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8 A. Vico-Oton: Collected results on semigroups, graphs and codes.

1.1 Abstract

In this thesis we present a compendium of five works where discrete mathematics play a
key role. The first three works describe different developments and applications of the
semigroup theory while the other two have more independent topics. First we present a
result on semigroups and code efficiency, where we introduce our results on the so-called
Geil-Matsumoto bound and Lewittes’ bound for algebraic geometry codes. Following that,
we work on semigroup ideals and their relation with the Feng-Rao numbers; those numbers,
in turn, are used to describe the Hamming weights which are used in a broad spectrum
of applications, i.e. the wire-tap channel of type II or in the t-resilient functions used
in cryptography. The third work presented describes the non-homogeneous patterns for
semigroups, explains three different scenarios where these patterns arise and gives some
results on their admissibility. The last two works are not as related as the first three but
still use discrete mathematics. One of them is a work on the applications of coding theory
to fingerprinting, where we give results on the traitor tracing problem and we bound the
number of colluders in a colluder set trying to hack a fingerprinting mark made with a
Reed-Solomon code. And finally in the last work we present our results on scientometrics
and graphs, modeling the scientific community as a cocitation graph, where nodes represent
authors and two nodes are connected if there is a paper citing both authors simultaneously.
We use it to present three new indices to evaluate an author’s impact in the community.

1.2 Context, hypotheses and objectives

This thesis deals with several different applied problems where discrete mathematics play an
important role. The problems all have to do with secure and reliable communications and
knowledge engineering. The mathematical tools used are objects such as graphs, numerical
semigroups, error correcting codes, and polynomials over finite fields.

The thesis is a compendium of five different research papers that have already been
published or that are submitted. Each chapter is devoted to a different work and constitutes
a whole corpus by its own. Next we sketch the context, hypotheses, and objectives of each
work.

Semigroups and code efficiency Error correcting codes are a mathematical tool used
to add reliability to digital communications. Given n pairwise distinct elements α1, . . . , αn
of a finite field Fq, the Reed-Solomon code RSα1,...,αn(k) is defined by {(f(α1), . . . , f(αn)) :
f ∈ Fq[x],deg(f) < k}. Reed-Solomon codes have very interesting properties but they have
the problem that the length of RSα1,...,αn(k) is n and so, it is bounded by the field size q.
Algebraic geometry codes generalize this giving codes attaining very important asymptotic
bounds. Given n pairwise distinct places P1, . . . , Pn of degree one of an algebraic function
field F/Fq, and a divisor G with support disjoint from {P1, . . . , Pn}, the geometric Goppa
code CP1,...,Pn(G) is defined by {(f(P1), . . . , f(Pn)) : f ∈ L(G)}.
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Chapter 1. Context, hypotheses and objectives 9

Then, the length of CP1,...,Pn(G) is n and it is bounded by the number of places of
degree one of F/Fq. Thus, an important problem of algebraic coding theory is bounding
the number of places of degree one of function fields. The Hasse-Weil bound for the number
of places of degree one of a function field as well as Serre’s improvement use only the genus
of the function field and the field size. Geil and Matsumoto gave in 2009 a bound in terms of
the Weierstrass semigroup of a rational place (i.e. the set of pole orders of rational functions
having only poles in that place). It is a neat formula although it is not closed and it may be
computationally hard to calculate. Our hypothesis is that the same bound can be stated
with a simpler formula, at least for some particular classes of semigroups. Our objective
is to give a closed formula of the Geil-Matsumoto bound for semigroups generated by two
integers (as is the case of most of the semigroups used for algebraic-geometry codes), analyze
in which cases the Geil-Matsumoto bound coincides with the much simpler Lewittes bound
(1990), and try to find simplifications in the computation of the Geil-Matsumoto bound.

Semigroup ideals, Feng–Rao numbers and the generalized Hamming weights
The generalized Hamming weights of a linear code are, for each given dimension, the mini-
mum size of the support of the linear subspaces of that dimension. They were first used to
analyze the performance of the wire-tap channel of type II and in connection to t-resilient
functions. The generalized Hamming weights have also been used in the context of list
decoding, for bounding the covering radius of linear codes, and recently for secure secret
sharing based on linear codes. In particular, Guruswami shows that his (e, L)-list decod-
ability concept for erasures is equivalent with the generalized Hamming weights for linear
codes. In the case of algebraic geometry codes, the generalized Hamming weights can be
studied through the so-called generalized order bounds, involving Weierstrass semigroups.
A constant depending only on the semigroup and the dimension of the Hamming weights
was introduced by Farrán and Munuera, from which the order bounds could be completely
determined for codes of rate low enough. This constant was called Feng–Rao number. Be-
sides, we can define an ideal of a numerical semigroup as a subset of the semigroup such
that any element in the subset plus any element of the semigroup add up to an element
of the subset. Our hypothesis is that the Feng–Rao numbers can be studied in terms
of ideals of a numerical semigroup. Indeed, the definition of the Feng–Rao numbers, al-
though not stated in these terms, is tightly related to the notion of gap of an ideal. Our
objective is twofold. On one hand we want to find a bound on the maximum gap of an
ideal paralleling the well known bound of the Frobenius number of a semigroup in terms of
the genus. On the other hand we want to apply this results to improve the knowledge on
the Feng–Rao numbers and to derive new improved bounds on the generalized Hamming
weights of algebraic geometry codes.

Patterns on numerical semigroups A numerical semigroup Λ is a subset of the non-
negative integers N0 that contains 0 and is closed under addition, and such that N0 \ Λ is
finite. Arf semigroups appear in many theoretical problems in algebraic geometry as well
as in some applied areas such as coding theory. Arf semigroups are those semigroups such
that for any elements x1, x2, x3 in the semigroup with x1 ≥ x2 ≥ x3, the integer x1 +x2−x3
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10 A. Vico-Oton: Collected results on semigroups, graphs and codes.

also belongs to the semigroup. This definition inspired studying the so-called patterns
on numerical semigroups. Patterns on numerical semigroups are multivariate polynomials
such that evaluated at any decreasing sequence of elements of the semigroup give integers
belonging to the semigroup. For their simplicity, and for their inspiration in Arf semigroups,
patterns were first defined to be linear and homogeneous. Our hypothesis is that non-
homogeneous patterns also must be studied and interesting results may be observed. Indeed,
some families of numerical semigroups have appeared lately in very different areas of applied
mathematics which satisfy linear non-homogeneous patterns. For instance, the semigroups
for which the previously mentioned Geil-Matsumoto bound coincides with the Lewittes
bound. Other examples can be found in finite geometries with applications to peer-to-
peer user-private information retrieval (P2P UPIR) or in the study of maximal embedding
dimension semigroups. Our objective is to extend the known results on homogeneous
patterns to non-homogeneous patterns and find applications to the Geil-Matsumoto bound,
to finite geometries and/or to P2P UPIR.

Error correcting codes and traceability of illegal redistribution In the digital era
one main concern is the illegal redistribution of digital contents. One way to fight it is by
marking every single copy of the material that one does not want to have redistributed.
This can be done by embedding a different imperceptible string of bits or symbols to each
copy. Once an illegal copy is caught, if it was not modified, the illegal re-distributor can
be re-identified by the mark in his/her copy. This is called fingerprinting. An attack to
fingerprinting can be performed by a group of colluders. They can compare their copies
and create a new pirate copy by erasing all the bits or symbols in which their copies differ
or by using at each position where they differ, the bit or symbol that one of the users has
there. Reed-Solomon codes are a classical family of error control codes which have been
extensively used also in the context of fingerprinting. The classical problem of fingerprinting
is defining tracing algorithms for identifying at least one of the colluders that originated a
given pirate copy. Our hypothesis is that once an illegal copy is caught, it is also important
to have an estimate number of the size of the colluder set. Indeed, we want to know the
minimum number of colluders capable of generating a given pirate copy when the code used
for fingerprinting is a Reed-Solomon code. Our objective is to find a lower bound on this
minimum number. Having this lower bound means that once an illegal copy is caught, we
can assert that at least a certain number of colluders, given by this bound, were involved
in it.

Graphs and scientometrics Scientometrics studies the importance and impact of the
scientific production of either a sole author, a community of authors, a journal or a given
event such as a conference. The h-index is a widely known measure but it has a lot of
weaknesses. It counts the number of papers with a given number of citations. However it
does not distinguish citations according to the distance between cited and citing authors.
Sometimes the whole scientific community is modeled as a collaboration graph where each
researcher is represented by a node and there is an edge between two different nodes if
there exists a joint publication of both authors. Then one parameter to evaluate citations
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Chapter 1. Contributions of this thesis 11

is the node distance between citing and cited authors. Our hypothesis is that not only the
collaboration distance of authors measures the scientific distance between them but also the
cocitation distance. We propose to model the scientific community as a cocitation graph,
instead of a collaboration graph, where the nodes still represent authors, but where two
nodes are connected if there is a paper citing both authors simultaneously. Our objective
is to propose and analyze new scientometric indices based on the cocitation graph.

1.3 Contributions of this thesis

Semigroups and code efficiency In the second chapter, we solve the membership prob-
lem for numerical semigroups generated by two co-prime integers. Then we use that result
to deduce a closed formula for the Geil-Matsumoto bound when the Weierstrass semigroup
is generated by two integers. After that, we return to semigroups generated by any num-
ber of integers and study in which cases Lewittes’ bound and the Geil-Matsumoto bound
coincide allowing us to efficiently compute the Geil-Matsumoto bound. Finally we give a
result that may simplify the computation of the Geil-Matsumoto bound when we can not
apply our previous results. We also distinguish what we call Geil-Matsumoto generators.
The most tedious part on the computation of the Geil-Matsumoto bound can be restricted
to computing on these generators.

Semigroup ideals, Feng–Rao numbers, and the generalized Hamming weights
Our first result is an analogue of the upper bound on the Frobenius number of a numerical
semigroup. For a numerical semigroup of genus g, the Frobenius number is at most 2g− 1.
The Frobenius number is exactly 2g − 1 if and only if the semigroup is symmetric. We
prove that if d is the number of elements in the complement of an ideal with respect to a
semigroup of genus g then the maximum gap of the ideal is at most d+ 2g − 1. Now, this
maximum gap is exactly d+2g−1 if and only if the ideal is exactly the semigroup minus the
set of divisors of a non-gap that can not be decomposed as a sum of non-gaps. The bound
on the maximum gap of an ideal generalizes the bound on the Frobenius number since
that bound can be derived from this bound by taking the ideal to be the whole semigroup.
Using the new upper bound on the maximum element not belonging to an ideal, we derive
a lower bound on the so-called Feng–Rao numbers and consequently a new bound on the
generalized Hamming weights. The main tool is analyzing the length of the intervals of
consecutive gaps of the Weierstrass semigroup. We finally study the intervals of consecutive
gaps for Hermitian codes and for codes in one of the Garcia-Stichtenoth towers of codes
attaining the Drinfeld-Vlăduţ bound.

Patterns on numerical semigroups Along the fourth chapter, we present our results on
non-homogeneous patterns on numerical semigroups. First of all we explain three scenarios
where non-homogeneous patterns arise. The first one is related to algebraic geometry, the
second one is on pure theory of numerical semigroups, and the third one is related to
finite geometry. After explaining those three examples we formally characterize the non-

UNIVERSITAT ROVIRA I VIRGILI 
COLLECTED RESULTS ON SEMIGROUPS, GRAPHS AND CODES 
Albert Vico Oton 
Dipòsit Legal: T. 58-2013 
 
 



12 A. Vico-Oton: Collected results on semigroups, graphs and codes.

homogeneous patterns that are admissible, and particularize this study to the case the
independent term of the pattern is a multiple of the multiplicity of the semigroup. For
the so called strongly admissible patterns, the set of numerical semigroups admitting these
patterns with fixed multiplicity m form an m-variety, which allows us to represent this set
in a tree and to describe minimal sets of generators of the semigroups in the variety with
respect to the pattern. Furthermore, we characterize strongly admissible patterns having a
finite associated tree.

Error correcting codes and traceability of illegal redistribution The main result
presented in the fifth chapter (Theorem 5.3.2) is a lower bound on the minimum number of
colluders capable of generating a given pirate copy when the code used for fingerprinting is a
Reed-Solomon code. Having this lower bound means that once an illegal copy is caught, we
can assert that at least a certain number of colluders, given by this bound, were involved in
it. The bound in Theorem 5.3.2 is extended to shortened fingerprints obtaining an analogous
bound for this case. This result can be used in turn for bounding the number of colluders
that were not caught once a subset of colluders is caught. We finish the chapter with
an open question whose solution would bring out a significant improvement of our bound
allowing to further improve the bound on the number of colluders capable of generating a
pirate copy.

Graphs and scientometrics In the sixth chapter we introduce the co-citation graph
and use it to define three indices of relevance for individual authors. We then distinguish
between the relevance of an author and the relevance of a group of authors, and give a group
version of the previous three indices that measure the relevance of a group of authors, in
the sense of evaluating how present the group is in the citations by papers in a certain
subject. The indices are: Maximum co-cited index: counts the number of authors for
which a given author is maximum co-cited; Weighted maximum co-cited index: counts the
number of authors to which a given author is maximum co-cited weighted by the number
of co-citations, so it is strongly related with the previous one; Co-citation entropy: which
measures how transversal an author is perceived by the community. Furthermore we present
the application of such indices on a well-known group of authors and their impact.

1.4 Publications

Next we list the publications that derived from this thesis.

Semigroups and code efficiency

1. M. Bras-Amorós, A. Vico-Oton: On the Geil-Matsumoto Bound and the Length of
AG Codes, Designs, Codes and Cryptography, Accepted, 2012. Impact factor 0,771.
DOI: 10.1007/s10623-012-9703-5.
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2. M. Bras-Amorós, A. Vico-Oton: On the Geil-Matsumoto Bound, Third International
Castle Meeting on Coding Theory and Applications, J. Borges and M. Villanueva
(eds.), Servei de Publicacions Universitat Autònoma de Barcelona, pp. 75–80, Septem-
ber 2011, ISBN: 978–84–490–2688–1.

3. M. Bras-Amorós, A. Vico-Oton: On the Geil-Matsumoto Bound, Workshop on Com-
putational Security, Centre de Recerca Matemàtica, pp. 51–54, November 2011.

Semigroup ideals, Feng–Rao numbers, and the generalized Hamming weights

1. M. Bras-Amorós, K. Lee, A. Vico-Oton: On the Maximal Gap of an Ideal and the
Feng-Rao Numbers, Iberian Meeting on Numerical Semigroups (IMNS2012), Vila-
Real, Portugal, July 2012. (abstract)

2. M. Bras-Amors, K. Lee, A. Vico-Oton: Semigroup Ideals and New Lower Bounds on
the Generalized Hamming Weights of AG Codes, to be submitted.

Patterns on numerical semigroups

1. M. Bras-Amorós, A. Vico-Oton: On Non-Homogeneous Patterns on Numerical Semi-
groups, Encuentros de Álgebra Computacional y Aplicaciones (EACA), Alcalá de
Henares, Spain, June 2012.

2. M. Bras-Amorós, A. Vico-Oton: On Non-Homogeneous Patterns on Numerical Semi-
groups, Iberian Meeting on Numerical Semigroups (IMNS2012), Vila-Real, Portugal,
July 2012. (abstract).

3. M. Bras-Amorós, P. Garćıa-Sánchez, A. Vico-Oton: NonHomogeneous Patterns on
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2.1 Introduction

Given n pairwise distinct places P1, . . . , Pn of degree one of an algebraic function field
F/Fq, and a divisor G with support disjoint from {P1, . . . , Pn}, the geometric Goppa code
CP1,...,Pn(G) is defined by {(f(P1), . . . , f(Pn)) : f ∈ L(G)}. See [75] for a general reference.
Then, the length of CP1,...,Pn(G) is n and it is bounded by the number of places of degree one
of F/Fq. Thus, an important problem of algebraic coding theory is bounding the number
of places of degree one of function fields.

The Hasse-Weil bound for the number of places of degree one of a function field as well
as Serre’s improvement use only the genus of the function field and the field size. Geil
and Matsumoto give in [30] a bound in terms of the Weierstrass semigroup of a rational
place (i.e. the set of pole orders of rational functions having only poles in that place). It is
a neat formula although it is not closed and it may be computationally hard to calculate.
Lewittes’ bound [46] preceded the Geil-Matsumoto bound and it only considers the smallest
generator of the numerical semigroup. It can be derived from the Geil-Matsumoto bound
and so it is weaker. The advantage of Lewittes’ bound with respect to the Geil-Matsumoto
bound is that Lewittes’ bound is very simple to compute.

Important curves such as hyperelliptic curves, Hermitian curves or Geil’s norm-trace
curves [29] have Weierstrass semigroups generated by two integers. Also, for any numerical
semigroup Λ generated by two coprime integers, one can get the equation of a curve having
a place whose Weierstrass semigroup is Λ [39].

In Section 2.2, we give some notions on numerical semigroups and solve the membership
problem for numerical semigroups generated by two coprime integers. Then in Section 2.3
we use the result in Section 2.2 to deduce a closed formula for the Geil-Matsumoto bound
when the Weierstrass semigroup is generated by two integers. In Section 2.4 we return to
semigroups generated by any number of integers and study in which cases Lewittes’ bound
and the Geil-Matsumoto bound coincide. In Section 2.5 we give a result that may simplify
the computation of the Geil-Matsumoto bound.

2.2 Membership for semigroups with two generators

Let N0 be the set of non-negative integers. A numerical semigroup is a subset of N0 con-
taining 0, closed under addition and with finite complement in N0. A general reference for
numerical semigroups is [64]. For a numerical semigroup Λ define the genus of Λ as the
number g = #(N0 \ Λ). The elements in Λ are called the non-gaps of Λ while the elements
in N0 \ Λ are called the gaps of Λ.

The generators of a numerical semigroup are those non-gaps which can not be obtained
as a sum of two smaller non-gaps. If a1, . . . , al are the generators of a semigroup Λ then
Λ = {n1a1 + · · · + nlal : n1, . . . , nl ∈ N0} and so a1, . . . , al are necessarily coprime. If
a1, . . . , al are coprime, we call {n1a1 + · · ·+ nlal : n1, . . . , nl ∈ N0} the semigroup generated
by a1, . . . , al and denote it by 〈a1, . . . , al〉.
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Chapter 2. Membership for semigroups with two generators 19

Among numerical semigroups, those generated by two integers, that is, numerical semi-
groups of the form {ma+ nb : m,n ∈ N0} for some coprime integers a, b, have a particular
interest. Important curves such as hyperelliptic curves, Hermitian curves or Geil’s norm-
trace curves [29] have Weierstrass semigroups generated by two integers. Properties of
semigroups generated by two coprime integers can be found in [42]. For instance, the semi-

group generated by a and b has genus (a−1)(b−1)
2 , and any element i ∈ Λ can be uniquely

written as i = ma+nb with m,n integers such that 0 6 n 6 a− 1. From the results in [39,
Section 3.2] one can get, for any numerical semigroup Λ generated by two coprime integers
the equation of a curve having a point whose Weierstrass semigroup is Λ.

For a numerical semigroup, the membership problem is that of determining, for any
integer i whether it belongs or not to the numerical semigroup. In the next lemma we first
state a result already proved in [42] and then we give a solution to the membership problem
for semigroups generated by two coprime integers. By x mod a with x, a integers we mean
the smallest positive integer congruent with x modulo a.

Lemma 2.2.1. Suppose Λ is generated by a, b with a < b. Let c be the inverse of b modulo
a.

1. Any i ∈ Λ can be uniquely written as i = ma+ nb for some m,n > 0 with n 6 a− 1.

2. i ∈ Λ if and only if b(i · c mod a) 6 i.

Proof. 1. Suppose i ∈ Λ. Then i = m̃a + ñb for some non-negative integers m̃, ñ.
Let n = ñ mod a and m = m̃ + bb ña c. Then i = m̃a + ñb = m̃a + (ab ña c + (ñ
mod a))b = ma+ nb with obviously m,n > 0 and n 6 a− 1.

For uniqueness, suppose i = ma+nb for some m,n > 0 and n 6 a−1, and simultane-
ously, i = m′a+ n′b for some m′, n′ > 0 and n′ 6 a− 1. Then (m−m′)a = (n′ − n)b.
Since a and b are coprime, a must divide n− n′ which can only happen if n = n′ and
so m = m′.

2. If i ∈ Λ then by the previous statement there exist unique integers m,n > 0 with
n 6 a− 1 such that i = ma+nb. In this case, i · c mod a = (ma+nb) · c mod a = n
and then it is obvious that b(i · c mod a) 6 i.

On the other hand, suppose i ∈ N0 and define n = i · c mod a. Then i − nb is
a multiple of a since (i − nb) mod a = ((i mod a) − (nb mod a)) mod a = 0. If
nb 6 i then i− nb is a positive multiple of a, say ma, and i = ma+ nb, so i ∈ Λ.

Remark 2.2.2. Notice that for the case b = a + 1 the condition b(i · c mod a) 6 i is
equivalent to (a+ 1)(i mod a) 6 i and to a(i mod a) 6 i− (i mod a) and so i mod a 6
b iac. Therefore, i ∈ 〈a, a+1〉 if and only if the remainder of the division of i by a is at most
its quotient. This was already proved in [28].
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20 A. Vico-Oton: Collected results on semigroups, graphs and codes.

2.3 The Geil-Matsumoto bound

Let Nq(g) be the maximum number of rational places of degree one of a function field over
Fq with genus g. The Hasse-Weil bound [75, Theorem V.2.3] states |Nq(g)−(q+1)| 6 2g

√
q.

Serre’s refinement [75, Theorem V.3.1] states |Nq(g)− (q + 1)| 6 gb2√qc which leads to

Nq(g) 6 Sq(g) := q + 1 + gb2√qc.

If we consider the Weierstrass semigroup Λ of any such places then we can define Nq(Λ)
as the maximum number of rational places of degree one of a function field over Fq such
that the Weierstrass semigroup at one of the places is Λ. Lewittes’ bound [46] states, if λ1

is the first non-zero element in Λ,

Nq(Λ) 6 Lq(Λ) := qλ1 + 1

and the Geil-Matsumoto bound [30] is

Nq(Λ) 6 GMq(Λ) := #(Λ \ ∪λi generator of Λ(qλi + Λ)) + 1. (2.1)

In [30, 39] the next result is proved, from which Lewittes’ bound can be deduced from the
Geil-Matsumoto bound.

Lemma 2.3.1. #(Λ \ (qλ1 + Λ)) = qλ1.

Here, for a numerical semigroup generated by two coprime integers a, b we describe the
Geil-Matsumoto bound in terms of a, b giving a formula which is simpler to compute than
(2.1).

Theorem 2.3.2. The Geil-Matsumoto bound for the semigroup generated by a and b with
a < b is

GMq(〈a, b〉) = 1 +
a−1∑
n=0

min

(
q,

⌈
q − n
a

⌉
· b
)

(2.2)

=


1 + qa if q 6 b qacb
1 + (qmod a)q + (a− (qmod a))b qacb if b qacb < q 6 d qaeb
1 + abd qae − (a− (qmod a))b if q > d qaeb

(2.3)

Proof. The Geil-Matsumoto bound for the semigroup generated by a and b with a < b is

1 + #

{
i ∈ Λ :

i− qa 6∈ Λ
i− qb 6∈ Λ

}
. By Lemma 2.2.1 i ∈ Λ if and only if b(ic mod a) 6 i, where

c is the inverse of b modulo a. Now, suppose that i ∈ Λ can be expressed as i = ma + nb
for some integers m,n > 0, n 6 a− 1. Then

i− qa 6∈ Λ ⇐⇒ b((i− qa)c mod a) > i− qa
⇐⇒ b((ma+ nb− qa)c mod a) > i− qa
⇐⇒ b(nbc mod a) > i− qa
⇐⇒ bn > i− qa
⇐⇒ bn > (m− q)a+ nb

⇐⇒ (m− q)a < 0

⇐⇒ m < q
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Chapter 2. Coincidences of Lewittes’s and the Geil-Matsumoto bound 21

i− qb 6∈ Λ ⇐⇒ b((i− qb)c mod a) > i− qb
⇐⇒ b((ma+ nb− qb)c mod a) > i− qb
⇐⇒ b((n− q)bc mod a) > i− qb
⇐⇒ b((n− q) mod a) > i− qb
⇐⇒ b((n− q) mod a) > ma+ (n− q)b
⇐⇒ b[((n− q) mod a)− (n− q)] > ma

⇐⇒ b

⌈
q − n
a

⌉
> m

Consequently, the Geil-Matsumoto bound is

1 +
a−1∑
n=0

min

(
q,

⌈
q − n
a

⌉
· b
)

Now some technical steps lead to the next formula.

GMq(〈a, b〉) =


1 + qa if q 6 d q−a+1

a eb
1 + (q mod a)q + (a− (q mod a))d q−a+1

a eb if d q−a+1
a eb < q 6 d qaeb

1 + abd qae − (a− (q mod a))b if q > d qaeb
(2.4)

Since d q−a+1
a e is the unique integer between q−a+1

a and q
a , one has d q−a+1

a e = b qac, and the
formula in (2.4) coincides with that in (2.3).

2.4 Coincidences of Lewittes’s and the Geil-Matsumoto bound

We are interested now in the coincidences of Lewittes’s and the Geil-Matsumoto bound. To
get an idea, one can see in Table 2.1 the portion of semigroups for which they coincide for
several values of the genus and the field size.

For the case of two generators, from equation (2.2) we deduce that GMq(〈a, b〉) =
Lq(〈a, b〉) if and only if q 6 b qacb. Otherwise, the Geil-Matsumoto bound always gives an
improvement with respect to Lewittes’s bound. We want to generalize this to semigroups
with any number of generators.

Lemma 2.4.1. Let Λ = 〈λ1, . . . , λn〉 with λ1 < λi for all i > 1. The next statements are
equivalent

1. GMq(Λ) = Lq(Λ),

2. Λ \ ∪ni=1(qλi + Λ) = Λ \ (qλ1 + Λ),

3. q(λi − λ1) ∈ Λ for all i > 1.
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22 A. Vico-Oton: Collected results on semigroups, graphs and codes.

Proof. By Lemma 2.3.1 it is obvious that 2 implies 1. The converse follows from the inclusion
Λ\∪ni=1(qλi+Λ) ⊆ Λ\(qλ1 +Λ) and the equality GMq(Λ) = Lq(Λ) which, by Lemma 2.3.1,
implies that #(Λ \ ∪ni=1(qλi + Λ)) = #(Λ \ (qλ1 + Λ)).

For the equivalence of the last two statements notice that q(λi − λ1) ∈ Λ for all i > 1
⇐⇒ qλi ∈ qλ1 + Λ for all i > 1⇐⇒ qλi+ Λ ⊆ qλ1 + Λ for all i > 1⇐⇒ Λ\∪ni=1(qλi+ Λ) =
Λ \ (qλ1 + Λ).

Lemma 2.4.1 suggests to analyze under what conditions q(λi − λ1) ∈ Λ for some i >
1. Let us first see in what cases q(λi − λ1) ∈ {xλ1 + yλi : x, y ∈ N0}. Notice that if
gcd(λ1, λi) = d then {xλ1 + yλi : x, y ∈ N0} = d〈λ1d ,

λi
d 〉, where by d〈λ1d ,

λi
d 〉 we mean the

set {dλ : λ ∈ 〈λ1d ,
λi
d 〉}. Obviously, d〈λ1d ,

λi
d 〉 ⊆ Λ.

Lemma 2.4.2. Let gcd(λ1, λi) = d. Then q(λi−λ1) ∈ d〈λ1d ,
λi
d 〉 if and only if qd 6 b qdλ1 cλi.

In particular, if q 6 b qλ1 cλi then q(λi − λ1) ∈ d〈λ1d ,
λi
d 〉.

Proof. We need to prove that q(λid −
λ1
d ) ∈ 〈λ1d ,

λi
d 〉 if and only if qd 6 b qdλ1 cλi. Suppose

that c is the inverse of λi
d modulo λ1

d . By Lemma 2.2.1, q(λid −
λ1
d ) ∈ 〈λ1d ,

λi
d 〉 if and only

if λi
d (q(λid −

λ1
d )c mod λ1

d ) 6 q(λid −
λ1
d ), that is, λi

d (q mod λ1
d ) 6 q(λid −

λ1
d ) which is

equivalent to qd 6 b qdλ1 cλi.
Now, if q 6 b qλ1 cλi, then qd 6 b qλ1 cdλi 6 b

qd
λ1
cλi and the last statement follows.

Lemma 2.4.3. Suppose λ1 < λ2 < · · · < λn and let Λ = 〈λ1, λ2, . . . , λn〉. If q 6 b qλ1 cλ2

then GMq(Λ) = Lq(Λ).

Proof. By hypothesis, q 6 b qλ1 cλi for all i > 1. By Lemma 2.4.2, q(λi−λ1) ∈ Λ for all i > 1
and by Lemma 2.4.1, GMq(Λ) = Lq(Λ).

Remark 2.4.4. As mentioned, the converse is true when restricted to semigroups with
two generators. Otherwise the converse is not true in general. For instance, consider
Λ = 〈5, 7, 18〉 with q = 9. We have Λ = {0, 5, 7, 10, 12, 14, 15, 17, 18, . . . } and
Λ\∪λi generator of Λ(qλi+Λ) = {0, 5, 7, 10, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 51, 53, 54, 56, 58, 61} = Λ\
(qλ1 + Λ). So GMq(〈5, 7, 18〉) = Lq(〈5, 7, 18〉) = 46. However, q(= 9) > b qλ1 cλ2(= 7). The
reason is that although q(λ2 − λ1) 6∈ 〈λ1, λ2〉, it holds that q(λ2 − λ1) ∈ 〈λ1, λ2, λ3〉 = Λ.

In Table 2.1, together with the portion of semigroups for which the Lewittes and the Geil-
Matsumoto bounds coincide, we give the portion of semigroups satisfying the hypothesis
in Lemma 2.4.3. From that table it is easy to check again that in general the converse of
Lemma 2.4.3 is not true.

2.5 Simplifying the computation

Next we investigate in which cases the computation of Λ \ ∪λi generator of Λ(qλi + Λ) can

be simplified to the computation of Λ \ ∪i∈I(qλi + Λ) for some index set I smaller than
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Chapter 2. Simplifying the computation 23

Lewittes = Geil-Matsumoto q 6 b qλ1 cλ2

Genus q=2 q=3 q=9 q=16 q=256 q=2 q=3 q=9 q=16 q=256

2 50.00% 100% 100% 100% 100% 50.00% 100% 100% 100% 100%
3 25.00% 75.00% 100% 100% 100% 25.00% 75.00% 100% 100% 100%
4 42.86% 57.14% 100% 100% 100% 14.29% 42.86% 85.71% 100% 100%
5 33.33% 41.67% 91.67% 100% 100% 8.33% 25.00% 58.33% 91.67% 100%
6 21.74% 43.48% 86.96% 100% 100% 4.35% 17.39% 43.48% 82.61% 100%
7 17.95% 41.03% 87.18% 100% 100% 2.56% 10.26% 38.46% 84.62% 100%
8 14.93% 37.31% 85.07% 100% 100% 1.49% 5.97% 53.73% 91.04% 100%
9 11.02% 33.05% 88.14% 98.31% 100% 0.85% 4.24% 72.03% 87.29% 100%
10 8.82% 29.90% 88.24% 95.59% 100% 0.49% 2.45% 79.90% 78.92% 100%
11 7.58% 25.95% 84.55% 92.71% 100% 0.29% 1.46% 78.13% 65.89% 100%
12 6.59% 23.48% 78.89% 90.88% 100% 0.17% 1.01% 69.93% 54.05% 100%
13 5.69% 21.48% 73.73% 89.81% 100% 0.10% 0.60% 59.64% 42.76% 100%
14 5.02% 18.90% 69.76% 88.66% 100% 0.06% 0.35% 49.26% 33.73% 100%
15 4.10% 16.63% 66.26% 87.68% 100% 0.04% 0.25% 39.38% 28.35% 100%
16 3.45% 14.77% 63.23% 87.22% 100% 0.02% 0.15% 30.86% 28.67% 100%
17 2.92% 13.10% 60.66% 87.00% 100% 0.01% 0.09% 23.79% 35.23% 100%
18 2.38% 11.66% 58.74% 87.03% 100% 0.01% 0.06% 18.33% 45.70% 100%
19 1.93% 10.40% 57.06% 86.71% 100% 0.00% 0.04% 13.93% 55.89% 100%
20 1.60% 9.28% 55.71% 85.43% 100% 0.00% 0.02% 10.55% 62.47% 99.95%
21 1.31% 8.34% 54.67% 83.03% 100% 0.00% 0.01% 7.93% 64.51% 99.75%
22 1.09% 7.48% 53.95% 80.14% 100% 0.00% 0.01% 5.93% 62.93% 99.19%
23 0.90% 6.70% 53.29% 77.41% 100% 0.00% 0.01% 4.39% 59.00% 98.09%
24 0.75% 6.02% 52.46% 75.16% 100% 0.00% 0.00% 3.25% 53.67% 96.50%
25 0.63% 5.42% 51.33% 73.37% 100% 0.00% 0.00% 2.38% 47.63% 94.73%
26 0.53% 4.90% 49.94% 71.94% 100% 0.00% 0.00% 1.74% 41.35% 93.12%
27 0.45% 4.45% 48.39% 70.75% 100% 0.00% 0.00% 1.27% 35.24% 91.84%
28 0.38% 4.07% 46.81% 69.73% 100% 0.00% 0.00% 0.92% 29.58% 90.87%
29 0.32% 3.74% 45.25% 68.76% 100% 0.00% 0.00% 0.67% 24.52% 90.06%
30 0.27% 3.44% 43.76% 67.80% 100% 0.00% 0.00% 0.48% 20.12% 89.25%

Table 2.1: Portion of semigroups for which the Lewittes and the Geil-Matsumoto bounds
coincide and portion of semigroups satisfying the hypothesis in Lemma 2.4.3, that is q 6
b qλ1 cλ2, where λ1, λ2 are the first and second smallest generators.
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the number of generators of Λ. The next lemma can be proved very similarly as we proved
Lemma 2.4.1.

Lemma 2.5.1. Let Λ = 〈λ1, . . . , λn〉 and let I be an index set included in {1, . . . , n}. The
next statements are equivalent.

1. Λ \ ∪ni=1(qλi + Λ) = Λ \ ∪i∈I(qλi + Λ).

2. For all i 6∈ I there exists 1 6 j 6 n, j ∈ I such that q(λi − λj) ∈ Λ.

One consequence of Lemma 2.5.1 is the next lemma.

Lemma 2.5.2. Let Λ = 〈λ1, . . . , λn〉 with λ1 < λ2 < · · · < λn and λ1 < q.

1. Let λj be the maximum generator strictly smaller than q
b q
λ1
c then

Λ \ ∪ni=1(qλi + Λ) = Λ \ ∪ji=1(qλi + Λ).

2. Let λj be the maximum generator strictly smaller than 2λ1 − 1 then

Λ \ ∪ni=1(qλi + Λ) = Λ \ ∪ji=1(qλi + Λ).

Proof. The first statement is a consequence of Lemma 2.4.2 together with Lemma 2.5.1.
For the second statement suppose that q = xλ1 + y with x, y integers and x > 1. Then
q
b q
λ1
c = λ1 + y

x . The result follows from the inequalities x > 1 and y 6 λ1 − 1.

We will call Geil-Matsumoto generators those generators that are strictly smaller than
2λ1−1. What the last statement of the previous lemma says is that for computing the Geil-
Matsumoto bound we only need to subtract from Λ the sets qµ+ Λ for µ a Geil-Matsumoto
generator. Since in general we need to subtract these sets for all generators, this constitutes
an improvement in terms of computation. In Table 5.3.2, we give the mean of the number of
Geil-Matsumoto generators and non-Geil-Matsumoto generators per semigroup for different
genera. In Table 5.4.1, we give the portion of Geil-Matsumoto generators (and non-Geil-
Matsumoto generators) with respect to the total number of generators for different genera.
We observe that, although the portion of non-Geil-Matsumoto generators decreases with
the genus, it remains still significant, with a portion of more than 30% for genus 25.

Lemma 2.5.2 is a first consequence of Lemma 2.5.1 and it can be used to simplify the
computation of the Geil-Matsumoto bound. We leave it as a problem for future research to
find other consequences of Lemma 2.5.1 to get further simplifications.
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Chapter 2. Simplifying the computation 25

Genus

Mean of
the number of
GM generators
per semigroup

Mean of
the number of
non-GM generators
per semigroup

2 1.50 1.00
3 1.75 1.00
4 2.00 1.14
5 2.33 1.42
6 2.52 1.43
7 2.79 1.62
8 3.07 1.76
9 3.32 1.89
10 3.57 2.00
11 3.85 2.17
12 4.10 2.27
13 4.38 2.41
14 4.65 2.53
15 4.92 2.65
16 5.20 2.76
17 5.48 2.88
18 5.76 2.98
19 6.05 3.09
20 6.35 3.20
21 6.64 3.30
22 6.94 3.40
23 7.24 3.50
24 7.55 3.59
25 7.86 3.68
26 8.17 3.77
27 8.49 3.86
28 8.81 3.94
29 9.13 4.03
30 9.46 4.10

Table 2.2: Mean of the number of Geil-Matsumoto generators and non-Geil-Matsumoto
generators per semigroup
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Genus

Total number of
GM generators
divided by the
total number of
generators

Total number of
non-GM generators
divided by the
total number of
generators

Mean of the
portion of
non-GM generators
per semigroup

2 60.00% 40.00% 41.67%
3 63.64% 36.36% 35.42%
4 63.64% 36.36% 38.57%
5 62.22% 37.78% 40.14%
6 63.74% 36.26% 37.43%
7 63.37% 36.63% 39.13%
8 63.58% 36.42% 39.03%
9 63.74% 36.26% 38.58%
10 64.03% 35.97% 38.39%
11 63.96% 36.04% 38.76%
12 64.34% 35.66% 38.26%
13 64.54% 35.46% 38.17%
14 64.75% 35.25% 37.99%
15 65.01% 34.99% 37.73%
16 65.30% 34.70% 37.45%
17 65.56% 34.44% 37.21%
18 65.88% 34.12% 36.87%
19 66.19% 33.81% 36.55%
20 66.49% 33.51% 36.25%
21 66.79% 33.21% 35.93%
22 67.11% 32.89% 35.59%
23 67.43% 32.57% 35.26%
24 67.76% 32.24% 34.91%
25 68.08% 31.92% 34.56%
26 68.41% 31.59% 34.21%
27 68.74% 31.26% 33.86%
28 69.07% 30.93% 33.50%
29 69.40% 30.60% 33.14%
30 69.74% 30.26% 32.77%

Table 2.3: Portion of Geil-Matsumoto generators
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30 A. Vico-Oton: Collected results on semigroups, graphs and codes.

3.1 Introduction

The generalized Hamming weights of a linear code are, for each given dimension, the mini-
mum size of the support of the linear subspaces of that dimension. They were first used by
[79] to analyze the performance of the wire-tap channel of type II introduced in [59] and in
connection to t-resilient functions. See also [49]. The connections with the wire-tap channel
have been updated recently in [68], this time using network coding. The notion itself has
also been generalized for network coding in [55]. The generalized Hamming weights have
also been used in the context of list decoding [36, 31], for bounding the covering radius of
linear codes [41], and recently for secure secret sharing based on linear codes [17, 43]. In par-
ticular, Guruswami shows that his (e, L)-list decodibility concept for erasures is equivalent
with the generalized Hamming weights for linear codes.

In this contribution we deal with generalized Hamming weights of one-point AG codes
from the perspective of the associated Weierstrass semigroup, that is, the set of pole orders
of the rational functions having a unique pole at the defining one-point. We present one
first result on the maximum integer not belonging to an ideal of a numerical semigroup
(Theorem 3.2.3) and then we use it to give a lower bound on the generalized Hamming
weights via the so-called Feng-Rao numbers (Theorem 3.3.1, Corollary 3.3.2).

A numerical semigroup is a subset of N0 that contains 0, is closed under addition, and
has a finite complement in N0. The elements in this complement are called the gaps of
the semigroup and the number of gaps is the genus. The maximum gap is usually referred
to as the Frobenius number of the semigroup and the conductor is the Frobenius number
plus one. By the pigeonhole principle it is easy to prove that the Frobenius number is at
most twice the genus minus one, and there are semigroups, called symmetric semigroups,
attaining this bound.

An ideal of a numerical semigroup is a subset of the semigroup such that any element
in the subset plus any element of the semigroup add up to an element of the subset. Again
the ideal will be a subset of N0 with finite complement in it. Our first result is an analogue
of the upper bound on the Frobenius number, for the largest integer not belonging to an
ideal. Indeed, we prove that it is at most the size of the complement of the ideal in the
semigroup plus twice the genus minus one. This generalizes the bound on the Frobenius
number since that bound can be derived from this bound by taking the ideal to be the
whole semigroup. Then, we characterize the ideals of semigroups for which the maximum
integer not belonging to the semigroup attains the bound.

A nice tool for tackling the generalized Hamming weights for AG codes are the general-
ized order bounds introduced in [37], involving Weierstrass semigroups. In [21], a constant
depending only on the semigroup and the dimension of the Hamming weights was intro-
duced, from which the order bounds could be completely determined for codes of rate low
enough. This constant was called Feng-Rao number in the same reference. In the present
contribution, using the upper bound on the maximum element not belonging to an ideal, we
derive a lower bound on the so-called Feng-Rao numbers and consequently a new bound on
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Chapter 3. The maximum integer not belonging to an ideal 31

the generalized Hamming weights. The main tool is analyzing the intervals of consecutive
gaps of the Weierstrass semigroup. Consecutive gaps were already used in [26] for bounding
the minimum distance of codes and in [77] for bounding the generalized Hamming weights.

In the last section we study the intervals of consecutive gaps for Hermitian codes and
for codes in one of the Garcia-Stichtenoth towers of codes attaining the Drinfeld-Vlăduţ
bound.

3.2 The maximum integer not belonging to an ideal

From now on, Λ will denote a numerical semigroup and the elements of Λ are denoted
{λ0 = 0 < λ1 < . . . }. The Frobenius number is F , the conductor is c, and the genus is g.

Given an ideal I of a numerical semigroup Λ, we call the size of Λ \ I the difference of
I with respect to Λ.

It was proved in [39, Lemma 5.15] and [44, Lemma 3.6] that the difference of the ideal
a+Λ with a ∈ Λ is exactly a. So, for this particular class of ideals, the maximum element not
belonging to the ideal is at most the difference plus twice the genus of the semigroup minus
one. In Theorem 3.2.3 we will prove this result for any ideal of any numerical semigroup.
Then we will characterize the semigroups for which the inequality is indeed an equality.

3.2.1 An upper bound for the maximum integer not belonging to an ideal

Define the set of divisors of λi by

D(i) = {λj ≤ λi : λi − λj ∈ Λ}

and the sequence
νi = #D(i),

for i ∈ N0.
Some results related to this sequence and also to its applications to coding theory can

be found for instance in [42, 8, 9, 50, 56, 57, 58].
Barucci proved in [3] the next result.

Theorem 3.2.1 ([3]). Any ideal of a numerical semigroup is an intersection of irreducible
ideals and irreducible ideals have the form Λ \D(i) for some i.

Also, it was proved in [39, Theorem 5.24] the next result.

Lemma 3.2.2 ([39]). Let g(i) be the number of gaps smaller than λi and G(i) the number
of pairs of gaps adding up to λi. Then,

νi = i− g(i) +G(i) + 1

Now we can state the main result of this section.

Theorem 3.2.3. The maximum integer not belonging to an ideal I of a semigroup Λ of
genus g with difference d is at most d+ 2g − 1. That is, d+ 2g + i ∈ I for all i ≥ 0.
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32 A. Vico-Oton: Collected results on semigroups, graphs and codes.

Proof. If two ideals satisfy the result in the Theorem then their intersection also satisfies it
and by Theorem 3.2.1 it is then enough to prove the result for irreducible ideals.

Now we want to prove the result for the ideal I = Λ \ D(i). That is, νi + 2g ≥
max{c, λi + 1}, where c is the conductor of Λ. If c ≥ λi + 1 then we are done since c ≤ 2g.
Suppose then that λi + 1 > c. Then g(i) = g, λi = i + g, and hence by Lemma 3.2.2,
νi + 2g = (i− g +G(i) + 1) + 2g = i+ g + 1 +G(i) = λi + 1 +G(i) ≥ λi + 1.

3.2.2 Ideals attaining the upper bound

We will now characterize the ideals of semigroups that attain the upper bound on the
maximum integer not belonging to the ideal.

We first need some preliminary lemmas.

Lemma 3.2.4. If G(i) = 0 then λi ≥ c.

Proof. If G(i) = 0 then, since 1, . . . , λ1−1 are gaps, λi−λ1 +1, . . . , λi−1 are non-gaps. But
also λi ∈ Λ so the interval [λi − λ1 + 1, . . . , λi] is included in Λ. Now, by adding multiples
of λ1 to the elements in this interval we get the whole set of integers λi + k with k ≥ 0.
Then λi ≥ c.

Lemma 3.2.5. G(i) = 0 if and only if {λi − F} ∪ {λi − F + h : h 6∈ Λ, F − h 6∈ Λ} ⊆ Λ.

Proof. Suppose G(i) = 0. Then obviously λi−F ∈ Λ. Now suppose that h 6∈ Λ, F −h 6∈ Λ.
We need to see that λi−F + h ∈ Λ. But λi−F + h = λi− (F − h) ∈ Λ since G(i) = 0 and
F − h 6∈ Λ.

On the other hand, suppose that {λi − F} ∪ {λi − F + h : h 6∈ Λ, F − h 6∈ Λ} ⊆ Λ and
we want to prove that G(i) = 0. If G(i) 6= 0 then there exists a gap h′ such that λi − h′ is
a gap. But λi − h′ = (λi − F ) + (F − h′). Since λi − F ∈ Λ by hypothesis, F − h′ must
be a gap. Let us call this gap h = F − h′. Then both h and F − h = h′ are gaps and, by
the hypothesis, λi − F + h ∈ Λ. But λi − F + h = λi − h′ is a gap, a contradiction. Then
G(i) = 0.

Lemma 3.2.6. If G(i) = 0 then Λ \D(i) = {λi − h : h ∈ Z \ Λ}.

Proof. By Lemma 3.2.4, we know that λi ≥ c.
To see the inclusion ⊇ suppose that h ∈ Z \ Λ. If h < 0 then λi − h > λi and thus

λi ∈ Λ \D(i). If h > 0 then h < c and, since λi ≥ c, λi − h ≥ 0. Then λi − h ∈ Λ because
G(i) = 0. Finally λi − h 6∈ D(i) by definition of D(i).

For the reverse inclusion, suppose that λ ∈ Λ \ D(i). If λ > λi then λ = λi − h with
h < 0 and so h ∈ Z \ Λ. If λ < λi then λi − λ is a gap h because otherwise λ ∈ D(i). So,
λ ∈ {λi − h : h ∈ Z \ Λ}.

Theorem 3.2.7. Suppose that Λ is a numerical semigroup of genus g. Let I be an ideal of
Λ with difference d > 0. Then the next statements are equivalent:

1. The maximum integer not belonging to I is exactly d+ 2g − 1.

UNIVERSITAT ROVIRA I VIRGILI 
COLLECTED RESULTS ON SEMIGROUPS, GRAPHS AND CODES 
Albert Vico Oton 
Dipòsit Legal: T. 58-2013 
 
 



Chapter 3. The maximum integer not belonging to an ideal 33

2. I = Λ \D(i) for some i with G(i) = 0.

3. I = {λi − h : h ∈ Z \ Λ} for some i with G(i) = 0.

4. {a+h : h 6∈ Λ, F −h 6∈ Λ} ⊆ Λ and I = (a+ Λ)∪{a+h : h 6∈ Λ, F −h 6∈ Λ} for some
a ∈ Λ, a > 0.

Proof. (1)⇐⇒(2): Suppose first that I = Λ \D(i) for some i with G(i) = 0. Then d = νi.
Also, by Lemma 3.2.4, g(i) = 0 and λi = i+ g. Now, by Lemma 3.2.2, d+ 2g − 1 = λi 6∈ I.

Conversely, suppose that the maximum integer not belonging to I is d+ 2g − 1. If I is
a proper intersection of two ideals I ′ and I ′′ with difference d′ and d′′ respectively, then I
has difference d strictly larger than d′ and strictly larger than d′′. If d + 2g − 1 does not
belong to I then it does not belong either to I ′ or to I ′′, but d + 2g − 1 is strictly larger
than d′ + 2g − 1 and strictly larger than d′′ + 2g − 1, contradicting Theorem 3.2.3. So, I
must be, by Theorem 3.2.1, Λ \D(i) for some i.

Since I = Λ\D(i), it holds d = νi. If λi < c, then νi+2g−1 ≥ 1+2g−1 = 2g ≥ c and so
d+2g−1 ∈ I, which contradicts our assumption. Therefore λi ≥ c. Then νi = i−g+G(i)+1
by Lemma 3.2.2. So d+ 2g − 1 = i+ g +G(i) = λi +G(i). Since d+ 2g − 1 6∈ I, it follows
that G(i) = 0.

(2)⇐⇒(3) follows immediatelly from Lemma 3.2.6.

(3)⇐⇒(4) follows from Lemma 3.2.5, by setting a = λi − F , and using the equality
{λi − h : h ∈ Z \ Λ} = {a + (F − h) : h ∈ Z \ Λ}, and the fact that {F − h : h ∈ Z \ Λ} =
Λ ∪ {h : h 6∈ Λ, F − h 6∈ Λ}.

As an example, consider the semigroup

Λ = {0, 4, 5, 8, 9, 10, 12, 13,→}.

We will list all the ideals I satisfying d+ 2g−1 6∈ I (d the difference of I). Since the largest
i for which G(i) > 0 is 11 + 11 = 22 = λ16, all ideals I = Λ \D(i) with i ≥ 17 attain the
bound. It remains to see what indices i between 6 and 15 satisfy G(i) = 0.
For i = 6, G(i) > 0 since λi = 12 = 11 + 1.
For i = 7, G(i) > 0 since λi = 13 = 11 + 2.
For i = 8, G(i) > 0 since λi = 14 = 11 + 3.
For i = 9, G(i) = 0. Indeed, {15 − 1 = 14, 15 − 2 = 13, 15 − 3 = 12, 15 − 6 = 9, 15 − 7 =
8, 15− 11 = 4} ⊆ Λ.
For i = 10 G(i) = 0. Indeed, {16− 1 = 15, 16− 2 = 14, 16− 3 = 13, 16− 6 = 10, 16− 7 =
9, 16− 11 = 5} ⊆ Λ.
For i = 11 G(i) > 0 since λi = 17 = 11 + 6.
For i = 12 G(i) > 0 since λi = 18 = 11 + 7.
For i = 13 G(i) = 0. Indeed, {19− 1 = 18, 19− 2 = 17, 19− 3 = 16, 19− 6 = 13, 19− 7 =
12, 19− 11 = 8} ⊆ Λ.
For i = 14 G(i) = 0. Indeed, {20− 1 = 19, 20− 2 = 18, 20− 3 = 17, 20− 6 = 14, 20− 7 =
13, 20− 11 = 9} ⊆ Λ.
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34 A. Vico-Oton: Collected results on semigroups, graphs and codes.

For i = 15 G(i) = 0. Indeed, {21− 1 = 20, 21− 2 = 19, 21− 3 = 18, 21− 6 = 15, 21− 7 =
14, 21− 11 = 10} ⊆ Λ.

Hence, all ideals attaining the bound in Theorem 3.2.3 are I9 = Λ \D(9) = {4, 8, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, . . . },
with D(9) = {0, 5, 10, 15}, d = 4, d+ 2g − 1 = 15;
I10 = Λ \D(10) = {5, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 22, . . . },
with D(10) = {0, 4, 8, 12, 16}, d = 5, d+ 2g − 1 = 16;
I13 = Λ \D(13) = { 8, 12, 13, 16, 17, 18, 20, 21, 22, . . . },
with D(13) = {0, 4, 5, 9, 10, 14, 15, 19}, d = 8, d+ 2g − 1 = 19;
I14 = Λ \D(14) = { 9, 13, 14, 17, 18, 19, 21, 22, . . . },
with D(14) = {0, 4, 5, 8, 10, 12, 15, 16, 20}, d = 9, d+ 2g − 1 = 20;
I15 = Λ \D(15) = { 10, 14, 15, 18, 19, 20, 22, . . . },
with D(15) = {0, 4, 5, 8, 9, 12, 13, 16, 17, 21}, d = 10, d+ 2g − 1 = 21;
I17 = Λ \D(17) = { 12, 16, 17, 20, 21, 22, 24, . . . },
with D(17) = {0, 4, 5, 8, 9, 10, 13, 14, 15, 18, 19, 23}, d = 12, d+ 2g − 1 = 23;
and Λ\D(i) for all i > 17. In this last case, D(i) = {0, 4, 5, 8, 9, 10, 12, 13, . . . , i+ 6−12, i+
6− 10, i+ 6− 9, i+ 6− 8, i+ 6− 5, i+ 6− 4, i+ 6}, d = i− 5, d+ 2g − 1 = i+ 6.

We call the ideals of the form a+Λ for some a ∈ Λ principal ideals. In the next corollary
we prove that for a symmetric semigroup, the ideals attaining the bound on the maximum
integer not belonging to the ideal are exactly the principal ideals.

Corollary 3.2.8. Let Λ be a symmetric numerical semigroup with Frobenius number F and
genus g. Suppose that I is an ideal of Λ with difference d. Then the largest integer not
belonging to I is d+ 2g − 1 if and only if I is principal.

Proof. It follows from Theorem 3.2.7 and the fact that for any gap h of a symmetric semi-
group, F − h ∈ Λ.

This can be checked again with the previous example since the semigroup Λ in there
is symmetric. Notice though that the hypothesis of being symmetric is necessary. For
instance, take Λ = {0, 4, 8, 9, . . . } which has genus 6 and Frobenius number 7 and so it is
not symmetric. Consider its ideal

I = Λ \D(10) = Λ \ {0, 4, 8, 12, 16} = {9, 10, 11, 13, 14, 15, 17, . . . }

Its difference is d = 5 and the maximum element not belonging to it is d + 2g − 1 = 16.
However, I is not

9 + Λ = {9, 13, 17, 18, . . . }.
The elements 10, 11, 14, 15 have to be included in I in order to have d+ 2g− 1 6∈ I. Hence,
I is not principal as I = (9 + Λ) ∪ {10, 11, 14, 15}.

3.3 A lower bound on the Feng-Rao numbers

3.3.1 Feng-Rao numbers

Suppose Λ = {λ0 = 0 < λ1 < . . . } is a numerical semigroup. In coding theory, the
ν sequence of Λ defined above is very important. In particular, for an algebraic curve
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Chapter 3. A lower bound on the Feng-Rao numbers 35

with Weierstrass semigroup Λ at a rational point P , the order (or Feng-Rao) bound on
the minimum distance of the one-point codes defined on P by the evaluation of rational
functions having only poles at P of order at most λm is defined as δ(m) = min{νi : i > m}
[22, 42, 39]. Some results on its computation can be found in [15, 39, 8, 50, 56, 57, 58].

A generalization of this bound, with applications not only in coding theory but also
in some fields of cryptography, is the r-th order bound on the generalized r-th generalized
Hamming weight. For this define D(i) as before and

D(i1, . . . , ir) = D(i1) ∪ · · · ∪D(ir).

Then the r-th order bound is defined as

δr(m) = min{#D(i1, . . . , ir) : i1, . . . , ir > m}.

This definition was introduced in [37]. It is proved by Farrán and Munuera in [21] that for
each numerical semigroup Λ and each integer r ≥ 2 there exists a constant Er = E(Λ, r),
called r-th Feng-Rao number, such that

1. δr(m) = m+ 2− g + Er for all m such that λm ≥ 2c− 2 [21, Theorem 3],

2. δr(m) ≥ m+ 2− g + Er for any m such that λm ≥ c [21, Theorem 8],

where c and g are respectively the conductor and the genus of Λ.

Furthermore, Er satisfies

3. r ≤ Er ≤ λr−1 if g > 0 [21, Proposition 5],

4. Er = λr−1 if r ≥ c [21, Proposition 5],

5. Er = r − 1 if g = 0.

Some further results related to the Feng-Rao number can be found in [21, 20, 18]. We will
refer to the bound Er ≥ r as the Farrán-Munuera bound. Here we use the main result in the
previous section to obtain a bound on Er, which is strictly better than the Farrán-Munuera
bound for r > 2 and for semigroups with more than two intervals of gaps.

3.3.2 Bound on the Feng-Rao numbers

Theorem 3.3.1. Suppose that n` is the number of intervals of at least ` gaps of Λ. Then

Er ≥ min{r − 2 +

⌈
r

`− 1

⌉
, r − 1 +

⌈
(`− 1)n`−1

`

⌉
}. (3.1)

In particular, if n is the number of intervals of Λ then

Er ≥ min{2(r − 1), r − 1 + dn/2e}. (3.2)
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Proof. Suppose that 2c− 1− g ≤ m < i1 < · · · < ir are such that D(i1, . . . , ir) = m+ 2−
g + Er. Denote I = {i1, . . . , ir}. By the minimality of the set I, it necessarily holds that
i1 = m + 1. By Theorem 3.2.3, (m + 2 − g + Er) + (2g − 1) ≥ λir = g + ir. Reorganizing
the inequality gives

ir ≤ m+ 1 + Er. (3.3)

Suppose now that there are no ` consecutive integers in I. Then

ir ≥ m+ 1 + r − 1 +

⌈
r − (`− 1)

`− 1

⌉
. (3.4)

Now, by (3.3), Er ≥ r − 2 +
⌈

r
`−1

⌉
.

Suppose on the other hand that there are at least ` consecutive integers in I. Let ij be the
maximum integer in I such that ij−`+1, . . . , ij ∈ I and so ij−`+1 = ij−`+1, . . . , ij−1 = ij−1
and

λij−`+1
= λij − `+ 1, . . . , λij−1 = λij − 1.

Let
A = {λ ∈ Λ : λ+ 1, . . . , λ+ `− 1 6∈ Λ}.

In particular, if λ ∈ A then λ ≤ c, for c the conductor of Λ. Obviously #A = n`−1. If λ ∈ A
then

(λij − 1)− λ ∈ D(ij−1) \D(ij),

(λij − 2)− λ ∈ D(ij−2) \D(ij),

...

(λij − `+ 1)− λ ∈ D(ij−`+1) \D(ij).

and so

{λij − 1− λ, λij − 2− λ, . . . , λij − `+ 1− λ} ⊆ D(ij−`+1, . . . , ij−1) \D(ij).

In fact,

∪λ∈A{λij − 1− λ, . . . , λij − `+ 1− λ} ⊆ D(ij−`+1, . . . , ij−1) \D(ij)

and the sets in this union are disjoint. Indeed, for λ, λ′ ∈ A, with λ > λ′, it holds λ−λ′ ≥ `.
Then, min{λij − 1− λ′, . . . , λij − `+ 1− λ′} = λij − `+ 1− λ′ ≥ λij + 1− λ > max{λij −
1− λ, . . . , λij − `+ 1− λ}.

So, #D(i1, . . . , ir) ≥ #D(ij−`+1, . . . , ij) ≥ (`− 1)n`−1 + νij = (`− 1)n`−1 + ij + 1− g.
Since D(i1, . . . , ir) = m+ 2− g+Er we get that m+ 2− g+Er ≥ (`− 1)n`−1 + ij + 1− g,
so

Er ≥ (`− 1)n`−1 + ij −m− 1. (3.5)

Now, by the maximality of j,

ij ≥ i1 + (`− 1)(i1 − ir) + `(r − 1). (3.6)
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Chapter 3. A lower bound on the Feng-Rao numbers 37

Indeed, the subset of {i1, . . . , ir} of r elements for which its maximum element k such
that k − 1, . . . , k − ` + 1 also belongs to the subset is minimum is {m + 1,m + 2, . . . , k =
ir − `t} ∪ {ir − `t+ 2, . . . , ir − `(t− 1)} ∪ · · · ∪ {ir − 2`+ 2, . . . , ir − `} ∪ {ir − `+ 2, . . . , ir}
for t the number of integers in the interval [i1, . . . , ir] not belonging to the subset, that is,
t = ir − i1 + 1− r. So, k = i1 + (`− 1)(i1 − ir) + `(r − 1).

So, using (3.5) first and then (3.3),

Er ≥ (`− 1)n`−1 + i1 + (`− 1)(i1 − ir) + `(r − 1)−m− 1

= (`− 1)n`−1 + (`− 1)(i1 − ir) + `(r − 1)

≥ (`− 1)n`−1 − (`− 1)Er + `(r − 1)

and we conclude that Er ≥ r − 1 +
⌈

(`−1)n`−1

`

⌉
.

We have seen that depending on whether I contains consecutive integers or not either

Er ≥ r − 2 +
⌈

r
`−1

⌉
or Er ≥ r − 1 +

⌈
(`−1)n`−1

`

⌉
. So, in either case, Er ≥ min{r − 2 +⌈

r
`−1

⌉
, r − 1 +

⌈
(`−1)n`−1

`

⌉
}.

Corollary 3.3.2. Let m be such that λm ≥ c and let ` ≥ 2. Then

δr(m) ≥ m+ 2− g + min{r − 2 +

⌈
r

`− 1

⌉
, r − 1 +

⌈
(`− 1)n`−1

`

⌉
}.

Remark 3.3.3. If r = 2 or n ≤ 2 then bound (3.2) equals Farrán-Munuera’s bound. But
in any other case, bound (3.2) is better.

Corollary 3.3.4. If Λ is a semigroup with conductor c and n intervals of gaps then, for
any m with λm ≥ c,

δr(m) ≥
{
m− g + 2r if r ≤ dn/2e+ 1,
m− g + r + dn/2e+ 1 otherwise.

3.3.3 Sharpness of the bound

Analyzing the proof of Theorem 3.3.1 we see that the bound may be sharp only if

1. The inequality in (3.3) is indeed an equality, which means, by Theorem 3.2.7, that
D(i1, . . . , ir) = D(ir), and so i1, . . . , ir−1 ⊆ ir − Λ. In particular, ir − ir−1 ≥ λ1.

2. Either the inequality in (3.4) or the inequality in (3.6) are indeed equalities, which
means that the difference between ir and ir−1 is at most two. So, ir − ir−1 ≤ 2.

We conclude that the only semigroups for which the bound may be sharp are hyperel-
liptic semigroups, that is, semigroups that contain 2.

It is proved in [20, Theorem 1] that for hyperelliptic semigroups, Er = λr−1 = 2(r− 1).
The bound in Theorem 3.3.1 for the hyperelliptic semigroup of genus g is

Er ≥


r − 1 if ` > 2
2(r − 1) if ` = 2 and r − 1 ≤ dg/2e
r − 1 + dg/2e if ` = 2 and r − 1 > dg/2e
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38 A. Vico-Oton: Collected results on semigroups, graphs and codes.

Hence the bound is sharp if and only if Λ is hyperelliptic, ` = 2, and r ≤ 1 + dg/2e.

3.3.4 An example

As an example consider the semigroup

{0, `, 2`, 3`, . . . , (`− 1)`, `2, `2 + 1, `2 + 2, . . . },

with ` ≥ 6. Let us analyze the bounds in (3.1), (3.2) for different values of r. In this case
n`−1 = n1 = ` and so the bound in (3.1) is

min{r − 2 +

⌈
r

`− 1

⌉
, r + `− 2}

while the bound in (3.2) is

min{2(r − 1), r − 1 + d`/2e}.

Case r = (`− 1)2

Bound (3.1) is

min{r − 2 +

⌈
r

`− 1

⌉
, r + `− 2}

= min{(`− 1)2 + `− 3, (`− 1)2 + `− 2}
= (`− 1)2 + `− 3

while bound (3.2) is

min{2(r − 1), r − 1 + d`/2e}
= min{2(`− 1)2 − 2, (`− 1)2 − 1 + d`/2e}
= (`− 1)2 + d`/2e − 1

So, bound (3.1) (with the first element being the minimum) is better than bound (3.2).

Case r = `2 − d`/2e

Bound (3.1) is

min{r − 2 +

⌈
r

`− 1

⌉
, r + `− 2}

= min{`2 − d`/2e − 2 +

⌈
(`− 1)`+ b`/2c

`− 1

⌉
, `2 − d`/2e+ `− 2}

= min{`2 + b`/2c − 1, `2 + b`/2c − 2}
= `2 + b`/2c − 2
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while bound (3.2) is

min{2(r − 1), r − 1 + d`/2e}
= min{2`2 − 2d`/2e − 2, `2 − 1}
= `2 − 1

So, bound (3.1) (with the second element being the minimum) is better than bound (3.2).

Case r = b`/2c

Bound (3.1) is

min{r − 2 +

⌈
r

`− 1

⌉
, r + `− 2}

= min{b`/2c − 1, b`/2c+ `− 2}
= b`/2c − 1

while bound (3.2) is

min{2(r − 1), r − 1 + d`/2e}
= min{2b`/2c − 2, b`/2c+ d`/2e − 1}
= min{2b`/2c − 2, `− 1}
= 2b`/2c − 2

So, bound (3.2) (with the first element being the minimum) is better than bound (3.1).

Case r = d`/2e+ 2

Bound (3.1) is

min{r − 2 +

⌈
r

`− 1

⌉
, r + `− 2}

= min{d`/2e+ 1, d`/2e+ `}
= d`/2e+ 1

while bound (3.2) is

min{2(r − 1), r − 1 + d`/2e}
= min{2d`/2e+ 2, 2d`/2e+ 1}
= 2d`/2e+ 1

So, bound (3.2) (with the second element being the minimum) is better than bound (3.1).
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3.4 Intervals of gaps in Hermitian codes and codes on a
Garcia-Stichtenoth tower of codes

Now we analyze n` for two classical families of codes, that is, for Hermitian codes and
for codes in one of the Garcia-Stichtenoth’s towers of codes attaining the Drinfeld-Vlăduţ
bound.

3.4.1 Hermitian codes

Let q be a prime power. The Hermitian curve over Fq2 is defined by the affine equation

xq+1 = yq + y

and it has a single rational point at infinity and q3 more rational points. Its weight hier-
archy has already been studied in [80, 2]. However, for its simplicity, we wanted to give a
description of n`. The Weierstrass semigroup at the rational point at infinity is generated
by q and q + 1 [74, 39]. Hence, it is {0} ∪ {q, q + 1} ∪ {2q, 2q + 1, 2q + 2} ∪ · · · ∪ {(q −
2)q, (q − 2)q + 1, . . . , (q − 2)q + (q − 2) = (q − 1)q − 2} ∪ {j ∈ N0 : j ≥ (q − 1)q}. It is easy
then to see that the lengths of the intervals of gaps, as they appear in the semigroup, are
q − 1, q − 2, . . . , 1. So,

n` =

{
q − ` if 1 ≤ ` ≤ q
0 if ` ≥ q

3.4.2 Codes on the Garcia-Stichtenoth tower of codes

Garcia and Stichtenoth gave in [27] a celebrated tower of function fields attaining the
Drinfeld-Vlăduţ bound, which became of great importance in the area of algebraic coding
theory. Since then other towers have also been found, although we will focus on the tower
in [27]. It is defined over the finite field with q2 elements Fq2 for q a prime power. It is

given by F (1) = Fq2(x1); F (m) = F (m−1)(xm), with xm satisfying

xqm + xm =
xqm−1

xq−1
m−1 + 1

.

It is shown in [27] that the number of its rational points is Nq(F (m)) ≥ (q2 − q)qm−1 and

that the genus gm of F (m) is gm = (qb
m+1

2
c − 1)(qd

m−1
2
e − 1). Hence, the ratio between

the genus g(F (m)) and Nq2(F (m)) converges to 1/(q− 1), the Drinfeld-Vlăduţ bound, as m
increases. From these curves one can construct asymptotically good sequences of codes.

For every function field F (m) in the tower we distinguish the rational point Q(m) that
is the unique pole of x1. The Weierstrass semigroup Λ(m) at Q(m) in F (m) was recursively
described in [61]. Indeed, the semigroups are given recursively by

Λ(1) = N0

Λ(m) = q · Λm−1 ∪ {i ∈ N0 : i ≥ qm − qb
m+1

2
c}.

(3.7)
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In [12] a non-recursive description of these semigroups is given as follows.

Λ(m) =

bm
2
c⊔

i=1

qm−2i+1Ai t {j ∈ N0 : j ≥ cm}, (3.8)

where cm is the conductor of Λ(m), which is qm − qb
m+1

2
c, and Ai = {c2i−1 + j : j =

0, . . . , qi−1(q − 1)− 1}.
From (3.8) we can deduce that there are exactly #Ai = qi−1(q − 1) intervals of length

qm−2i+1− 1. Now, if j is minimum such that ` ≤ qm−2j+1− 1 then n` =
∑j

i=1 q
i−1(q− 1) =

qj − 1.

But ` ≤ qm−2j+1 − 1 is equivalent to q2j ≤ qm+1

`+1 and to qj ≤ q(m+1)/2
√
`+1

. Then j ≤

logq

(
q(m+1)/2
√
`+1

)
and we can take

j =

⌊
logq

(
q(m+1)/2

√
`+ 1

)⌋
=

⌊
m+ 1

2
− logq(

√
`+ 1)

⌋
.

So, n` = qb
m+1

2
−logq(

√
`+1)c − 1.
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44 A. Vico-Oton: Collected results on semigroups, graphs and codes.

4.1 Introduction

A numerical semigroup Λ is a subset of the nonnegative integers N0 that contains 0 and is
closed under addition, and such that N0 \ Λ is finite. The number #(N0 \ Λ) is denoted
the genus of the semigroup and the first nonzero nongap of Λ is called its multiplicity. The
largest integer not in Λ is denoted F(Λ), and it is called the Frobenius number of Λ.

Arf semigroups appear in many theoretical problems in algebraic geometry as well as
in some applied areas such as coding theory [4, 66, 16, 11, 7, 8]. Arf semigroups are those
semigroups such that for any elements x1, x2, x3 in the semigroup with x1 ≥ x2 ≥ x3, the
integer x1 + x2 − x3 also belongs to the semigroup.

This definition inspired studying the so-called patterns on numerical semigroups [10].
Patterns on numerical semigroups are multivariate polynomials such that evaluated at any
decreasing sequence of elements of the semigroup give integers belonging to the semigroup.

For their simplicity, and for their inspiration in Arf semigroups, patterns were first
defined to be linear and homogeneous. However, Arf semigroups are of maximal embedding
dimension, and this larger class of numerical semigroups fulfills a non-homogeneous pattern.
Lately, other families of numerical semigroups that satisfy a non-homogeneous pattern have
appeared in very different areas of applied mathematics. This suggests the need for studying
non-homogeneous patterns on numerical semigroups.

In this contribution we give some results on non-homogeneous linear patterns. We start
by presenting some motivating examples. Then we focus on the problem of characterizing
patterns that are admissible, that is, there is at least a nontrivial numerical semigroup
admitting them. Next, we particularize this study to the case the independent term of the
pattern is a multiple of the multiplicity. Moreover, if we fix the multiplicity, the set of
numerical semigroups admitting a strong admissible pattern is closed under intersections
and the adjoin of the Frobenius number. This motivates the definition of m-varieties and
the concept of minimal generating system associated to an m-variety, which allow us to
represent the elements in an m-variety in a tree rooted in {0} ∪ (m + N0). Finally, for a
given multiplicity we characterize those strongly admissible patterns yielding a finite tree.

4.2 Motivating examples

We will present three different scenarios where non-homogeneous patterns arise. The first
one is related to commutative algebra, the second one is on algebraic geometry, and the
third one is related to finite geometry.

4.2.1 Semigroups with maximal embedding dimension

Minimal generators of a numerical semigroup are those elements that can not be obtained
as the sum of any other two nonzero elements of the semigroup. Equivalently, x ∈ Λ is a
minimal generator of the semigroup Λ if and only if Λ \ {x} is still a numerical semigroup.
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Chapter 4. Motivating examples 45

The number of minimal generators (usually referred to as the embedding dimension) is
bounded by the multiplicity. Those numerical semigroups for which the number of minimal
generators equals the multiplicity are said to be of maximal embedding dimension (MED).
These semigroups also have other “maximal” properties as explained in [4] and [64, Chapter
2].

Maximal embedding dimension numerical semigroups are characterized by the fact that
for any two nonzero elements x, y of the semigroup, one has that x+ y −m belongs to the
semigroup where m is its multiplicity.

This example, for a fixed m (multiplicity) is related to the non-homogeneous pattern
x1 + x2 −m. From this, it easily follows that every Arf numerical semigroup has maximal
embedding dimension.

4.2.2 The Geil-Matsumoto bound

An important problem of algebraic coding theory is upper bounding the maximum number
of places of degree one of function fields. The well known Hasse-Weil bound as well as
Serre’s improvement (q+1+gb2√qc) use only the genus g of the function field and the field
size q. Geil and Matsumoto give in [30] a bound in terms of the field size and the Weierstrass
semigroup Λ of a rational place (that is, the set of pole orders of rational functions having
only poles in that place). It is #(Λ\∪λ∈Λ\{0}(qλi+Λ))+1. It is a neat formula although it is
not closed and it may be computationally hard to calculate. Lewittes’ bound [46] preceded
the Geil-Matsumoto bound and it only considers, apart from the field size, the multiplicity
m of the numerical semigroup. It is 1 + qm. It can be derived from the Geil-Matsumoto
bound and so it is weaker. The obvious advantadge of Lewittes’ bound with respect to the
Geil-Matsumoto bound is that Lewittes’ bound is very simple to compute. Furthermore,
the results by Beelen and Ruano in [6] allow bounding the number of rational places with
nonzero coordinates by #(Λ \ ∪λ∈Λ\{0}((q − 1)λi + Λ)) + 1.

It is proved in [14] that the Geil-Matsumoto bound and the Lewittes’ bound coincide if
and only if qx− qm ∈ Λ for all x ∈ Λ \ {0}, where m is the multiplicity of Λ. Similarly, it
can be proved that Beelen-Ruano’s bound on the number of rational places with nonzero
coordinates equals 1 + (q − 1)m if and only if (q − 1)x− (q − 1)m ∈ Λ for all x ∈ Λ \ {0}.

These examples, for a fixed q (field size) and a fixed m (multiplicity), are related re-
spectively to the non-homogeneous patterns qx1 − qm and (q − 1)x1 − (q − 1)m.

Remark 4.2.1. Let k be a positive integer, and let Λ be a numerical semigroup with
multiplicity m. Let x and y be two integers such that kx − km, ky − km ∈ Λ. Then
k(x+ y)− km = (kx− km) + (ky − km) + km ∈ Λ. Consequently the following conditions
are equivalent:

(a) for every x ∈ Λ \ {0}, kx− km ∈ Λ,

(b) for every minimal generator x of Λ, kx− km ∈ Λ.

Set
Λ

k
= {x ∈ Z | kx ∈ Λ},
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which is also a numerical semigroup (see [64, Chapter 5]). Then kx−km ∈ Λ if and only if
x−m ∈ Λ/k, or equivalently, x ∈ m+ Λ/k. Hence the above conditions are also equivalent
to

(c) Λ \ {0} ⊆ m+ Λ/k.

In particular, if k ∈ Λ \ {0}, then Λ/k = N0. Trivially Λ \ {0} ⊆ m+ N0.

4.2.3 Combinatorial configurations

A (v, b, r, k)-combinatorial configuration is an incidence structure with a set of v points
and a set of b lines such that each line contains k points, each point is contained in r
lines, and any two distinct lines are incident with at most one point or, equivalently, any
two distinct points coincide in at most one line. It is easy to prove that if a (v, b, r, k)-
configuration exists, then necessarily vr = bk and so, there exists an integer d such that
(v, b, r, k) = (d k

gcd(r,k) , d
r

gcd(r,k) , r, k). For a fixed pair r, k, the set Dr,k of all integers d

such that there exists a (d k
gcd(r,k) , d

r
gcd(r,k) , r, k)-configuration is a numerical semigroup [13].

It is proved in [76] that Dr,k satisfies the non-homogeneous pattern x1 + x2 − n for any
n ∈ {1, . . . , gcd(r, k)}. See other related results in [35].

4.3 Non-homogeneous patterns

Here by a pattern we will mean a linear polynomial with nonzero integer coefficients in
x1, . . . , xn and eventually a nonzero integer constant term. We will say that n is the length
of the pattern. Homogeneous patterns were first introduced and studied in [10]. In that
paper a semigroup was said to admit a pattern p(x1, . . . , xn) if for every n elements s1, . . . , sn
in Λ with s1 ≥ s2 ≥ · · · ≥ sn the integer p(s1, . . . , sn) belonged to Λ. For a non-homogeneous
pattern with an integer nonzero constant term, it seems reasonable that the condition for
a semigroup to admit it considers only nonzero elements of the semigroup. That is, we
will say that a numerical semigroup admits a non-homogeneous pattern p(x1, . . . , xn) if for
every n nonzero elements s1, . . . , sn in Λ with s1 ≥ s2 ≥ · · · ≥ sn the integer p(s1, . . . , sn)
belongs to Λ.

We denote by S(p) the set of all numerical semigroups admitting p.

For the case of homogeneous patterns it was proved in [10] that the following conditions
are equivalent for a pattern p =

∑n
i=1 aixi:

(a) S(p) 6= ∅,

(b) N0 ∈ S(p),

(c)
∑j

i=1 ai ≥ 0 for all j ≤ n.

Here we will prove an equivalent result for non-homogeneous patterns. When dealing
with non-homogeneous patterns, the role that N0 played for homogeneous patterns will be
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Chapter 4. Non-homogeneous patterns 47

played by an ordinary semigroup, that is, a semigroup of the form {0} ∪ (m+N0) for some
integer m. This semigroup is represented by {0,m,→}.

For a given pattern p =
∑n

i=1 aixi + a0 and for all j ≤ n, considering the partial sums

σj =

j∑
i=1

ai (4.1)

will be useful for the formulation and proof of the following technical results.

Lemma 4.3.1. Let p =
∑n

i=1 aixi + a0 be a non-homogeneous pattern such that σj < 0 for
some j ∈ {1, . . . , n}. Then S(p) = ∅.

Proof. For any numerical semigroup, let m be its multiplicity and take any positive in-

teger l in the semigroup larger than
∑n
k=j+1 akm+a0
−σj . Then

∑j
i=1 ail +

∑n
i=j+1 aim + a0 <∑j

i=1 ai

∑n
k=j+1 akm+a0

−
∑j
k=1 ak

+
∑n

i=j+1 aim+a0 = 0, and so it does not belong to the semigroup.

Lemma 4.3.2. Let p =
∑n

i=1 aixi+a0 be a non-homogeneous pattern such that σn ≤ 0 and
a0 < 0. Then S(p) = ∅.

Proof. Let Λ be a numerical semigroup and m be its multiplicity. Then p(m, . . . ,m) =
σnm+ a0 < 0, so no numerical semigroup can admit p.

Let Λ be a numerical semigroup and let x be a nonzero element of Λ. The Apéry set of
x in Λ is

Ap(Λ, x) = {s ∈ Λ | x− s 6∈ Λ}.

This set has exactly x elements, one for each congruent class modulo x ([64, Chapter 1]).

Lemma 4.3.3. Let p =
∑n

i=1 aixi+a0 be a non-homogeneous pattern such that σn = 1 and
a0 < 0. Then S(p) ⊆ {N0}.

Proof. Let Λ be a numerical semigroup admitting p and m be its multiplicity. In this
setting, p(m, . . . ,m) = m + a0. Hence p(m, . . . ,m) ∈ Λ forces a0 = −m. If Λ 6= N0, then
m 6= 1. Take an element x ∈ Ap(Λ,m) \ {0} (this set is not empty since m > 1). Then
p(x, . . . , x) = x−m /∈ Λ, and so Λ does not admit p, a contradiction.

Lemma 4.3.4. If the non-homogeneous pattern p =
∑n

i=1 aixi + a0, a0 6= 0, is admitted
at least by one semigroup other than N0, then σj ≥ 0, for all j ≤ n, and either a0 ≥ 0 or
σn > 1.

Proof. Suppose first that there exists j ≤ n such that σj < 0. Lemma 4.3.1 asserts that
S(p) = ∅, a contradiction.

Assume now that a0 < 0 and σn ≤ 1. Then Lemmas 4.3.2 and 4.3.3 state that there is
no numerical semigroup other than N0 admitting p.
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Let s1, . . . , sn be a nonincreasing sequence of nonzero elements of a semigroup Λ. Define

δj =

{
sj − sj+1 if 1 ≤ j ≤ n− 1,
sn −m if j = n.

(4.2)

Then δi ≥ 0 for all 1 ≤ i ≤ n. In particular, si =
∑n−1

j=i (sj − sj+1) + (sn − m) + m =∑n
j=i δj +m. Then,

p(s1, . . . , sn) =

n∑
i=1

aisi + a0 =

n∑
i=1

ai

 n∑
j=i

δj +m

+ a0

=
n∑
i=1

ai

n∑
j=i

δj + σnm+ a0 =
n∑
j=1

j∑
i=1

aiδj + σnm+ a0

=
n∑
j=1

σjδj + σnm+ a0. (4.3)

Lemma 4.3.5. Suppose that the non-homogeneous pattern p =
∑n

i=1 aixi + a0 satisfies

σj =
∑j

i=1 ai ≥ 0 for all j ≤ n and either a0 ≥ 0 or σn > 1. Let m be any positive integer
satisfying 

m ≥ − a0
σn−1 if σn > 1,

m ≥ 0 if σn = 1(and so a0 ≥ 0),
m ≤ a0 if σn = 0.

Then the ordinary semigroup {0,m,→} admits p.

Proof. Suppose that s1, . . . , sn is a nonincreasing sequence of nonzero elements of {0,m,→}.
By (4.3) and the hypothesis that σj ≥ 0,

p(s1, . . . , sn) =

n∑
j=1

σjδj + σnm+ a0 ≥ σnm+ a0.

Now, if σn = 0, then p(s1, . . . , sn) ≥ a0. So, in this case, if m satisfies the hypothesis
m ≤ a0, then p(s1, . . . , sn) ∈ {0,m,→}. If σn = 1 (and so a0 ≥ 0), then p(s1, . . . , sn) ≥
m+ a0 ≥ m, so, again, p(s1, . . . , sn) ∈ {0,m,→}. Otherwise if σn > 1,

p(s1, . . . , sn) ≥ σnm+ a0 = (σn − 1)m+ a0 +m

≥ (σn − 1) (− a0

σn − 1
) + a0 +m = m.

So, p(s1, . . . , sn) ∈ {0,m,→}.

Remark 4.3.6. Let p =
∑n

i=1 aixi + a0 be a non-homogeneous pattern such that σj =∑j
i=1 ai ≥ 0 for all j ≤ n, a0 = −1, and σn = 1. Then Lemma 4.3.3 asserts that S(p) ⊆

{N0}. Also from (4.3), we obtain that for every nonincreasing sequence s1, . . . , sn of positive
integers, p(s1, . . . , sn) =

∑n
j=1 σjδj +m− 1, which is a nonnegative integer. Hence S(p) =

{N0}.
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Chapter 4. Patterns involving the multiplicity 49

From the previous lemmas we obtain the following theorem.

Theorem 4.3.7. The next conditions are equivalent for a pattern p =
∑n

i=1 aixi + a0, with

a0 6= 0, where σj =
∑j

i=1 ai:

(a) S(p) 6⊆ {N0},

(b) either a0 ≥ 0 or σn > 1, and σj ≥ 0 for all j ≤ n.

If any of these two conditions hold, then {0,m,→} ∈ S(p) for all m satisfying
m ≥ − a0

σn−1 if σn > 1,

m ≥ 0 if σn = 1 and so a0 ≥ 0,
m ≤ a0 if σn = 0.

(4.4)

The patterns satisfying the conditions in Theorem 4.3.7 are called admissible patterns.
Given one such pattern p, the multiplicities m satisfying (4.4) are called p-admissible mul-
tiplicities.

4.4 Patterns involving the multiplicity

Notice that both the pattern associated to the Geil-Matsumoto bound (qx1 − qm) and the
pattern associated to the maximal embedding dimension semigroups (x1 + x2 −m) involve
in their constant parameter the multiplicity of the semigroup. The patterns whose constant
term is an integer multiple of the multiplicity can be seen as an intermediate class between
homogeneous and non-homogeneous patterns.

Here we are interested in the semigroups not only admitting the pattern but also having
the desired multiplicity. Let Sm(p) be the set of numerical semigroups with multiplicity m
admitting the pattern p. The first result we would like to analyze is whether, parallelizing
the previous results, Sm(p) 6= ∅ is equivalent to {0,m,→} ∈ Sm(p). But we can see that
this is not true in general. Indeed, the pattern related to the Geil-Matsumoto bound (that
is, qx1 − qm) gives a counterexample. Just take q = 2 and m = 3. In this case {0, 3,→} 6∈
S3(2x1 − 6) because evaluating the pattern 2x1 − 6 at s1 = 4 gives 2 6∈ {0, 3,→}. However,
S3(2x1 − 6) 6= ∅ because for instance the semigroup {0, 3, 6,→} belongs to S3(2x1 − 6).
Nevertheless, we show that for some particular cases, we can find results similar to the ones
in the previous sections.

Theorem 4.4.1. Let p =
∑n

i=1 aixi + km be a non-homogeneous pattern, with m > 1 and

k a nonzero integer. Set σj =
∑j

i=1 ai. Assume that either k = −1 or that there exists
j ∈ {1, . . . , n} such that σj = 1. The following conditions are equivalent:

(a) there exists a numerical semigroup of multiplicity m that admits p,

(b) {0,m,→} admits p,

(c)

{
σj ≥ 0 for all j ≤ n,
σn + k ≥ 1.
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50 A. Vico-Oton: Collected results on semigroups, graphs and codes.

Proof. (a) implies (c). Let Λ be a numerical semigroup with multiplicity m admitting p
(as m > 1, Λ 6= N0). In light of Theorem 4.3.7, σj ≥ 0 for all j ≤ n. So, it remains to
prove that σn + k ≥ 1. We distinguish two cases: k > 0 and k < 0. For the first case, the
assertion follows trivially since σn ≥ 0 and k ≥ 1.

If k < 0, by Condition (b) in Theorem 4.3.7, we get σn > 1. For k = −1 we have
σn + k ≥ 1, and for k < −1, by hypothesis, there must be j ∈ {1, . . . , n} such that σj = 1.
Let σj =

∑n
i=j+1 ai. Assume to the contrary that σn + k ≤ 0. Then σj + σj + k = −t for

some nonnegative integer t, and σj +k = −t−1 = −(t+1) < 0. Let x be a nonzero element
of Ap(Λ, (t + 1)m). Set s1 = x, . . . , sj = x, sj+1 = m, . . . , sn = m. Then p(s1, . . . , sn) =
σjx+ σjm+ km = x− (t+ 1)m 6∈ Λ, a contradiction.

(c) implies (b). By hypothesis σn ≥ 0. We distinguish three cases.

• If σn > 1, then σn − 1 > 0, and consequently m ≥ −km
σn−1 if and only if σn − 1 ≥ −k,

that is, σn + k ≥ 1. By Theorem 4.3.7, {0,m,→} ∈ S(p).

• If σn = 1, then σn + k ≥ 1 forces km ≥ 0. As m ≥ 0, Theorem 4.3.7 ensures that
{0,m,→} admits p.

• For σn = 0, the condition σn + k ≥ 1, implies that k ≥ 1. Hence km ≥ 0, and by
Theorem 4.3.7 we obtain that {0,m,→} ∈ S(p), because trivially m ≤ km.

(b) implies (a). Trivial.

4.5 Non-homogeneous Frobenius varieties

A Frobenius variety is a nonempty family V of numerical semigroups such that

1. if Λ1,Λ2 ∈ V, then Λ1 ∩ Λ2 ∈ V,

2. if Λ ∈ V, Λ 6= N0, then Λ ∪ {F(Λ)} ∈ V.

The families of Arf, saturated, system proportionally modular numerical semigroups,
and those admitting an homogeneous admissible pattern are Frobenius varieties (see [66],
[67], [19] and [10], respectively). The class of system proportionally modular numerical
semigroups coincides with the set of numerical semigroups having a Toms decomposition
[63], and thus every numerical semigroup in this family can be realized as the positive cone
of the K0-group of a C∗-algebra [78].

Frobenius varieties were precisely introduced by Rosales in [62] because he observed that
there was a common factor in [66, 67, 19, 10]: some of the proofs were based on the fact that
these families were closed under intersections and the adjoin of the Frobenius number. Also
due to this fact, it was possible to define minimal generating systems with respect to any of
these families that are, in general, smaller than classical minimal generating systems (which
are obtained by simply considering the Frobenius variety of all numerical semigroups). As
in the classical sense, a minimal generator of a numerical semigroup Λ in a Frobenius variety
is an element x ∈ Λ such that Λ\{x} is also in the Frobenius variety. This allows to arrange

UNIVERSITAT ROVIRA I VIRGILI 
COLLECTED RESULTS ON SEMIGROUPS, GRAPHS AND CODES 
Albert Vico Oton 
Dipòsit Legal: T. 58-2013 
 
 



Chapter 4. Non-homogeneous Frobenius varieties 51

the semigroups in a Frobenius variety in a tree rooted in N0, and consequently theoretically
construct all numerical semigroups in the variety up to a given genus.

We now modify slightly the definition of Frobenius variety mainly inspired in [65]. The
proofs are similar to the classical case, indeed we will follow the sequence of arguments
given in [64, Sections 6.4 and 6.5].

Let m be a positive integer, and let V be a set of numerical semigroups with multiplicity
m. We say that V is a non-homogeneous Frobenius variety of multiplicity m or m-variety
for short if

(V1) for every Λ1,Λ2 ∈ V, Λ1 ∩ Λ2 is also in V,

(V2) for every Λ ∈ V, Λ 6= {0,m,→}, Λ ∪ F(Λ) ∈ V.

Observe that according to this second condition, the semigroup {0,m,→} is in V. Also,
in light of [65, Proposition 3 and Lemma 10], the set of maximal embedding dimension
numerical semigoups with multiplicity m is an m-variety.

A submonoid M of N0 is a V-monoid if M can be expressed as an intersection of
elements of V. For a set of integers A larger than or equal to m, the V-monoid generated
by A, denoted by V(A), is the intersection of all elements in V containing A. The condition
A ⊆ {0,m,→} implies that V(A) is not empty, and thus it is indeed a submonoid of N0.
For a V-monoid M , we say that A ⊆ M is a V-generating system, or that A V-generates
M , if V(A) = M . In addition A is a minimal V-generating system if no proper subset of A
V-generates M . Notice that m is never in a minimal V-generating system of any V-monoid.

From now on, given a subset A of N0, we will use the notation

〈A〉 =

{
n∑
i=1

kiai : n ∈ N0, ki ∈ N0, ai ∈ A for all i ∈ {1, . . . , n}

}
.

Remark 4.5.1. The following facts are easy consequences of the definitions.

1) The intersection of V-monoids is a V-monoid.

2) Let A and B be subsets of {0,m,→}. If A ⊆ B, then V(A) ⊆ V(B).

3) For every set A of integers larger than or equal to m, V(〈A〉) = V(A).

4) If M is a V-monoid, then V(M) = M .

These two last assertions imply that every V-monoid admits a V-generating system with
finitely many elements.

From this remark, the following characterization of minimal V-generating systems can
be proved easily (its proof is the same as [64, Lemma 7.24]).

Lemma 4.5.2. Let A ⊆ {0,m,→} and M = V(A). The set A is a minimal V-generating
system of M if and only if a 6∈ V(A \ {a}) for all a ∈ A.
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52 A. Vico-Oton: Collected results on semigroups, graphs and codes.

Next lemma is the key result to show that minimal V-generating systems are unique.
Its proof goes as that of [64, Lemma 7.25] with a slight modification.

Lemma 4.5.3. Let A ⊆ {0,m,→}. If x ∈ V(A), then x ∈ V({a ∈ A | a ≤ x}).

Proof. Assume to the contrary that x 6∈ V({a ∈ A | a ≤ x}). Notice that this forces
x 6∈ {0,m,→} and x 6∈ A. From the definition of V({a ∈ A | a ≤ x}), it follows that
there exists Λ ∈ V containing {a ∈ A | a ≤ x} such that x 6∈ Λ. As m < x ≤ F(Λ), by
applying as many times as needed Condition V2, the set Λ ∪ {0, x+ 1,→} is in V. Clearly
A ⊆ Λ∪{0, x+1,→} and x 6∈ Λ∪{0, x+1,→}, which implies x 6∈ V(A), a contradiction.

Theorem 4.5.4. Let m be a positive integer and let V be an m-variety. Every M monoid
has a unique minimal V-system of generators with finitely many elements.

Proof. The proof that minimal V-generating systems are unique is the same as that of [64,
Theorem 7.26], where Remark 4.5.1 plays the role of [64, Lemma 7.22], and Lemmas 4.5.2
and 4.5.3 are the analogues to [64, Lemmas 7.24 and 7.25], respectively. The finiteness
condition is a consequence of the last paragraph of Remark 4.5.1.

An element in the unique minimal V-generating system of a V-monoid will be called
a minimal V-generator. As a consequence of Theorem 4.5.4, these elements can now be
characterized as in a Frobenius variety. Actually, the proof of this description is exactly
the same as [64, Proposition 7.28]. Notice that, as we already mentioned above, m is not a
minimal V-generator for any monoid in an m-variety.

Corollary 4.5.5. Let M be a V-monoid and let x ∈M . The set M \ {x} is a V-monoid if
and only if x is a minimal V-generator.

From this last result we easily obtain a slight modification of [64, Corollary 7.29]. The
difference strives in the fact that for Λ in a m-variety V, Λ ∪ {F(Λ)} is not in V for Λ =
{0,m,→}. As we explain next, this result is used to arrange the elements of V in a tree.

Corollary 4.5.6. Let Λ be a V-monoid. The following are equivalent.

1) Λ = Λ′ ∪ {F(Λ′)} for some Λ′ ∈ V.

2) The minimal V-generating system of Λ contains an element larger than F(Λ).

Proof. 1) implies 2). Clearly Λ′ = Λ \ {F(Λ′)} ∈ V, and by Corollary 4.5.5 we deduce that
F(Λ′) is a minimal V-generator of Λ. Notice that F(Λ) < F(Λ′).

2) implies 1). If x is a minimal V-generator, then Corollary 4.5.5 ensures that Λ\{x} ∈
V. If in addition x is larger than F(Λ), then F(Λ \ {x}) = x, and thus we can choose
Λ′ = Λ \ {x}.

With these ingredients, for an m-variety V, we can arrange all the elements of V in a
tree rooted in {0,m,→}. For a vertex Λ ∈ V with minimal V-generating system A, its
descendants are Λ\{a} for all a ∈ A with a ≥ F(Λ) ([64, Theorem 7.30]). Observe also that
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Chapter 4. Non-homogeneous strongly admissible patterns 53

from any vertex in the tree we can construct the path to {0,m,→} by applying as many
times as required Condition V2. In [65, Figure 1] the tree of maximal embedding dimension
numerical semigroups with multiplicity 4 is shown up to genus 5. In view of [65, Corollary
17] this tree has infinitely many elements.

4.6 Non-homogeneous strongly admissible patterns

We can now define non-homogeneous strongly admissible patterns in a similar way as it was
done in [10]. Given an admissible pattern p =

∑n
i=1 aixi + a0, set

p′ =

{
p− x1 if a1 > 1,
p(0, x1, x2, . . . , xn−1) if a1 = 1.

Observe that since p is a pattern a1 6= 0, and as we are choosing it to be admissible, by
Lemmma 4.3.1, a1 = σ1 ≥ 0.

Define for p′ the partial sums σ′j as in (4.1). A non-homogeneous admissible pattern p
is said to be strongly admissible if σ′j ≥ 0 for all possible j.

Note that it can be the case that p is strongly admissible although p′ is not admissible.
As an example we can take the pattern x1 +x2−1. In this case p′ = x1−1 is not admissible,
but still, p is considered to be strongly admissible.

We are going to prove that the set of numerical semigroups with given multiplicity m
admitting a strongly admissible pattern form an m-variety. To this end, we need to prove
the following technical lemma that will also be used later.

Lemma 4.6.1. Let p be a strongly admissible pattern of length n and let m be a p-
admissible multiplicity. Then for every sequence of integers s1 ≥ · · · ≥ sn ≥ m, it holds
that p(s1, . . . , sn) ≥ s1 ≥ · · · ≥ sn.

Proof. Assume that p =
∑n

i=1 aixi + a0. If a1 > 1, then σn − 1 = σ′n ≥ 0. Hence σn ≥ 1.
Define δj as in (4.2). By using that σ′j ≥ 0, in view of (4.3), we get p′(s1, . . . , sn) =∑n

j=1 σ
′
jδj + σ′nm + a0 ≥ σ′nm + a0 = (σn − 1)m + a0. For σn = 1, since p is admissible,

Theorem 4.3.7 says that a0 ≥ 0, and consequently p′(s1, . . . , sn) ≥ a0 ≥ 0. If σn > 1, since
m is a p-admissible multiplicity, m ≥ −a0

σn−1 , which leads to p′(s1, . . . , sn) ≥ 0. In both cases,
p(s1, . . . , sn) = s1 + p′(s1, . . . , sn) ≥ s1.

Now assume that a1 = 1. In this setting, σn− 1 = σ′n−1, and the proof follows as in the
case a1 > 1.

Lemma 4.6.2. Let p =
∑n

i=1 aixi + a0 be a strongly admissible pattern, and let m be a
p-admissible multiplcicity.

1. If a nonordinary numerical semigroup Λ of multiplicity m admits p, then so does
Λ ∪ {F(Λ)}.

2. The intersection of two numerical semigroups of multiplicity m admitting p also has
multiplicity m and admits p.
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54 A. Vico-Oton: Collected results on semigroups, graphs and codes.

Figure 4.1: The tree of all numerical semigroups admitting the pattern x1 + x2 − 1 with
multiplicity five.

〈5, 6, 7, 8, 9〉

〈5, 7, 8, 9, 11〉 〈5, 6, 8, 9〉 〈5, 6, 7, 9〉

〈5, 8, 9, 11, 12〉 〈5, 7, 9, 11, 13〉 〈5, 6, 9, 13〉

〈5, 8, 9, 12〉 〈5, 9, 11, 12, 13〉

〈5, 9, 11, 13, 17〉 〈5, 9, 12, 13, 16〉

〈5, 9, 13, 16, 17〉

〈5, 9, 13, 17, 21〉

Proof. The first statement follows from Lemma 4.6.1 while the second statement is imme-
diate from the definitions.

Theorem 4.6.3. 1. Given a strongly admissible pattern p and a p-admissible multiplic-
ity m, the set of all semigroups with multiplicity m admitting p is an m-variety.

2. Given a set of strongly admissible patterns p1, . . . , pr and a multiplicity m that is
pi-admissible for all pi ∈ {p1, . . . , pr}, the set of all semigroups with multiplicity m
admitting simultaneously p1, . . . , pr is an m-variety.

Example 1. We would like to highlight the beauty of the patterns x1 +x2 +1 and x1 +x2−1
and their relationship with the intervals of nongaps of a numerical semigroup. Indeed, the
semigroups admitting x1 +x2 +1 can be characterized by the fact that the maximum element
in each interval of nongaps is a minimal generator. Similarly, the semigroups admitting
x1 + x2 − 1 can be characterized by the fact that the minimum element in each interval
of nongaps is a minimal generator. Figure 4.1 represents the (finite) tree of all numerical
semigroups admitting the pattern x1 + x2 − 1 with multiplicity five.

This example gives rise to a natural question. When is the tree of numerical semigroups
with fixed multiplicity and admitting a strongly admissible pattern finite? The answer to
this question is given in the following result.

Theorem 4.6.4. Let p =
∑n

i=1 aixi + a0 be a strongly admissible pattern, and let m be
a p-admissible multiplicity. Then Sm(p) contains infinitely many numerical semigroups if
and only if gcd(m, a0) 6= 1.
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Chapter 4. Non-homogeneous strongly admissible patterns 55

Proof. Necessity. Assume that gcd(m, a0) = 1. Then gcd(m, p(m, . . . ,m)) = 1, and conse-
quently 〈m, p(m, . . . ,m)〉 is a numerical semigroup. If Λ ∈ Sm(p), then 〈m, p(m, . . . ,m)〉 ⊆
Λ. Since there are finitely many numerical semigroups containing 〈m, p(m, . . . ,m)〉, we
deduce that the cardinality of Sm(p) is finite.

Sufficiency. Suppose now that gcd(m, a0) = d 6= 1, and let m0 = m/d. Then for any
k ≥ m, the numerical semigroup Λk = {di : i ∈ N0, i ≥ m0} ∪ {0, k,→} has multiplicity m
and admits p. Indeed, let s1, . . . , sn be a nondecreasing sequence of nonzero elements of Λk.
By Lemma 4.6.1, p(s1, . . . , sn) is at least sn. If sn ≥ k, then obviously p(s1, . . . , sn) ∈ Λk.
Otherwise, s1, . . . , sn are multiples of d and so is p(s1, . . . , sn). Now since p(s1, . . . , sn) is a
positive multiple of d larger than or equal to m, p(s1, . . . , sn) ∈ Λk.
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58 A. Vico-Oton: Collected results on semigroups, graphs and codes.

5.1 Introduction

In the digital era one main concern is the illegal redistribution of digital contents. One
way to fight it is by marking every single copy of the material that one does not want to
have redistributed. This can be done by embedding a different imperceptible string of bits
or symbols to each copy. Once an illegal copy is caught, if it was not modified, the illegal
redistributor can be reidentified by the mark in his/her copy. This is called fingerprinting.

An attack to fingerprinting can be performed by a group of colluders. They can compare
their copies and create a new pirate copy by erasing all the bits or symbols in which their
copies differ or by using at each position where they differ, the bit or symbol that one of
the users has there.

Formally, a subset of Σn for some alphabet Σ and positive integer n, called a code, is
fixed. Then each depositary of a digital content is assigned a code word. A pirate copy is a
vector u = (u0, . . . , un−1) in Σn, which is obtained from a set of colluders as follows. If the
code words corresponding to the colluders are c(1), . . . , c(s), then for all i in {0, . . . , n − 1}
one has ui = c

(j)
i for some j in {1, . . . , s}, where c

(j)
i is the ith coordinate of c(j). If erasures

are also considered, then the pirate copy belongs to (Σ∪ {?})n, and it must satisfy that for

all i, either ui = c
(j)
i for some j or ui =?. If a pirate copy contains erasures we say that it

is a shortened copy.

Reed-Solomon codes are a classical family of error control codes which have been exten-
sively used also in the context of fingerprinting.

The identifiable parent property (IPP), for which all sets of colluders capable of gen-
erating a given pirate copy share at least one colluder, is defined in [40]. It is a desirable
property when we are interested in the applications to fingerprinting. It is proved in the
same reference that there exist Reed-Solomon codes with this property.

Another important property for fingerprinting codes is that given a pirate copy one of
the colluders can allways be identified by performing minimum distance error correction
whenever the pirate copy has been created by at most a given number w of colluders. This
property is denoted w-traceability or w-TA. Reed-Solomon codes are also used to find w-TA
codes [73].

Further results on Reed-Solomon codes and the IPP and w-TA properties can be found
in [70, 23]. Also generalized Reed-Solomon codes are used in [69] for dealing with shortened
and corrupted fingerprints.

While the classical problem of fingerprinting is defining tracing algorithms for identifying
at least one of the colluders that originated a given pirate copy, our aim is to elaborate on
the minimum number of colluders capable of generating a given pirate copy when the code
used for fingerprinting is a Reed-Solomon code.

Our main result (Theorem 5.3.2) is a lower bound on this minimum number. In the
application side, having this lower bound means that once an illegal copy is caught, we can
assert that at least a certain number of colluders, given by this bound, were involved in it.
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Chapter 5. Reed-Solomon codes and interpolating polynomials 59

This result is illustrated with several examples showing that in many cases the bound is
sharp.

The tools used for proving the main result are then used to prove an upper bound on the
minimum number M of colluders that can obtain any given pirate copy. This same bound
can be also derived from the fact that Reed-Solomon codes are MDS. Using the main result
we then see that this upper bound is sharp which means that there are certain pirate copies
which can not be obtained with less than M colluders.

The bound in Theorem 5.3.2 is extenxed to shortened fingerprints obtaining an analogous
bound for this case. This result can be used in turn for bounding the number of colluders
that were not caught once a subset of the colluders is caught.

Finally we point out the main drawback of this bound and sketch the way to overcoming
it by a closer look to the interpolated polynomial. We finish with an open question whose
solution would bring out a significant improvement of our bound.

5.2 Reed-Solomon codes and interpolating polynomials

Let Fq be the field with q elements (q a prime power) and let α be a primitive element of
Fq. Then Fq = {0, 1, α, α2, . . . , αq−2}. The Reed-Solomon code of length n = q − 1 and
dimension k, denoted RSq(k), is the set

{(f(1), f(α), f(α2), . . . , f(αn−1)) : f ∈ Fq[x],deg(f) < k}.

First we notice that for each vector u = (u0, . . . , un−1) in Fnq , there exists a unique
polynomial fu of degree at most n − 1 such that fu(αi) = ui for all i in {0, . . . , n − 1}. It
can be computed, for instance, using the formula

fu =
n−1∑
i=0

ui
n−1∏
j = 0
j 6= i

x− αj

αi − αj

 .

The uniqueness is a consequence of the fact that if fu = a0 + a1x + · · · + an−1x
n−1, then

the coefficents a0, . . . , an−1 are a solution of the linear system of equations

1 1 1 1 . . . 1

1 α α2 α3 . . . α(n−1)

1 α2 α4 α6 . . . α2(n−1)

1 α3 α6 α9 . . . α3(n−1)

...
...

1 αn−1 α2(n−1) α3(n−1) . . . α(n−1)(n−1)




a0

a1
...

an−1

 =


u0

u1
...

un−1

 . (5.1)

The matrix of this system is a Vandermonde matrix which is known to be invertible.
So, any u in Fnq is of the form (f(1), f(α), f(α2), . . . , f(αn−1)) for some unique f ∈ Fq[x] of
degree less than n.
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60 A. Vico-Oton: Collected results on semigroups, graphs and codes.

Given a vector u = (u0, . . . , un−1) in Fnq , u is a code word if and only if deg(fu) < k.
Now if deg(fu) < k then u is a code word and so it can be obtained by just one single
colluder. Our focus is on the case when u 6∈ RSq(k) and so when deg(fu) ≥ k.

5.3 A lower bound

Lemma 5.3.1. With the same notations as above, a vector u = (u0, . . . , un−1) in Fnq ,
u 6∈ RSq(k), agrees with any code word c ∈ RSq(k) in at most deg(fu) positions.

Proof. If the vector u agrees with a code word c in the position corresponding to the ith
power of α this means that fu(αi) = fc(α

i) and so (fu−fc)(αi) = 0. Now since the number
of roots of a polynomial over a finite field is upper bounded by its degree, the equality
(fu − fc)(αi) = 0 will be satisfied by at most deg(fu − fc) different powers of α. But since
u 6∈ RSq(k), deg(fu) ≥ k and since c ∈ RSq(k), deg(fc) < k. So, deg(fu − fc) = deg(fu)
and u = (u0, . . . , un−1) agrees with c in at most deg(fu) positions.

Theorem 5.3.2. With the same notations as above, the minimum number of colluders

required to obtain a vector u = (u0, . . . , un−1) in Fnq , with u 6∈ RSq(k) is at least
⌈

n
deg(fu)

⌉
.

Proof. It is a consequence of Lemma 5.3.1.

Next we will illustrate this theorem with basic examples for deg(fu) equal to 1, 2 and
n − 1, and then with two further examples dealing with the norm and trace polynomials.
See [48] for more details on these polynomials related to finite fields. We will see that for the
examples with deg(fu) = 1 and most of the examples with deg(fu) = 2, and the examples
with the norm and trace polynomials the lower bound is sharp. However, the example with
deg(fu) = n− 1 shows that the bound may be not sharp.

The case deg(fu) = 1 Suppose first that deg(fu) = 1. This case only makes sense
when k = 1 and so RSq(k) is the repetition code. In this case d n

deg(fu)e equals n. Since

deg(fu) = 1 it holds that fu = a0 + a1x for some a0, a1 ∈ Fq, a1 6= 0 and so fu represents
a permutation of Fq. The n different components of u can be covered by n = q − 1 out of
the q constant vectors of the repetition code.

The case deg(fu) = 2 The case deg(fu) = 2 makes sense when k = 1 or k = 2. In this
case d n

deg(fu)e equals q−1
2 if q is odd and q

2 if q is even. Since deg(fu) = 2 it holds that fu =

a0 +a1x+a2x
2 for some a0, a1, a2 ∈ Fq, a2 6= 0. Consider the set U = {a0 +a1β+a2β

2, β ∈
Fq}. One can check that the equation on γ given by a0 + a1β + a2β

2 = a0 + a1γ + a2γ
2

has only two possible solutions, γ = β and γ = −a1
a2
− β. The two solutions are equal only

for those β’s such that β = −a1
a2
− β. If q is odd this is only possible for β = − a1

2a2
so U

has exactly q−1
2 + 1 elements. Conversely, if q is even then β = −a1

a2
− β is true for all β

if a1 = 0 and it is false for all β if a1 6= 0. So, in the case q even the set U has either q
elements if a1 equals 0 and q

2 if a1 6= 0. Now, the set of components of u is excactly the
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Chapter 5. A lower bound 61

set of elements in U0 = {a0 + a1β + a2β
2, β ∈ Fq \ {0}}. Now, for q odd, #U0 = q−1

2 if

a1 = 0 and #U0 = q−1
2 + 1 if a1 6= 0, while for q even, #U0 = q − 1 if a1 = 0 and #U0 = q

2
if a1 6= 0. So, if we take the repetition code, that is, k = 1 then the upper bound is tight
only for q odd and a1 = 0 or for q even and a1 6= 0. We will see in the next section that for
k = 2 the bound is always tight.

The case deg(fu) = n − 1 If deg(fu) = n − 1 then the upper bound on the number
of colluders is d n

n−1e = 2. But the only information given by this bound is that one single
colluder could not obtain u. And this is already known from the fact that u 6∈ RSq(k).

Example with the trace polynomial Suppose q = q̃m for some prime power q̃ and
positive integer m. Then Fq̃ is a subfield of Fq. The trace polynomial of the field extension
Fq/Fq̃, is defined as the polynomial

T (x) = xq̃
m−1

+ xq̃
m−2

+ · · ·+ xq̃ + x.

The trace polynomial when evaluated at Fq gives elements of Fq̃. The antiimage of each
element in Fq̃ consists of exactly q̃m−1 elements in Fq. All this means that if we take the
pirate word u = (u0, . . . , un−1) = (T (1), T (α), T (α2), . . . , T (αn−1)) then u has for each β
in Fq̃ \ {0} exactly q̃m−1 components equal to β plus q̃m−1 − 1 components equal to 0. In
particular u can be obtained from the q̃ colluders consisting of the constant vectors (β, . . . , β)
with β ∈ Fq̃. These constant vectors are obtained by evaluating constant polynomials (with
degree at most 0) in 1, α, . . . , αn−1 and so they are code words of RSq(k) for any k > 0. So,
u can be obtained by only q̃ colluders.

On the other hand, since deg(T ) = q̃m−1 < q − 1 = n, by the uniqueness of fu we have
that fu = T and so d n

deg(fu)e = d q−1
q̃m−1 e = d q̃

m−1
q̃m−1 e = dq̃ − 1

q̃m−1 e = q̃. So, we can see that in
this case the bound in Theorem 5.3.2 is sharp.

Example with the norm polynomial We use now the same notations as before, just
with the assumption that q̃ 6= 2. The norm polynomial of the field extension Fq/Fq̃, is
defined as the polynomial

N(x) = x
q̃m−1
q̃−1 .

The norm polynomial when evaluated at Fq gives also elements of Fq̃. The antiimage
of each element β in Fq̃ consists of exactly q̃m−1

q̃−1 elements in Fq if β 6= 0 and exactly
one if β = 0. All this means that if we take the pirate word u = (u0, . . . , un−1) =
(N(1), N(α), N(α2), . . . , N(αn−1)) then u has for each β in Fq̃ \ {0} exactly q̃m−1

q̃−1 com-
ponents equal to β. In particular u can be obtained from the q̃ − 1 colluders consisting of
the constant vectors (β, . . . , β) with β ∈ Fq̃ \{0} which, as explained before, are code words
of RSq(k) for any k > 0. So, u can be obtained by only q̃ − 1 colluders.

On the other hand, since deg(N) = q̃m−1
q̃−1 < q − 1 = n, by the uniqueness of fu we have

that fu = N and so d n
deg(fu)e = d q−1

q̃m−1
q̃−1

e = dq̃− 1e = q̃− 1. So, we can see that again in this

case the bound in Theorem 5.3.2 is sharp.
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62 A. Vico-Oton: Collected results on semigroups, graphs and codes.

5.4 An upper bound, revisited

Now we can state the upper bound
⌈
n
k

⌉
. It is already known and it can be proved by using

the fact that Reed-Solomon codes are MDS. However, we chose to use a new proof here
because it only uses the same tools used for the previous theorem, without any need for the
MDS property.

Theorem 5.4.1. A number of
⌈
n
k

⌉
colluders is enough for obtaining any pirate copy u ∈ Fnq .

Proof. Consider a set of k positions i1, . . . , ik in u. The polynomial

f =

k∑
l=1

uil
k∏

j = 1
j 6= il

x− αij
αil − αij


has degree less than k and so (f(1), f(α), f(α2), . . . , f(αn−1)) is a code word c in RSq(k).
Also cil = f(αil) = uil for all l in {1, . . . , k}. Then c and u agree in the positions i1, . . . , ik.
The same argument holds for any selection of less then k positions.

Divide u into
⌊
n
k

⌋
disjoint sets of k positions plus the set of the n −

⌊
n
k

⌋
remaining

positions which are less than k and which may be empty. For each of these sets we can find
a code word as before, which agrees with u in the selected positions. This gives a set of

⌈
n
k

⌉
code words capable of generating the pirate copy u.

Remark 5.4.2. From Theorem 5.3.2 we deduce that the bound on the number of colluders
in Theorem 5.4.1 is attained when fu has degree exactly equal to k. So, there are words in
Fnq which can not be obtained by less than

⌈
n
k

⌉
colluders.

5.5 On shortened fingerprints

In this section we make some remarks on the case when part of the fingerprint has been
simply erased. Tracing of traitors based on shortened fingerprints is treated in [69]. We
show that the results in the previous sections can be naturally extended to this case.

Formally, instead of considering pirate copies in Fnq we consider pirate copies u =
(u0, . . . , un−1) in (Fq ∪ {?})n which are obtained from a set of colluders as follows. If the
code words corresponding to the colluders are c(1), . . . , c(s), then for all i in {0, . . . , n − 1}
one has ui = c

(j)
i for some j in {1, . . . , s}, or ui =?. We call n∗ the number of erased

positions in u, that is, the number of components ui which are equal to ?. Now n− n∗ will
play the role played by n in the previous sections.
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Chapter 5. Drawback and overcoming it by a closer look to polynomial factorization 63

The polynomial fu can be redefined as follows.

fu =
n−1∑
i = 0
ui 6=?


ui

n−1∏
j = 0
uj 6=?
j 6= i

x− αj

αi − αj


.

The vector (fu(1), fu(α), . . . , fu(αn−1)) has the particularity that it agrees with u in all
the non-erased positions and that it is the one with smallest degree with this property.
Notice that now the degree of fu is at most n − n∗ − 1 and that fu is, as before, the
unique polynomial agreeing with u in all the non-erased positions and with degree at most
n− n∗ − 1. Uniqueness follows as before using a Vandermonde matrix. If n∗ = 0 then the
polynomial fu is the same polynomial that we already had.

If deg(fu) < k and in particular, if n − n∗ − 1 < k then (fu(1), fu(α), . . . , fu(αn−1)) is
a code word and so u agrees with a code word in all its non-erased positions. So, it can be
obtained with just one colluder. Next we consider the case deg(fu) ≥ k.

Lemma 5.3.1 and Theorem 5.3.2 can be now reformulated. The proof of the new lemma
is parallel to that of Lemma 5.3.1 and hence it has been ommitted. Also, the proof of the
new theorem follows from the lemma.

Lemma 5.5.1. A vector u in (Fq∪{?})n, u 6∈ RSq(k), agrees with any code word c ∈ RSq(k)
in at most deg(fu) positions.

Theorem 5.5.2. Suppose that a vector u is in (Fq ∪ {?})n, and u 6∈ RSq(k). Then the

minimum number of colluders required to obtain u is at least
⌈
n−n∗

deg(fu)

⌉
.

We would like to end with the remark that this result can be used in turn for bounding
the number of colluders that were not caught once a subset of the colluders is caught.
Indeed, suppose that a set of colluders is caught that collaborated in the pirate copy u.
Then erase all the positions of the pirate copy which agree with the copy of at least one
of the caught colluders and obtain a new pirate copy u∗. Let n∗∗ be the total number of

erased positions in u∗. Then, Theorem 5.5.2 applied to u∗ tells us that at least
⌈
n−n∗∗

deg(fu∗ )

⌉
colluders are still not caught.

5.6 Drawback and overcoming it by a closer look to polyno-
mial factorization

In Table 5.1 there is an analysis of the performance of the bound in Theorem 5.3.2. It
turns out that d n

deg(fu)e is most of the times 2 and this does not introduce any information.
Indeed, having at least two colluders is equivalent to having u not a code word, which is
something that is very easy to check without any need of interpolating polynomials. The
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64 A. Vico-Oton: Collected results on semigroups, graphs and codes.

reason for having d n
deg(fu)e = 2 most of the times is that the coefficients of fu are a solution

of the linear system (5.1). Then, having d n
deg(fu)e > 2 would mean deg(fu) < n

2 and, if

fu = a0 + a1x + · · · + an−1x
n−1, this would mean having adn

2
e = · · · = an−1 = 0, which

happens only with a probability qd
n
2 e−1

qn = q−d
n
2
e−1.

The limitation of this bound already comes from Lemma 5.3.1 and the fact that, in its
proof, we only bound the number of roots of the polynomial fu − fc (and so the number of
agreements between the caught word u and a general code word c) by the degree of fu− fc
which is exactly the degree of fu. But conversely, it is well known that a random polynomial
from Fq[x] has “on the average”, as q increases, exactly one root in the field Fq [24, 60, 45].
So, on average, our bound in Lemma 5.3.1 is very far from the real number of agreements
between the caught word and a general code word.

But we have more information on the polynomial fu− fc rather than its degree. Indeed
we know all its terms of degree at least k. In some cases this knowledge may slightly modify
the result in Lemma 5.3.1 and this may improve drastically the bound in Theorem 5.3.2.

In the next lemma we illustrate it with a particular example.

Lemma 5.6.1. Suppose that q = q̃m for some prime power q̃ and positive integer m.
Suppose that u ∈ Fnq , u 6∈ RSq(k) with 1 ≤ k ≤ q̃m−1 is such that fu = xq̃

m−1
+ xq̃

m−2
+

· · ·+xq̃
i
+ gk(x), with q̃i−1 < k < q̃i and gk(x) a polynomial of degree less than k. Then the

word u agrees with any code word c ∈ RSq(k) in at most (k − 1)q̃ positions.

Proof. Suppose that u and c agree in the position corresponding to αi and suppose that
T (αi) = β ∈ Fq̃. Then αi is a root of the polynomial

hβ(x) = fu(x)− fc(x)− T (x) + β.

In general, all the powers αi corresponding to positions where u and c agree are roots of
hβ(x) for some β ∈ Fq̃, and so they are roots of

H(x) =
∏
β∈Fq̃

hβ(x).

By the hypothesis on fu, deg(fu−T (x)) < k and also deg(fc) < k and deg(β) ≤ 0 < k. So,
deg(hβ) < k for all β ∈ Fq̃ and deg(H) ≤ (k − 1)q̃. This proves the Lemma.

Lemma 5.6.1 leads to a refinement of the bound in Theorem 5.3.2 for this particular
case, whenever (k − 1)q̃ < deg(fu). Indeed the new bound is d n

(k−1)q̃ e.
An analogous lemma associated to the norm polynomial is next. The proof is left to the

reader since it is very similar to the previous one. The only difference is on the fact that
the norm polynomial evaluated at powers of α runs Fq̃ \{0} while the trace polynomial runs
all Fq̃.

Lemma 5.6.2. Suppose that q = q̃m for some prime power q̃ and positive integer m.

Suppose that u ∈ Fnq , u 6∈ RSq(k) with 1 ≤ k ≤ q̃m−1
q̃−1 is such that fu = x

q̃m−1
q̃−1 + gk(x),

with gk(x) a polynomial of degree less than k. Then the word u agrees with any code word
c ∈ RSq(k) in at most (k − 1)(q̃ − 1) positions.
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Chapter 5. Drawback and overcoming it 65

k = 3
coalition

size
trials

mean value m
of deg(fu)

⌈
n
m

⌉
2 100 24.95 2
3 100 24.99 2
4 100 24.95 2
5 100 24.95 2
6 100 24.95 2
7 100 25.00 2
8 100 24.98 2
9 100 24.94 2

k = 4
coalition

size
trials

mean value m
of deg(fu)

⌈
n
m

⌉
2 100 24.96 2
3 100 24.96 2
4 100 24.98 2
5 100 24.97 2
6 100 24.96 2
7 100 24.96 2

k = 5
coalition

size
trials

mean value m
of deg(fu)

⌈
n
m

⌉
2 100 24.97 2
3 100 24.98 2
4 100 24.97 2
5 100 24.97 2
6 100 24.96 2

Table 5.1: We consider RS27(3), RS27(4), and RS27(5). For each of these codes and for
each coalition size s from s = 2 to s = dnk e, we generated 100 pirate copies u, each one
randomly obtained from s random colluders. We computed the mean m of deg(fu) among
these 100 pirate copies. Then we computed d nme, which shoul give an idea of what we can
expect from the bound in Theorem 5.3.2.
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66 A. Vico-Oton: Collected results on semigroups, graphs and codes.

In this particular case the bound in Theorem 5.3.2 would be improved to d n
(k−1)(q̃−1)e.

5.7 On the number of roots of a polynomial depending on
the coefficients of highest degree

The discussion in the last section suggests the question to have an equivalent of the last
lemmas for general polynomials.

More specifically, given a polynomial in Fq[x]

f(x) = h(x) + g(x)

with
h(x) = arx

r + ar−1x
r−1 + · · ·+ akx

k,

g(x) = ak−1x
k−1 + ak−2x

k−2 + · · ·+ a1x+ a0,

we wish to have an upper bound on the number of roots of f depending only on h(x). We
always have the bound r and for the case r = k this bound is sharp. For the case r > k we
would like the bound to be potentially smaller than r.

It is important to notice that the low degree terms may play a very important role. For
instance, if h(x) = xq−1 then f(x) can have no roots if g(x) = β ∈ Fq \ {0, 1}, only one root
if g(x) = 0, and up to q − 1 roots if g(x) = −1.

The next lemma shows that we can do better than the bound r provided that there
exists a polynomial f̃(x) = h(x) + g̃(x) ∈ Fq[x], with deg g̃(x) < k, whose value set (i.e.
the set {f̃(α) : α ∈ Fq}) is bounded by a relatively small parameter s. Observe that this
is what is essentially used in Lemma 5.6.1 (with f̃(x) = T (x), s = q) and in Lemma 5.6.2
(with f̃(x) = N(x), s = q).

Lemma 5.7.1. Suppose that there exists a polynomial f̃(x) = h(x) + g̃(x) ∈ Fq[x] with
h(x) = arx

r + · · · + akx
k and g̃(x) = ãk−1x

k−1 + · · · + ã0, which evaluates at s different
values at most (i.e. #{f̃(α) : α ∈ Fq} ≤ s). Then the polynomial f(x) = h(x) + g(x) with
g(x) = ak−1x

k−1 + · · ·+ a0, has at most (k − 1)s different roots in Fq[x].

Proof. Suppose B = {f̃(α) : α ∈ Fq}. By hypothesis, #B ≤ s. Suppose that α is a root of
f and suppose that f̃(α) = β ∈ B. Then α is a root of the polynomial

pβ(x) = f(x)− f̃(x) + β

= g(x)− g̃(x) + β

In general, all roots α of f are roots of pβ(x) for some β ∈ B, and so they are roots of

P (x) =
∏
β∈B

pβ(x).

By hypothesis deg(pβ) ≤ k − 1 for all β ∈ B and deg(P ) ≤ (k − 1)s. This proves the
Lemma.
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6.1 Introduction

Usually the proximity or mutual influence between authors is investigated in terms of the
collaboration graph, in which each author is represented by a node and two authors are
connected if they have co-authored at least one paper. The collaboration graph has attracted
some attention from the mathematical community. For instance we can find collaboration
graphs in the web pages of several mathematics departments, like the ones at the University
of Georgia (Figure 6.1), Oakland University (Figure 6.2), or the Naval Postgraduate School
in Monterey, California (Figure 6.3).

The Erdös number, reflecting the collaboration distance between a certain author and
the mathematician Paul Erdös (who directly collaborated with 511 authors in his lifetime), is
a popular index computed on the collaboration graph. Professor Jerrold W. Grossman leads
a project devoted to the Erdös number [32]. More generally, the collaboration graph is used
to find the collaboration distance between two mathematical authors. The Erdös number of
mathematicians and collaboration distances between any two mathematical authors can be
automatically computed using the MathSciNet database run by the American Mathematical
Society [72].

Scientific studies about the collaboration network can be found, for instance in Gross-
man’s contributions [33, 34], in Mark E. J. Newman’s contributions [51, 52, 53, 54], or in [5]
by Batagelj and Mrvar. It is quite standard to use a more accurate version of the collabo-
ration graph, the weighted collaboration graph, where the edges are weighted according to
the number of collaborations.

Rather than the collaboration graph, we will use in this paper the co-citation graph,
in which the nodes corresponding to two authors are connected by an edge if there exists
a paper simultaneously citing both authors. The co-citation concept was first defined by
Henry Small in [71]. This author defined the co-citation between two papers as the frequency
with which two items of earlier literature are cited together by later literature. We resume
that co-citation idea but we apply it to the authorship of papers, that is, we focus on the
relationships between authors rather than papers.

There are some contributions in the literature using co-citations to measure author
features. In [1], Ahlgren, Jarneving and Rousseau classify authors by indices that try to
establish their similarity in view of clustering them. In [47], concepts of information theory
(like mutual information) are applied with a similar aim of creating clusters of authors.

While Small focuses on the concept of a ”core” paper, the one with most co-citations
among the papers in a certain subject, we use co-citations to derive indices to measure the
relevance of authors and groups of authors.

Contribution and plan of this paper

It is widely accepted that citations tell at least as much about an author as authorship itself
does. This is the origin, for instance, of the h-index [38]. We propose to use co-citations to
derive indices measuring the relevance of authors and groups of authors.
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Collaboration Graph, University of Georgia Mathematics Department
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Figure 6.1: Collaboration graph of the Mathematics Department at the University of Geor-
gia
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Figure 6.2: Collaboration graph of the Mathematics Department at Oakland University

UNIVERSITAT ROVIRA I VIRGILI 
COLLECTED RESULTS ON SEMIGROUPS, GRAPHS AND CODES 
Albert Vico Oton 
Dipòsit Legal: T. 58-2013 
 
 



Chapter 6. Introduction 73

Figure 6.3: Collaboration graphs of the Mathematics Department at the Naval Postgraduate
School in Monterey
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In Section 6.2 we formally define co-citations and the co-citation graph. In Section 6.3
we use the co-citation graph to define three indices of relevance for individual authors. In
Section 6.4 we distinguish between the relevance of an author and the relevance of a group
of authors, and we give several indices based on co-citations that measure the relevance of
a group of authors, in the sense of evaluating how present the group is in the citations by
papers in a certain subject. Section 6.5 contains some conclusions.

For the sake of realism, in the examples throughout this paper we mention real names
of authors and departments whose bibliometric data are publicly available. We wish to
emphasize that it is not our purpose to judge such authors or departments in any way. In
fact, our examples are unlikely to give an accurate portrait of the mentioned authors or
departments, for at least two reasons: i) no single bibliometric database is guaranteed to
index 100% of the scientific production or the citations of anybody; ii) our examples may
not be current because they are based on the database contents at the time of writing the
first version of this paper.

6.2 The co-citation graph

Co-citations and the co-citation graph can be defined as follows.

Definition 1 (Co-citation). Let G(p) be the set of authors cited in the list of references
of a paper p. Paper p is a co-citation to an unordered pair of authors (i, j), with i 6= j
if i, j ∈ G(p). In plain words, a paper simultaneously citing an unordered pair of distinct
authors is a co-citation to that pair of authors.

Definition 2 (Co-citation graph). The co-citation graph is a graph having authors as nodes
such that an undirected edge between two authors i and j exists if at least one co-citation
to the pair (i, j) exists. The weighted co-citation graph is a co-citation graph where each
edge is assigned a weight equal to the number of co-citations to the pair of authors (i, j)
connected by the edge.

Our hypothesis is that, while the connections in the collaboration graph show the mathe-
matical social network, the connections in the co-citation graph show better the connections
in terms of visibility or impact of the published work. For instance, two names mentioned in
Section 6.1, Jerrold W. Grossman and Mark E. J. Newman, corresponded to non-adjacent
nodes in the collaboration graph at the time of collecting data for this paper (according to
the MathSciNet database), but they are connected in the co-citation graph, because they
are often cited together.

In Table 6.1 we show the collaborations between authors in the Mathematics Department
of Oakland University. A white cell means no collaboration (no edge in the collaboration
graph) and a black cell means maximum number of collaborations, which in this case is 132
and is the number of publications of Professor Meir Shillor. It is important to notice that
the highest number of collaborations of any author is with herself/himself, and equals the
number of her/his publications. In the off-diagonal cells of Table 6.2 we show the co-citations
between authors in the same department. Cells along the diagonal represent the number
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Chapter 6. Relevance of individual authors 75

of papers which contain citations to each author (citing papers); note that the number of
citing papers to an author X may be less than the number of citations to X, because a
citing paper can cite several papers by X. A white cell means no co-citation/citing paper
and a black cell means maximum number of co-citations/citing papers. In this case, the
black cell is 233 and corresponds to the number of papers citing Professor Meir Shillor.
Again, the highest values for each author are in the diagonal: by definition, the number
of co-citations of an author X with any other author can be no more than the number of
papers citing X. Note that:

• Two authors i and j can have collaborations and no co-citations: this happens when
no single paper cites their collaborations and, in addition, no single paper cites inde-
pendent publications by i and by j. For example, Table 6.1 shows that, when the data
were collected, Eddie Cheng and Serge Kruk had collaborated (they actually had 5
publications in common) but Table 6.2 shows that they had no co-citations.

• Two authors i and j can have co-citations and no collaborations: this happens when
at least one paper cites at least one paper by i and at least one paper by j. The above
mentioned example of Jerrold W. Grossman and Mark E. J. Newman illustrates a
case of co-citations without collaborations.

6.3 Relevance of individual authors

We suggest three indices for the relevance of an individual author.

Maximum co-cited count

This index counts the number of authors for which a given author is maximum co-cited. A
formal definition of the indicator follows.

Definition 3. The maximum co-cited count of author i is m if and only if there exists a set
of authors {i1, · · · , im}, where ik 6= i for all 1 ≤ k ≤ m, such that the following conditions
hold:

• Author i is co-cited with each author in the set {i1, · · · , im};

• For all 1 ≤ k ≤ m, in the weighted co-citation graph the edge (i, ik) has maximum
weight among those edges incident to ik;

• The previous condition does not hold for any other authors not belonging to {i1, · · · , im}
Example 2. Assume that author i is co-cited 4 times with author i1, 5 times with author
i2 and 6 times with author i3. At the same time, i1 is not co-cited more than 4 times with
any other author different from i, i2 is not co-cited more than 5 times with any other author
different from i and i3 is not co-cited more than 6 times with any other author different from
i. That is, i is the maximum co-cited author for authors in the set {i1, i2, i3}. If there is no
other author for whom i is the maximum co-cited author (last condition of Definition 3),
then the maximum co-cited count of author i is 3.
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Table 6.1: Number of collaborations between authors of the Oakland Mathematics Depart-
ment
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Kevin T. Andrews
Louis R. Bragg

Charles Ching-an Cheng
Baruch Cahlon

J. Curtis Chipman
David J. Downing

Eddie Cheng
Jon Froemke

Jerrold Grossman
Bo-nan Jiang

Ravindra Khattree
Serge Kruk

Kulkarni, Devadatta M.
Robert Kushler

Lipman, Marc J.
Lszl Liptk

James H. McKay
Louis Jack Nachman

Theophilus Ogunyemi
Pan, Guohua

Park, Hyungju
Subbaiah Perla

Darrell Schmidt
Irwin E. Schochetman

Sen, Ananda
Peter Shi

Meir Shillor
Anna Spagnuolo

Taam, Winson
Sze-Kai Tsui

J. Barry Turett
Stuart S. Wang

Stephen J. Wright
Wen Zhang
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Table 6.2: Number of co-citations between authors of the Oakland Mathematics Department
(off-diagonal cells). Diagonal cells represent the number of papers citing each author.
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Kevin T. Andrews
Louis R. Bragg

Charles Ching-an Cheng
Baruch Cahlon

J. Curtis Chipman
David J. Downing

Eddie Cheng
Jon Froemke

Jerrold Grossman
Bo-nan Jiang

Ravindra Khattree
Serge Kruk

Kulkarni, Devadatta M.
Robert Kushler

Lipman, Marc J.
Lszl Liptk

James H. McKay
Louis Jack Nachman

Theophilus Ogunyemi
Pan, Guohua

Park, Hyungju
Subbaiah Perla

Darrell Schmidt
Irwin E. Schochetman

Sen, Ananda
Peter Shi

Meir Shillor
Anna Spagnuolo

Taam, Winson
Sze-Kai Tsui

J. Barry Turett
Stuart S. Wang

Stephen J. Wright
Wen Zhang
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78 A. Vico-Oton: Collected results on semigroups, graphs and codes.

Weighted maximum co-cited count

This index counts the number of authors to which a given author is maximum co-cited
weighted by the number of co-citations. A formal definition follows.

Definition 4. The weighted maximum co-cited count of author i is
∑m

k=1 c(i, ik) if and
only if there exists a set of authors {i1, · · · , im}, where ik 6= i for all 1 ≤ k ≤ m, such that
the following conditions hold:

• Author i is co-cited with each author in the set {i1, · · · , im};

• For all 1 ≤ k ≤ m, in the weighted co-citation graph the edge (i, ik) has maximum
weight among those edges incident to ik;

• The previous condition does not hold for any other authors not belonging to {i1, · · · , im};

• The weight of (i, ik) is c(i, ik).

Co-citation entropy

The co-citation entropy measures how transversal an author is perceived by the community.
For example, let there be two authors i1 and i2 who have the same number of co-citations
(sum of weights of edges incident to each author in the weighted co-citation graph), but
author i1 has been co-cited with a very small set of other authors, whereas author i2 has
been co-cited with a larger set of authors. In this case, the work of i1 is perceived as “clique
work”, whereas the work of i2 is seen as more transversal, because i2 is cited together with
a higher diversity of other authors. A formal definition of the co-citation entropy follows.

Definition 5. Given an author i, let w1(i), · · · , wni(i) be the weights of the edges incident
to the node of that author in the weighted co-citation graph. Define W (i) as the sum of the
previous weights and the relative weights as rwk(i) = wk(i)/W (i), for k = 1 to ni. Consider
the set of relative weights as a probability distribution over the authors i1, · · · , ini co-cited
with i. The Shannon entropy H({rw1(i), · · · , rwni(i)}) of that distribution is the co-citation
entropy of i.

The greater the co-citation entropy of an author, the more scattered and evenly dis-
tributed are her/his co-citations, and the greater is her/his transversality.

In Table 6.3 we show the above relevance indices computed for all authors in the Oakland
Mathematics Department, with the authors sorted by increasing order of the weighted
maximum co-cited count. One can appreciate some correlation between the three indices.

6.4 Relevance of a group of authors

Just like the relevance of an author can be measured by how present is she/he in the citations
of a certain subject matter, the relevance of a group of authors can be measured by how
present is the group of authors in those citations. A group of authors is understood here
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Chapter 6. Relevance of a group of authors 79

Table 6.3: Relevance indices of authors of the Oakland Mathematics Department sorted by
increasing order of the weighted maximum co-cited count

Author Maximum
co-cited
count

Weighted
maximum
co-cited
count

Co-citation
entropy

Subbaiah Perla 0 0 0
Jon Froemke 0 0 0
Winson Taam 0 0 0
J. Curtis Chipman 0 0 0
Robert Kushler 0 0 0
Wen Zhang 6 7 5.8287
Theophilus Ogunyemi 14 14 4.3219
Ananda Sen 16 16 4.6438
Guohua Pan 42 47 5.4495
László Lipták 84 103 7.1421
Louis R. Bragg 117 159 7.2116
Anna Spagnuolo 150 207 7.9383
Ravindra Khattree 171 207 7.5203
David J. Downing 155 224 7.9347
Sze-Kai Tsui 187 245 7.9876
Louis Jack Nachman 196 265 8.0325
Marc J. Lipman 237 333 7.9221
Eddie Cheng 263 384 8.1200
Hyungju Park 266 395 8.4561
Irwin E. Schochetman 296 422 8.5321
James H. McKay 301 425 8.1576
Charles Ching-an Cheng 319 483 8.3218
Darrell Schmidt 381 507 8.8641
Stephen J. Wright 413 530 8.8550
Stuart S. Wang 386 597 8.2806
Baruch Cahlon 399 644 8.5870
Kevin T. Andrews 431 648 8.8418
Peter Shi 500 802 9.1075
Devadatta M. Kulkarni 499 834 8.8448
Serge Kruk 716 1032 9.3886
J. Barry Turett 434 1056 8.6478
Jerrold Grossman 1026 1566 9.6836
Bo-nan Jiang 1120 2501 9.1857
Meir Shillor 872 2981 8.9189
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80 A. Vico-Oton: Collected results on semigroups, graphs and codes.

in a broad sense, and includes research groups, research institutes, university departments,
entire universities and even all scientists in a country.

There are several conceivable group relevance metrics. We will focus on metrics that are
monotonic with set inclusion, that is, such that, if A,B are groups of authors with A ⊆ B,
then the relevance of A is less than or equal to the relevance of B. In other words, we
consider metrics such that adding new authors to a group does not decrease the relevance
of the group. Subadditivity is another reasonable property of a group relevance metric: if
A and B are two groups of authors, the relevance of A ∪ B is no more than the sum of
the relevance of A plus the relevance of B. Even if A ∩ B = ∅, the relevance of A ∪ B can
be less than the sum of the relevances of A and B; in particular, the relevance of a group
of authors can be less than the sum of the relevances of individual authors in the group.
Consider the following two extreme examples.

Example 3. In a group in which all members of the group sign all papers written by
anyone in the group (such groups exist in real life!), the citations received by the group are
exactly the citations received by any individual member of the group. Hence, if we use a
relevance metric proportional to received citations, the relevance of the group is the same
as the relevance of any individual member.

Example 4. In a group where all members publish independently and no paper is ever
coauthored between two group members, the citations received by the group are the result
of adding the citations received by its members. Hence, if we use a relevance metric pro-
portional to received citations, the relevance of the group is the sum of the relevances of its
individual members.

Appropriate metrics must be devised to assess the joint impact of a group. These metrics
can also be useful when hiring new group members: e.g. one might be interested in hiring
those candidates who most boost the relevance of the group, which differs from the usual
criterion that one should hire those candidates with whom group members have already
been collaborating.

Definition 6. The group citation count in a certain subject matter is the number of papers
published in that subject matter which cite at least one member of the group. This count
can be normalized by dividing it by the number of papers published in the subject matter, in
order to obtain the group citation fraction, which takes values in [0, 1].

We can also adapt the indices given in Definitions 3, 4 and 5 for groups of authors.

Definition 7. The maximum co-cited count of a group of authors {i1, · · · , ig} is m if and
only if there exists a set of authors {i1, · · · , im}, where {i1, · · · , im} ∩ {i1, · · · , ig} = ∅ such
that the following conditions hold:

• Each author in {i1, · · · , im} is co-cited with at least one author in {i1, · · · , ig};

• For every 1 ≤ k ≤ m, there exists an author i(ik) ∈ {i1, · · · , ig} such that in the
weighted co-citation graph the edge (i(ik), ik) has maximum weight among those edges
incident to ik;
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Chapter 6. Relevance of a group of authors 81

• No strict superset of {i1, · · · , im} verifies the above conditions.

Definition 8. The weighted maximum co-cited count of a group of authors {i1, · · · , ig} is∑m
k=1 c(i(ik), ik) if and only if there exists a set of authors {i1, · · · , im}, where {i1, · · · , im}∩

{i1, · · · , ig} = ∅ such that the following conditions hold:

• Each author in {i1, · · · , im} is co-cited with at least one author in {i1, · · · , ig};

• For every 1 ≤ k ≤ m, there exists an author i(ik) ∈ {i1, · · · , ig} such that in the
weighted co-citation graph the edge (i(ik), ik) has maximum weight among those edges
incident to ik and this weight is c(i(ik), ik);

• No strict superset of {i1, · · · , im} verifies the above conditions.

Definition 9. Given a group of authors G = {i1, · · · , ig}, let w1(G), · · · , wnG(G) be the
weights of the edges connecting members of G with non-members of G in the weighted co-
citation graph. Define W (G) as the sum of the previous weights and the relative weights
as rwk(G) = wk(G)/W (G), for k = 1 to nG. Consider the set of relative weights as
a probability distribution over the non-members of G co-cited with members of G. The
Shannon entropy H({rw1(G), · · · , rwnG(G)}) of that distribution is the co-citation entropy
of G.

Indices in Definitions 7, 8 and 9 have the same interpretation as the respective indices
in Definitions 3, 4 and 5: the higher their values, the better. Hence, we do not discuss them
further.

We will, however, provide some discussion on the group citation count (Definition 6).
The following lemma is straighforward but enlightening.

Lemma 6.4.1. Given a group of authors G = {i1, · · · , ig}, where each author ik ∈ G
has received c(ik) citations and A(ik) is the set of articles citing ik, the group citation is
maximized if and only if A(ik) ∩ A(il) = ∅ for all ik, il ∈ G with ik 6= il. In this case the
group citation count is

∑g
k=1 c(i

k).

Hence, a group is optimal in the group citation count sense if there is no overlap in the
papers citing different group members. When hiring new group members within a certain
subject matter, this contradicts the usual idea that one should hire new researchers who
are already related via collaboration to the group members: a joint paper by several group
members implies subsequent citation overlap, because a paper citing that joint paper will
cite several group members. In fact, pushed to the limit, maximization of the group citation
count could be seen as discouraging collaboration between group members. Collaboration
between group members would only be “rational” if their interaction resulted in a qualitative
leap in their joint paper, in such a way that this joint paper would attract more citations
than the sum of citations that the contributions of each author to the joint paper would
separately attract as independent papers.

Some famous institutions de facto follow a pattern of activity which is not very far from
the one sketched above. Their model is to hire a limited number of permanent faculty in
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Table 6.4: Relevance indices of the Oakland Mathematics Department and the Princeton
Mathematics Departments as groups

Maximum
co-cited
count

Weighted
maximum
co-cited
count

Co-citation
entropy

Oakland group 560 1227 12.2070

Princeton group 10207 31764 11.9721

several areas, who tend to do research in collaboration with a large community of external
or visiting co-authors. For example, in the Princeton Institute for Advanced Study, a
permanent faculty of no more than twenty-eight academics each year awards fellowships to
some 190 visiting members from about one hundred universities and research institutions
throughout the world [25].

In Table 6.4 we show the above group relevance indices computed for the Oakland
Mathematics Department and the Princeton Mathematics Department.

6.5 Concluding remarks

Human evaluation criteria can always be more refined and rich than automated indices.
However, when comparing authors or groups, for instance in competitions for work positions
or for funding, it is not always possible to analyze one by one the different papers and the
production of each candidate (especially if there are many of them). In such cases automated
indices may be helpful.

Along this line of thought, we have introduced co-citations and the co-citation graph as
new tools to measure the impact of the work by scientific authors. We have argued that the
co-citation graph may in fact be more informative than the collaboration graph in gauging
the scientific impact: indeed, the co-citation graph gives an idea about how the community
perceives and classifies the work by an author, beyond the collaborations that the author
has pursued during her/his career.

Co-citations, co-citation graphs and the proposed indices are useful to assess the rele-
vance of individual authors and also the relevance of groups of authors. It has been argued
that the relevance of a group of authors is not the sum of the relevances of individuals in
the group. Indeed, new indices such as the proposed ones are required in order to measure
not only the output of individual authors, but also the output of any research organization,
from research groups to entire national or corporate research communities. Open research
issues include devising or enhancing the proposed relevance indicators.
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[18] M. Delgado, J. I. Farrán, P. A. Garćıa Sánchez, and D. Llena. On the generalized Feng-
Rao numbers of numerical semigroups generated by intervals. arXiv:1105.4833v1, 2011.
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[35] B. Grünbaum. Configurations of points and lines. Graduate Studies in Mathematics,
103:xiv+399, 2009.

[36] V. Guruswami. List decoding from erasures: bounds and code constructions. IEEE
Trans. Inform. Theory, 49(11):2826–2833, 2003.

[37] P. Heijnen and R. Pellikaan. Generalized Hamming weights of q-ary Reed-Muller codes.
IEEE Trans. Inform. Theory, 44(1):181–196, 1998.

[38] J. E. Hirsch. An index to quantify an individual’s scientific research output. Proceedings
of the National Academy of Sciences of the United States of America, 102(46):16569–
16572, 2005.

[39] T. Høholdt, J. H. van Lint, and R. Pellikaan. Algebraic Geometry Codes. In Handbook
of coding theory, Vol. I, II, pages 871–961. North-Holland, Amsterdam, 1998.

[40] H. D. L. Hollmann, J. H. van Lint, JP. Linnartz, and L. M. G. M. Tolhuizen. On
codes with the identifiable parent property. Journal of Combinatorial Theory, Series
A, 82(2):121 – 133, 1998.

[41] H. Janwa and A. K. Lal. On generalized Hamming weights and the covering radius
of linear codes. In Applied algebra, algebraic algorithms and error-correcting codes,
volume 4851 of Lecture Notes in Comput. Sci., pages 347–356. Springer, Berlin, 2007.

UNIVERSITAT ROVIRA I VIRGILI 
COLLECTED RESULTS ON SEMIGROUPS, GRAPHS AND CODES 
Albert Vico Oton 
Dipòsit Legal: T. 58-2013 
 
 



90 BIBLIOGRAPHY

[42] C. Kirfel and R. Pellikaan. The minimum distance of codes in an array coming from
telescopic semigroups. IEEE Trans. Inform. Theory, 41(6, part 1):1720–1732, 1995.
Special issue on algebraic geometry codes.

[43] J. Kurihara and T. Uyematsu. Strongly-secure secret sharing based on linear codes can
be characterized by generalized Hamming weight. In 49th Annual Allerton Conference
Communication, Control, and Computing, 2011.

[44] L. Kwankyu. Fast unique decoding of plane AG codes. 2012.

[45] V. K. Leont’ev. On the roots of random polynomials over a finite field. Mat. Zametki,
80(2):313–316, 2006.

[46] J. Lewittes. Places of degree one in function fields over finite fields. J. Pure Appl.
Algebra, 69(2):177–183, 1990.

[47] L. Leydesdorff. Similarity measures, author cocitation analysis, and information theory.
Journal of the American Society for Information Science and Technology, 56(7):769–
772, 2005.

[48] R. Lidl and H. Niederreiter. Finite elds, 2nd ed., ser. Encyclopedia of Mathematics
and its Applications, volume 20. 1997.

[49] C. Munuera. Generalized Hamming weights and trellis complexity. Advances in Al-
gebraic Geometry Codes, E. Martinez-Moro, C. Munuera, D. Ruano (eds.), World
Scientific, pages 363–390, 2008.

[50] C. Munuera and F. Torres. A note on the order bound on the minimum distance of
AG codes and acute semigroups. Adv. Math. Commun., 2(2):175–181, 2008.

[51] M. E. J. Newman. The structure of scientific collaboration networks. Proc. Natl. Acad.
Sci. USA, 98(2):404–409 (electronic), 2001.

[52] M. E. J. Newman. A study of scientific collaboration networks I. Network construction
and fundamental results. Phys. Rev. E, 64(016131), 2001.

[53] M. E. J. Newman. A study of scientific collaboration networks II. Shortest paths,
weighted networks, and centrality. Phys. Rev. E, 64(016132), 2001.

[54] M. E. J. Newman. Who is the best connected scientist? A study of scientific coau-
thorship networks. In Complex networks, volume 650 of Lecture Notes in Phys., pages
337–370. Springer, Berlin, 2004.

[55] CK. Ngai, R. W. Yeung, and Z. Zhang. Network generalized Hamming weight. IEEE
Trans. Inform. Theory, 57(2):1136–1143, 2011.

[56] A. Oneto and G. Tamone. On numerical semigroups and the order bound. J. Pure
Appl. Algebra, 212(10):2271–2283, 2008.

UNIVERSITAT ROVIRA I VIRGILI 
COLLECTED RESULTS ON SEMIGROUPS, GRAPHS AND CODES 
Albert Vico Oton 
Dipòsit Legal: T. 58-2013 
 
 



BIBLIOGRAPHY 91

[57] A. Oneto and G. Tamone. On the order bound of one-point algebraic geometry codes.
J. Pure Appl. Algebra, 213(6):1179–1191, 2009.

[58] A. Oneto and G. Tamone. On some invariants in numerical semigroups and estimations
of the order bound. Semigroup Forum, 81(3):483–509, 2010.

[59] L. H. Ozarow and A. D.Wyner. Wire-tap channel II. In Advances in cryptology (Paris,
1984), volume 209 of Lecture Notes in Comput. Sci., pages 33–50. Springer, Berlin,
1985.

[60] D. Panario. What do random polynomials over finite fields look like? Finite elds and
applications, ser. Lecture Notes in Comput. Sci., 2948:89108, 2004.

[61] R. Pellikaan, H. Stichtenoth, and F. Torres. Weierstrass semigroups in an asymptoti-
cally good tower of function fields. Finite Fields Appl., 4(4):381–392, 1998.

[62] J. C. Rosales. Families of numerical semigroups closed under finite intersections and
for the Frobenius number. Houston J. Math., (34):469–488, 2003.
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