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Resum 

 

Aquesta tesi proposa i avalua diverses aplicacions del modelat basat en dades de sistemes 

de dessalinització d’aigua  mitjançant osmosi inversa per a la millora i optimització de la 

seva operació. El treball dut a terme durant aquests estudis ha estat basat en les dades 

obtingudes a partir d’experiments realitzats a la planta pilot d’osmosi inversa Mini-Mobile-

Modular (M3), dissenyada a la UCLA per a la producció d’aigua potable. Les dades 

obtingudes han estat tractades i normalitzades per al seu ús en el desenvolupament dels 

models de la planta, els quals han estat generats utilitzant la tècnica de Support Vector 

Regression (SVR).  

En primer lloc, s’han desenvolupat models predictius del comportament de la  planta M3 

operant en estat estacionari. Un cop fet el procés de selecció de variables d’entrada per als 

models, s’ha demostrat que aquests són capaços de predir amb un nivell de precisió molt 

elevat, fins i tot superior a tècniques basades en primers principis, totes les variables de 

sortida de la planta, utilitzant com a paràmetres del model únicament les variables d’entrada 

de la planta. Addicionalment, s’ha comprovat que el desenvolupament d’un model capaç de 

predir totes les variables de sortida de la planta simultàniament, proporciona un nivell de 

precisió comparable al dels models desenvolupats individualment per a cadascuna de les 

variables. Per tant, aquest model global, és ideal per a una predicció ràpida i acurada del 

funcionament de tota la planta. 

En segon lloc, també s’han desenvolupat models de predicció a curt termini de la 

conductivitat de l’aigua produïda per la planta durant operació en estat no estacionari 

(operació dinàmica). Degut a la complexitat inherent de l’operació dinàmica, tot el conjunt 

de dades experimentals s’ha classificat mitjançant l’ús de Mapes Autoorganitzats (SOM). 

D’aquesta manera, s’aconsegueix seleccionar el conjunt de dades òptim per a la generació 

dels models i així assegurar que els diferents tipus d’operació dinàmica de la planta queden 

coberts a l’entrenament (generació) dels models. L’alta precisió de les prediccions 

obtingudes, suggereix que els models basats en dades de la planta poden ser de gran utilitat 

UNIVERSITAT ROVIRA I VIRGILI 
MODELING, MONITORING AND CONTROL OF REVERSE OSMOSIS DESALINATION PLANTS USING DATA-BASED TECHNIQUES 
Xavier Pascual Caro 
Dipòsit Legal: T 961-2014 
 



iv 

 

aplicats a sistemes de control avançat de plantes d’osmosi inversa, així com en sistemes de 

detecció de fallades i optimització de processos. 

Finalment, s’han proposat i comparat dues eines basades en dades per a la detecció de 

fallades, isolació, correcció i imputació de dades per als sensors de la planta pilot M3. 

L’eina basada en Mapes Autoorganitzats (SOM), ha demostrat ser capaç de detectar, 

imputar i corregir amb gran precisió les errades que ocorren a la planta, amés de 

proporcionar una eina visual per a la detecció ràpida de fallades en l’operació de la planta. 

Per altra banda, l’eina basada en Support Vector Regression (SVR) millora tant el nivell de 

detecció com la precisió en la correcció i imputació de les dades. Aquest alt nivell de 

detecció i precisió, permet la detecció de fallades en sensors fins i tot quan les desviacions 

respecte els valors esperats d’aquests són molt petites. 

En general, aquesta tesi presenta un marc de treball de modelització de processos d’osmosi 

inversa basat en dades que millora significativament els resultats obtinguts amb mètodes 

tradicionals com els models basats en primers principis. 
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Summary 

 

This thesis proposes and assesses several data-driven modeling applications for water 

desalination reverse osmosis systems to improve and optimize its operation. The present 

work is based on data obtained from experiments carried out in the Mini-Mobile-Modular 

(M3) pilot plant, designed at UCLA for the production of fresh water. The data have been 

treated and normalized to develop plant models, which have been generated using the 

Support Vector Regression (SVR) technique. 

First, steady state models have been developed for the prediction of the Mini-Mobile-

Modular pilot plant (M3) operation, prior implementation of a variable selection process for 

the input model variables. It has been demonstrated that the steady state models developed 

are able to predict all the plant output variables using only plant feed conditions as inputs 

for the models. The accuracy achieved with this models has been even higher than first 

principle based techniques In addition, it has been demonstrated that a single composite 

model predicting simultaneously all the output variables of the plant performs with a 

comparable accuracy to the single output variable models. Therefore, the composite model 

developed is ideal for a quick and accurate prediction of the overall plant behavior. 

Secondly, short-term prediction models for the conductivity of the fresh water produced 

have been developed for the plant operating under non-steady state conditions (dynamic 

operation). Due to the inherent complexity of dynamic operation, the whole experimental 

dataset has been classified using Self-Organizing Maps (SOM). Thereby one can select the 

optimal set of data for the generation of the models and thus assure that all possible 

dynamic operation modes of the plant are covered during the model training (generation). 

The high level of accuracy obtained by the predictions of the models, suggests that the data-

driven models could be useful for advanced reverse osmosis plant control algorithms, fault 

detection and process optimization. 
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Finally, two data-driven tools have been proposed and compared for fault detection, 

isolation, and data imputation and correction of the M3 plant sensors. One of the tools, 

developed using Self-Organizing Maps, has shown to be capable of detecting and 

correcting with a high level of accuracy faults occurring in the plant, as well as providing a 

useful visual tool for the rapid fault detection during plant operation. On the other hand, the 

tool based on Support Vector Regression provides better detection levels and more accurate 

corrections of the faulty sensor data. This high level of detection and accuracy enables the 

detection of sensor faults even when the deviations with respect to the expected values are 

very small. 

Overall, this thesis presents a modeling framework for reverse osmosis processes based on 

plant data, which improves significantly the performance obtained with other traditional 

methods such as the ones based on first principles. 
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Resumen 

 

Esta tesis propone y evalúa diversas aplicaciones del modelado basado en datos de sistemas 

de desalación de agua mediante ósmosis inversa para la mejora y optimización de su 

operación. El trabajo llevado a cabo durante estos estudios ha estado basado en datos 

obtenidos a partir de experimentos realizados en la planta piloto de ósmosis inversa Mini-

Mobile-Modular (M3), diseñada en UCLA para la producción de agua potable. Los datos 

obtenidos han sido tratados y normalizados para su posterior uso en el desarrollo de 

modelos de la planta, los cuales han sido generados utilizando la técnica de Support Vector 

Regression (SVR).  

En primer lugar, se han desarrollado modelos predictivos del comportamiento de la planta 

M3 operando en estado estacionario. Una vez concluido el proceso de selección de 

variables de entrada para los modelos, se ha demostrado que éstos son capaces de predecir 

con un nivel de precisión muy elevado, incluso superior a técnicas basadas en primeros 

principios, todas las variables de salida de la planta, utilizando como parámetros de los 

modelos únicamente las variables de entrada de la planta. Adicionalmente, se ha 

comprobado que el desarrollo de un modelo capaz de predecir todas las variables de salida 

de la planta simultáneamente, proporciona un nivel de precisión comparable al de los 

modelos desarrollados individualmente para a cada una de las variables. Por lo tanto, este 

modelo global, es ideal para una predicción rápida y precisa del funcionamiento de toda la 

planta. 

En segundo lugar, también se han desarrollado modelos de predicción a corto plazo de la 

conductividad del agua producida por la planta durante la operación en estado no 

estacionario (operación dinámica). Debido a la complejidad inherente de la operación 

dinámica, todo el conjunto de datos experimentales se ha clasificado mediante el uso de 

Mapas Autoorganizados (SOM). De esta forma, se consigue seleccionar el conjunto óptimo 

de datos para la generación de los modelos y así asegurar que los diferentes tipos de 

operación dinámica de la planta quedan cubiertos en el entrenamiento (generación) de los 
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modelos. La alta precisión de las predicciones obtenidas, sugiere que los modelos basados 

en datos de la planta pueden ser de gran utilidad aplicados a sistemas de control avanzado 

de plantas de ósmosis inversa, así como en sistemas de detección de fallos y optimización 

de procesos. 

Finalmente, se han propuesto y comparado dos herramientas basadas en datos para la 

detección de fallos, aislamiento, corrección e imputación de datos para los sensores de la 

planta piloto M3. La herramienta basada en Mapas Autoorganizados (SOM), ha 

demostrado ser capaz de detectar, imputar y corregir con gran precisión los errores 

ocurridos en la planta, además de proporcionar una herramienta visual para la rápida 

detección de fallos durante la operación de la planta. Por otro lado, la herramienta basada 

en Support Vector Regression (SVR) mejora tanto el nivel de detección como la precisión 

en la corrección e imputación de los datos. Este alto nivel de detección y precisión, permite 

la detección de fallos en sensores incluso cuando las desviaciones respecto los valores 

esperados de éstos son muy pequeñas. 

En general, esta tesis presenta un marco de trabajo de modelización de procesos de ósmosis 

inversa basado en datos que mejora significativamente los resultados obtenidos con 

métodos tradicionales como los modelos basados en primeros principios. 
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1. Objectives 

The objective of this study is to develop accurate data-driven models (Support Vector 

Regression Models) able to describe the behavior of a reverse osmosis (RO) water 

desalination pilot plant during steady state and dynamic operation, under changing 

operating conditions over its entire operational domain (given by the manufacturer’s safety 

recommendations). In addition, two sensor fault detection and isolation systems based on 

data-driven models (Self-Organizing Maps and Support Vector Regression) are compared 

and demonstrated for the RO pilot plant. The sensor fault detection and isolation systems 

are capable of reconstructing faulty data and carrying out data imputation for missing 

sensor data.  

2. Organization 

The work accomplished in this thesis is presented in two publications. The first article 

entitled ―Data-driven models of steady state and transient operations of spiral-wound RO 

plant‖ proposes an approach, which uses data-driven models developed using the support 

vector regression (SVR) technique for the prediction of the behavior of a reverse osmosis 

water desalination pilot plant (M3). The approach has been demonstrated by simulating the 

plant operation under steady state and dynamic regimes. The steady state approach enabled 

the prediction of all the plant output variables with relative errors with respect to the 

expected values smaller than 2.5%, using only the input variables of the plant as parameters 

for the models. The dynamic operation of the plant has been described by short-term 

prediction models which track the evolution of the conductivity of the produced fresh water 

under changing plant conditions. The models have achieved performance levels of less than 

1% absolute average relative errors for forecasting times of 2 s to 3.5 min. 

The second article, entitled ―Fault detection and isolation in spiral-wound RO desalination 

plant‖, presents two approaches for the fault detection and isolation applied to the M3 plant, 

as well as data reconciliation and data imputation mechanisms. The first approach is based 

on support vector regression models that simulate the M3 plant sensors behavior and 

perform predictions and data reconstructions with absolute average relative errors smaller 
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than 1%. This level of accuracy enables the detection of faults even smaller than 5% with 

respect to the expected sensor values operating under normal conditions. The detection 

levels achieved for faults with deviations from ±4% to ±9% is greater than 91%, and for 

faults with deviations greater than ±10%, the detection levels have been 100%. On the other 

hand, the SOM-based approach does not achieve the same performance levels as the SVR-

based one. The data reconstruction of the faulty sensors has been achieved with absolute 

average relative errors smaller than 5%. Due to the model accuracy, the detection of faults 

smaller than ±10% has not performed acceptable levels. However, faults with deviations of 

±10% or greater have obtained false positives levels of 1.54% and levels of 6.64% false 

negatives. Nevertheless, the SOM-based approach provides a visual aid for a rapid fault 

detection as well as data reconciliation. 
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3. Introduction 

Over 70% of Earth’s surface is covered by water, although less than 3% is freshwater 

(water with less than 1000 mg of dissolved solids per liter), and less than 1% of it 

(~0.007% of all water on Earth) is accessible for direct human uses in rivers, lakes 

reservoirs and shallow underground sources (Gleick 2011). Increasing drought conditions 

and demand of fresh water suitable for human uses make necessary the generation of new 

water sources such as seawater and brackish water as well as water reuse. As 97% of 

Earth’s water supply is held within the oceans, seawater desalination has become one of the 

best alternatives. One of the most cost-efficient technologies in this area is reverse osmosis 

(RO), since it is able to achieve high removals of constituents while is not so energy 

intensive compared to other desalination processes. 

3.1 Reverse osmosis 

Reverse osmosis is a pressure-driven membrane filtration process used for removing low 

molecular weight solutes, such as inorganic salts and small organic molecules from a 

solvent. A semi permeable membrane is used to retain solute molecules, while solvent 

molecules are allowed to pass through it. The process called osmosis occurs when two 

solutions of different concentrations are separated by a semi permeable membrane, and the 

solvent from the lower concentration solution flows through the membrane into the 

concentrated one. The observed flow is due to the tendency to equalize the concentrations 

of both sides. Nevertheless, when in one side of the membrane the solution is composed by 

a pure solvent, the concentrations of both sides can never equal. In this case, the osmotic 

flow proceeds until the equilibrium between the chemical potentials of both sides is 

reached, which occurs when the pressure exerted by the concentrated solution against the 

membrane is high enough to prevent any further solvent flow. The hydrostatic pressure 

difference between the two sides of the membrane at this equilibrium point is known as 

osmotic pressure. In the process known as reverse osmosis, pressure is applied in the 

concentrated solution side to surpass the osmotic pressure and generate a flux of solvent 

through the membrane against the concentration gradient, as shown in Fig. 1. 
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Fig. 1. Reverse osmosis process schematic. 

The permeation of solvent through the membrane is driven by pressure (convection), and 

can be expressed by the following model: 

   ,wJ A P        (1) 

where Jw is the mass flux that passes through the membrane [kg · m
2
 · s

-1
], A is the 

permeability coefficient (specific for each membrane) [kg · m
-2

 · kPa
-1

 · s
-1

], ΔP is the 

pressure difference between the two sides of the membrane [kPa], Δπis the osmotic 

pressure difference, and σ is the reflection coefficient, which measures the membrane 

selectivity (i.e., σ =0, no membrane selectivity; 0< σ <1, not completely semi permeable 

with solute transport; σ =1, ideal membrane without solute transport). 

Differently the mass transfer of the solutes is controlled by diffusion, being the gradient of 

concentrations the driving force. The mass flux of solutes through the membrane can be 

described as: 

   ,s f pJ B C C   (2) 

where Js is the mass flux of solute through the membrane [kg · m
2
 · s

-1
], B is the solute 

permeability [m · s
-1

], and Cf and Cp are the concentrations of the feed and permeate 

High 

concentration 

solution 

Low 

concentration 

solution 

Semi permeable 
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solutions respectively [kg · m
3
].The solute permeability B can be expressed as:

 ,s sD K
B

l
  (3) 

where Ds is the diffusion coefficient for the solute in the membrane [m
2
 · s

-1
], Ks is the 

partition coefficient of the solute, l is the membrane thickness [m]. Thereby, the total 

permeate volumetric flux can be obtained by summing the solute and solvent fluxes: 

 
 w s

p

p

J J
J




   (4) 

where p is the permeate density [kg · m
3
]. 

The performance of a reverse osmosis process can be expressed in terms of solvent 

recovery or solute rejection. The recovery (Y) is the fraction of solvent feed flow that passes 

through the membrane (Eq. 1.5), while rejection (R) is defined as the fraction of solute 

rejected by the membrane (Eq. 1.6).  

 
p

f

Q
Y

Q
   (5) 

 1
p

f

C
R

C
    (6) 

where Qp and Qf are the permeate and feed volumetric flow rates respectively [m
3
 · s

-1
], and 

Cp and Cf are the permeate and feed concentrations respectively [kg · m
-3

]. 

One of the most influencing parameters on the separation efficiency is the membrane 

material. In order to obtain a high separation, the flux of the solvent through the membrane 

needs to be maximized, while on the contrary, the solute flux needs to be minimized. This 

selectivity can be obtained by selecting a membrane material with high affinity for the 

solvent, and an affinity for the solute as low as possible. Two materials make the bulk of 

commercial reverse osmosis membranes, cellulose acetate (CA) and aromatic polyamide 

(PA). Cellulose acetate membranes perform higher fluxes requiring smaller membrane 

areas. They are resistant to small concentrations of free chlorine and may therefore be kept 
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free of bacteria and also produce a product with residual chlorine in it to prevent 

subsequent re-growth. On the other hand, polyamide membranes can be used at higher 

temperatures (up to 35ºC) than cellulose acetate membranes (up to 30ºC), they cannot 

tolerate chlorine, but they are not attacked by bacteria, whereas some bacteria which can 

occur in surface water in woodlands actually destroy cellulose acetate. Finally, polyamides 

can be used over a much wider pH range (4-11) than cellulose acetate (4-7.5). Each of the 

two materials has advantages and disadvantages; therefore the choice of the membrane 

material depends upon the nature of the input of water. 

The configuration of the membrane has also an important impact in the separation process 

performance. Spiral wound membranes in cross flow configuration are one of the most used 

types of membranes in water desalination, since they offer high surface area per unit 

volume leading to high permeate fluxes. Despite its cylindrical configuration, this kind of 

membrane is essentially a flat-sheet device rolled with separating spacer mats. The feed 

solution passes through the module axially, while permeate moves in the spiral, radial 

direction toward the central permeate collection tube (Fig. 2). 

 

Figure 2. Spiral wound RO membrane module (Johnson and Busch 2010). 
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3.2 Concentration polarization, fouling and scaling 

Although reverse osmosis is one of the most cost efficient technologies to produce purified 

water, there are some problems that can occur during plant operation that reduce the 

separation efficiency and membrane life-time. One of these phenomena is concentration 

polarization, which consists on the formation of a high concentration layer of dissolved and 

suspended particles near the membrane surface. When the feed water comes in contact with 

the membrane surface, water diffuses rapidly through the membrane, but the dissolved and 

suspended particles are either retained or they diffuse at lower rate than water, so they 

remain at the surface of the feed water side of the membrane. Solids accumulate to 

concentrations that exceed their concentrations in the bulk of the feed water. Concentration 

polarization can be deduced from a film theory model (Eq. 1.7). 

 exp
m p p

b p

C C J

C C k

  
  

  
  (7) 

where, C is the concentration [kg · m
-3

], subscripts m, p and b denote membrane surface, 

permeate flow and bulk solution respectively, Jp is the permeate flux [m·s
-1

] and k is the 

mass transfer coefficient [m·s
-1

]. 

If the concentrations of the dissolved solids exceed their solubility, they may precipitate 

and form a mineral scaling layer. Scalants are chemicals such as calcium carbonate, 

calcium sulfate, strontium sulfate, and reactive silica that are difficult to remove from RO 

membranes due to their low solubility. Scaling produces additional solids within the feed 

water and increases cleaning frequency. Scale on membranes produces nucleation sites, 

which increases the rate of additional scale formation. There are two main pretreatment 

methods to prevent scaling. The first group of techniques is based on ion exchange which 

removes scale-forming species from the feed water, while the other techniques are based on 

the addition of chemicals that change the characteristics of the feed water. 

Membrane fouling occurs when suspended solids, microbes or organic material deposit on 

the membrane surface and form layers of undesired material that can plug the membrane 

and reduce its permeability. Fouling is also promoted by concentration polarization, since it 
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provides high concentrations of nutrients needed by bacteria for their growth. Colloids and 

organics are also concentrated in the membrane surface. The two main techniques to 

prevent fouling are mechanical processes that physically remove the suspended solids and 

chemical treatments that deactivate the foulants. 

Apart from fouling and scaling, membrane degradation can also affect the RO process 

performance. It occurs when membranes are exposed to conditions that destroy the 

polymers they are made of. Some membrane materials can be hydrolyzed at high and low 

pH, while others can be degraded when exposed to oxidizers such as chlorine. The main 

prevention technique for membrane degradation due to acidic or alkaline waters is the 

addition of acid or base chemicals into the feed water to correct the pH and make the 

solution nearly neutral. Dechlorination is used to prevent oxidation of the membranes 

(Kucera 1997). 

Beside the mentioned techniques used to mitigate fouling and scaling, there are some 

methods used to reduce the concentration polarization. The most used ones are increasing 

flow rate, impulse and agitating methods, intensifying the turbulent flow, periodic 

depressurization of the membrane tube, flow reversal, precoating the membrane surfaces 

and modification of membrane chemistry and surface. 

3.3 Alternatives to reverse osmosis  

Although RO is mainly used for water treatment, its application extends to other fields such 

as food and dairy industry, car washing, pharmaceutical and cosmetic production and reef 

aquariums among others. In addition to RO, there are several desalination technologies 

such as distillation and electrodialisys able to produce fresh water able for human use from 

seawater. The main drawback of these techniques is the high energy requirements. 

Electrodialisys, is more economic when the salinity of the feed water is low (brackish 

waters with less than 3000 ppm of dissolved solids), since its energy requirements are 

proportional to the water’s salinity. Accordingly, it is an expensive technology for seawater 

desalination. The most used distillation techniques for water desalination are multi-stage 

flash (MSF) and multiple effect distillation (MED). The main advantages of these 

techniques are that they are less prone to fouling and scaling, and they do not require as 
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much pretreatment as RO does. Although its efficiency has increased during the last years, 

the requirement of high temperatures makes the energy consumption much greater than 

RO, which operates at ambient temperature. Even though RO has also high energy 

consumption due to the high pressures required, it can be recovered using pressure 

exchangers or energy recovery devices. 

3.4 Desalination in Spain 

The first seawater desalination plant in Spain was installed in 1964 in Lanzarote, a MSF 

plant with a capacity of 2500 m
3
/day. Since then, a growing number of desalination plants 

have been installed, especially in the Mediterranean coast and the Canary Islands to such an 

extent that currently Spain’s desalted water capacity is 8% of the global desalination 

capacity, while its population is only 0.6% of the world population. According to the 

Global Water Intelligence and the International Desalination Association, only Saudi 

Arabia (17%), United Arab Emirates (UAE) (13%) and USA (13%) are ahead in the 

production of desalted water. Such an increase has been deeply affected by the political 

situation in Spain. In 2001, in order to mitigate the poor hydrologic situation of the country, 

a new proposal of the Plan Hidrológico Nacional (National Hydrologic Plant) was created, 

when the right-wing party PP was in the government. Among other actions, it promoted the 

transfer of 1050 hm
3
/year of water from the Lower Ebro River in Catalonia, to the arid 

areas in the southeast of the peninsula (PHN 2001). After the 2004 national elections, the 

new Socialist government PSOE, cancelled the Plan Hidrológico Nacional (National 

Hydrologic Plan), claiming that the ecological impact on the protected areas of the river 

had been underestimated, as well as the real cost of the project, having repercussions on the 

final cost of the transferred water (0.91 €/m
3
 versus the 0.39 €/m

3
 initial expectations) 

(PHN 2000). The new Plan AGUA (Actuaciones para la Gestión y la Utilización del Agua) 

(PHN 2005) was then introduced, based on supplementing existing supplies using 

desalinated water. More than 100 points of action such as the construction of large seawater 

RO desalination plants, water reuse, modernization and expansion of existing facilities 

among others were introduced (Molina and Casañas 2010).  Nevertheless, the different 

policies between the national and local governments locked the completion and tender 

processes of the desalination plants, to the point that currently only 17 of the 51 planned 
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desalination plants are working, and 15 still under construction. However, due to the 

underestimation of the final cost of the desalted water (which will be two or three times the 

expected initial cost ~0.30€), and the change in the government at the end of 2011, after the 

right-wing party PP (critical with the use of desalination plants during the previous 

mandate) winning the elections, plants that are ready for the production of desalted water 

are working at the 17% of their full capacity. The possibility of returning to the original 

National Hydrologic Plan has been presented, but the European Union is pushing to 

increase the use of the desalination plants, after funding the project with approximately 

1500 million of euros. In conclusion, all these aspects give Spain a great potential in 

seawater desalination, but due to the mentioned difficulties coupled with the current 

economic crisis, its future is uncertain. 

3.5 Challenges 

Although energy consumption of RO desalination plants has decreased significantly during 

the last decades, the total cost of the desalinated water production from seawater is not 

decreasing as much due to the increased cost of electricity, which usually represents 40-

45% of the total cost of the produced water (Lenntech 2013). The need of cutting down 

costs is focusing the investigations in the field to increase the membrane efficiency and to 

optimize plant operation.  

Modeling of RO processes is important to understand the behavior both in steady state and 

dynamic operation of water production plants. Specific models taking into account the 

characteristics of the RO plant and the equipment used are needed to optimize water 

production and design robust process control strategies (Jamal, Khan et al. 2004; Abbas 

2006; Bartman, Christofides et al. 2009; Bartman, McFall et al. 2009). The development of 

first principle deterministic models of RO plants behavior requires fundamental knowledge 

of the complex physical phenomena that govern plant operation dynamics (i.e. interactions 

between membrane surface and solution, scaling, concentration polarization and fouling) 

(Belfort, Davis et al. 1994; Sablani, Goosen et al. 2001; Shirazi, Lin et al. 2010). For 

instance, fouling may occur during the operation of a RO plant decreasing its performance 

due to permeate flux decline. An increase in pressure is necessary to maintain the fresh 
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water production constant leading to higher energy consumption. Maintenance costs also 

increase due to the membrane cleaning or replacement that may be accelerated by fouling. 

Practical predictive fouling models that account for the interplay of various fouling 

mechanisms are not able to give accurate predictions or are not available for industrial size 

plants (Liu and Kim 2008; Gray, Semiat et al. 2011). In addition, factors such as temporal 

variability of feed composition, diurnal variations, and the inability of realistically quantify 

the real-time variability of feed fouling propensity need to be taken into account to develop 

realistic plant models. 

Relative to deterministic models, data-driven algorithms (i.e., models based on plant data) 

provide a more effective way to predict RO plant behavior since they only require historic 

data instead of the specific process parameters needed by deterministic models (Richard 

Bowen, Jones et al. 2000), and might overcome the drawbacks that they present. Due to 

their ability to predict complex and non-linear systems accurately, these models are able to 

recognize and learn the characteristics of the plants (e.g., pressure drop, membrane 

permeability) that affect overall process performance, and can self-adapt to changes in 

operating conditions (Dirion, Cabassud et al. 1996).  

Monitoring systems are necessary to control the plant and try to get the maximum 

performance of it, but there can be faults in the sensors that interfere the proper functioning 

of it. In order to avoid such situations, fault detection and data imputation systems are 

needed. The two main techniques to detect and isolated faults in the systems are Model-

based and Signal-Processing techniques.  
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4. Self-Organizing Maps as a visualization tool and an exploratory data 

analysis 

The Self-Organizing Map (Kohonen, 1990) is an unsupervised learning neural network 

architecture used for visualization, classification and data analysis of high-dimensional 

data. It has been applied in many fields, from engineering to social science and economics. 

In this section, an overview of the SOM algorithm is given along with an explanation of its 

visualization capabilities. 

4.1 The Self-Organizing Map 

The Self-Organizing Map algorithm is a nonlinear, ordered, smooth mapping of high-

dimensional input data onto a regular low dimensional grid that preserves the relations 

between the input patterns (Kohonen 1997). The mapping is implemented by the SOM in a 

similar way that the Vector Quantization (Linde et al., 1980). SOM units are modified via 

an adaptation process (i.e., learning) which affects some predefined topological 

neighborhood producing both, an ordered and descriptive distribution of the original data 

and a vector quantization. Additionally, SOM can be considered as a nonlinear projection 

of the probability density function of the high-dimensional input data vector onto a low-

dimensional (usually two-dimensional) map. 

4.2 Basics of the Self-Organizing Map algorithm 

The SOM algorithm is implemented in the following way. Assume that the set of input 

variables   j  is a real vector  
T

1 2, ,...,   n
nx  and that each unit (i.e., neuron) in 

the SOM array has an associated parametric real vector  
T

1 2, ,...,   n
i inm which is 

called a model. Using a general distance measure between x and mi defined as d(x, mi), the 

image of an input vector x on the SOM array is defined as its best matching (i.e., with a 

minimum distance) SOM unit mc, 

 
 arg min ( , )i

i
c d x m

 (8) 
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where i is the number of units of the SOM and c is the index of the best matching unit (i.e., 

closest SOM unit). The goal of the SOM is to create a map represented by the neurons mi 

ordered in such a way that they are descriptive of the distribution of x. In order to 

accomplish this, during the learning process (i.e., when the nonlinear projection is formed), 

the SOM units that are topographically close in the map up to a certain geometric distance 

activate each other to learn something from the same input x. This results in a local 

smoothing effect on the weight vectors of the neurons in this neighborhood, which leads to 

global ordering when continued learning is carried out (Figure 3). The smoothing function 

hci(t) used during learning is the so-called neighborhood function. Neighborhood functions 

are centered in the best matching unit c. One of the most widely applied neighborhood 

functions, is the Gaussian kernel,  

 

2

2
( ) ( )·exp

2· ( )

c i
ci

r r
h t t

t




 
  
 
 

, (9) 

where rc and ri are the locations of units c and i on the map grid respectively, α(t) is the 

learning rate factor which takes values 0 < α(t) <1, and σ(t) is the width of the Gaussian. 

The update rule for the traditional SOM algorithm when the Euclidean distance is used as 

the measure of the distances is: 

 
 ( 1) ( ) ( ) ( ) ( )i i ci im t m t h t x t m t   

 

(10)

 

The learning process is repeated until the SOM stabilizes (i.e., the SOM units are not 

modified anymore).  
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4.3 SOM initialization and training 

The number of SOM units, map dimension, grid, lattice and shape need to be set during the 

SOM initialization. One needs to take in to account that the complexity of the algorithm 

increases exponentially with the number of map units, although the map has to be big 

enough to accommodate all training data. The most commonly used grid lattice is the 

hexagonal, since it has only 6 neighbors at the same distance per unit, while the rectangular 

lattice has 8. It is recommended that the shape of the map grid corresponds to the data 

manifold. Sheet map shapes are simple to apply, but present border effects, due to the 

presence of map units with reduced neighborhood. In order to avoid the border effects, 

cylindrical and toroidal map shapes can be applied. Typically, initialization can be carried 

out in three different ways: randomly, with random selected samples from the input data set 

or based on a Principal Component Analysis (PCA). In the latter case the initial codebook 

vectors lie in the two dimensional linear subspace spanned by the two eigenvectors which 

obtained largest eigenvalues in the autocorrelation matrix of x.  

The SOM is an unsupervised competitive data-driven learning approach where the map 

units compete to become specific detectors of certain data features. The map units contain 

n-dimensional vectors called codebook, where n is the same dimension of the input data x. 

During the training, the similarities between x and the codebook vectors are calculated in 

order to find the best matching unit (BMU), using the following equation, 

 
 minbmu i

i
x m x m  

 

(11)

 

Then the codebooks of the BMU and its topological neighborhood units are modified in 

order to increase the degree of matching with the input space. As it can be seen in Figure 3, 

the modifications of the SOM units always take place in such a direction that they match 

better with the input. 
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Figure 3. Updating the best matching unit (BMU) marked in green and its neighbors 

towards the input sample marked with an X. The solid and dashed lines correspond to the 

state of the map before and after updating respectively. 

There are two phases that can be distinguished during the training which are controlled by 

the learning rate α(t) and the neighborhood radius σ(t). Both α(t) and σ(t) are monotonically 

decreasing functions of time, which start with high values at the beginning of the training, 

where a rough tuning is achieved (ordering phase), and get smaller values at the end of the 

training, where a fine tuning is attained (convergence phase). 

4.4 SOM Quality Measures 

The most commonly applied techniques to measure the quality of a SOM’s projection are, 

Quantization Error (QE), Topgraphic Error (TE) and Average Distortion Measure (ADM).  

Their two main objectives are to measure the quality of the continuity of mapping and the 

topology preservation, and to measure the mapping resolution. 

The Quantization Error measures the average distance between the input patterns xi and the 

reference vector mc associated to their Best Matching Units (Kohonen 1997). 

 

 
1

,
n

i c

i

d x m

QE
n





 

(12)

 

BMU 
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Where n is the total number of input patterns. Low QE values mean a good mapping of the 

input data, but in some cases may also be associated with an over fitted model. 

The Topographic Error (TE) represents the proportion of the total number sample vectors n 

for which the two best matching units are not adjacent, which indicates a local discontinuity 

of the mapping (Kiviluoto 1996), 

 

 
1

1 n

i

i

TE u x
n 

 
,  

(13)

 

where u(xi) =0 if the first and second BMUs are adjacent, and one otherwise. TE only 

indicates the portion of the local neighborhoods correctly mapped, but it does not describe 

the kind of incorrect mapping (i.e., it does not indicate how far the two BMUs are). 

Consequently, when high TE values are obtained they indicate that there is a high portion of 

neighborhoods with topographic errors.  

In the case of a SOM of discrete data and a fixed neighborhood function, the SOM quality 

can be measured by a local energy function which can calculate an error value for the 

whole map. 

 

2

ci k i

k i

TE h x m 
 

(14)

 

This energy function corresponds to the k-means vector quantization and takes into account 

the distance of each input vector to all the reference vectors weighted by the neighborhood 

kernel. 

4.5 SOM visualization   

Most of the SOM-based techniques that can be used to visualize relationships among data 

once the reference vectors have been ordered in the map grid represent data in two 

dimensions. Some of the most common SOM visualization techniques are explained below. 
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Component planes 

Each component plane (or c-plane) shows the relative values of each one of the 

components of the codebook vectors by plotting them with a color code or a gray scale over 

the SOM grid. The number of component planes of a SOM is equal to the size of the input 

data dimension. Relationships between different component planes (i.e., input variables) 

can be inferred by observing simultaneously at several component planes. 

Unified Distance Matrix 

The Unified Distance Matrix (or U-Matrix) shows the relative distances between adjacent 

codebook vectors (or units). For a two-dimensional grid (a*b)-extension, the u-matrix  has 

((a-1)*(b-1))-extension.  The average distance uhi of a codebook vector wi to its immediate 

neighbors is calculated using: 

 

 
1

, , ( ), ( ) ,i i j

j

uh d w w j N i n N i
n

  
  

(15)

 

where d(wi,wj) represents the distance between the vectors i and j and N(i) are the neighbor 

units of vector i. Usually the U-matrix is represented as a 2D gray scale where light colors 

correspond to low distance values while darker colors represent high ones. The U-Matrix is 

very useful to detect clusters, represented by light areas, and the boundaries between them 

represented by dark gray regions. Nevertheless it can be difficult to detect visually the 

different clusters. Clustering algorithms such as K-means are able to detect and cluster units 

of similar structural characteristics. The clustering quality is evaluated by means of the 

Davies-Bouldin index (Davies and Bouldin 1979), which takes into account both the error 

caused by representing the data vectors with their cluster centroids (intra cluster diversity), 

and the distance between clusters (inter-cluster distance). Clustering parameters and the 

optimal number of clusters are optimized based on the minimization of the Davies-Bouldin 

index. 
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P-Matrix  

The p-matrix calculates the data density around a codebook vector and represents the 

number of input data points within a hypersphere with a Pareto radius around each weigh 

vector (Fincke, Lobo et al. 2008). The values contained in the cells of the p-matrix are the 

p-heights ph(i), which are calculated by, 

 
  | , ,i iph x E d x w r r    

 
(16) 

where d(x,wi) represents the distance between the codebook wi and input vector x, E is the 

input data set and r is the Pareto radius around wi. SOM units with high p-height values are 

located in dense areas of the data space, while the ones with low p-height values are located 

in sparsely populated areas. P-matrix may look similar to hit maps, but the main difference 

between them is that in the p-matrix an input vector can be part of more than one unit, 

while in the hit map each input data vector is assigned only to one map unit. 

5. Support Vector Machines 

Support Vector Machine (SVM) is a supervised learning algorithm developed by Vladimir 

Vapnik that generates input-output mapping functions from a set of labeled training data. 

SVM can be applied either for classification (i.e., to categorize the input data) or for 

regression. For classification, input data is transformed to a high-dimensional feature space 

by using nonlinear kernel functions. Maximum-margin hyperplanes based only on a subset 

of training data near the boundaries are then created in the high-dimensional feature space, 

where the transformed data is more separable than in the original input space. For 

regression the model produced by Support Vector Regression ignores any training data 

sufficiently close to the model prediction. 

  

UNIVERSITAT ROVIRA I VIRGILI 
MODELING, MONITORING AND CONTROL OF REVERSE OSMOSIS DESALINATION PLANTS USING DATA-BASED TECHNIQUES 
Xavier Pascual Caro 
Dipòsit Legal: T 961-2014 
 



20 

 

5.1 Basics of the Support Vector Machines 

SVM are applied when there is an unknown nonlinear dependency ( )y f x   between a 

high dimensional input vector x and an output y (target), which can be a scalar or a vector 

in the case of a multiclass SVM. The only available information about the function is a 

training data set   , , 1,i iD x y X Y i l    , where l stands for the number of training 

data pairs (i.e., equal to the size of the training data set D). Unlike in classic statistical 

inference, SVM parameters do not need to be defined prior to the training, since they are 

data-driven to match the model capacity to data complexity. In order to develop models 

with a good generalization property, the constructive approach followed by the SVM 

consists on keeping the value of the training error (i.e., approximation error or empirical 

risk) fixed (to some acceptable level), and minimize the confidence interval. This cost 

function utilized for the development of SVM models is expressed as: 

 1

( , )
l

i

R L l h


   ,  (17) 

where Lε is a loss function, h is a Vapnik-Chervonenkis (VC) dimension and Ω is a 

function bounding the capacity of the learning machine. For classification problems, Lε is a 

0-1 loss function, while in regression applications, Lε is the Vapnik’s ε–intensitivity loss 

(error) function 

 

0, if ( , )
( , )

( , ) , otherwise.

y f x w
L y f x w

y f x w
 





  
  

   (18) 

where ε is the radius of a tube within which the regression function must lie after the 

learning and w is the set of parameters also known as weights. SVM generates a model with 

minimized VC dimension therefore the expected probability error of the model is also low, 

which leads to good generalization (i.e., low errors when predicting previously unseen 

data). 

In the simplest pattern recognition cases, SVM create a linear separating hyperplane to 

classify the different patterns with a maximal margin. The hyperplane is obtained as the 
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result of a constrained nonlinear optimization problem, which has a quadratic cost function 

and linear constrains. 

When the classes are not linearly separable in the original input space, the input space is 

non-linearly transformed into a higher dimensional feature space. This transformation is 

usually carried out by polynomial, sigmoidal, RBF mappings (such as Gaussians), or 

multiquadratics or different spline functions. Thanks to the nonlinear transformation, 

nonlinear separable problems in the original input space become linearly separable in the 

feature space. After the transformation is done, the SVM creates the linear optimal 

separating hyperplane in this feature space, in the same way as for linearly separable 

problems in the input space. When SVM are applied for regression, the training phase 

consist on finding the relationship  ,af x w  (i.e., approximation function) between the 

input space X and the output space Y, using data D. In classification applications, the 

function obtained during the training is the decision boundary (i.e., separating function) that 

separates the data within the input space. The function  ,af x w  which belongs to the 

hypothesis space of functions   aH f H  is selected as the one that minimizes the risk 

function  R w .  

The main problem found during the training is that the number of solutions of the learning 

problem is infinite. In other words, in the case of regression (Fig. 4), the number of 

functions that interpolate data performing training errors equal to zero is infinite, while in 

the case of classification, there is an infinite number of functions that perfectly separate the 

training patterns. 
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Figure 4. Two out of the infinite interpolating functions which perform a training error 

equal to 0. The dashed and dotted lines correspond to bad (overfitted) models of the real 

function  siny x  (solid line). 

The three functions plotted in Figure 4 perform a training error equal to zero. Note that the 

training error can be minimized during the training. Nevertheless, only the function 

represented by the solid line is able to generalize and model the true dependency between x 

and y. The generalization capability of the interpolation functions is not always controlled 

during the training, since it depends on the specific training data pairs used. In order to 

solve this problem and find a good generalizing function, the hypothesis space H of the 

approximating functions is restricted to a smaller set of functions while the complexity (or 

flexibility) of the approximating functions is controlled (Vapnik 1982). 

5.2 Support vector machines for regression 

Support Vector techniques were initially developed for classification problems, although 

later they were modified to be applied in regression (Drucker, Burges et al. 1997; Vapnik, 

Golowich et al. 1997).The objective of the Support Vector Regression is to estimate the 

dependence of the output variable y  on an n-dimensional input variable x (Smola and 

Schölkopf 2004). It consists in learning the input-output relationship (dependency) ( )f x  
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from the training data given to the learning machine. The training data set 

  ( ), ( ) , 1,...,nD x i y i i l    consist of l pairs  1 1,x y ,  2 2,x y ,…,  ,l lx y . The 

inputs x are n-dimensional vectors 
nx  and yare continuous system responses.  

5.2.1 Application to linear regression problems 

The learning function developed by the SVM for regression is a linear regression 

hyperplane expressed as 

 ( , ) .Tf x w w x b   (19) 

The error of approximation of the learning function is measured introducing the concept of 

the ε-insensitivity zone (Fig. 5), defined as the space included inside a tube of radius ε. 

Vapnik’s ε-insensitivity loss (error) function defined as: 

    
 

 

0 if , ,
, , ,

, , otherwise.

y f x w
E x y f y f x w

y f x w





  
   

 

  (20) 

or as,  

     , , max 0, , .e x y f y f x w      (21) 

Accordingly, the loss function equals 0 when the difference between the measured yi and 

the predicted value  ,if x w   is less than ε (i.e., the predicted value is within the tube).  By 

contrast, when the predicted values are outside the tube, the loss function is equal to the 

magnitude of the difference between the predicted value and the radius ε of the tube. 
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Predicted  ,f x w   

Measured value 

 

Figure 5. Representation of a one-dimensional support vector regression estimation 

function  ,f x w . The filled dots • in the boundary or outside the tube of radius ε are the 

support vectors, while the empty dots ০ inside are not and ξi and ξi
* 

are slack variables for 

the measured values above and below the ε-tube respectively. 

Firstly, the formulation of the SVR algorithm for linear problems is presented below. The 

empirical error term empR  from equations (20 and 21) is measured simultaneously to the 

minimization of the confidence term Ω by minimizing 
Tw w  . 

  
1

1
,

l
T

emp i i

i

R w b y w x b
l





     (22) 

Since the objective is to minimize simultaneously the empirical risk empR  and 
2

w  , a 

linear regression hyperplane  , Tf x w w x b   is constructed by minimizing 

  
2

1

1
, .

2

l

i i

i

R w C y f x w 


     (23) 

From equation (20) and figure 5, it is deduced that for the training data outside the ε–tube, 

  ,y f x w      for data ―above‖ the ε –tube, or 
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   *,y f x w         for data ―below‖ the ε –tube.  

Therefore, the minimization of the risk R can be expressed as 

 *

2 *

, ,
1 1

1
,

2

l l

i iw
i i

R w C
 

 
 

  
    

  
    (24) 

under the constrains 

 , 1, ,T
i i iy w x b i l        (25) 

 *, 1, ,T
i i iw x b y i l        (26) 

 *0, 0, 1, .i i i l      (27) 

where the constant C is chosen by the user and controls the trade-off between the 

approximation error and the weight vector norm w . The choice of a high value for C 

implies a penalty for large errors (i.e., forces the slack variables ξi and ξi
*
 to be small), 

which leads to an approximation error decrease, achieved by increasing the weight vector 

norm w . At the same time, a large value of the weight vector w increases the confidence 

term Ω, which does not guarantee a small generalization of the approximation function. The 

radius ε of the ε –tube is also chosen by the user. The solution of the constrained 

optimization problem in (24) is carried out by forming a primal variables Lagrangian, 

  

     * * * * * *

1 1

1

* *

1

1
, , , , , , ,

2

l l
T

p i i i i i i i i i i i i

i i

l
T

i i i i

i

l
T

i i i i

i

L w b w w C

w x b y

y w x b

           

  

  

 





    

     
 

     
 

 





  (28) 

where αi, αi
*
, βi and βi

*
 are non-negative Lagrange multipliers. The primal variables 

Lagrangian  * * *, , , , , , ,p i i i i i iL w b        has to be minimized with respect to w, b, ξi, and 
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ξi
*
 and maximized with respect to αi, αi

*
, βi and βi

*
. Therefore, the function has a saddle 

point at the optimal solution  *
0 0 0 0, , ,i iw b   , where the partial derivatives of Lp are zero: 

 
 

 
* * *

0 0 0 0 *
0

1

, , , , , , ,
0

l
p i i i i i i

i i i

i

L w b
w x

w

     
 




   


  , (29) 

 
 

* * *
0 0 0 0 *

1

, , , , , , ,
0

l
p i i i i i i

i i

i

L w b

b

     
 




  


  ,          (30) 

 * * *
0 0 0 0, , , , , , ,

0
p i i i i i i

i i

i

L w b
C

     
 




   


 ,          (31) 

 * * *
0 0 0 0 * *

*

, , , , , , ,
0

p i i i i i i

i i

i

L w b
C

     
 




   


.          (32) 

Substituting (29), (30), (31) and (32) into (28) yields the dual optimization problem,  

 

        

      

* * * * *

, 1 1 1

* * *

, 1 1 1

1
,

2

1

2

l l l
T

p i i i i j j i j i i i i i

i j i i

l l l
T

i i j j i j i i i i

i j i i

L x x y

x x y y

          

       

  

  

       

      

  

  

         (33) 

subject to  

 * *

1 1 1

0
l l l

i i i i

i i i

or   
  

    
            (34) 

0 1, ,i C i l                (35) 

*0 1, .i C i l                (36) 

This standard quadratic optimization problem can also be expressed in a matrix notation: 

  minimize 0.5 H f ,T T
dL          (37) 
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subject to (34-36), where * * *
1 2 1 2, ,... , , ,...

T

l l       
 

,  H= G -G;-G G , G is an (l,l) 

matrix containing 
T

ij i jG x x 
   and  1 2 1 2f , ,..., , , ,...,

T

l ly y y y y y            . 

The result of the learning stage are l Langrange multiplier pairs  *,i i  . The number of 

support vectors (SVs) does not depend on the dimensionality of the input space data, but is 

equal to the number of nonzero parameters αi or αi
*
. Additionally, the optimal solution must 

accomplish the following conditions: 

   0,T
i i i iw x b y          (38) 

  * * 0,T
i i i iw x b y          (39) 

   0 ,i i i iC        (40) 

  * * * * 0 .i i i iC        (41) 

From (39) it can be stated than for 0 i C  , 0i  , and similarly from (41) for 

*0 i C  , * 0i  . Consequently, for 0 i , *
i C  from (38) and (39) become: 

 0,T
i iw x b y       (42) 

 0.T
i iw x b y        (43) 

Thereby, the value of αi for all the data points satisfying  y f x     must be 

0 i C  . In the same way αi
* 

for the data points fulfilling  y f x    must be

*0 i C  . The data points accomplishing this conditions are the ones called free support 

vectors. The bias term b can be then computed as follows: 

 , for 0 ,T
i i ib y w x C        (44) 

 *, for 0 .T
i i ib y w x C        (45) 
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From (39) and (40), it can also be observed that when 0i   and * 0i  (i.e., the data points 

are outside the ε–tube), both αi and αi
*
 are equal to C. The points corresponding to these 

data are so-called bounded support vectors. By contrast, αi and αi
*
 for all the data points 

satisfying  y f x    (i.e., the data points within the ε–tube) are equal to zero, in other 

words, they do not construct the function  f x (i.e., they are not support vectors). 

When the Langrange multipliers are calculated by using (29), the optimal weight vector of 

the regression hyperplane can be obtained by 

  *
0

1

,
l

i i i

i

w x 


    (46) 

and then the optimal regression hyperplane  can be obtained by 

    *
0

1

, .
l

T T
i i i

i

f x w w x b x x b 


       (47) 

5.2.2 Application to nonlinear regression problem 

The generalization for nonlinear regression problems is developed by transforming the 

mapping in the original input space to a mapping in the feature space. This can be done by 

using kernel functions which produces very high dimensional (sometimes infinite) 

mappings. Consequently, the nonlinear regression function in the input space is produced 

from a linear regression hyperplane in the feature space. 

The input vectors nx  are mapped into vectors  x  in a higher dimensional feature 

space F (where Φ represents mapping
n f  ), and then the linear regression is carried 

out in this feature space. The input space (x-space) is spanned by components xi of an input 

vector x and the feature space F (Φ-space) is spanned by components ϕi(x) of a vector

 x . The objective of this mapping is to make the learning algorithm able to develop a 

linear regression hyperplane in the feature space. The solution of the regression hyperplane 
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 Tf w x b    (which is linear in the feature space F) creates a nonlinear regressing 

hypersurface in the original input space.  

The learning problem can be formulated as the maximization of ta dual Lagrangian (37) 

with the Hessian matrix structured in the same way as in the linear case (i.e., 

 H= G -G;-G G ), but with the changed Grammian (kernel) matrix G: 

 

11 11

1

G G

G G ,

G G

ii

l ll

 
 

  
  

  (48) 

where      G , , , 1, .T
ij i j i jx x K x x i j l      

Once αi and αi
* 

are calculated, the optimal weighting vector of the kernels expansion can be 

obtained as: 

 *
0v .     (49) 

 Accordingly, the best nonlinear regression function obtained from the optimal weighting 

vector v0 and the kernel matrix G is: 

   0, G vf x w b    (50) 

Equation (50) results from replacing the term xi by  ix  in all the equations from (25) to 

(47), which implies that (46) and (47) now become (51) and (52) respectively: 

    *
0

1

,
l

i i i

i

w x 


     (51) 

 

         

   

*
0

1

*

1

, ,

, .

l
T T

i i i

i

l

i i i

i

f x w w x b x x b

K x x b

 

 





       

  





  (52) 

When the bias b is used explicitly, likewise in (50), it can be calculated from the upper 

support vectors as, 
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     

   

*

1

*

1

, , for 0 ,

Nu
T

i j j j i

j

Nu

i j j i i

j

b y x x

y K x x C

  

   





     

     





  (53) 

and from the lower support vectors as, 
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  (54) 

where Nu and Nl are the number of free upper and lower vectors respectively. Note than in 

(53) * 0j   and so is 0j   in (54).  

The three most important parameters that the user needs to set for the construction of the 

Support Vector Regression are the insensitivity zone ε, the penalty parameter C (which 

controls the trade-off between the training error and the model complexity), and the 

parameters of the kernel chosen (variances of a Gaussian, order of the polynomial, shape of 

the inverse multiquadratics).  In order to obtain the optimal values for the SVR parameters, 

a cross-validation is carried out. In cases where the data is not too noisy (mainly without 

huge outliers), it is possible to solve the problem by setting the penalty parameter C to 

infinity and control the modeling by tuning the insensitivity zone ε and kernel shape 

parameters only. 

Although SVM work perfectly for not too large data basis, when the number of data points 

is large (l>2,000), the QP problems becomes very memory consuming, which makes it 

difficult to handle even for the current standard computers. To address the problem of 

dealing with large data sets, three different approaches have been developed, which 

basically consist in decomposing the data (Vapnik 1995; Osuna, Freund et al. 1997) or 

carry out the optimization sequentially (Platt 1999).  
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7. Article 1. Data-driven models of steady state and transient operations of 

spiral-wound RO plant 
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Abstract 

The development of data-driven RO plant performance models was demonstrated using the 

support vector regression model building approach. Models of both steady state and 

unsteady state plant operation were developed based on a wide range of operational data 

obtained from a fully automated small spiral-wound RO pilot. Single output variable steady 

state plant models for flow rates and conductivities of the permeate and retentate streams 

were of high accuracy, with average absolute relative errors (AARE) of 0.70%-2.46%. 

Performance of a composite support vector regression (SVR) based model (for both 

streams) for flow rates and conductivities was of comparable accuracy to the single output 

variable models (AARE of 0.71%-2.54%). The temporal change in conductivity, as a result 

of transient system operation (induced by perturbation of either system pressure or flow 

rate) was described by SVR model, which utilizes a time forecasting approach, with 

performance level of less than 1% AARE for forecasting periods of 2 s to 3.5 min. The high 

level of performance obtained with the present modeling approach suggests that short-term 

performance forecasting models that are based on plant data, could be useful for advanced 

RO plant control algorithms, fault tolerant control and process optimization. 

 

 

 

 

Keywords: Desalination; data-driven models; Support vector regression, spiral-wound RO 

plant, process models 
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1. Introduction 

Water desalination by reverse osmosis (RO) membrane technology has been increasingly 

deployed for potable water production from seawater and water reuse application including 

municipal wastewater and agricultural drainage (AD) water.  Most RO plants are designed 

to operate at relatively steady state conditions with traditional control strategies to attain the 

target permeate productivity and quality. Given the complexity of RO plants, plant process 

models, which consider specific plant characteristics and equipment, are needed to describe 

both steady state and dynamic plant operations in order to optimize water production and 

design robust process control strategies  [1-4].  

The development of first principle deterministic models of RO plant behavior requires 

fundamental knowledge of the complex physical phenomena that govern plant operational 

dynamics including, but not limited to, behavior of sensors and actuators, concentration 

polarization [5], membrane fouling [6] and mineral scaling [7]. For example, membrane 

fouling can lead to permeate flux decline when operating under constant transmembrane 

pressure or increased net driving pressure under constant flux operation [7]. Deterministic 

plant models that are a priori predictive of fouling and mineral scaling would clearly be of 

practical value; however, given the challenge of accounting for the complex interplay 

among various fouling [8] and scaling mechanisms [9], such models are lacking for 

industrial scale plants [8]. Admittedly, commercial RO system design software (e.g., 

Winflows [10], CAROL [11] and ROSA [12]), which are built on the basis of deterministic 

and semi-empirical models, can be used to simulate steady state operation of RO plants. 

Mechanistic computational (CFD) models of RO desalination have also been advanced 

over the last few decades [13] focusing on either simple membrane channel geometries or 

modeling of single membrane modules. Efforts to incorporate the impact of fouling on the 

operation of spiral-wound membranes in theoretical and CFD models have also been 

recently proposed [13-15] and hold promise for adoption in full-scale plant models. The use 

of both computational CFD models and software design packages for accurate simulation 

of real-time plant performance is limited since such models typically do not account for 

complex plant hydraulics, the evolution of fouling and mineral scaling throughout the plant, 

and plant equipment performance over time (e.g., pumps, valves, sensors, etc.).   
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Data-driven algorithms (i.e., models based on plant data) represent another class of models 

capable of providing an effective way of describing plant behavior making use of historical 

plant data without having to rely on predetermined process parameters that are needed by 

deterministic models [16]. Data-driven models are well suited for accurately describing 

complex and non-linear systems. Therefore, models can be trained to recognize and learn 

the characteristics of the plant that affect overall process performance. One advantage of 

data-driven models is that they can self-adapt (through incremental learning) to changes in 

operating conditions [17]. Data-driven models (e.g., based on process operational data) can 

be integrated within control systems [18] by facilitating the development of virtual sensors 

capable of inferring the properties of manufactured products [19], that provide the basis to 

improve plant control strategies [20] in addition to data-driven models of membrane based 

separation processes [21].  

Over the past two decades, there has been a growing interest in developing data-driven 

models, based on machine learning methods, to describe membrane performances (e.g., 

transmembrane flux and rejection) and fouling in membrane separation processes that 

include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis 

(RO). Artificial neural networks (ANN) derived models for NF membrane salt rejection 

[22] were reported with high level of performance with average absolute deviation not 

greater than 5%. ANN based models of fouling of hollow fiber membranes were reported 

for a bench-scale system [8] enabling a single composite model for transmembrane pressure 

covering the various stages of fouling, while piecewise fitting was required when using 

deterministic fouling models (cake formation, surface blocking and pore blocking models). 

ANN based models [23] were also developed for resistance of UF membranes with a 

reported performance of average absolute error of 10%.   

Data-driven models of membrane desalination (NF and RO) have been proposed to 

describe various aspects of steady state process performance with respect to salt rejection 

[16, 22, 24, 25], permeate flux [24, 26], as well as modeling of membrane fouling [8, 27, 

28]. For example, back-propagation ANN models were used [25] to model the rejection of 

NaCl and MgCl2 salts (based on laboratory scale steady state NF plant data for feed 

concentration of 5000-25,000 mg/L) demonstrating average absolute deviation of 5%. In 
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the above work, models of different ANN architectures and training algorithms were 

assessed for two different sets of input variables (feed pressure or permeate flux and feed 

salt concentration) with salt rejection as the output variable. More recently, an interesting 

approach to modeling steady state RO plant performance was proposed in which the use of 

the product of salt rejection and permeate flux was introduced as an index of plant 

performance [24]. Using data for spiral-wound RO desalting of aqueous sodium chloride 

solutions, an ANN model was developed (input parameters included salt concentration, 

feed temperature, feed flow rate and feed pressure) for the plant performance index which 

demonstrated higher performance for salt concentrations of 6000 mg/L and 30,000 mg/L.   

The majority of efforts on the development of data-driven RO process models have focused 

on the use of ANN algorithms given their ability to describe complex non-linear behavior 

[34]. However, such models require optimal ANN architecture while avoiding over-fitting 

and convergence to local minima [29]. Support Vector Machine (SVM) algorithm is an 

alternative method for developing data-driven models since it is based on the Structural 

Risk Minimization principle and thus avoids the convergence to local minima, while 

avoiding over fitting through control of the number of support vectors [30]. The use of 

SVM is especially useful for developing non-linear controllers as has been demonstrated in 

recent studies involving membrane based and other industrial processes [31-33]. For 

example, SVM based non-linear predictive functional control design was applied to a 

coking furnace, improving the regulatory capacity for both reference input tracking and 

load disturbance rejection compared with traditional PFC and PID control strategies [31]. A 

Least squares (LS)-SVM model was shown to be effective for developing a non-linear 

temperature controller for a proton exchange membrane fuel cell plant [32, 34].  SVM, in 

addition to  radial basis function (RBF)-based ANN, was also reported effective in 

developing a data-driven model [33] of fouling of a membrane bioreactor (quantified via 

flux decline) making use of eight input parameters (e.g., membrane aperture, aeration gas 

quantity, initial membrane flux, operating pressure, water temperature, pumping time, 

sludge concentration and sludge granule). SVM as well as back-propagation ANN 

algorithms were also applied to developing forecasting models of brackish water RO plant 

performance [35], with respect to permeate flow rate and salt passage, where variability of 

up to 25% and 10% was experienced with respect to the normalized permeate flux and salt 
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rejection, respectively. It was shown, that time-series ANN based models enabled 

forecasting of salt passage and permeate flow rate up to 24 h with similar prediction errors 

for the SVM and ANN models (average absolute relative errors of 1.2% and 6.6%, 

respectively). The above models while suitable for long-term plant response (order of hours 

and above), do not capture short-time scale dynamic responses (order of seconds to 

minutes) of the system (e.g., due to sudden changes in input pressure or feed flow rate) 

which would be necessary, for example, for real-time plant control and fault detection.   

Data-driven models could be particularly useful for use in plant controllers, identification 

of deviation of plant behavior from the expected norm, for sensor fault detection and even 

for smoothing of fluctuations in sensor data. However, such models must be able to 

accurately describe plant performance not only under steady state conditions, but more 

importantly under unsteady state operation and over time scales that capture short-time 

transients. Accordingly, the present work presents an approach for the development and 

integration of both steady and unsteady state data-driven plant models of RO desalting 

based on support vector regression (SVR). It is shown that SVR models can accurately 

describe RO plant performance (e.g., permeate and retentate flow rates and their respective 

salinities) based on basic operational plant parameters (i.e., feed flow rate, feed pressure 

and feed conductivity). Moreover, data-driven models for transient plant operation can 

provide accurate performance forecasting that is suitable for fault-tolerant control of RO 

plants.  

 

2. Experimental procedure 

2.1  Feed solution and materials 

Aqueous salt feed solutions were prepared using analytical grade sodium chloride (Fisher 

Scientific, ACS grade, Pittsburgh, Pennsylvania) in deionized (DI) water. Solutions of two 

different salt concentrations were utilized (7500 and 5000 mg/L) with the feed solutions 

maintained at pH~7.  Spiral-wound RO membranes that were utilized in pilot RO system 

(Dow Filmtec XLE-2540, The Dow Chemical Company, Midland, Michigan) were 2.5 inch 
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(outer diameter) 40 inch long elements (0.0635 m and 1.02 m, respectively) with an 

average surface area of 2.6 m
2
. A single membrane element had a manufacturer reported 

permeate flow rate of 3.2 m
3
/day, and a salt rejection of 99%, as determined at a pressure of 

6.9 bar for a 500 mg/L NaCl solution. Each membrane element was contained in a separate 

pressure vessel with six membranes connected in series. 

 

2.2 Description of experimental equipment  

Data for model development were generated using the UCLA spiral-wound Mini-Mobile-

Modular (M3) pilot RO desalination system shown schematically in Fig. 1  [3, 36, 37]. The 

M3 system was designed for permeate water production capacity up to 1.2 m
3
/h (7560 

gallons/day) for brackish water (5000 mg/L TDS) operating at 75% recovery and up to 0.64 

m
3
/h (4058 gallons/day) for seawater desalination (at recovery of 40%) using up to 18 

spiral-wound elements in various configurations. In the present study, a configuration of six 

elements in series was utilized with the system operating in a total recycle mode with the 

permeate and concentrate streams returned to the feed tank. Briefly, the M3 RO plant 

consisted of a 450 L feed tank with two low-pressure feed pumps (Model JM3460-SRM, 

Sea Recovery, Carson, CA) pumping the RO feed through a series of cartridge microfilters 

(5 µm, 0.45 µm and 0.2 µm; 08P GIANT, pleated 177 polypropylene filter cartridges, 

Keystone Filter, Hatfield, PA). The M3 was operated such that the filtered feed was fed to 

the RO membranes via two-high pressure pumps (Danfoss Model CM 3559, 3HP, 

3450RPM, Baldor Reliance Motor, Sea Recovery Corp. Carson, California) operating in 

parallel and controlled by variable frequency drives (VFDs) (Model FM50, TECO 

Fluxmaster, Round Rock, Texas). The retentate flow rate and pressure in the RO unit were 

set by a model-based controller [36] that adjusts both electrically actuated needle valve 

(valve V-1) (model VA8V-7-0-10, ETI Systems, Carlsbad, California) on the retentate 

stream of the M3 RO system and the pump VFD. In order to maintain the temperature of 

the RO feed, a heat exchanger (Model BP 410-030 Refrigerant heat exchanger, ITT 

Industries) was installed on the retentate side of the RO system. Permeate and retentate 

streams of the M3 were monitored in-line via conductivity sensors, conductivity/resistivity 

sensor electronics (Signet 2839 to 2842 and Signet 2850, George Fischer Signet, Inc. El 
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Monte, California) and pH sensor (DryLoc pH electrodes 2775, George Fischer Signet, Inc. 

El Monte, California). The conductivity meters were calibrated over the expected 

concentration range for the study. The M3 plant was equipped with a centralized data 

acquisition system which receives all sensor outputs (0-5 V, 0-10 V, 4-20 mA) which are 

then converted to process variable values. The data were logged into a local computer as 

well as onto a network database. Data could be logged at a frequency range as high as 1 

kHz, although for the present study a frequency of a 1 Hz was employed.  

 

Figure 1. Configuration of the Spiral-wound RO pilot plant.  

 

2.3 Experimental procedure 

RO desalting experiments covered the range of operating conditions permitted by the 

operability limit of the M3 system for the specific feed salinities.  The M3 control system 

was programmed to autonomously step through a range of feed flow rates and 

transmembrane pressures. Feed flow rate and pressure were varied by changing the speed 

of the high-pressure pumps and the actuated valve settings (Fig. 1). Feed pressure was 

varied by changing the actuated valve position while maintaining a constant feed flow rate 

(constant VFD), allowing the plant to operate until the attainment of steady state. The 

above experiments covered feed pressure and feed flow rate ranges of 6.9-26 bar (or 100-

375 psi), and 0.23-0.68 m
3
/h (or 1-3 gpm), respectively.  

Feed  
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3. Model development  

3.1 Data pre-processing 

Operational M3 pilot data were acquired for both steady state operations, as well as for 

transient periods (except plant startup and shutdown), for which there were pressure and 

flow rate step changes of up to 15% and 25%, respectively.  Operational parameters were 

recorded at a frequency of 1 Hz for each steady and during transitions between states. The 

recorded steady state data (Table 1) included natural plant fluctuations (i.e., due to 

operation of pumps and valves) as well as noise from normal operation of sensors, actuators 

and system pumps.  However, in developing the data-driven models data smoothing was 

not employed given the small variance of the noise, and the objective of developing a 

simulator for the actual plant operation. 

 

Table 1. Relative standard deviation for the range of steady state 

plant operating parameters covered in the study
a
. 

Variable Minimum Maximum Av. STDV (%) 

Feed Flow rate (m
3
/h) 0.26 0.67 0.85 

Feed Conductivity (µS) 9842 15828 0.44 

Feed Pressure (bar) 8.13 24.62 0.43 

Retentate Flow rate (m
3
/h) 0.14 0.53 0.80 

Retentate Conductivity (µS) 11,539 24,907 0.29 

Retentate Pressure (bar) 3.59 11.29 0.99 

Permeate Flow rate (m
3
/h) 0.03 0.28 1.66 

Permeate Conductivity (µS) 628.58 4024 0.44 

a
 The Av.STDV= ,

1

/ /
N

i i ave

i

STDV V N


 
 
 
  where STDV is the standard deviation for 

the given variable within a steady state trace i, Vi,ave is the average variable value for 

the given trace, and N is the number of the experimental steady state traces (or 

experiments). Note: The salinity conversion factors for the permeate and retentate 

streams were S=4.337·10
-4

·C
1.0201

 and S=3.833·10
-4

·C
1.0391

 respectively, where S is 

salinity (mg/L total dissolved solids) and C is conductivity (µS). 
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Data-driven models of the state-the-plant (i.e., steady state) for permeate and retentate flow 

rates and conductivities were first developed from recorded data selected at 0.1 Hz 

sampling frequency in order to accelerate model training. The steady state period was 

established as that for which the measured process variables did not vary with time by more 

than 3% with respect to the time-averaged values. In all cases only the last five minute trace 

from the steady state period was utilized. Models for transient operation describing the 

evolution of permeate and retentate conductivities were developed based on data acquired 

from experiments in which the operating conditions were perturbed from steady state. 

Steady state was generally reached within a period of about 10 min after the perturbation. 

Higher frequency captured data (0.5 Hz) were utilized for modeling transient operation. 

Although data were logged by the M3 at an even higher frequency, use of higher frequency 

data would increase data redundancy and correspondingly the computational time for 

model training.  

Data for model developments were normalized in the range of [0, 1] using min-max 

normalization:           

( ) min( )

max( ) min( )

n i
i

y y
y

y y





                                                                               (1) 

where ( )n

iy  is the normalized value of the experimental data (yi) and min(y) and max(y) are 

the minimum and maximum variable values in the data set. Subsequently, the data were 

divided into two sets, one for model training and the other for model testing. Data selected 

for training were used to adjust the model while test data (i.e., data that have not been used 

for model development) were used to evaluate model performance. In order to obtain state-

of-the-plant models with good generalization capability, the training dataset was selected to 

cover the entire plant operational domain (i.e., applicability domain; [40]). Data for model 

testing were also selected within the applicability domain to avoid extrapolation during 

predictions. In all cases, complete steady state and transient sequences were selected for the 

training and test sets. For the transient models, self-organizing-maps (SOM) analysis [38] 

of the transient data was first performed whereby operational data of similar pattern were 

clustered in SOM cells. Training and test data for the transient models were then selected 
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from the different cells in order to ensure that adequate data representation is achieved for 

the whole operational domain.  

 

3.2 Support vector regression (SVR) models 

Since the relationships among process variables in the RO process are highly non-linear, 

both the steady state and unsteady state plant performance models (Sections 3.3 and 3.4) 

were developed using the support vector regression (SVR) algorithm [39, 40]. Briefly, 

given a vector x of RO process variables (e.g., feed pressure, feed flow rate, and feed 

conductivity), the goal of SVR is to find a function f(x) that has at most ε deviation with 

respect to the actual values of a given target RO process variable y (e.g., permeate 

conductivity) and at the same time is as flat as possible (Fig. 2). SVR can be formulated as 

a convex optimization problem where a set of coefficients w for the regression model are 

computed in such a way that the flatness and the accuracy of f(x) are maximized. Since it is 

not always possible to keep the error within the margin ε for all the available data points, a 

pair of slack variables  and 
*
 must be introduced within the SVR formulation to cope 

with otherwise infeasible constraints in the optimization (Fig. 2). In most cases, the 

optimization problem can be solved more readily by projecting x (i.e., the vector of the 

input RO process variables) onto a higher-dimensional space where linear regression 

models can be developed for the target RO process variable of interest. The functions used 

to perform the above linear to non-linear mapping are known as kernel functions. Finally, 

non-linear models relating input and target variables can be obtained by mapping the data 

back to its original (i.e., non-linear) space of RO process variables. In the SVR formulation 

only a subset of the training data points, representing the overall data behavior (i.e. support 

vectors), are used to generate the regression model (Fig. 2). 
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Figure 2. Support vector regression structural parameters. Regression function f supported 

on the most representative vectors of information (support vectors), w the normal vector to 

the hyperplane generated, the kernel function Φ, the vector of biases b, slack variables ξ 

and radius of the insensitive tube ε. 

In the current work, the kernel function used for model development was the radial basis 

function (RBF) which is suitable for highly non-linear behaviors [40]. The parameter 

characterizing this kernel is the width of the Gaussian, σ, which determines the area of 

influence of the support vectors over the data space and here its optimal value was 

determined via grid search. The SVR based models were developed in MATLAB using the 

LS-SVMlab1.7 package [41, 42]. This SVR implementation utilized a regularization 

parameter γ, which controls the tradeoff between the flatness (or smoothness) of the models 

and their accuracy, whose optimal value was also determined via a grid search. Table 2 

summarizes the optimal values of σ and γ obtained via grid optimization for each model. 

The performance of the different models (Sections 3.3 and 3.4) was quantified using the 

linear r
2
 correlation coefficient (between the predicted, yi

*
, and experimental, yi, variables) 

and by the average absolute (AAE) and average absolute relative (AARE) errors defined as: 

*

1

1 n

i i

i

AAE y y
n 

           (2) 

 

 ( )f w x b  ε 

     Support Vector 

ξi 

ξi
* 
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*

1

1
100

n
i i

i i

y y
AARE

n y


           (3) 

where n is the total number of data points. 

 

3.3  State-of-the-Plant Models 

State-of-the-plant (STP) models were developed for steady state operation using feed flow 

rate, feed conductivity and feed pressure as input parameters. The data for the steady state 

segments (for the range of operating conditions listed in Table 1) were divided into training 

(60% of data, 2394 samples) and test (40% of data, 1596 samples) sets. Two different 

modeling approaches were implemented. First, individual models (Eq. 4) were constructed 

for each of the four target output variables (permeate flow rate, permeate conductivity, 

retentate flow rate and retentate conductivity), followed by a composite output parameters 

(OP) model to simultaneously predict the four output variables with the same three input 

parameters (Eq. 5),  

( , , )i f f fF f C Q P          (4) 

, , , ( , , )p p r r f f fC Q C Q f C Q P           (5) 

where Fi is one of (permeate flow rate, permeate conductivity, retentate flow rate, or 

retentate conductivity), and C, Q and P are conductivity, flow rate and pressure, 

respectively, and the subscripts f, p and r refer to feed, permeate and retentate streams, 

respectively. For the individual OP models the optimal value of γ was 4200 for all the 

target variables. The optimal value of σ was 12 for the retentate flow rate model and 8.8 for 

the permeate flow rate, permeate conductivity and retentate conductivity models. The 

optimal γ and σ parameters for the composite OP model were 1000 and 7, respectively. 
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3.4 Unsteady State Models 

Data-driven unsteady state plant models for the conductivity of the retentate and permeate 

streams were developed using a modeling structure that considers a time marching 

approach (Fig. 3).  

Time

C
o
n

d
u

c
ti
v
it
y

t

Cinitial
C()

C(+t)

Cfinal

t0  +t



tf

 

Figure 3. Illustration of a transient conductivity trace with input and output parameters 

used in Eq. (6a) for predicting the evolution of conductivity between the initial and final 

steady states (Cinitial and Cfinal) at times t0 and tf, respectively. The parameters  and t   

refer to the elapsed time relative to to and forecasting period, respectively. 

In this approach, the data-driven transient model is constructed to enable a marching 

forecasting prediction of stream conductivities at a prescribed period of time, t , forward 

of elapsed time   from the change in operating conditions at 
0t   

 (i.e., 
ot t   ). 

Accordingly, the transient model is expressed as 

 ( ) ( ( ), , , , )initial finalC t f C C C t           (6a) 

in which steady state data for the modeled stream conductivities, prior to and post the 

perturbation of the steady state operating condition, are input variables that are in turn 

predicted from the steady state plant model (Section 3.3, Eq. 5)  

, ( , , )initial final f f fC C f C Q P                                 (6b) 
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in which 
initialC  and 

finalC  are the stream conductivities at time to and tf, at the given initial 

steady state operation and the new steady state, respectively. The optimal γ and σ 

parameters for building the SVR composite OP model were 10,000 and 18, respectively. 

Finally, the transient models were developed based on a dataset of 122 different unsteady 

state runs (60 were utilized for model testing), covering the range of operating conditions 

given in Table 1, in which either pressure and flow rates were perturbed by up to 15% and 

25%, respectively.   

 

4. Results and discussion 

4.1 State-of-the-plant model 

State-of-the-plant (STP) model (Section 3.3) was first developed in order to establish the 

base model for steady state operation of the RO plant (Section 2.3). Performances of the 

individual and composite OP models are provided in Table 2. Individual OP models 

predicted permeate and retentate flow rates with average absolute errors (AAEs) of 0.013 

m
3
/h (2.46%) and 0.011 m

3
/h (0.70%), respectively, for permeate and retentate flow rate 

ranges of 0.023-0.295 m
3
/h (0.1-1.3 gpm) and 0.136 - 0.522 m

3
/h (0.6-2.3 gpm), 

respectively. Similarly, permeate and retentate conductivities were predicted with AAE 

levels of 21.7 µS (1.24% AARE) and 110.2 µS (0.75% AARE) (Table 2), respectively, for 

corresponding conductivity ranges of 630-4000 μS and 11,500-25,000 μS. The correlation 

coefficient (r
2
) for the linear correlation (predicted versus measurements) was in all cases ≥ 

0.994.  
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Table 2. Performance of SVR based models for predicting steady state RO plant 

performance based on individual single output parameter models and a composite model. 
a
 

Model Predicted Variable γ σ AAE AARE (%) r
2
 

Individual 

Individual 

Individual 

Individual 

Permeate Flow rate (m
3
/h) 

Permeate Conductivity (μS) 

Retentate Flow rate (m
3
/h) 

Retentate Conductivity (μS) 

4200 

4200 

4200 

4200 

8.8 

8.8 

12 

8.8 

0.013 2.46 0.994 

21.72 1.24 0.999 

0.011 0.70 0.998 

110.16 0.75 0.998 

Composite Permeate Flow rate (m
3
/h) 1000 7 0.011 2.54 0.993 

 Permeate Conductivity (μS)   22.74 1.32 0.999 

 Retentate Flow rate (m
3
/h)   0.011 0.71 0.998 

 Retentate Conductivity (μS)   117.01 0.80 0.997 
a
 γ - regularization parameter; σ - width of the Gaussian; AAE and AARE are the 

average absolute and average absolute relative errors, respectively, and r
2
 is the 

linear correlation coefficient. 

The composite OP model provided simultaneous prediction of all four output parameters at 

a similar level of accuracy (Table 2; Figs. 4).  Permeate and retentate flow rates (Fig. 4a 

and b, respectively) were predicted with average absolute errors of 0.011 m
3
/h 

(corresponding to 2.54% and 0.71% AARE for the above two streams). Conductivities of 

the permeate and retentate stream (Fig. 4c and d respectively) were predicted with AAE 

values of 22.7 μS (1.32% AARE) and 117.0 μS (0.80% AARE), respectively (Table 2). The 

r
2
 linear correlation coefficient was  0.993 for the composite OP model. For both the 

individual and composite OP models, AARE values for the predictions were greater for the 

permeate flow rate and conductivity relative to predictions of these parameters for the 

retentate stream. This trend is not surprising given the higher absolute values of the above 

parameters for the retentate stream.  
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Figure 4.  Comparison of experimental and composite model predictions for: (a) permeate, 

and (b) retentate conductivities; and (c) permeate and (d) retentate flow rates. Note: In 

order to maintain clarity of presentation only the predicted averages are plotted (along with 

a bar depicting the standard deviation) for each steady state data trace.   

 

The difference in performance of the composite and individual OP models was on average 

less than 0.05% (Table 2).  Overall, the AARE for the steady state individual and 

composite OP models were for the permeate flow rate (2.46% and 2.54%, respectively). 

The above performance level suggests that there is little advantage to using the individual 

Experimental permeate flow rate [L/s]

0.00 0.02 0.04 0.06 0.08

P
re

d
ic

te
d

 p
e

rm
e
a
te

 f
lo

w
 r

a
te

 [
L

/s
]

0.00

0.02

0.04

0.06

0.08

(c)

Experimental permeate conductivity [S]

0 1000 2000 3000 4000

P
re

d
ic

te
d

 p
e

rm
e
a
te

 c
o
n
d

u
c
ti
v
it
y
 [
m

S
]

0

1000

2000

3000

4000

(a)

Experimental retentate flow rate [L/s]

0.00 0.05 0.10 0.15 0.20

P
re

d
ic

te
d

 r
e

te
n

ta
te

 f
lo

w
 r

a
te

 [
L
/s

]

0.00

0.05

0.10

0.15

0.20

(d)

Experimental retentate conductivity [S]

12000 16000 20000 24000

P
re

d
ic

te
d
 r

e
te

n
ta

te
 c

o
n
d

u
c
ti
v
it
y
 [


S
]

10000

12000

14000

16000

18000

20000

22000

24000

(b)

UNIVERSITAT ROVIRA I VIRGILI 
MODELING, MONITORING AND CONTROL OF REVERSE OSMOSIS DESALINATION PLANTS USING DATA-BASED TECHNIQUES 
Xavier Pascual Caro 
Dipòsit Legal: T 961-2014 
 



51 

 

OP models relative to the composite OP model, particularly given that the latter is more 

convenient. Compared with the present SVR models, predictions obtained using the 

commercial ROSA software [12] (suitable for the present membrane elements, Section 2.1) 

are of lower accuracy, e.g., with AARE of 23% and 27% for the salinity of the permeate 

and retentate streams, respectively. The retentate and permeate flow rates were 

underpredicted and overpredicted by ROSA (AARE of 19% and 68%, respectively). The 

above behavior is not surprising since ROSA predictions were based on the manufacturer 

membrane permeability and without consideration of the efficiency of various plant 

components. In contrast, the SVR models were based on the actual experimental 

performance data and thus such data-driven models can serve as more reliable plant-

specific operational models. 

 

4.2 Transient operation models 

Data-driven models of unsteady state (or transient) plant operation can be useful in refining 

plant operational control strategies by enabling prediction of the dynamic response of the 

plant post perturbation from steady state operation. In this regard, it is noted that plant 

hydraulic response is generally fast. In the present RO plant, flow rate transients were 

typically of the order of a few seconds relative to much longer system response (order of 

minutes) with respect to transients of retentate and permeate conductivities. Accordingly, 

from the perspective of plant control, state-of-the-plant models may be sufficiently 

effective for predicting the retentate and permeate flow rates upon pressure or feed flow 

rate transitions. In contrast, the dynamics of the conductivities of these streams (e.g., due to 

feed flow rate, feed salinity and pressure perturbations) are influenced by salt dispersion 

through the system and stabilization of salt flux through the membrane. For example, for 

the present RO pilot, transient periods of up to 10 min were required to reach steady state, 

with respect to salinity of the permeate and retentate streams, as a result of feed pressure 

perturbations.  

Several data-driven models were developed to predict the transient response of permeate 

and retentate conductivities at different forecasting periods (i.e., t , Section 3.4, Eq. 6a) in 

the range of 2 to 210 s (Table 3). Longer forecasting periods (i.e., > 210 s) were not 
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considered since model accuracy decreased significantly due to the reduction of available 

training data with increasing t (see Fig. 3). Illustrations of model tracking of the measured 

permeate conductivities, for a set of different transient trajectories (induced by 5-15% 

perturbation of the applied pressure), are provided in Fig. 5, for model forecasting period 

(i.e., t ) of 30 s.  Forecasting at 30 st   (Fig. 5) was highly accurate, for a range of 

different dynamics, with average AAE and AARE for the above transients being 6.16 µS 

and 0.47%, respectively. The average AAE corresponding to the retentate conductivity 

(Table 3) at the same conditions was slightly higher with a value of 38.12 µS (0.27% 

AARE). At the longer forecasting period of 120 s, permeate conductivity AAE and AARE 

were 9.54 µS and 0.66% respectively. Errors for retentate conductivity predictions were 

somewhat higher with AAE in the range of 50.85 µS (0.36% AARE).   

Table 3. Performance of the transient operation models for prediction of permeate and 

retentate conductivities for different forecasting periods. 

 Permeate Retentate 

Δt (s)
(a)

 AAE (µS) AARE (%) r
2
 AAE (µS) AARE (%) r

2
 

2 1.55 0.12 1 8.98 0.07 1 

30 6.16 0.47 0.999 38.12 0.27 0.999 

60 7.91 0.58 0.999 44.86 0.32 0.999 

80 8.49 0.60 0.999 47.30 0.34 0.999 

90 8.72 0.62 0.999 48.62 0.34 0.999 

120 9.54 0.66 0.999 50.85 0.36 0.999 

180 10.91 0.73 0.999 51.87 0.37 0.999 

210 11.58 0.76 0.999 54.21 0.38 0.999 
                     

(a) Forecasting period t , (t=τ+Δt; Eq.6a) 

As expected, forecasting errors for conductivities increased (Table 3), for both the 

permeate and retentate streams, as the amount data available for model training decreased 

with increasing forecasting period (Fig. 3).  The above trend is depicted in Fig. 6 for both 

the permeate and retentate conductivities. For the forecasting period of t =2-210 s, errors 

for predictions of the permeate and retentate streams were in the range of AAE=1.55-11.58 

µS (AARE 0.12-0.76%) and AAE=8.98-54.21 µS (AARE 0.07-0.38%), respectively 

(Table 3). Forecasting at very short times (e.g., 2st  ) is likely to be of limited value for 

plant control since differences in the transient data are very small over such short time 

intervals. However, predictions at longer forecasting periods (i.e., larger t ) of up to 210 s 

(Fig. 6, Table 3) were excellent with an AARE of 0.44% and 0.23% for the conductivity of 
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the permeate and retentate streams, respectively. The somewhat lower AARE for the 

retentate conductivity predictions can be attributed to the greater accuracy of the state-of-

the-plant models for predicting Cinitial and Cfinal  (Fig. 3) for the retentate (0.8% AARE) 

relative to the permeate (1.32% AARE) streams. However transient predictions for both 

streams were clearly of reasonable comparable accuracy.  
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Figure 5. Comparison of transient model predictions and experimental permeate 

conductivity measurements for forecasting period of 30 s (Note: t0 denotes the starting time 

for the change in operating conditions). Unsteady state operation was induced by the 

following changes in either applied pressure or feed flow rate: a) 10.2-9.6 bar, 0.27 m
3
/h, b) 

9.6-9.2 bar, 0.31 m
3
/h, c) 10.1-10.5 bar, 0.31 m

3
/h, d) 11.8-12.2, 0.40 m

3
/h, e) 12.0-11.6 

bar, 0.35 m
3
/h, f) 13.7-14.4 bar,  0.49 m

3
/h, g) 11.0-10.5 bar, 0.36 m

3
/h, h) 9.8-10.9 bar, 

0.35-0.41 m
3
/h, and i) 8.8-8.5 bar, 0.28 m

3
/h.  
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Figure 6.  Performance of the unsteady state model for forecasting of permeate and 

retentate conductivities as a function of the forecasting period (Δt) averaged for each 

forecasting period over the transient test traces for the range of operating conditions given 

in Table 1. 
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5. Conclusions 

The development of data-driven RO plant performance models was demonstrated using the 

support vector regression model building approach. Models of both steady state and 

unsteady state plant operation were developed based on a wide range of operational data 

obtained from a fully automated small spiral-wound RO pilot. Single output variable steady 

state plant models for flow rates and conductivities of the permeate and retentate streams 

were of high accuracy. Performance of a composite SVR based model (for both streams) 

for flow rates and conductivities was of comparable accuracy to the single output variable 

models. Predictions of stream conductivities for transient operation was achieved, making 

use of both predictions from state-of-the-plant model along with a performance time 

forecasting approach, with less than 1% AARE for forecasting periods in the range of 2-

210 s. This level of accuracy suggests that short-term performance forecasting, based on 

plant performance data, can be particularly useful for the development of advanced RO 

plant control and for process optimization. For example, plant controllers can utilize data-

driven models to aid for smoothing operational fluctuations, supplementing missing sensor 

data (e.g., due to sensor faults, short-term interruption in communication between sensors 

and data acquisition systems and/or controllers), and for fault tolerant control. Admittedly, 

data-driven models are plant specific and must be developed and applied for the desired 

applicability domain. In this regard, online model training can be implemented to improve 

model performance and its applicability domain as new plant data are acquired. 
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Nomenclature 

AAE average absolute error 

AARE average absolute relative error 

b bias vector 

Cf feed conductivity 

Cfinal conductivity at the final steady state 

Cinitial conductivity at the initial steady state 

Cp permeate conductivity 

Cr retentate conductivity 

C(τ) conductivity at t0+τ 

C(τ+Δt) predicted stream conductivity 

f(x) function obtained by SVR 

n number of experimental values 

Pf feed pressure 

Qf feed flow rate 

Qp permeate flow rate 

Qr retentate flow rate 

r
2
 correlation coefficient 

STDV standard deviation 

t0 time at the change in the operating conditions 

tf time at the new steady state 
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Vi average variable value for the given steady state 

w normal vector to hyperplane 

x vector of input RO parameters 

yi experimental value for a given variable 

yi
*
 predicted value for a given variable 

yi
(n)

 normalized value for a given variable 

Δt forecasting period 

ε tolerance of the SVR models 

γ regularization parameter 

ξ, ξ
*
 upper and lower slack variables 

σ width of the Gaussian 

τ elapsed time relative to t0 

Φ kernel function 
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8. Article 2. Fault detection and isolation in a spiral-wound reverse osmosis 

(RO) desalination plant 
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Abstract  

Sensor fault detection and isolation (SFDI) approaches, based on Support vector regression 

(SVR) plant sensor models and Self-organizing-map (SOM) analysis, were investigated for 

application to reverse osmosis (RO) desalination plant operation. SFDI-SVR and SFDI-

SOM were assessed using operational data from a small spiral-wound RO pilot plant and 

synthetic faulty data generated as perturbations relative to normal plant operational data. 

SFDI-SVR was achieved without false negative (FN) detections for sensor deviations 

10%
, and FN detections of at most 

5%
for sensor deviations 

4%
 at sensor fault 

detection (FD) thresholds of up to ~|4%|. False positive (FP) detections were nearly 

invariant with respect to sensor FD, being 
5%

for sensor deviations of 
5%

. 

Corrections of faulty sensor readings were within SVR model accuracy (AARE < 1%) for 

SFDI-SVR and 
5%

 for SFDI-SOM. Although SFDI-SOM has lower detection accuracy, 

it requires a single overall plant model (or SOM), while providing pictorial representation 

of plant operation and depiction of faulty operational trajectories. 
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1. Introduction 

Water desalination by reverse osmosis (RO) membrane technology has been increasingly 

deployed for potable water production from seawater and water reuse applications 

including municipal wastewater and agricultural drainage water.  Most RO plants are 

generally designed to operate at relatively steady-state conditions with traditional control 

strategies to attain the target permeate productivity and quality. Given the complexity of 

RO plants, plant process models, which consider specific plant characteristics and 

equipment, are needed to describe plant operation in order to optimize water production and 

design robust process control strategies [1-4].  

Plant process models require reliable sensor measurements as deviation of sensor readings 

(e.g., due to sensor failure or drift) can result in drift of plant operational variables beyond 

acceptable limits [5]. In this regard, fault tolerant control (FTC) [6] strategies need to be 

provided with effective fault detection and isolation (FDI) methods to identify faults in 

critical plant sensors or actuators that could degrade control system performance. FDI 

methods can be designed to detect system faults, and to identify their root cause by 

isolating system components whose operation lies outside the nominal range [7]. Indeed, 

model-based fault detection and isolation systems have been successfully applied in 

different fields, and have been integrated with systems of vehicle control, power, 

manufacturing, as well as in robotics and process control systems [6,8-13].  

In recent years, model-based FDI methods have been applied in RO water desalination 

[9,14-16]. For example, actuator FDI integrated with a fault-tolerant-control (FTC) strategy 

was reported for a single membrane unit RO desalination process without pre-treatment or 

post-treatment. The approach [15] relied on model-based feedback control laws making use 

of the fundamental RO transport equations and was successfully applied to operation with 

varying levels of feed salinity fluctuations. A supervisory switching law was derived to 

guarantee closed-loop stability by determining the activation time of fall-back control 

configurations in the presence of faults in the primary control configuration. The above 

approach was able to detect and isolate actuator faults in the system’s adjustable retentate 

and pump bypass valves, as well as to recover the desired system operational regime by 

switching to the appropriate control strategy (i.e., using redundant actuators different than 
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the actuators used in the primary control configuration).  The above approach was feasible 

due, in part, to the deployment of redundant controls that provided alternatives to 

compensate for faulty elements [17-18].  

Sensor fault detection and isolation (SFDI), also known as gross error detection or sensor 

validation
5
 is a specific case of the general fault diagnosis and handling problem. Once a 

faulty sensor is detected and isolated, data reconciliation or rectification is necessary in 

order to estimate the sensor true reading values for the faulty data trace. The above 

approach was demonstrated for RO desalination plants for detection of sensor along with 

other faults in the plant [14, 16] as the basis for model-based fault tolerant RO plant control 

[14]. Faults (e.g., faults in system hydraulics, pumps, sensors and actuators) were induced 

in a computerized model of the RO plant (treatment capacity of 500 L/h of feed with a 

conductivity value of 800 µS/cm producing 250 L/h permeate of 7 µS/cm conductivity). 

Fault tolerant control was demonstrated [14] for two different scenarios, the first involving 

reduction of the retentate valve speed and a second in which a constant negative offset was 

applied to the permeate flow rate sensor. It should be noted that in the latter case the 

permeate flow rate sensor was considered faulty when balance closure errors exceeded a 

specific tolerance. Such an approach can be beneficial when there is a priori knowledge 

(i.e., isolation) of the faulty sensor. However, in actual plant operation, detection and 

isolation are crucial since one needs to identify (via appropriate procedures) and confirm 

which sensors are providing normal or abnormal (including missing) readings.  

Statistical techniques such as Principal Component Analysis (PCA), based on the analysis 

of process history, are commonly used for fault detection and monitoring. For example, 

monitoring and fault detection was carried out applying a PCA-based scheme and an 

unfolded PCA (U-PCA) using an RO desalination plant simulation (~1.7 m
3
/h capacity 

with sand and cartridge filters for RO feed pretreatment) that operated with cyclical 

cleaning phases [16]. The approach was tested by simulating plant operation using an 

object-oriented and dynamic simulation tool (EcosimPro [19]). Three different U-PCA 

models were developed (for the two filters and for the RO membranes). A PCA model was 

first established using nominal data, where the square prediction error (Q) was used for all 

plant variables (including pressures, flow rates and concentrations) to monitor and detect 
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faulty data. Three types of faults (generated as 0%-60% deviation from the nominal sensor 

readings) were considered in the plant that included offset in the sand filter pressure sensor, 

as well as various types of membrane blockages and integrity losses. Faults detection was 

established on the basis of Q values exceeding a specific threshold, and whereby the 

Trimmed Score Regression method (TSR) [20] was used for correction of faulty data. The 

number of false positives observed with the U-PCA method relative to classical PCA was 

reduced from 11.6%, 12.9% and 10.5% to 10.2%, 11.3% and 4.0% for the sand filter, 

cartridge filter and membrane models, respectively. Faults were detected (i.e., 100% 

detection) without delay (i.e., instantaneous detection), since only abrupt faults were 

considered. It is important to note that abrupt faults are only a subset of the faults that can 

occur in the operation of RO plants. For example, instrument behavior may deviate 

gradually from its nominal operation (for example during fouling, scaling and sensor 

drifting). In such cases additional strategies that take into account historical plant 

operational data are essential to confirm fault identification. However, detection of the 

above would clearly involve a time delay due to the nature of such faults. 

The majority of previous studies have focused on FDI of equipment and actuators in RO 

plant operation. However, FDI of RO plant sensors is equally important in order to ensure 

optimal and safe plant operation. FDI of plant sensors requires accurate plant and sensor 

models which are typically unavailable or impractical to develop for RO plants/processes 

that involve complex processes (i.e., involving coupled fluid flow, mass transfer and energy 

transport) whose nature (and coupling) often cannot be predicted a priori (e.g., due to 

fouling and mineral scaling, and gradual deterioration of plant components including 

sensors). The above challenge can be overcome, for the purpose of FDI, using data-driven 

plant process models developed using machine learning (ML) techniques which have been 

shown to provide highly accurate description of RO plant operation [21-24]. The advantage 

of ML models of plant operation is that they can be used for plant process data validation 

and reconciliation and thus data correction and imputation to compensate for abnormal or 

missing (respectively) sensor readings [21, 25-26]. 

In the present work, two approaches for RO plant sensor fault detection and isolation (FDI), 

as well as sensor data imputation (SenDI) were assessed based on the application of self-
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organizing maps (SOM) and support-vector regression (SVR). The SVR and SOM machine 

learning methods to sensor FDI (termed here SFDI) are fundamentally different in their 

approach, the latter being a classification-based method that provides a visual portray of 

overall plant and sensor behavior, while the former is based on providing a quantitative 

data-driven model for relating output to input variables. The use of SOM for FDI has been 

proposed for various applications including, for example, vehicle cooling systems [27], 

aircraft engines [28], induction motors and electrical machines [29-30], power transformers 

[31-32] and anaesthesia systems [33]. Although SOM have been used to analyze the 

operation of RO systems [21-34], SOM analysis has not been previously proposed as the 

basis for FDI in RO plants. Accordingly, in the present work, FDI and SenDI approaches 

are developed, using the SOM and SVR machine-learning methods, and demonstrated 

based on operational data for a small laboratory spiral-wound RO pilot plant.  

 

2. Experimental procedure 

2.1 Feed solution and materials 

Aqueous salt feed solutions were prepared using analytical grade sodium chloride (Fisher 

Scientific, ACS grade, Pittsburgh, Pennsylvania) in deionized (DI) water.  The spiral-

wound RO membranes utilized in pilot RO system (Dow Filmtec XLE-2540, The Dow 

Chemical Company, Midland, Michigan) were 2.5 inch (0.0635 m) outer diameter, 40 inch 

(1.02 m) long elements with per element surface area of 2.6 m
2
. A single membrane 

element had a manufacturer reported permeate flow rate of 3.2 m
3
/day, and salt rejection of 

99%, determined at a pressure of 6.9 bar for a 500 mg/L NaCl feed solution.  

 

2.2 RO system 

Data for model development were generated using the UCLA spiral-wound Mini-Mobile-

Modular (M3) pilot RO desalination system shown schematically in Fig. 1  [3, 35-36]. The 

M3 system was designed for permeate water production capacity up to 1.2 m
3
/h (7,560 

gallons/day) for brackish water (5,000 mg/L TDS) operating at 75% recovery and up to 

0.64 m
3
/h (4,058 gallons/day) for seawater desalination (at recovery of 40%) using up to 18 
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spiral-wound elements in various configurations. In the present study, a configuration of six 

elements (one per pressure vessel) in series was utilized with the system operating in a total 

recycle mode with permeate and concentrate streams returned to the feed tank. Briefly, the 

M3 RO plant consisted of a 450 liters feed tank with two low-pressure feed pumps (Model 

JM3460-SRM, Sea Recovery, Carson, CA) pumping the RO feed through a series of 

cartridge microfilters (5 µm, 0.45 µm and 0.2 µm; 08P GIANT, pleated 177 polypropylene 

filter cartridges, Keystone Filter, Hatfield, PA). The RO plant was operated such that 

filtered feed was fed to the RO membranes via two-high pressure pumps (Danfoss Model 

CM 3559, 3HP, 3450RPM, Baldor Reliance Motor, Sea Recovery Corp. Carson, 

California) operating in parallel and controlled by variable frequency drives (VFDs) 

(Model FM50, TECO Fluxmaster, Round Rock, Texas). The retentate flow rate and 

pressure in the RO unit were set by a model-based controller [35] that adjusted both an 

electrically actuated needle valve (valve V-1) (model VA8V-7-0-10, ETI Systems, 

Carlsbad, California) on the retentate stream of the M3 RO system and the pump VFD. In 

order to maintain the RO feed temperature, a heat exchanger (Model BP 410-030 

Refrigerant heat exchanger, ITT Industries) was installed on the retentate side of the RO 

system. Permeate and retentate streams were monitored via in-line conductivity sensors, 

conductivity/resistivity sensor electronics (Signet 2839 to 2842 and Signet 2850, George 

Fischer Signet, Inc. El Monte, California) and pH sensor (DryLoc pH electrodes 2775, 

George Fischer Signet, Inc. El Monte, California). The M3 plant was equipped with a 

centralized data acquisition system that received all sensor outputs (0-5 V, 0-10 V, 4-20 

mA) and converted the signals to process variable values.  

 

Figure 1. Configuration of the Spiral-wound RO pilot plant.  
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2.3 Experimental procedure 

RO desalting experiments covered the range of operating conditions that were feasible by 

the operability limit of the system for the specific feed salinities. The experiments covered 

feed pressure and feed flow rate ranges of 7.9-24.8 bar (or 115-360 psi), and 0.26-0.68 m
3
/h 

(or 1-3 gpm), respectively. The RO plant control system was programmed to autonomously 

step through a range of feed flow rates and transmembrane pressures, whereby each 

experiment was carried out until the attainment of steady state. Feed flow rate and pressure 

were varied by the system controller which provided the necessary adjustments of the high-

pressure pumps VFD and actuated valve settings (Fig. 1). The data were logged into both 

the system embedded computer and a remote network database. Data could be logged at a 

frequency range as high as 1 kHz, although for the present study a frequency of a 1 Hz was 

deemed sufficient.  

 

3. Model development  

3.1 Data pre-processing 

A total number of 81 different operational states, over the entire operational domain of the 

M3 RO plant (Section 2.2), were generated by inducing pressure and flow rate step changes 

of up to 15% and 25% respectively, with operational parameters recorded at a frequency of 

1 Hz. The recorded raw data included natural plant fluctuations (i.e., due to operation of 

pumps and valves) as well as noise from normal operation of sensors, actuators and system 

pumps. Data were recorded from a total of eight different sensors (Table 1) and the average 

standard deviation (ASTD) for each measured sensor variable was determined from Eq. 1. 

1 ,

1
100

N
i

i i ave

STD
ASTD

N y

                                                                           (1) 

where STD is the standard deviation for the given variable within a steady state (for the set 

of operating conditions) trace i, yi,ave is the average variable value for the given trace, and N 

is the number of the experimental steady state traces. 
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Table 1. Range of steady-state plant operating parameters covered in the 

study. 

Sensor Number Variable Range Steady State STD
(a)

 

1 Feed Flow rate (m
3
/h) 0.26 - 0.68 1.21 % 

2 Feed Conductivity (µS) 9,842 - 10,766 0.49 % 

3 Feed Pressure (bar) 7.90 - 24.82 0.38 % 

4 Permeate Flow rate (m
3
/h) 0.06 - 0.28 0.94 % 

5 Permeate Conductivity (µS) 629 - 1,823 0.55 % 

6 Retentate Flow rate (m
3
/h) 0.11 - 0.56 1.28 % 

7 Retentate Conductivity (µS) 11,539 - 20,411 0.33 % 

8 Retentate Pressure (bar) 3.59 - 10.75 0.98 % 

(a)  The steady state STD represents the average percent standard deviation of the 

readings for a given sensor, at steady state operation, relative to its average steady state 

value, based on all the steady state traces.   

Data-driven models (i.e., SVR and SOM, see Sections 3.2 and 3.4, respectively) of the 

state-of-the-plant (i.e., steady state operation) were developed using steady-state data traces 

of 30 seconds, for the different steady state operational states, at 1 Hz sampling frequency. 

The steady-state period was established as that for which the measured process variables 

did not vary with time by more than 3% with respect to the time-averaged values. It is 

noted that the above short (30 s) traces at 1 Hz sampling frequency were sufficient for 

model development as longer operational data traces and higher sampling frequencies did 

not provide significant model improvements but did increased the computational burden. 

The SVR models were developed with the sensor data (Table 1) that were normalized (for 

each sensor) in the range of [0, 1] using min-max normalization:         

( ) min( )

max( ) min( )

n i
i

y y
y

y y




                                    

                                                                     (2) 

where
( )n
iy is the normalized value of the experimental data yi and min(y) and max(y) are the 

minimum and maximum variable values in the data set. Subsequently, for the purpose of 

SVR model building, the data were divided into two sets, one for model training and the 

other for model testing. The training data set was selected to cover the entire plant 

operational domain (i.e., applicability domain; [37]), by assuring that the maximum and 

minimum values of all variables were included in the training set. Data for model testing 

were selected randomly from the remaining data (i.e., not including the training set) but 

within the applicability domain to avoid extrapolation during predictions. In all cases, 

complete steady-state sequences were selected for the training and test sets.   
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Data for SOM generation were normalized to unit variance, in order to facilitate 

clustering of the different variables at the same scale (i.e., same mean and variance), such 

that: 

( )n i
i

y
y






                                                                                                                                      (3) 

where 
( )n
iy  is the normalized value of the experimental variable (yi) and µ and σ are the 

mean and standard deviation of the variable values in the data set. It is noted that, in 

contrast to SVR models which are based on supervised learning, SOM is a neural network 

method based on unsupervised learning [38] which utilizes the entire data set.  

In order to test the ability of both the SVR and SOM approaches to identify abnormal 

sensor behavior, anomalous sensor readings were generated by introducing perturbations 

relative to the real plant data (i.e., deviations). Synthetic faulty sensor behavior was 

generated by multiplying a trace of real plant sensor data by a perturbation vector of the 

same length as the sensor data trace, while the remaining sensor readings were kept at their 

real values (i.e., only one sensor was perturbed at a time). The generation of perturbed 

traces was repeated for each of the eight sensors, such that eight sets of faulty data (i.e., one 

for each of the eight sensors) were generated with each containing only one faulty sensor 

data. Sensor reading (SR) deviations that ranged from -50% to +50% relative to the real 

sensor readings in 10% intervals were then generated. SR deviations below ±4% were not 

assessed since the observed variability of sensor reading during steady state operation was 

up to about ±3%. Two different types of abnormal traces were generated: (a) a constant 

sensor drift (i.e., all values of the perturbation vector were the same for a specific 

deviation), (b) an initial progressive sensor drift that stabilizes at a specific SR deviation. 

For the second type of abnormal sensor behavior, the first one third of the sensor readings 

in the perturbation vector were set to either increase or decrease linearly until a preset 

percentage SR deviation (from the expected plant reading under normal plant operation) 

was attained, after which each successive sensor reading was taken to deviate by the same 

multiplier. It is important to recognize that within the framework of fault detection and 

isolation, when a given sensor reading is outside its nominal range of operation (i.e., above 

or below the range of operability as specified by the manufacturer) this sensor would be 

immediately identified as being faulty. However, sensor reading that are within the nominal 
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range could still be abnormal and thus one has to carry out a detailed fault detection and 

isolation as presented in the SVR and SOM approaches described in Sections 3.2 and 3.3, 

respectively.  

 

3.2 Support vector regression (SVR) models 

Steady-state models (Sections 3.3) were developed using the Support Vector Regression 

(SVR) algorithm [37, 39] using model training and test data sets (Section 3.1). Briefly, 

given a vector x of the RO process variables (e.g., feed pressure, feed flow rate, feed 

conductivity, retentate pressure, retentate flow rate, retentate conductivity, and permeate 

flow rate), the goal of SVR is to find a function f(x) that has at most ε deviation with 

respect to the actual values of the target RO process variable y (e.g., permeate conductivity) 

and at the same time is as flat as possible (Fig. 2). SVR can be formulated as a convex 

optimization problem where a set of coefficients w for the regression model are computed 

in such a way that the flatness and accuracy of f(x) are maximized. Since it is not always 

possible to keep the error within the margin ε for all the available data points, a pair of 

slack variables  and 
*
 must be introduced within the SVR formulation to cope with 

otherwise infeasible optimization constraints (Fig. 2). In most cases, the optimization 

problem can be solved more readily by projecting x (i.e., the vector of the input RO process 

variables) onto a higher-dimensional space where linear regression models can be 

developed for the target RO process variable of interest. The functions used to perform the 

above linear to non-linear mapping are known as kernel functions. Finally, the non-linear 

models that relate input and target variables are obtained by mapping the data back to the 

original (i.e., non-linear) space of the RO process variables. Only a subset of the training 

data points, representing the overall data behavior (i.e. support vectors), were used in the 

SVR formulation to generate the regression model (Fig. 2). 
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Figure 2. Support vector regression structural parameters. Regression function f 

supported on the most representative vectors of information (support vectors), w the 

normal vector to the hyperplane generated, the kernel function Φ, the vector of biases 

b, slack variables ξ and radius of the insensitive tube ε. 

In the current work, the Radial Basis Function (RBF) was selected as the kernel function 

since it is suitable for systems of highly non-linear behavior  [37]. The key parameter 

characterizing this kernel is the width of the Gaussian, σg; it determines the area of 

influence of the support vectors over the data space and here its optimal value was 

determined via a grid search. The SVR based models were developed in MATLAB using 

the LS-SVMlab1.7 package [40-41]. This SVR implementation utilizes a regularization 

parameter γ, which controls the tradeoff between the flatness (or smoothness) of the models 

and their accuracy, and the optimal parameter value was also determined via a grid search. 

The optimal values of γ and σg obtained via grid optimization for each model are 

summarized in Table 2. 

 

3.3 Spiral-wound RO plant sensor fault detection and isolation (SFDI) scheme based on 

support vector regression (SVR) models 

3.3.1 State-of-the-plant SVR models 

The SFDI-SVR approach for detection of abnormal sensor behavior (Fig. 3) was based on 

assessing the deviation (i.e., quantified as residuals) between actual sensor readings and 

those expected for normal plant response as predicted from the SVR plant models. The use 

of SVR RO plant model was chosen given their previously demosntrated accurate 

performance for describing spiral-wound RO plant operation
21

. In the SFDI-SVR approach, 

ε 

      Support Vector 

   ξi 

ξi
*
 

( )f w x b  

UNIVERSITAT ROVIRA I VIRGILI 
MODELING, MONITORING AND CONTROL OF REVERSE OSMOSIS DESALINATION PLANTS USING DATA-BASED TECHNIQUES 
Xavier Pascual Caro 
Dipòsit Legal: T 961-2014 
 



75 

 

an individual state-of-the-plant (STP) SVR model was first developed for 7 of the plant 

process sensors excluding the feed conductivity (condfeed) (Table 1).  Although the total 

number of sensors in the plant is 8, the feed conductivity was considered as a variable 

independent of all other process variables which was not subject to process fluctuations. 

Feed conductivity sensor readings, however, were included as inputs to develop the SVR 

models for the remaining 7 sensors. Accordingly, SVR models were developed for each of 

the seven sensors (excluding the feed conductivity sensor), 

 * ; 1,..., 1; ;s jy f y j m j s   
                                                                                              

(4) 

where  is the predicted reading for sensor s, j designates the specific plant sensor, and m 

designates the seven sensors (i.e., total number of sensors excluding the feed conductivity 

sensor). For example, the SVR model for the permeate conductivity sensor (sensor 5 in 

Table 1) was based on input data from the remaining sensors listed in Table 1 (i.e., 1-4 and 

6-8, where ). For SVR model development, the steady state data traces (for the range 

of operating conditions listed in Table 1) were divided into training (62% of the dataset, 50 

traces) and test (38% of the overall dataset, 31 traces) sets.  

 

*

sy

j s
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Figure 3. Support vector regression model-based algorithm for detection and isolation of abnormal sensor 

operation. The parameters m, PARD, TPARD and T refer to the number of plant sensors (not including the 

feed conductivity sensor), the percent absolute relative difference, total percent absolute relative difference 

between sensor reading and expected values and sensor threshold, respectively. PARD
s
j contains the PARD of 

all sensors except for the FC sensor under consideration (i.e., j≠s) and the feed conductivity sensor (condfeed). 

Sensor s is identified as FC sensor when each PARD
s
j of the remaining sensors is below its corresponding 

threshold Tj. If only one FC sensor is identified then it is directly flagged as being faulty. Note: If FC sensors 

are not encountered, this could suggest that more than one sensor may be faulty. If more than a single FC 

sensor is suspected, then the FC sensor with predictions closer to the experimental values (minimum TPARD) 

is selected as faulty. 
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Performance of the different SVR sensor models (with the optimal γ and σg values listed in 

Table 2) was quantified using the  linear r
2
 correlation coefficient (i.e., between the 

predicted, yi
*
, and experimental, yi, variable values), and the average absolute (AAE) and 

percent average absolute relative (AARE) errors given as: 

*
, ,

1

1 n

s i s i s

i

AAE y y
n 

                                                                                                          (5) 

*
, ,

1 ,

1
100

n
i s i s

s

i i s

y y
AARE

n y


                                                                                                        (6) 

where n is the total number of data points for the dataset (training or test) and s is the sensor 

under consideration.  

 

3.3.2 Fault detection and isolation with SFDI-SVR 

It is important to note that fault detection and isolation for the conductivity sensor (condfeed) 

sensor was based on the maximum deviation of sensor reading, from its expected value for 

the specific feed solution, over the course of each experiment. Therefore, feed conductivity 

sensor readings were assessed as the first step in the process of fault detection and isolation 

(Fig. 3). A fault in the condfeed sensor was inferred when its value differed more than 3.5% 

from the expected initially determined (preset). Once condfeed was confirmed to be correct, 

the fault detection and isolation strategy for the remaining sensors was carried out. 

Otherwise when the conductivity sensor (condfeed) was found to be faulty, it was corrected 

given knowledge of the preset feed conductivity (Section 3.3.3) and the remaining sensors 

were checked for additional faults. Sensor fault detection and isolation (i.e., SFDI) strategy 

for the remaining seven sensors followed the basic structure of the so-called observer-based 

techniques
7
. Accordingly, the expected readings from each of the sensors are predicted by 

their respective SVR model and compared to their actual (experimental) readings as 

quantified by the percent absolute relative difference (PARD), 

*

100
j j

j

j

y y
PARD

y


                                                                                                         (7) 

where yj
* 

and yj are the predicted and experimental values of the sensor under consideration 

j. Sensor behavior is considered normal when PARDj is below a prescribed PARDj 
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threshold, Tj, and is otherwise considered abnormal. In this study the sensor thresholds 

represent the maximum absolute sensor deviation, with respect to normal plant operation, 

which is deemed as acceptable (or allowable). Since the identity of the faulty sensor is not 

known a priori, each of the m plant sensors (i.e., total number of sensors excluding the feed 

conductivity sensor) are checked sequentially assuming that each one (in turn) could be a 

faulty sensor. Accordingly, in a sequential order, the expected reading, ys
*
, is predicted for 

each given sensor (s) of the plant’s m-1 sensors using the sensor’s SVR model. It is noted 

that the SVR model for a given sensor s is developed based on the operational 

(experimental) readings of the other m-1 sensors plus the feed conductivity sensor which 

are used as the SVR model input for the given sensor. For each sensor s, the PARD
s
j for 

each of the remaining m-1 sensors is then calculated and if the PARD
s
j of all these m-1 

sensors are below the threshold Tj, then sensor s is flagged as faulty candidate (FC) sensor. 

The above isolation sequence is repeated for all the sensors. It is stressed, however, that 

SFDI becomes challenging when sensor deviations are small. Specifically, when sensor 

deviations are close to the PARD threshold, multiple faulty sensor candidates could be 

erroneously flagged as being potentially faulty. Also, if multiple sensors are corrected this 

could lead to erroneously identifying the remainder of the sensors as normal (i.e., 

accomplishing PARD
s
j < Tj , and thus identifying only one fault). In order to avoid the 

above dilemma, for each FC sensor the total percent absolute relative difference (TPARD) 

(Eq. 8) is evaluated as the sum of the PARD of the remaining sensors (i.e., the PARD for 

the FC sensor is not included in TPARD since its measured value is flagged as being 

potentially faulty). Note that the FC sensor reading needs to be predicted in order to use its 

value to predict the remaining m-1 sensors by using the SVR model (Eq. 4),  

1

m

FC j

j
j FC

TPARD PARD



                                                                           (8) 

where j designates the specific sensor (i.e., sensor number), m designates the seven plant 

sensors being assessed (i.e., total number of sensors excluding the conductivity sensor) and 

FC designate the sensor being assessed. The FC sensor of the minimum TPARD is 

identified as providing abnormal readings (i.e., faulty), while the remaining sensors are 

considered to be operating normally. The use of TPARD as the criterion for identifying the 

faulty sensor provides a relative measure of comparison of the deviation of predicted 
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compared to experimental sensor readings. Accordingly, the FC sensor with the smaller 

TPARD is more likely to be faulty (or providing abnormal readings).  

 

3.3.3 Fault confirmation with SFDI-SVR  

In order to confirm the presence of abnormal sensor readings, sensor faults are checked 

over the entire diagnostic period (Fig. 3). Abnormal measurements over a minimum 

number are needed before flagging a sensor as a fault candidate. This is required in order to 

avoid errant fault detection due to sensor measurement spikes or fluctuations which often 

occur in plant operation. In the present RO plant test case, a minimum of one third of the 

total trace measurements was set as being required in order to confirm a sensor as being 

flagged as faulty. Subsequently, the ―faulty‖ sensor readings were reconstructed based on 

predictions from the sensor SVR model for the sensor using as input the readings from the 

other (m-1) sensors plus the feed conductivity sensor. When the feed conductivity sensor 

was identified as a potentially faulty sensor, the sensor reading was then replaced by the 

known present feed conductivity. 

Although there is generally low likelihood of the simultaneous occurrence of multiple 

faulty sensors, the present approach can be extended to such cases. However, fault isolation 

would then require SVR sensor models based on, in addition to the feed conductivity sensor 

(condfeed), m-p sensor readings for each modeled sensor, where p is the number of potential 

faulty sensors to be identified. Such an approach may be feasible provided that the number 

of faulty sensors is significantly less than the total number of sensors [6]. Notwithstanding, 

the present approach of dealing with incidences of a single faulty sensor occurrence should 

be of great practical applicability, particularly since it can also provide a warning regarding 

the potential occurrence of multiple faulty sensors. 

3.4  Spiral-wound RO plant sensor fault detection and isolation (SFDI) scheme based on 

Self-Organizing Maps (SOM) analysis 

3.4.1 SOM and RO Operational Domain  

The Self-Organizing Map (SOM) clustering algorithm is used as an alternative approach for 

developing SFDI schemes (Fig. 5). The main advantage of SOM is that it can be used to 

characterize RO plant operational states in a manner that does not require individual model 
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for each plant sensor (Section 3.3). SOM also enables projection and visualization of 

multidimensional RO plant data into a 2D lattice (map) of SOM units arranged in a 

hexagonal geometry (i.e., each SOM unit has 6 neighboring units) [38, 42]. Each of the 

input data vector dimensions (i.e., 8 plant sensors of the present plant) is represented by a 

component plane (Fig. 4). The aggregation of all the component planes constitutes the 

complete SOM whose centroids contain information regarding all the data vector 

components (i.e., dimensions). In this approach, the identification of specific plant 

operation regimes is based on similarity calculations (i.e., Euclidean distance) between 

vectors formed by process variables (i.e., sensor readings) and real vectors that are 

represented by the centroid in each SOM unit. The SOM unit which is most similar to a 

given plant operational data vector is known as the ―best matching unit‖ or bmu. In the 

current application, the vector , , , , , , ,f f f p p r r rQ C P Q C Q C P   y represents each state of 

operation of the RO plant. Similarly, the centroid of a given unit i is a real vector 

 1 2, ,..., m
m   

T

iCE where m is the dimension of the input data (i.e., m represents 

the number of plant sensors; 8 for the present plant). During SOM development unit 

centroids are iteratively adapted to preserve, over the SOM projection, the topological 

relationships (i.e., ordering and distances) of the original high-dimensional RO plant 

operational space. As a consequence, similar SOM units are located close to each other 

resulting in clusters of similar operational states. In the current study, the SOM was 

developed using the MATLAB SOM Toolbox package [42].  

A SOM for the domain of normal plant operation is first developed based on fault-free data 

(Fig. 4). Accordingly, the constructed SOM consists of SOM units encoding information 

from the various plant variables over the complete range of feasible operating conditions. 

Thus, the data vectors are classified using the SOM developed from fault-free plant data. 

The distance (i.e., similarity) of a given data vector relative to the centroid of its bmu (in the 

SOM built using the fault-free data) provides an indication of the consistency and reliability 

of the sensor reading relative to fault-free operational data. In other words, correct sensor 

readings are expected to be similar to readings obtained from fault-free plant data for the 

same operational state.  
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Figure 4. Each of the component planes (generated from its corresponding RO plant sensor 

data) are presented by a slice from the SOM. For the sake of clarity, the feed flow rate and 

conductivity, retentate pressure and retentate conductivity component planes are shown. 

Note that the overlaying SOM units contain information regarding a given plant operational 

state (e.g., SOM units along the solid line ended with circles, through the component 

planes, are for a similar plant operational domain). 

3.4.2 Fault detection with SOM 

In order to detect a sensor with faulty readings, an appropriate fault detection threshold was 

defined. As first step in the process, for each unit in the SOM, it is necessary to identify the 

data vector furthest away from the centroid (i.e., representing the average of all normal 

operational data vectors of the SOM unit) in terms of the Euclidean distance. The threshold 

was then defined as the absolute differences between the data vector components (i.e., 
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readings of each sensor) and those of the centroid vector components, thereby yielding a 

vector containing a fault detection SOM (FDS) threshold (Ts) for each of the sensors. The 

FDS served to delimit the operational regime boundary captured by that SOM unit. It can 

be assumed that data vectors located beyond the FDS threshold have a significant deviation 

relative to the normal operation regime captured by the unit. Based on this criterion, the 

absolute difference (AD) vector between the components of a RO plant data vector y and 

the components of the centroid CE
bmu(y)

 of its corresponding SOM bmu is first calculated, 

( )y bmu y
s s sAD CE y                                                                                                            (9) 

where ys is the reading of sensor s and CEs
bmu(y)

 is the corresponding component of the bmu 

centroid. The data vector y is flagged as being faulty when any of its ( )y bmu y
s sAD T , where 

Ts
 bmu(y)

 is the FDS threshold corresponding to sensor s for the given SOM bmu. Likewise, 

the data vector y is considered as not faulty when the ADs
y
 values for all the eight plant 

sensors are smaller than their respective FDS thresholds (Ts
bmu(y)

).  

 

3.4.3 Fault isolation with SOM 

Similar to the SVR-SFDI approach, in the SOM approach to fault isolation (i.e., identifying 

the faulty sensor once faulty data vector was identified) the feed conductivity sensor 

requires special attention since feed salinity is typically fixed by the feed source 

composition. Moreover, in the present work feed salinity (or conductivity) was fixed over 

the course of each experiment. Therefore, in the present approach, readings of the feed 

conductivity sensor were first checked to evaluate if those were faulty. A new data vector 

of m components was created excluding the feed conductivity sensor, and it was classified 

inside the SOM to find its bmu and calculate its AD vector. A fault in the feed conductivity 

sensor was identified when all the AD component values were below their corresponding 

FDS threshold (Ts
bmu(y)

). Otherwise, the feed conductivity sensor was considered fault-free. 

In the process of fault isolation a new set of m reduced data vectors (y(m-1) where m is the 

number of plant sensors (excluding the feed conductivity sensor), each containing 

information from only m-1 sensors (i.e., one sensor at a time is discarded in each of the new 

reduced data vectors along with the feed conductivity sensor), are generated from the 

original data vector. Therefore, with eight sensors in the present plant, 7 new reduced data 

vectors are created each containing 6 components. The bmus corresponding to these new 
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reduced data vectors are then identified, together with their corresponding AD vectors (Eq. 

9). The fault isolation algorithm (Fig. 5) considers the following three different fault 

scenarios: 

(a)   Only one of the seven reduced data vectors has all of its six AD vector components 

below their corresponding FDS thresholds. In this case, the faulty sensor can be 

isolated and identified as the missing component in the above reduced data vector. 

The remaining reduced data vectors contain information from the faulty sensor and 

have at least one of their AD components above the FDS threshold;  

(b)   The case where none of the seven reduced data vectors have all their AD 

components values below their FDS thresholds. In the above situation, the set of 

SOM units most similar to the bmu (i.e., units located in the vicinity of the bmu) are 

also checked to ensure that there are no other neighboring SOM units (i.e., 

corresponding to similar operational states) with AD components below the FDS 

thresholds. In the present work, for all reduced data vectors, the maximum number 

of consecutive bmus that must be checked, to ensure that there are no other 

proximal units that may also have AD components below the FDS threshold, was 

set to nine (i.e., the six SOM units adjacent to the hexagonal bmu plus three 

additional SOM units with the shortest proximal distance from the bmu). The above 

conservative heuristic strategy (to reduce computational time) was employed in 

order to check if there are proximal SOM units next to the bmu that also satisfy the 

FDS threshold). When the first bmu that satisfies the FDS threshold (i.e., with AD 

values below the FDS threshold) is found, the confirmation and correction of the 

faulty sensor is then carried out as described in Section 3.4.4. However, when none 

of the first nine bmus satisfy the FDS threshold, fault isolation cannot be carried out 

since none of the reduced data vectors correspond to a normal plant operational 

state, which is an indication that there are likely to be two or more faulty sensors. 

Similar to the SFDI-SVR approach (Section 3.3), a new set of reduced data vectors, 

containing information for only m-k sensors, needs to be used in order to isolate k 

faulty sensors; and  

(c)   The situation in which there is more than a single reduced data vector that has all 

its AD components below the FDS threshold, suggesting two or more faulty 
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candidate (FC) sensors. For each FC sensor the total absolute difference TAD
FC

 

(Eq. 10) is computed as the sum of AD components excluding the FC sensor.  

              
1

m
FC y

s

s
s FC

TAD AD



                                                                                                            (10) 

In the above scenario, the reduced data vector (i.e., in which the FC sensor has been 

removed) with the lowest TAD
FC

 is identified as the data vector more likely to be 

fault-free, and therefore its discarded sensor component FC is inferred as faulty. 
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Figure 5. Detection and isolation algorithm for abnormal sensor operation based on self-Organizing Maps. 

The parameters m, AD, TAD and T refer to number of plant sensors (not including the feed conductivity 

sensor), absolute difference, total absolute difference and sensor FDS threshold, respectively. Note: The AD
y
s 

contains the AD of all sensors except the FC sensor under consideration (i.e., s≠z) or except for the feed 

conductivity sensor (condfeed) (i.e., s≠ condfeed). A sensor s is identified as FC sensor when each AD
y
s of the 

remaining sensors is below its corresponding FDS threshold Tj. If only one FC sensor is identified then it is 

directly flagged as being faulty. Note: If FC sensors are not encountered, this could suggest that more than 

one sensor may be faulty. If more than a single FC sensor is suspected, then the FC sensor with predictions 

closer to the experimental values (minimum TAD) is selected as faulty.  
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3.4.4 Fault confirmation and correction.  

Similar to the SFDI-SVR (Section 3.3), in the SFDI-SOM one also needs to ensure that the 

analysis is not biased by typical plant fluctuations that may be interpreted as produced by 

faulty sensor readings. Therefore, a minimum percentage of the diagnostic trace period is 

required to confirm abnormal sensor behavior and thus the approach was evaluated up to 

one third of the racer period (at 1 kHz data acquisition frequency; Section 3.1). Once a 

sensor fault is confirmed, the faulty sensor reading is corrected by replacing it with the 

corresponding component value in its bmu centroid. 

 

4.   Results and discussion 

4.1. Performance of SFDI-SVR 

State-of-the-plant (STP) models (Section 3.3) were first developed in order to provide 

predictions for each one of the sensors of the plant. Performances of STP models applied to 

the test data set are provided in Table 2. Models predicted feed, retentate and permeate 

flow rates with average absolute relative errors (AARE) of 2.3·10
-2

%, 3.2·10
-2

% and 

2.3·10
-2

% respectively. Similarly, feed, retentate and permeate conductivities were 

predicted with AARE levels of 0.33%, 0.32 % and 0.70%. Feed and retentate pressures 

were predicted with AARE levels 0.65% and 0.82% respectively. The greater accuracy of 

the flow rate compared to the pressure and conductivity sensor models. It is noted that the 

linear correlation coefficient (r
2
) (for the predicted versus measured values) was in all cases 

≥ 0.994. As discussed in Section 3.3.1, a model for the feed conductivity sensor was not 

implemented since the feed conductivity is an independent variable not affected by the 

remainder of the process variables. In fact, SVR model for this sensor (in terms of the 
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readings from the other seven sensors) yielded a model with a correlation coefficient of 

only 0.76. This was not surprising since the average deviation of the feed sensor relative to 

the steady state average was only about 0.49% while the stated manufacturer sensor 

performance was rated within an error of ±2%.  

Table 2. Performance of SVR based models for predicting sensor values of 

RO plant operating at steady state conditions 
(a)

. 

Predicted Variable γ σg AAE AARE (%) r
2
 

Feed flow rate (m
3
/h) 10,000 20 1.1·10

-4
 2.3·10

-2
 1 

Feed pressure (bar) 200 20 9.4·10
-2

 0.65 0.994 

Retentate conductivity (μS) 1,000 20 42.50 0.32 0.997 

Retentate flow rate (m
3
/h) 10,000 20 1.2·10

-4
 3.2·10

-2
 1 

Retentate pressure (bar) 8,400 9 5.0·10
-2

 0.82 0.997 

Permeate conductivity (μS) 200 20 8.23 0.70 0.999 

Permeate flow rate (m
3
/h) 10,000 14 9.7·10

-5
 3.2·10

-3
 1 

(a)  γ - regularization parameter; σ - width of the Gaussian; AAE and 

AARE are the average absolute and average absolute relative errors, 

respectively, and r
2
 is the linear correlation coefficient.  

The SFDI-SVR approach was evaluated for different sensor thresholds (Table 3). Steady 

state operation was considered established (Section 3.1) when the measured process 

variables did not vary with time by more than 3% with respect to the time-averaged values. 

Accordingly, the effect of the global sensor threshold was evaluated for sensor deviations 

over a range of 3.5% - 5% (i.e., slightly above the steady-state deviation of normal plant 

operation). Additionally, the SFDI-SVR approach was assessed with individual sensor 

thresholds for each sensor; these were based on each sensor’s maximum deviation observed 

(relative to the average) during steady-state plant operation. Sensor thresholds for the 

retentate and permeate conductivity and feed pressure were set at 2%, feed flow rate at 

2.5% and 3.5% for the retentate and permeate flow rate, retentate pressure and feed 

conductivity sensors (Section 3.3.2). Using the above, performance of the SFDI-SVR 
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approach for sensor deviations (i.e., faults) between ±4% to ±50% and for sensor thresholds 

from 3.5% to 5%, as well as for individual sensor thresholds is shown in detail in Table 3.  

Table 3. Performance of the SFDI-SVR for induced sensor deviations in the range of ±4% 

to ±50% and for both global and individual sensor thresholds 
(a)

. 

 

Individual 

Threshold 
Global Sensor Threshold 

3.5% 4% 4.5% 5% 

Dev. 

(%) 

FN 

(%) 

FP 

(%) 

FN 

(%) 

FP 

(%) 

FN 

(%) 

FP 

(%) 

FN 

(%) 

FP 

(%) 

FN 

(%) 

FP 

(%) 

-50 0 0 0 0 0 0 0 0 0 0 

-40 0 0 0 0 0 0 0 0 0 0 

-30 0 0 0 0 0 0 0 0 0 0 

-20 0 0 0 0 0 0 0 0 0 0 

-10 0 0 0 0.40 0 0.40 0 0.40 0 0.40 

-9 0 0.81 0 0.81 0 0.81 0 0.81 0 0.81 

-8 0 0.81 0 0.81 0 0.81 0 0.81 0 0.81 

-7 0 1.61 0 2.02 0 2.02 0 1.61 0 1.61 

-6 0.4 2.42 0.4 3.23 0.4 3.63 0.4 3.63 0.4 3.23 

-5 0.4 3.63 0.81 5.24 1.21 6.05 2.02 5.65 6.45 4.84 

-4 1.61 7.26 4.03 6.85 8.47 7.26 34.27 5.65 48.39 5.24 

+4 5.24 6.85 8.06 6.85 31.85 6.45 45.16 6.05 52.82 6.05 

+5 2.42 4.44 2.82 4.84 5.24 4.84 8.06 4.84 34.27 4.84 

+6 0.81 3.23 1.21 4.03 1.61 3.63 2.02 3.23 4.44 3.23 

+7 0.4 2.42 0.4 2.42 0.81 2.42 0.81 2.42 1.21 2.02 

+8 0.4 2.02 0.4 2.02 0.4 2.02 0.4 2.02 1.21 2.02 

+9 0.4 0.81 0.4 0.40 0.4 0.81 0.4 0.81 0.4 0.81 

+10 0 0.81 0 0.81 0 0.81 0 0.81 0.4 0.81 

+20 0 0 0 0 0 0 0 0 0 0 

+30 0 0 0 0 0 0 0 0 0 0 

+40 0 0 0 0 0 0 0 0 0 0 

+50 0 0 0 0 0 0 0 0 0 0 

(a)  FN and FP designate the percentages of false negatives and false positive of the 

total number of existent. 

SFID-SVR performance (Table 3) was assessed in terms of false negative (FN) and false 

positive (FP) detections that to faulty sensor readings not identified as being faulty or fault-

free sensor readings incorrectly identified as faulty. For both global and individual sensor 

fault detection thresholds, FN detections were zero (i.e., 100% detection of all faulty 

readings) for the above range of sensor thresholds (3.5%-5%) for up to sensor deviations of 
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±10%. FP detections occurred for -10% Sensordeviation 10%  , with FP detection of 

0.81% and 0.4% for sensor deviations of +10% and -10%, respectively, when using the 

global sensor thresholds. There were no FP detections for the above range of sensor 

deviations when using the individual sensor thresholds. When the SFDI-SVR algorithm 

(Fig. 3) was challenged with lower sensor deviations (i.e., ±4% to ±9%), the percentage of 

FPs and FNs increased as shown in Fig. 6. As expected, FN deviations increased with 

decreasing sensor deviations and increasing global sensor thresholds. On the other hand, FP 

detections remained essentially invariant with respect to global sensor thresholds but 

increased with decreasing sensor deviations. Overall, individual sensor thresholds 

demonstrated lower FN detections relative to the use of global sensor thresholds, while FP 

detections were similar for the two types of sensor thresholds.  
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Figure 6. Total false positive and false negative detections for the plant eight sensors over 

the range of sensor deviations of ±4% to ±50%. The results are shown for both global and 

individual (first data points as specified in the sensor Threshold% axis) sensor thresholds. 
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In deploying the SFID-SVR it is desirable to minimize the number of FN detections from 

the viewpoint of plant safety and maintenance of process and equipment integrity. On the 

other hand, the occurrence of FP detections in a plant would trigger false alarms; these, 

however, can be minimized through a secondary process of using traditional decision tree 

analysis. It is noted that in the current study FP detections were encountered only for small 

sensor deviations. Clearly, small sensor deviations that are identified as either FP or FN 

detections are of lesser concern relative to those associated with large sensor deviations 

since the former are less likely to have significant impact on plant operation. As is evident 

from Figure 6, the number of FN detections increases (from 0.028%-0.23%) for higher 

sensor thresholds, while the number of FP detections decreases marginally (from 0.062%-

0.056%) over the range of global sensor thresholds of 3.5% - 5%. Overall, it can be 

concluded that for the present RO pilot system, a greater allowance of sensor readings 

fluctuations, over a steady state operational period, can result in a higher rate of FN 

detections, whilst the number of FP detections is only slightly impacted. Therefore, the 

above observation suggests that individual sensor thresholds may be preferred when sensor 

performance accuracy data are available, while in the absence of the above global sensor 

thresholds can be utilized.   
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Table 4. Minimum sensor deviation that enabled first fault detection
(a)

 

 
Av. Det. Limit

(a)
  (%) 

Accuracy of Sensor SVR Model,  

AARE
(b)

 (%) 

Feed flow rate 3.45 0.02 

Retentate flow rate 3.66 0.03 

Permeate flow rate 5.56 0.09 

Retentate Conductivity 3.73 0.32 

Permeate Conductivity 3.73 0.70 

Feed pressure 5.45 0.65 

Retentate pressure 5.56 0.82 

(a)  Based on individual sensor thresholds; (b) Av. Det. Limit- minimum sensor 

deviations at which fault detection can be made (based on 372 data traces of sensor 

drift tests; Section 3.1); (b) AARE – average absolute relative error.  

 

The SFDI-SVR method was also tested with increasing and decreasing sensor drifts 

(Section 3.1) in order to determine the minimum sensor deviations at which fault detection 

can be made (i.e., detection limit) with the detection performance summarized in Table 4. 

Accordingly, fault detection was evaluated for each one of the m plant sensors (not 

including the conductivity sensor). The minimum deviation (MD) for a given sensor that 

enabled fault detection, during a sensor drift (as described in Section 3.1), are provided 

Table 4 representing the average (for each sensor) for 372 data traces of sensor drifts (i.e., 

for periods of faulty sensor operation). In order to check for consistency in the minimum 

sensor deviation at which fault detection can be made, this detection limit was compared 

for sensors measuring the same variable type. As shown in Table 4, the fault detection 

limits for the feed and retentate flow rates were similar  (3.45% and 3.66% respectively), 

but higher (5.56%) for the permeate flow rate. The fault detection limits for the feed and 

retentate pressures were also similar (5.45% and 5.56%, respectively), and essentially 

identical for the retentate and permeate conductivity meters. As expected, the order of the 

fault detection limits correlated with the accuracy of the sensor SVR models (Table 2), 
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whereby, for similar type sensor measurements, SVR model of higher accuracy enabled 

lower fault detection limit.  

Once a faulty sensor was identified, faulty data were corrected using the state-of-the-plant 

sensor SVR models (Section 3.3.1). Thus, data correction was within the same accuracy as 

that of the sensor SVR models (Table 2). As an illustration, the feed pressure sensor 

corrections, for two selected abnormal traces of sensor drifts (induced by increasing 

perturbations of up to ±5% relative to normal sensor operation) are shown in Fig. 7. It is 

important to recognize that sensor drifts can be mistaken for natural fluctuations of sensor 

readings when sensor deviations are small. However, the SFDI-SVR approach enabled 

detection of small sensor deviations (3.45%-5.56%) with a reasonable accuracy (Tables 2 

and Table 5). 
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Figure 7. Corrections of feed pressure sensor for sensor readings with sensor drifts up to 

±5% relative to expected normal operation values and using the individual sensor 

thresholds. 
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4.2. Performance of SFDI-SOM  

In the first step of the SFDI-SOM approach, the fault-free RO plant data were utilized to 

construct a SOM that characterizes the normal plant operational states. This resulted in a 

240 unit (20 rows and 12 columns) SOM with quantization and topographic errors of 0.397 

and 0.214 respectively [42] for which a hexagonal grid was selected for the 2-D map 

representation.  Although the shape of the complete SOM is toroidal, in the current work, 

for the sake of clarity, the SOM is presented as a series of 2-D component plane maps (Figs 

4 and 8). In order to confirm detection of abnormal sensor behavior (Section 3.4), a 

minimum percentage of faulty readings (MPFR), of the total sensor readings in a prescribed 

period, was required to be identified as faulty. Accordingly, the performance of the SFDI-

SOM method was evaluated, for MPFR (of the total data trace, Section 3.1) in the range of 

13%-33% and sensor deviations (from normal operation) in the range of ±10% to ± 50% 

(Table 5). In contrast to the SFDI-SVR approach, SFDI-SOM had a lower level of 

detection provision, whereby deviations below ±10% resulted in a significant number of 

FN detections; thus, the SFDI-SOM approach was only evaluated for sensor deviations of 

±10% or above. While the above is a limitation, the SFDI-SOM approach has other 

advantages as discussed later in this section. 
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Table 5. Performance of SOM-based abnormal behavior detection and isolation tool for 

induced deviations from -50% to +50%. Percentage false negatives (FN) and false 

positives (FP) for the different points required to confirm faults. 

 Percent of Faulty Sensor Data  Required for Fault Confirmation 

 13%(a) 20%(a) 33%(a) 

Deviation 

(%) 
FN (%) FP (%) FN (%) FP (%) FN (%) FP (%) 

+50 0 0 0 0 0 0 

+40 0 0 0 0 0 0 

+30 0.62 0.15 0.62 0 0.93 0 

+20 1.7 0.31 1.7 0.15 1.85 0 

+10 6.64 1.54 7.41 0.15 8.02 0 

-10 3.24 4.17 3.55 1.54 4.17 0 

-20 0.46 1.85 0.46 0 0.46 0 

-30 0.15 1.85 0.15 0 0.15 0 

-40 0 0.46 0 0 0 0 

-50 0 0.46 0 0 0 0 

(a) Percent of faulty data readings of the total data trace required for fault 

confirmation.    

The number of undetected sensor faults (i.e., FN readings) was greater with increasing 

requirement of higher percentage of faulty data (of the total trace data) for fault 

confirmation, whilst the number of false positive (FP) detections decreased. For example, 

for sensor deviations of +20%, FN detections increased from 1.7% to 1.85% as the 

percentage of trace readings declared as faulty increased from 13% to 33%, while FP 

detections decreased from 0.31% to none for the same range. As expected, the number of 

FN and FP detections increased with smaller sensor deviations (from normal behavior), as 

it was more challenging for SFDI-SOM to identify such faults. For example, for sensor 

deviations of +10%, the percent FN and FP detections were as high as 6.64% and 1.54%, 

respectively (Table 5), based on the MPFR requirement of at least 13% for fault 

confirmation. As is evident from Table 5, one can tune the acceptance criterion of 

percentage of false negative relative to false positive detections by tuning the MPFR 

requirement for fault confirmation. Here we note again (as in Section 4.1), that the 
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occurrence of FN detections is more problematic than FP detections; hence, one should 

establish fault confirmation criteria based on the acceptable balance between FN and FP 

detections.  

Table 6. Accuracy of the corrections of the SFDI-SOM tool. 

Corrected Variable AAE
(b)

 AARE
(a)

 (%) 

Feed conductivity (μS) 20.31 0.19 

Feed flow rate (m
3
/h) 0.01 2.95 

Feed pressure (bar) 0.42 2.75 

Retentate conductivity (μS) 283 1.96 

Retentate flow rate (m
3
/h) 0.01 4.22 

Retentate pressure (bar) 0.26 3.89 

Permeate conductivity (μS) 40.81 3.37 

Permeate flow rate (m
3
/h) 0.02 3.96 

 

Once the faulty sensors were detected and isolated, data reconciliation was carried out by 

replacing the faulty values with the values associated with the centroids of the bmus (see 

Section 3.4.4) corresponding to the reduced data vectors and discarding the faulty sensor 

data. The differences between the corrected values and the expected values (known from 

the experimental data) were calculated by means of the AAREs, being in all cases smaller 

than 5%. The accuracy of data correction (of faulty sensors) via the SFDI-SOM approach 

was in the range AARE of 0.19%-4.22% for the eight plant sensors (Table 6). The above 

level of accuracy for faulty data correction is somewhat lower than that which was achieved 

(0.02%-0.82% AARE) for the SFDI-SVR approach. However, the SFDI-SOM is simpler to 

use as it does not require individual sensor models but only a single SOM construction 

based on the fault-free plant operational data.  

An attractive element for using SOM, which can make its use beneficial as either an add-on 

to SFDI-SVR or SFDI-SOM is in that SOM can provide a visual representation of sensor 

deviations from normal plant operation. For example, based on the historical plant data 
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used to construct the plant SOM and the desired operational domain, one can establish 

visually the location of a given plant operation state over the SOM. When the plant operates 

under normal conditions, the bmus representing plant data are located in a contiguous SOM 

area corresponding to normal plant operation. In contrast, when sensor readings are faulty, 

significant drifts of the bmu are observed. As an illustration, Figure 8 shows one example 

of the effect of an increasing perturbation up to +50% on the feed flow rate sensor. Each 

subfigure represents the so-called component planes of the SOM, which are generated by 

plotting each individual component of the centroid of the SOM units. Accordingly, each 

component plane depicts the distribution of the sensor readings for each of the 8 plant 

sensors (i.e., retentate, feed and permeate flow rates, feed and permeate pressures, and 

retentate, permeate and feed conductivities) over the SOM grid. Note that each component 

plane corresponds to a slice of the SOM and therefore overlaying SOM units are all for the 

same plant operational state (see Figure 4). In the example of Figure 8, normal plant 

operation associated with SOM unit marked with ―*‖ and the deviated operational state 

resulting from information provided by the faulty feed flow rate is depicted by black or 

white circles. Figure 8 shows the bmu of the faulty data moving away (i.e., trajectory) from 

the location corresponding to the normal operation bmu (i.e., bmu of the vector with fault-

free operational parameters). The drift in sensor readings is apparent in the example of 

Figure 8, where the bmu associated with the faulty data vector drifts, along the shown 

trajectory of increasing time (at 5 second intervals), further away from the bmu associated 

with the expected normal plant operation (marked with ―*‖). The above depiction of the 

state of the plant and sensor deviation can provide a rapid and visual aid for plant operators 

to monitor plant operational status and to detect abnormal plant behavior. The above visual 

approach does not identify the specific faulty sensor, but can provide an early warning 
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which could then proceed with the process of faulty sensor identification and isolation (by 

either SFDI-SVR or SFDI-SOM) as described in Sections 3.3.2 and 3.4.3. 
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Figure 8.  Plant behavior trajectory for a data trace with a drift in the feed flow rate sensor reading. 

The deviation from the nominal value increases linearly with time up to a deviation of +50%. Note: 

The trajectory of the best matching unit (bmu) for the faulty data vector with time is marked as 1-5 

(at successive 5 s intervals). 
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5. Conclusions 

Sensor fault detection and isolation (SFDI), as well as sensor data corrections approaches 

for spiral-wound RO plant operation were assessed based on the use of both support-vector 

regression (SVR) plant sensor models and self-organizing map (SOM) representation of 

plant operation. SFDI-SVR was based on data-driven models developed for individual RO 

plant sensors using the support vector regression model building approach. SFDI-SVR 

enabled fault detection without false negative detections for sensor deviations in the range 

of ±10% or greater when sensor thresholds (global or individual) were just below 5%. False 

positive detections were higher than false negative detections by up a factor of two and 

greater in some cases, particularly for increasing global sensor detection threshold and 

small sensor deviations (e.g., approaching the expected normal sensor fluctuations under 

normal steady state conditions). Overall, individual sensor thresholds provided lower false 

negative detection rate for all sensor deviations, but false positive detections appeared to be 

nearly invariant with respect to sensor threshold in the range of 3.5%-5%. Corrections of 

faulty sensor readings were within the accuracy level of the SVR sensor models (based on 

evaluation of sensor performance for normal plant operation). The SFDI-SOM’s 

performance was inferior to SFDI-SVR, demonstrating no false negative detections only for 

sensor deviations in the range of ±40% or higher, with increased false negative detections 

of 3.24%-6.64% for sensor deviations in the range of ±10% with SOM minimum 

percentage of faulty readings  (MPFR) of 13% (i.e., percent of sensor reading in a given 

monitoring trace being identified as faulty) for fault confirmation and somewhat higher 

(4.17%-8.02%) for MPFR of 33%. Corrections of the abnormal sensor readings with SFDI-

SOM were with AARE lower than 5%. Although SFDI-SOM was of lower accuracy than 
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SFDI-SVR, its application is simpler, since it does not require developing a model for each 

of the plant sensors. Moreover, SOM provides a pictorial representation of plant operation 

and trajectory of faulty sensor behavior that could be beneficial to plant operators. Overall, 

both approaches were robust and able to handle noisy plant data. Clearly the choice of 

using either one or integration of both of the above approaches for RO plants would have to 

be made on the basis of acceptability of the rates of false negative relative to false positive 

fault detections and desirability for visual representation of plant operation as feasible via 

SOM.  

 

Nomenclature 

AAE average absolute error 

AARE average absolute relative error 

AD absolute difference 

ANN artificial neural networks 

b bias vector 

bmu best matching unit 

Cf feed conductivity 

Cp permeate conductivity 

Cr retentate conductivity 

CE centroid 

condfeed feed conductivity sensor reading 

FDI fault detection and isolation 

FDS fault detection SOM 
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Nomenclature 

FN false negative 

FP false positive 

FTC fault tolerant control 

f(x) function obtained by SVR 

m number of sensors not including feed conductivity 

n number of experimental values 

Pf feed pressure 

Pr retentate pressure 

PARD percent absolute relative difference 

PCA principal component analysis 

Qf feed flow rate 

Qp permeate flow rate 

Qr retentate flow rate 

RO reverse osmosis 

r
2
 correlation coefficient 

s sensor under consideration 

SFDI sensor fault detection and isolation 

SOM self-organizing-map 

STDV standard deviation 

SVM support vector machines 

SVR support vector regression 

T threshold 
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Nomenclature 

TAD total absolute difference 

TDS total dissolved solids 

TPARD total percent absolute relative difference 

Vi average variable value for the given steady state 

VFD variable frequency drive 

w normal vector to hyperplane 

x vector of input RO parameters in the SVR model 

y vector of input parameters in the SOM 

yi experimental value for a given variable 

yi
*
 predicted value for a given variable 

yi
(n)

 normalized value for a given variable 

ε tolerance of the SVR models 

γ regularization parameter 

ξ, ξ
*
 upper and lower slack variables 

σ variance / width of the Gaussian 

Φ kernel function 
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9. Conclusions 

This thesis has presented two successful applications of data-driven models developed for a 

reverse osmosis desalination pilot plant. The Support Vector Regression (SVR) modeling 

approach for steady state operation of the reverse osmosis pilot plant M3 has performed 

better results than the commonly used first principle-based models. In the same way, the 

dynamic models have enabled the short-term prediction and simulation of the M3 plant 

behavior under non-steady state operation, with such a high accuracy that it makes the 

approach suitable for advanced reverse osmosis plant control algorithms, fault tolerant 

control and process optimization. In fact, SVR models have been proved to perform 

excellent results as part of a fault detection and isolation tool for the M3 plant. In addition, 

an alternative to SVR models which uses Self-Organizing Maps (SOM) has been also 

demonstrated for fault detection and isolation.  The SOM-based tool has not reached the 

performance levels obtained by the SVR-based tool, although it has provided a useful 

visual tool for the rapid fault detection during plant operation. It is important to note that all 

the algorithms and tools developed in this study which are based on data-driven models are 

specific for the M3 plant, and must be applied only for the applicability domain covered in 

this study. In this respect, the applicability domain of the models can be extended at the 

same time as new plant data are acquired by implementing online model training. 
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