSN mod-

els are assumed to be independent. These models are inappropriate. It should come as

no surprise since no correlation is allowed for the heterogeneity effects, whereas in real-

ity, it exists. The deviance of PN and PSN models are 5917.7 and 5870.8, respectively.

Other findings are dropped here to save space. In addition, the estimate of correlation

(11) for model PMSN2 was found to be 0.383 (s.d., 0.068; 95% confidence interval,

0.248–0.517) while for model PMSN3 it was 0.264 (s.d., 0.011; 95% confidence in-

terval, 0.243–0.284). Combining these findings with (11) indicates strong evidence of

the correlation between the number of patient visits to a physician’s office before and

after the reform. The posterior means and standard deviations for the conventional and
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proposed models are given in Table 4. In models PMSN1 and PMSN2, the intercept is

replaced by β0t for t = 1,2.

Table 4: Posterior summary statistics for proposed PMSN models.

Model PMN PMSN1 PMSN2 PMSN3

Est(s.d.)

(95% CI)

Est(s.d.)

(95% CI)

Est(s.d.)

(95% CI)

Est(s.d.)

(95% CI)

β01
1.488(0.122)

(1.255,1.733)

0.634(0.062)

(0.510,0.757)

0.419(0.061)

(0.303,0.539)

0.807(0.062)

(0.686,0.932)

β02
-0.005(0.004)

(-0.013,0.002)

1.175(0.103)

(0.986,1.386)

β1
-0.076(0.050)

(-0.174,0.021)

-0.708(0.076)

(-0.220,0.170)

-0.715(0.076)

(-0.865,-0.571)

-0.249(0.048)

(-0.348,-0.155)

β2

-0.005(0.004)

(-0.013,0.002)

-0.003(0.003)

(-0.009,0.006)

-0.002(0.004)

(-0.010,0.006)

-0.001(0.003)

(-0.007,0.007)

β3
-0.004(0.017)

(-0.040,0.029)

-0.006(0.016)

(-0.040,0.026)

-0.006(0.017)

(-0.038,0.028)

-0.011(0.017)

(-0.044,0.021)

β4
0.318(0.063)

(0.192,0.443)

0.128(0.079)

(-0.029,0.281)

0.108(0.073)

(-0.033,0.252)

0.070(0.076)

(-0.077,0.219)

β5

1.127(0.101)

(0.926,1.324)

1.040(0.101)

(0.841,1.236)

1.024(0.097)

(0.834,1.217)

1.017(0.102)

(0.818,1.217)

β6

0.087(0.104)

(-0.111,0.293)

0.114(0.097)

(-0.077,0.305)

0.141(0.099)

(-0.046,0.342)

0.116(0.097)

(-0.074,0.305)

δ1
0.331(0.085)

(0.166,0.496)

0.375(0.075)

(0.221,0.515)

0.469(0.076)

(0.325,0.632)

δ2

1.007(0.087)

(0.841,1.177)

1.047(0.082)

(0.881,1.202)

σ2 0.979(0.066)

(0.854,1.122)

0.693(0.079)

(0.545,0.845)

0.183(0.057)

(0.086,0.301)

0.445(0.059)

(0.341,0.570)

σ2
α

0.465(0.062)

(0.347,0.591)

0.329(0.077)

(0.172,0.479)

ρ
0.519(0.054)

(0.406,0.618)

0.667(0.086)

(0.664,0.824)

-2logL 5645.9 5630.8 5627.4 5635.5

AIC 5660.9 5650.8 5647.4 5653.5

BIC 5697.4 5696.4 5693.0 5694.6

Table 4 also shows Bayes estimates of σ2 and ρ with their 95% confidence inter-

vals (CI) for models PMSN1 and PMN. That is, with 95% probability σ2 lies between

(0.854,1.122), for example. These facts reveal that much variability exists for the num-

ber of visits after the reform. Similarly, all skewness parameters differ significantly from

0 in a positive direction, showing that the distribution of heterogeneity effects is skewed
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right. It indicates that models PMSN1, PMSN2, and PMSN3 are more appropriate than

the PMN model. Also, according to the deviance and the information criteria values

reported in Table 4, we find that the PMSN2 fits the data better than all competitive

models.

Furthermore, in model PMSN2, age, education, married, and loginc are not statisti-

cally significant. However, the health care reform is negatively related to the number of

visits, meaning that reform makes a decrease in the expected number of visits. More-

over, the badh coefficient is significant and positive, meaning that patients with having

bad health make an increase in visits.

7 Concluding remarks

The analysis of correlated counts is challenging since suitable discrete multivariate dis-

tributions that can provide appropriate correlation structure are not always available. In

longitudinal studies, the problem is addressed by letting the counts be independent Pois-

son variates conditioned on a vector of correlated heterogeneity effects. The correlation

between the count variables is then incorporated in the resulting likelihood functions.

In the paper, the correlation was taken into account by adopting that the random ef-

fects followed the multivariate skew-normal distribution with various structures for the

skewness parameters. The modelling strategy allows for both positive and negative cor-

relations among the subsequent counts. Empirical findings showed that the proposed

modelling strategy had many potentials over conventional models. The paper used an

accessible technique to compute the AIC and BIC values by plugging in Bayes esti-

mates at the underlying marginal likelihoods. An interesting subject to future work is

to use other Bayesian models comparison. Also, an extension of mixed modelling to

the multivariate skew-normal random-effects is encouraged for non-Poisson correlated

responses when over-dispersion occurs.
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