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award of the degree of Doctor, has been carried out under our supervision

at the Chemical Engineering Department of the University Rovira i Virgili.

Tarragona, September 22, 2014

Dr. Gonzalo Guillén Dr. Laureano Jiménez
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Summary

The aim of this thesis is to provide a decision-support tool for single/multi-

optimization problems. The thesis is divided in several parts as follow.

• Firstly, a novel hybrid metaheuristic algorithm was developed in or-

der to optimize single-objective (profit or cost) problems arising in

the context of the strategic planning of supply chains (SCs). The

strategic planning of SC consists of determining the number, location

and capacities of the SC facilities to be established in each sub-region

of a given country, their expansion policy over the planning horizon,

the transportation links and number/type of transport that need to

be established in the network, and the production rates and flows

of the involved feedstocks, wastes, and final products, giving rise to

optimal profit or cost. These problems are mathematically formu-

lated as a mixed-integer linear programming (MILP) models which

are solved by means of the proposed method. This algorithm consists

of generating an initial solution, which is subsequently improved by

the application of local search in a relative neighborhood of solutions.

The construction of initial solutions should be fast (computationally

not expensive), and – if possible – initial solutions should be a good

starting point for local search. The large neighborhood search (LNS)
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xii

provides near optimal solutions in a fraction of time spent by CPLEX

12. The capabilities of the proposed approach are illustrated by solv-

ing two models based on the Argentinean Ethanol SC and Spanish

Hydrogen SC, respectively. In order to encompass all possible con-

version pathways, the solved models include production facilities de-

pending on the utilized technology and, storage facilities depending

on the used technology as well. The region of interest (i.e., Argentina

or Spain) is subdivided into a number of sub-regions, where the SC

facilities can be installed. Different types of transport are consid-

ered for carrying materials between the sub-regions. The complexity

of this MILP model is mainly given by the number of integer and

binary variables. The number of these variables increases with the

number of time intervals and sub-regions. Thus, large-scale problems

with long range planning horizons can be computationally intractable.

• Secondly, to develop a computational framework to reduce the di-

mensionality of multi-objective optimization (MOO) problems that

identifies and eliminates in a systematic manner redundant criteria

from the mathematical model. The method proposed builds a mixed-

integer linear programming (MILP) formulation introduced in a pre-

vious work by the authors. MOO has recently gained wider interest in

different domains of engineering and science, but the major limitation

of this approach is that its complexity grows rapidly as we increase

the number of objectives. The method proposed builds on a mixed-

integer linear programming (MILP) formulation based on divide and
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xiii

conquer paradigm. This new approach was assessed by its application

to two problems related to biofuels. The first addresses the strategic

planning of Spanish hydrogen SC, while the second deals with the

MOO of metabolic networks. The first case study is retrieved from

the Spanish hydrogen SC considered in the first part of this thesis,

but we extended it in order to integrate the evaluation of the envi-

ronmental sustainability through the Life Cycle Assessment (LCA)

methodology. The second case deals the preferred enzymatic pro-

files that optimize the synthesis rate of a metabolite at minimum

cost (minimum number of changes in these activities, i.e., minimum

change in gene expression) and minimum increase in the concentra-

tion of intermediate metabolites in the fermentation of Saccharomyces

cerevisiae for ethanol production.

• Thirdly, we enhanced the ε-method that is based on the combined use

of a rigorous dimensionality reduction method with pseudo/quasi-

random sequences. The improvements are relied on two main ele-

ments: (i) the use of rigorous objective reduction techniques that

eliminate redundant objectives from the search, thereby simplifying

the MOO problem from the viewpoints of generation and analysis

of the Pareto solutions; and (ii) the application of pseudo/quasi-

random sequences (i.e., uniform distribution an Sobol and Halton

sequences) for generating the epsilon parameter values used in the

single-objective auxiliary models solved during the iterations of the

algorithm. We illustrate the capabilities of our approach through its

application to two SC design problems in which we optimize the eco-
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xiv

nomic performance or total cost along with a set of environmental

metrics quantified following LCA principles. The case studies are

taken from previous parts of this thesis. On the one hand, the op-

timal design of three-echelon hydrogen SC for vehicle use in Spain

taking into account economic and environmental concerns. And on

the other hand the optimal design of tree-echelon bioethanol network

and associated planning decisions that maximize the net present value

and minimize the environmental impact. The latter model, presented

in part one, has been extended in order to integrate environmental

metrics, including the individual categories considered in the Eco-

indicator 99: damage to human health (HH), damage to eco-system

quality (DTE), and damage to resources (DTR), along with the global

warming potential (GWP) and the Eco-indicator99 (EI99).
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ETSEQ Escola Tècnica Superior D’Enginyeria Qúımica

IP Integrated Project

Q1 Quadrimester 1st

Q2 Quadrimester 2nd

xxv

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF EFFICIENT ALGORITHMS FOR SOLVING COMPLEX 
SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMIZATION MODELS.  
Pedro Jesús Copado méndez 
Dipòsit Legal: T 1773-2014 



Dedicated to

my parents, without whom this work would not have

been possible,

to to my uncle Antonio who died during the achievement

of this work,

to my family and friends.

xxvi

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF EFFICIENT ALGORITHMS FOR SOLVING COMPLEX 
SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMIZATION MODELS.  
Pedro Jesús Copado méndez 
Dipòsit Legal: T 1773-2014 



List of Algorithms

1 Constructive Heuristic . . . . . . . . . . . . . . . . . . . . . 27

2 Iterative Improvement Local Search . . . . . . . . . . . . . 28

3 Simulated annealing (SA) . . . . . . . . . . . . . . . . . . . 33

4 Simple tabu search (TS) . . . . . . . . . . . . . . . . . . . . 34

5 Tabu search (TS) . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Greedy randomized adaptive search procedure (GRASP) . . 36

7 Greedy randomized solution construction . . . . . . . . . . 36

8 Variable neighborhood search (VNS) . . . . . . . . . . . . . 38

9 Guided local search (GLS) . . . . . . . . . . . . . . . . . . . 40

10 Iterated local search (ILS) . . . . . . . . . . . . . . . . . . . 40

11 Evolutionary Computation (EC) . . . . . . . . . . . . . . . 43

12 Ant Colony Optimization (ACO) . . . . . . . . . . . . . . . 45

13 build solution() . . . . . . . . . . . . . . . . . . . . . . . . . 46

14 The framework of LNS . . . . . . . . . . . . . . . . . . . . . 55

15 LNS for Supply Chain . . . . . . . . . . . . . . . . . . . . . 60

16 Divide & Conquer . . . . . . . . . . . . . . . . . . . . . . . 68

17 LNS for Supply Chain . . . . . . . . . . . . . . . . . . . . . 114

18 Initial solution (MH) . . . . . . . . . . . . . . . . . . . . . . 116

19 Initial solution (ME) . . . . . . . . . . . . . . . . . . . . . . 119

20 The upper level algorithm for objective reduction. . . . . . 137

xxvii

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF EFFICIENT ALGORITHMS FOR SOLVING COMPLEX 
SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMIZATION MODELS.  
Pedro Jesús Copado méndez 
Dipòsit Legal: T 1773-2014 



21 The ε-constraint method presented. . . . . . . . . . . . . . . 165

22 Procedure comparison . . . . . . . . . . . . . . . . . . . . . 169

23 Hypervolume algorithm . . . . . . . . . . . . . . . . . . . . 171

24 Equidistant method . . . . . . . . . . . . . . . . . . . . . . 172

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF EFFICIENT ALGORITHMS FOR SOLVING COMPLEX 
SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMIZATION MODELS.  
Pedro Jesús Copado méndez 
Dipòsit Legal: T 1773-2014 



Part I

First Part: Introduction
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Chapter 1

General objectives

The objectives of this thesis are:

• To devise a systematic framework for the single-optimization of spa-

tially explicit models for supply chain design and planning.

• To propose and apply novel optimization frameworks based on multi-

objective optimization (MOO), economic analysis, and environmental

assessment tools.

• To develop a novel hybrid metaheuristic for the optimization of de-

terministic single objective problems in which all of the parameters

are known in advance.

• To develop an effective dimensionality reduction framework for facil-

itating the solution procedure of multi-objective optimization prob-

lems (MOO).

• To enhance the ε-constraint method through the use of objective re-

duction techniques and random sequences.

3
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Chapter 2

Introduction

This thesis introduces a set of advanced mathematical programming tools

to assist decision-making in problems arising in process systems engineering

(PSE), with particular emphasis on supply chain management and multi-

objective optimization.

We start by reviewing the literature on mathematical models applied

to supply chain management and we then review multi-objective optimiza-

tion, with particular emphasis on its application to environmental problems

that optimize a set of environmental impacts along with the economic per-

formance of a system. We finally study the issue of how to reduce the

computational burden of multi-objective optimization using dimensionality

reduction methods and random sequences.

The remaining of this document is organized as follows: in chapter 3, we

review mathematical and algorithmic concepts and describe the methods

developed whereas in chapter 4 we present the results obtained, and finally,

in chapter 5, the conclusions of the work are drawn and future research

lines that could extend the framework proposed herein are outlined.

5
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Chapter 2. Problem statement 6

2.1 Mathematical models for supply chain man-

agement

A supply chain (SC) is a network of entities where input materials are trans-

formed into finished products that are delivered to the end customer. The

study of a SC as a whole is a relatively new discipline called supply chain

management (SCM), that aims to integrate manufacturing plants with their

suppliers and customers in an efficient manner (Shapiro, 2001). SCM has

gained wider interest in both, academia and industry, given its potential

to increase the benefits through an efficient coordination of the operations

of supply, manufacturing and distribution carried out in a network. For a

more detailed description, see section 6.2. SCM is aimed at a broader set of

real-world applications, with particular emphasis on logistics and distribu-

tion, which usually involve linear models, that belong traditionally to the

domain of operations research (Puigjaner and Espuña, 2006).

SCM problems can be classified into strategic, tactical and operational

levels according to the temporal and spatial scales considered in the analy-

sis (see section 6.2). In this thesis we will focus on the strategic level, which

deals with decisions that have a long time effect, such as those related with

the establishment of new facilities. In addition, we distinguish here between

single-objective optimization problems (see section 6.2) and multi-objective

optimization problems (MOO) (see sections 3.1.1.6 and 7.2).

SCM problems can be posed in mathematical terms as mixed-integer

lineal programming (MILP) models (see Appendix A.1 and A.2), some of
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Chapter 2. Problem statement 7

which might be multi-objective (MOO) as well. See sections 6.2, 3.1.1.6

and 7.2 for more details. In this type of problems, we first formulate a

superstructure of alternatives (see Figure C.1), that is, a mathematical

representation that accounts for a set of options for establishing different

production and storage facilities in a set of potential locations with known

demand and prices. The algorithm must then identify the best alternatives

considering a single (or several) objective functions. For more details see

appendix A.

A general review on the application of mathematical programming tech-

niques in SCM can be found in the work by Mula et al. (2010) whereas more

specific reviews devoted to process industries have been presented by Gross-

mann (2005) and Papageorgiou (2009). Particularly, MILP is nowadays the

most widely used modelling tool for solving strategic SCM problems. MILP

formulations for SCM typically adopt fairly simple linear aggregated repre-

sentations of capacity. Besides avoiding the numerical difficulties associated

with dealing with nonlinearities, this simplification permits an easy adapta-

tion to a wide range of industrial applications. In these MILPs, continuous

variables represent materials flows and purchases and sales of products,

whereas binary variables model tactical and/or strategic decisions related

to the network configuration, such as selection of technologies, and estab-

lishment of facilities and transportation links (Guillén et al., 2006).

Recently, several spatially explicit SCM models based on MILP have

appeared in the literature. Akgul et al. (2011) presented a spatially ex-

plicit MILP for the optimal design of a biothanol SC with the objective
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of minimizing the total cost. The model seeks to optimize the locations

of the bioethanol production plants, the biomass and bioethanol flows be-

tween regions, and the number of transport units required for transferring

these products between several regions of Northern Italy. Dal-Mas et al.

(2011) developed a dynamic spatially explicit MILP modeling framework

devised to optimize the design and planning of biomass-based fuel SCs un-

der uncertainty in market conditions considering different financial criteria.

Mele et al. (2011) presented an MILP to optimize the design of SCs for

the combined production of sugar and ethanol. In this work, the problem

is formulated as a multi-objective MILP that optimizes simultaneously the

economic performance of the network and several LCA metrics (Giarola

et al., 2012a,b; Elghali et al., 2007).

Several strategies have been explored for the efficient solution of the

aforementioned MILPs arising in SCM. These strategies can be roughly

classified into two major groups: deterministic and stochastic approaches.

The former ones provide a rigorous bound on the global optimal solution

whereas the latter do not. This is typically accomplished at the expense of

larger CPU times, which are required to ensure the quality of the solution

found within the desired tolerance.

In addition, deterministic methods can rely on either solving the full

space MILP using branch and cut techniques, or decomposing it into sub-

problems of smaller size between which an algorithm iterates until a ter-

mination criterion is satisfied. We should clarify that in many cases this

second type of approaches make also use of branch and cut techniques, but
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Chapter 2. Problem statement 9

only for solving the sub-problems resulting from decomposing the original

MILP and not for the solution of the original MILP itself.

Several decomposition strategies have been devised to exploit the un-

derlying mathematical structure of the MILPs arising in SCM. Bok et al.

(2000) developed a bi-level decomposition algorithm for an MILP model

that maximizes the profit of a production-distribution network. This algo-

rithm could halve the solution time compared to the rigorous branch and

cut algorithm implemented in CPLEX. Guillén-Gosálbez et al. (2010) in-

troduced a bi-level algorithm for solving the strategic planning of hydrogen

SCs for vehicle use. This decomposition method achieved reductions of

up to one order of magnitude in CPU time compared with the full space

method (the whole model without decomposition, relaxation or approxima-

tions) while still providing near optimal solutions (i.e., with less than 1%

of optimality gap).

Lagrangean decomposition has also been used in the context of strategic

SCM problems. Gupta and Maranas (1999) applied Lagrangean decompo-

sition to solve a planning problem that considered different products and

manufacturing sites. The authors reported a solution with an optimality

gap of 1.6%, reducing in one order of magnitude the CPU time required

by CPLEX 4.0 to find a solution with a gap of 3.2%. You and Grossmann

(2010) introduced a spatial decomposition algorithm based on the integra-

tion of Lagrangean relaxation and piecewise linear approximation to reduce

the computational expense of solving multi-echelon SC design problems un-

der uncertain customer demands. Chen and Pinto (2008) investigated the
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application of various Lagrangean-based techniques to planning problems

that allowed them to reduce considerably the computational burden method

while still achieving optimality gaps of less than 2%.

Other solution methods applied to SCM problems have been Bender’s

decomposition (Geoffrion and Graves, 1974) and “rolling horizon” algo-

rithms based on the original work by Jain and Palekar (2005). The for-

mer approach has been applied to strategic/tactical SCM problems with

medium-large time horizons (Dogan and Goetschalckx, 1999; Mirhassani

et al., 2000; Paquet et al., 2004; Soner Kara and Onut, 2010; Üster et al.,

2007). In contrast, rolling horizon algorithms have been primarily used

for solving operational SCM problems (Dimitriadis et al., 1997; Elkamel

and Mohindra, 1999; Balasubramanian and Grossmann, 2004). In the re-

cent past, this approach has also been adapted to deal with strategic SCM

problems (Kostin et al., 2011b).

The difficulty in solving spatially explicit SCM problems (and more gen-

erally, any type of MILP) is highly dependent on the number of discrete

variables, since they are responsible for the combinatorial complexity of

the problem. This number of discrete variables increases with the number

of time periods and sub-regions considered in the SC model. Models ac-

counting for a large number of time periods and/or sub-regions may lead to

branch-and-bound trees with a prohibitive number of nodes, thus making

the MILP computationally intractable. To deal with this, we present in

this thesis a hybrid metaheuristic (see section 3.1.2.8) that combines large

neightbourhood (LNS) search with standard branch and cut techniques.
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2.2 Challenges in multi-objective optimization

Many problems in PSE, including SCM problems, require the simultaneous

optimization of more than one objective function. Multi-objective opti-

mization (MOO) is widely used in many areas of science and engineering

for simultaneously optimizing several objective functions subject to some

equality and inequality constraints. MOO has been applied to many dif-

ferent fields (Claro J., 2012; Ustun O., 2012; Sharma A., 2012; Alonso M.,

2012; Niknam T., Fard A. K., 2012), among others.

Several methods exist for tackling MOO problems, including ε-constraint

method (Haimes, Y.Y.; Lasdon, L.S.; Wismer, 1971), the weighted-sum

method (Zadeh, 1963), normal-boundary intersection (Das and Dennis,

1996) and goal programming (Charnes et al., 1955; Charnes and Cooper,

1961; Ijiri, 1965; Charnes et al., 1967). MOO has found many applica-

tions in process systems engineering, system biology. Among these publi-

cations we emphasize the optimal design of supply chains (Yue et al., 2014;

Murthy Konda et al., 2011; Sabio et al., 2012; Guillén-Gosálbez et al., 2010;

Lin et al., 2008; INGASON et al., 2008; QADRDAN et al., 2008), refiner-

ies (Gebreslassie et al., 2013; Zhang et al., 2014; Santibañez Aguilar et al.,

2014; Murillo-alvarado and El-halwagi, 2013), and reverse osmosis networks

(Du et al., 2014). We mention as well the work of Pozo and Guillén (2012)

which is concerned with the optimization of metabolic pathways in system

biology.
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The solution to MOO problems is not usually a single solution but rather

a large number of Pareto-optimal solutions. Clearly, testing all these alter-

natives in the industry would be prohibitive in terms of time and resources.

Multi-criteria decision-making (MCDM) can be of great help at this stage

to rank and/or screen alternatives, ruling out the less promising and keep-

ing the best. Besides, the complexity of both, MOO and MCDM, increases

with the number of objectives. In practice, the visualization and analysis

of the Pareto set becomes highly difficult in problems with more than three

objectives. Dimensionality reduction techniques aim at overcoming these

limitations by identifying redundant objectives that can be omitted while

still preserving the problem structure to the extent possible (see sections

3.2.2 and 7.3). As will be explained in detail later in this thesis, in this

work we developed an efficient objective reduction algorithm to expedite

the solution of MOO problems arising in PSE.

2.2.1 Objective reduction

Objective reduction identifies redundant objectives that can be eliminated

from the MOO model, thereby expediting its solution. Different approaches

have been proposed so far for objective reduction in MOO. Deb and Sax-

ena (2005) proposed a method based on principal component analysis for

reducing the number of objectives in MOO. More recently, Thoai (2011)

proposed an approach to reduce the number of criteria as well as the di-

mension of a linear MOO problem using the concept of representative and

extreme criteria, while López Jaimes et al. (2009) introduced two algorithms
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for objective reduction in MOO based on a feature selection technique.

In a seminar work, Brockhoff and Zitzler (2006c) analyze in mathe-

matical terms the issue of objective reduction in MOO. They introduced

the concept of delta error in MOO, defined as the approximation error that

arises after removing objectives in a MOO problem. These authors formally

stated the following two problems:

1. computing a minimum objective subset (MOSS) of a multi-objective

problem that does not exceed a certain approximation error (denoted

as the δ-MOSS problem); and

2. identifying a minimum objective subset of size k with minimum ap-

proximation error (k-MOSS problem) (see section 7.4).

Based on these ideas, Guillén-Gosálbez (2011a) introduced an approach

for dimensionality reduction based on an MILP that solves both the k-

MOSS and δ-MOSS problems, and which takes advantage of the powerful

branch-and-cut algorithms available for MILPs. In this thesis, we present a

new decomposition approach for objective reduction based on the work by

Guillén-Gosálbez (2011a) that is shown from numerical examples to out-

perform other existing algorithms for objective reduction (Brockhoff and

Zitzler, 2006c).

2.2.2 The ε-constraint method

The ε-constraint method is an algorithm widely used to solve multi-objective

optimization (MOO) problems. It was first introduced by Haimes, Y.Y.;
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Lasdon, L.S.; Wismer (1971), and it is based on solving a set of single-

objective problems in each of which one objective is kept as main objective

while the rest are transferred to auxiliary constraints that impose bounds

on them. This algorithm has found many applications in PSE, including the

optimal design of supply chains (Yue et al., 2014), refineries (Gebreslassie

et al., 2013; Zhang et al., 2014; Santibañez Aguilar et al., 2014; Murillo-

alvarado and El-halwagi, 2013), reverse osmosis networks (Du et al., 2014),

and the optimization of metabolic pathways in system biology (Pozo and

Guillén, 2012).

The main limitation of this method is that its computational burden

grows rapidly in size with the number of objectives. Furthermore, the tra-

ditional ε-constraint algorithm requires the definition of a set of epsilon

parameters values, which are typically generated by splitting the domain

of each objectives in equidistant intervals. This leads to falling repeatedly

into the same solution or an unfeasible one, thus wasting large computa-

tional efforts. To avoid this, as will be described in detail later in this the-

sis, we propose here several improvements for the ε-constraint algorithm

based on its integration with rigorous dimensionality reduction methods

and pseudo/quasi-random sequences.
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Second Part: Research Work
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Chapter 3

Methodology

We next review the main general mathematical programming methods be-

fore presenting in detail the algorithms developed in the context of this

thesis (which are based on the former).

3.1 Overview optimization

Several solution methods have been proposed so far for dealing with the

complexity associated with PSE problems. We next provide an overview of

these strategies, with emphasis on optimization tools based on mathemat-

ical programming and metaheuristics.

3.1.1 Mathematical programming

Mathematical programming aims to find an optimal solution of a given a op-

timization problem subject to a set of constraints. Optimization problems

can be classified according to the type of variables they contain (continuous

and, discrete variables). Problems that only include continuous variables

belong to linear programming (LP) and non-linear programming (NLP)

(depending on whether the constraints are all linear or contain at least

17
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one nonlinear equation). Problems with discrete variables are modelled as

either mixed-integer linear programming (MILP) and mixed-integer non-

linear programming (MINLP) models. Dynamic optimization (problems in-

cluding differential equations), and stochastic programming (optimization

under uncertainty) and other types of mathematical models encountered in

mathematical programming.

The aforementioned problems can be solved by different techniques. In

the past, most of them were based on a trial and error method. In the re-

cent past, a wide variety of systematic approaches have emerged to perform

this task.

In this introductory section, we start by considering a general con-

strained optimization problem (Bazaraa et al., 2006):

min f(x, y)

s.t h(x, y) = 0

g(x, y) ≤ 0

x ∈ X
y ∈ Y

(3.1)

Hereby, f(x, y) is the objective function, x is the set continuous vari-

ables, and y are the integer variables, h(x, y) = 0 are the equality con-

straints and g(x, y) ≤ 0 are the inequality constraints. Any optimization

problem can be represented in this form. Note that maximizing function

f(x, y) is equivalent to minimizing −f(x, y). Moreover, if we have inequal-
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ities greater than zero, these may be transformed by multiplying the two

terms by minus one.

3.1.1.1 Linear programming (LP)

Linear programming (LP) problems contain only linear functions and con-

tinuous decision variables (Dave et al., 1998):

min Z = cT · x
s.t A · x = b

Cẋ ≤ d
x ≥ 0

(3.2)

The standard solution method to solve LP problems is the simplex

method (Dantzig, 1963), although in the last decades interior point methods

(Wu et al., 2002) have been extensively used for highly constrained LP

problems (e.g., problems with around 100.000 constraints and variables).

The major commercial solvers developed for LP optimization problems are

CPLEX and OSL, which are based on the simplex method, and XPRESS,

which makes use of a Newton barrier interior point method.
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h(x) = 0

Figure 3.1: Feasible region for three inequalities and one equation.

3.1.1.2 Non-linear programming (NLP)

Non-linear programming (NLP) problems contain at least one non-linear

equation and only continuous variables (not a single discrete variable).

min f(x)

s.t h(x) = 0

g(x) ≤ 0

x ∈ X

(3.3)

Two major methods for NLP optimization are used: successive quadratic

programming (SQP) (Powell, 1978) and the reduced gradient method (Murtagh

and Saunders, 1978). In the SQP algorithm, the basic idea is to solve a

quadratic programming subproblem at each iteration. In contrast, the re-

duced gradient method solves a sequence of subproblems with linearized

constraints. SQP generally requires less iterations than the gradient method.

However, for large-scale problems, the reduced gradient method tends to

be more robust.
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The main SQP solvers are SNOPT, KNITOR, IPOPT and rSQP, whereas

GRG2, CONOPT and MINOS are the main solvers based on the reduced

gradient method .

3.1.1.3 Mixed integer-linear programming (MILP)

This type of problem model is an extension of LP where some of the vari-

ables may adopt an integer value. The general form of an MILP problem

is the following:

min Z = cT · x+ bT · y
s.t A · x+B · y ≤ d

x ≥ 0

y ∈ {0, 1}m

(3.4)

The principal method for solving MILPs is the LP-based branch and

bound (Nemhauser and Wolsey, 1988). This technique is baed on a tree enu-

meration where at each node a relaxed LP subproblem is solved. Another

technique for MILP optimization makes use of cutting planes, a method

based on generating cuts from the LP relaxation. Currently, most of the

commercial solvers combine both techniques. The most widely used com-

puter packages implementing these combined methods are CPLEX, OSL,

LINDO and ZOOM.

3.1.1.4 Mixed integer-nonlinear programming (MINLP)

This type of problem model presents features of both NLPs and MILPs.

The variables may adopt either real or integer values and some of the con-
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strains or the objective function may be non-linear. The general form of a

MINLP problem is the following:

min Z = cT · x+ bT · y
s.t A · x+B · y ≤ d

x ∈ X, y ∈ Y
X = {x | x ∈ Rn, xL ≤ x ≤ xU , B · x ≤ b}

Y = {y | y ∈ {0, 1}m, A · y ≤ a}

(3.5)

There are several solution algorithms: branch and bound (Gupta and

Ravindran, 1985), branch and cut (Stubbs and Mehrotra, 1999), generalized

benders decomposition (Geoffrion, 1972) and outer-approximation (Duran

and Grossmann, 1986).

3.1.1.5 Mixed linear fractional programming (MILFP)

A mixed-integer linear fractional program (MILFP) is a special type of non-

convex MINLP, which includes both continuous and discrete variables and

which seeks to optimize an objective function that is expressed in general

form as the ratio of two linear functions subject to linear constraints. A

general MILFP can be formulated as:

max
A0+

∑
i∈I

A1ixi+
∑
j∈J

A2jyi

B0+
∑
i∈I

B1ixi+
∑
j∈J

B2jyj

s.t C0k +
∑
i∈I

C1ikxi +
∑
j∈J

C2jkyj = 0,∀k ∈ K,

xi ≥ 0,∀i ∈ I
yi ∈ {0, 1},∀j ∈ J

(3.6)
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where xi are continuous variables and yj are discrete variables. In this

problem 3.6, it is assumed that the denominatorB0+
∑
i∈I

B1ixi+
∑
j∈J

B2jyj >

0. Thus, problem 3.6 includes |I| continuous variables, |J | binary variables,

and |K| equality constraints (all of which are linear). The readers can find

more details in Yue et al. (2013).

3.1.1.6 Multi-objective optimization (MOO)

Multi-objective optimization (MOO) problems include more than one ob-

jective function, and can generally be posed as follows:

min
x
F (x) := (f1(x), ..., fk(x))

s.t. gj(x) ≤ 0, j = 1, 2, . . . ,m,

hl(x) = 0, l = 1, 2, . . . , e,

(3.7)

where k is the number of objective functions, m is the number of in-

equalities constraints, and e is the number equalities constraints. x ∈ En

is the vector of design space or decision variables, while n represents the

number of independent variables xi. F (x) ∈ Ek is a vector of objective

functions Fi(x) : En −→ E, where Fi(x) is the value function. The feasible

design space X is defined as the set {x | gj(x) ≤ 0, j = 1, 2, . . . ,m; hi(x) =

0, i = 1, 2, . . . , e}. The feasible criterion space Z is defined as the set

{F (x)|x ∈ X}. There are several methods to deal with MOO (Marler and

Arora, 2004). We present in this thesis the approach developed in section

3.2.3.

The solution to MOO problems is not a single point but a set of so-
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lutions which form the so-called Pareto front. These solutions hold the

property of being equally optimal, as it is not possible to improve one of

their objectives without worsening at least one of the others. This property

is formulated as follows:

A solution x∗ is called Pareto optimal if there is no other x that dom-

inates x∗ with respect to the set of all of the objectives, where x (weakly)

dominates y (x �F y) with respect to the objective set F , if xi ≤ yi in each

objective i ∈ F .

The quality of the Pareto front is assessed by the hypervolume indica-

tor (or S-metric, Lebesgue measure), which was introduced by Zitzler and

Thiele (1998). This metric, is regarded as a fair measure of the hyperspace

that is dominated by at least one point of the Pareto set. The dominated

hypervolume is calculated with respect to a reference point which is chosen

to coincide with the nadir point.

3.1.2 Incomplete algorithms: heuristics and metaheuristics

In this section we introduce heuristic approaches for solving optimization

problems, then we delve into algorithms that are known as metaheuristics.

In fact, the hybridization of metaheuristics and integer linear programming

is an important aspect of this work. Therefore, at the end of this section

we will give a brief description of the hybridization of metaheuristics with

other optimization techniques (Glober and Kochenberger, 2003).

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF EFFICIENT ALGORITHMS FOR SOLVING COMPLEX 
SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMIZATION MODELS.  
Pedro Jesús Copado méndez 
Dipòsit Legal: T 1773-2014 



Chapter 3. Methodology 25

3.1.2.1 Combinatorial optimization

A combinatorial optimization problem (COP), following the definition of

Papadimitriou and Steiglitz (C.H. Papadimitriou and K. Steiglitz, 1982), is

the pair P = (S, f) consisting by the finite set of objects S and an objective

function f : S → R+, which assigns a positive value to each of the objects

of S. The goal is to find an s ∈ S which has a cost value f(s) that is lower

than (or equal to) the cost value of any other object in S. A well-known

example of a COP is the Traveling Salesman Problem (TSP) (Lawler et al.,

1985), which is defined as follows.

Definition In the Traveling Salesman Problem (TSP) (Shmoys et al.,

1985) a complete graph G = (V,E) with a weight we ∈ R+ for each edge

e ∈ E is given. The goal is to in find the minimum Hamiltonian cycle in G.

The objective function value f(s) is calculated as the sum of the weights

of the edges that form the Hamiltonian cycle s, and hence the search space

S consists of all possible Hamiltonian cycles that exist in G.

Note that each COP can be modelled as an MILP in different ways. The

resolution of any COP, (or any computer problem) is performed through an

algorithm. Algorithms may be complete, probabilistic or approximate: com-

plete methods guarantee to find an optimal solution. However, when the

size of the problem instance increases, the computation time required by

complete methods may be impractically high. In the case of COP problems

that are NP -hard, no polynomial algorithm exists to solve them. There-

fore, when rather large instances of NP -hard problems are concerned, ap-

proximate algorithms are often the only alternative. While these methods

produce good solutions in a reasonable amount of computation time, they
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do not guarantee to find optimal solutions. There are two basic types of

approximate algorithms, constructive heuristics and local search.

3.1.2.2 Constructive heuristics

Constructive heuristics are the most typical approximate algorithms for

solving COP. These algorithms build solutions from scratch, starting from

an empty initial solution. They employ a construction mechanism which

will add solution components at each step, according to a cost function, un-

til the solution is completed or the process is stopped by another criterion.

The schema of a constructive heuristic is shown in algorithm 1. The

algorithm is initialized with an empty partial solution sp. Given a partial

solution sp, a set of solution components cc(sp) can be derived for the

extension of sp. A greedy value η(c) is assigned to each component c ∈
cc(sp) which serves as a selection criterion: at each step we choose the

component c ∈ cc(sp) with the maximal greedy value and extend the partial

solution sp by adding c. This process is repeated until set cc(sp) is empty, or

until some other criterion indicates that the solutions construction process

should be stopped.

3.1.2.3 Local search methods

These algorithms start from some initial solution and iteratively try to

replace the current solution by a better one, looking in a neighborhood

formally defined as follows:

Definition A neighborhood is a function N : S → 2S that assigns to each
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Algorithm 1 Constructive Heuristic

sp = ∅
Generate(cc(sp))
while cc(sp) 6= ∅ do

c = Selection(Cc(sp))
sp = extend sp by adding the component c
Generate(cc(sp))

end while

s ∈ S a set of neighboring solutions N(s) ⊆ S. Hereby, each solution

s′ ∈ N(s) is obtained by applying an operator to s, which applies a rather

small change to s and hereby creates a new solution s′. Operators or

movements are applied in a particular order.

A neighborhood with an instance of the problem defines a search space,

which can be represented by a graph where the vertices are solutions that

are labeled by the value of the objective function, and the arcs represent

the neighborhood relationship of the solutions. A solution s∗ ∈ S is called

globally minimal solution if for all s ∈ S it holds that S : (f(s∗) ≤ f(s)).

The introduction of a neighborhood structure enables us to additionally

define the concept of locally minimal solutions.

Definition A local minimum with respect to a neighborhood N is a solu-

tion ŝ such that ∀s ∈ N(ŝ) : f(ŝ) ≤ f(s). And ŝ is a strict local minimum

if ∀s : s ∈ N(ŝ) : (f(ŝ) < f(s)).

The simplest method of local search is the iterative improvement local

search where at each step a neighbor is chosen which is better than the

current solution. This method is outlined in algorithm 2.
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Algorithm 2 Iterative Improvement Local Search

s = generate initial solution()
while ∃s′ ∈ N(s) such as f(s′) < f(s) do

s = choose improving neighbor(N(s))
end while

There are mainly two ways to implement function choose improving

neighbor(N(s)): searching the neighborhood in a pre-defined order return-

ing the first neighbor that is better than the current solution, or perform-

ing an exhaustive search through the neighborhood and returning the best

neighbor.

3.1.2.4 Metaheuristics

Metaheuristic (Glover, 1986; Reeves, 1993) were introduced in the 70’s.

They are approximate algorithms that combine basic heuristics to explore

the search space more effectively and efficiently than constructive heuris-

tics and local search. The term metaheuristic is a Greek compound word.

Heuristic comes from heuriskein which means “search”, while the suffix

meta means “ beyond” referring to a higher level. There are different def-

initions of metaheuristics according to the respective authors. Here is a

representative one:

”A metaheuristic is an iterative master process that guides and modifies

the operations of subordinate heuristics to efficiently produce high-quality

solutions. It may manipulate a complete (or incomplete) single solution

or a collection of solutions at each iteration. The subordinate heuristics

may be high (or low) level procedures, or a simple local search, or just a
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construction method.” (Voss et al., 1999)

Here we give an excerpt of some of the fundamental properties taken

from different authors, such as for example Blum (2005). Metaheuristics

are characterized by:

• Metaheuristics are strategies that “guide” the search process.

• The goal is to efficiently explore the search space in order to find

(near)optimal solutions.

• Techniques which constitute metaheuristic algorithms range from sim-

ple local search procedures to complex learning processes.

• Metaheuristic algorithms are approximate and usually non-deterministic.

• They may incorporate mechanisms to avoid getting trapped in con-

fined areas of the search space.

• The basic concepts of metaheuristics can be described on an abstract

level (i.e., not tied to a specific problem)

• Metaheuristics are not problem-specific.

• Metaheuristics may make use of domain-specific knowledge in the

form of heuristics that are controlled by the upper level strategy.

• Advanced metaheuristics use search experience (embodied in some

form of memory) to guide the search.
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3.1.2.5 Classification of Metaheuristics

Metaheuristics may be classified in different ways. In the following para-

graphs we outline some of these possible classifications (Blum, 2004; Glober

and Kochenberger, 2003):

Nature-inspired vs. non-nature inspired. Probably the most in-

tuitive way of classifying metaheuristics refers to their origins. There are

nature-inspired algorithms, such as evolutionary algorithms and ant colony

optimization, and non nature-inspired ones such as tabu search and iter-

ated local search. However, this classification may not be very meaningful.

Many recent hybrid algorithms can not be assigned to any of the two classes.

Moreover, it is sometimes difficult to clearly attribute an algorithm to one

of the two classes.

Single point vs. population-based search. Another characteristic

that can be used for the classification of metaheuristics is the number of so-

lutions that a metaheuristic works on at the same time: does the algorithm

make use of a population or only of a single solution at any time. Algo-

rithms that work on single solutions are generally referred to as trajectory

methods. They comprise all metaheuristics that are based on local search.

This is because their search process describes a trajectory in the search

space. Population-based metaheuristics, on the contrary, either perform

search processes which can be described as the evolution of a set of points

in the search space, or they perform search processes which can be described

as the evolution of a probability distribution over the search space.
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Dynamic vs. static objective function. Metaheuristics can also be

classified regarding the way in which they use the objective function. While

some algorithms use static objective functions during run-time, some oth-

ers, such as guided local search, modify the objective function during the

search. The idea behind this approach is to escape from local minima by

modifying the search landscape.

One vs. various neighborhood structures. Many metaheuristic

algorithms only use one single neighborhood structure. In other words, the

search landscape topology does not change in the course of the algorithm.

Other metaheuristics, such as variable neighborhood search, use more than

one neighborhood structure. This opens the possibility to diversify the

search by swapping between different search landscapes.

Memory-based vs. memory-less methods. A very important fea-

ture to classify metaheuristics is based on whether they use memory or

not. Memory-less algorithms perform a Markov process, as the informa-

tion they exclusively use to determine the next action is the current state of

the search process. Usually we differentiate between the use of short term

and long term memory. The former usually refers to recently performed

moves, visited solutions or, in general, decisions taken. The latter is usu-

ally an accumulation of synthetic parameters about the search. The use of

memory is nowadays recognized as one of the fundamental elements of a

powerful metaheuristic.
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3.1.2.6 Trajectory Methods

As mentioned before, trajectory methods are characterized by the fact that

the work on a single solutions at any time. Their search process describes

a trajectory in the search space.

3.1.2.6.1 Simulated Annealing The idea of Simulated Annealing (SA) (Metropo-

lis et al., 1953) is taken from the metallurgical industry. It is based on

the process of cooling down metal and glass, slow enough in order to get

(nearly) perfect crystal structures. In each iteration, the SA selects a solu-

tion s′ ∈ N(s) at random, where s is the current solution. If f(s′) < f(s)

then we replace s by s′. Otherwise, s is still replaced by s′ with probability

p(s′ | Tk, s) (equation 3.8) which follows a Boltzmann distribution:

p(s′ | Tk, s) = e
− f(s′)−f(s)

Tk , (3.8)

where Tk is a so-called temperature parameter. This version of SA works

without memory, but the use of memory for storing the history can be ben-

eficial. The framework of the method is outlined in Algorithm 3.

Now the functions that are used in the SA algorithm are explained in more

detail:

• generate initial solution(): the algorithm starts by generating a so-

lution that can be random solution or the result of a constructive

heuristic.
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Algorithm 3 Simulated annealing (SA)

s = generate initial solution()
k = 0
Tk = set initial temperature()
while end condition not found do

s′ = choose neighbor at random(N(s))
if f(s′) < f(s) then

s = s′

else
Accept s′ as new solution with probability p(s′ | Tk, s) (see 3.8)

end if
update temperature(Tk, s)

end while

• set initial temperature(): the initial temperature has to be one that

allows to move to considerably worse solutions at the beginning of

the algorithm. Its setting is crucial for the success of the algorithm.

• choose neighbor at random(N(s)): randomly select a neighbor.

• update temperature(Tk): the temperature parameter needs to be up-

dated at each iteration. The idea is to reduce the value of this pa-

rameter step by step in order to gradually decrease the probability to

move to worse solutions. An example is the following scheme:

Tk = Tk−1 · α, α ∈ ( 0, 1) (3.9)

The temperature planning method is crucial for obtaining good re-
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sults.

3.1.2.6.2 Tabu Search The simple version of tabu search algorithm

(TS) (Glover, 1986) (see Algorithm 4) is based on the (best-improvement)

version of local search and uses short term memory to avoid local minima

and cycling. The short-term memory is implemented by a tabu list, denoted

as TL, which keeps track of the latest solutions visited. Na(s) is called the

allowed set. This set is a subset of the neighborhood N(s), generated by

eliminating the solutions stored in TL. At each iteration we choose the best

solution of all the ones in Na(s) as new current solution. This solution is

also stored in TL by function update(TL, s, s′). If TL exceeds its maximum

capacity, then the oldest solution is removed from TL. This means that

TL is managed following a first-in first-out (FIFO) policy. As we can see

the algorithm terminates when the end condition is true or when Na(s) is

empty.

Algorithm 4 Simple tabu search (TS)

s = generate initial solution()
TL = ∅
while end condition not true do

Na(s) = N(s) \ TL
s′ = argmin{f(s′′) | s′′ ∈ Na}
update(TL, s, s′)
s = s′

end while

The implementation of a short-term memory using a list that stores

complete solutions is not practical because keeping a list of solutions is
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very inefficient. Therefore, rather than storing solutions, we keep the so-

lution components involved in the movements. So we need a TL for each

type of solution component. Each tabu list TL will be involved in defining

a tabu condition that serves to filter the neighborhood of the current solu-

tion. However, note that storing solution components instead of complete

solutions, even though it is much more efficient, has a potential loss of infor-

mation. This is because when forbidding visiting all solutions that contain

this component, solutions that were not visited before might may be forbid-

den. To solve this problem, aspiration criteria are used. They may allow

to include otherwise forbidden solutions into set Na. The most common

aspiration criterion used is when a solution is better than the best solution

found. Such a solution should, of course, not be forbidden. Algorithm 5

shows the framework of this more practical version of TS.

Algorithm 5 Tabu search (TS)

s = generate initial solution()
init tabu lists(TL1, . . . , TLr)
while end condition not found do

Na(s) = {s′ ∈ N(s) | s′ is not forbidden,
or aspiration conditions are satisfied}

s′ = argmin{f(s′′) | s′′ ∈ Na}
update tabu lists(TL1, . . . , TLr, s, s

′)
s = s′

end while

3.1.2.6.3 Explorative Local Search Methods In this section we

present some other trajectory methods, which are greedy randomized adap-

tive search procedures (GRASP), variable neighborhood search (VNS), guided
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local search (GLS) , and iterate local search (ILS).

1. Greedy Randomized Adaptive Search Procedures The greedy

randomized adaptive search procedure Feo and Resende (1995) is a

metaheuristic that combines a constructive metaheuristic with local

search (see Algorithm 6). GRASP is an iterative procedure that con-

sists of two phases: the construction of a solution (see Algorithm 7)

and the improvement of the solution built.

Algorithm 6 Greedy randomized adaptive search procedure (GRASP)

while end condition not found do
s = build greedy random solution()
apply local search(s)

end while

The construction method randomly creates a solution sp step by step,

by adding components of a finite list called restricted candidate list

(RCL). The RCL is made up of the first α components from cc(sp),

assuming that the elements of cc(sp) are ordered by a Greedy function

η. Note that α is an important parameter.

Algorithm 7 Greedy randomized solution construction

sp = 〈〉
α = determine length of candidate list()
while end condition not found do

RCL = generate candidate list(η, cc(sp), α)
c = choose at random(RCL)
sp = extend sp by adding solution component c

end while

As local search it is possible to use any of the available local search
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algorithms, such as the simple search algorithms, or more advanced

methods such as SA or TS. To be effective, GRASP has to satisfy (at

least) two conditions:

• The constructive heuristic should explore the best areas of the

search space.

• Built solutions should belong to different local minima of the

utilized local search.

In order to satisfy these two conditions the algorithm components

have to be properly chosen. Moreover, the length of the candidate

list must be adequately chosen.

2. Variable Neighborhood Search

Variable neighborhood search (Hansen and Mladenovi, 2001) applies

strategies to switch between different neighborhoods of a finite set of

predefined neighborhoods (see Algorithm 8):

VNS is initialized with a set of neighborhoods that are required to

meet the following condition: ∀s : s ∈ S : (|N1(s)| < |N2(s)| <
. . . < |Nkmax(s)|). Second, an initial solution s is generated. Then

the outer loop of the algorithm iterates until the stopping conditions

are reached. Within the outer loop, the neighborhood index k is

initialized to 1. Each iteration of the inner loop has three phases:

shaking, local search and acceptance of a new current solution. In the

shaking phase a solution s′ of the k−th neighborhood Nk(s) of s is

chosen, and is then subject to the local search phase which results in
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a local minimum s′′. If f(s′′) < f(s) then we replace s by s′′, and

initialize the neighborhood index k to 1. However, if f(s′′) ≥ f(s)

then we increase the neighborhood index k by one in order to diversify

the search process.

Algorithm 8 Variable neighborhood search (VNS)

define neighborhoods Nk, k = 1, . . . , kmax
s = generate initial solution()
while end condition not reached do

k = 1
while k < kmax do

s′ = choose at random(Nk(s))
s′′ = local search(s′)
if f(s′′) < f(s) then

s = s′′

k = 1
else

k = k + 1
end if

end while
end while

3. Guided local search

Guided local search (GLS) (Voudouris and Tsang, 1999) is a meta-

heuristic that uses a dynamic objective function to escape from lo-

cal minima. The dynamic objective function f ′ is obtained from an

adaptive change of the original objective function f . This change is

based on a set of, in general, m characteristics of a solution: sfi, i =

1, . . . ,m. These features can be used to differentiate solutions. I(i, s)
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tells us if the property sfi is present in the solution s.

I(i, s) =

{
1 : if the feature sfi is in the solution s

0 : otherwise
(3.10)

During the execution of the algorithm, the original function f(·) is

replaced by f ′(·), which is obtained from f(·) by adding the penalty

pi : i = 1, . . . ,m, where λ > 0 is the influence of pi in f ′(·):

f ′(s) = f(s) + λ

m∑
i=1

pi · I(i, s) (3.11)

The algorithm (see Algorithm 9) works as follows. First, an initial

solution s is generated and the vector of penalties p is initialized to

all zeros. Then, at each iteration local search is applied to the current

solution s based on the changed objective function f ′. This results in

a solution s′. Depending on s′ the penalty vector p = (p1, . . . , pm) is

modified in the function update vector penalty(p, s′) calculating the

utility U(i, s′) for each property:

U(i, s′) = I(i, s′) · ci
1 + pi

(3.12)

The elements pi of the penalty vector p may be modified as follows:

pi = pi + 1 (3.13)

However, there are also other ways for the penalty vector update.
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Algorithm 9 Guided local search (GLS)

s = generate initial solution()
p = (0, . . . , 0)
while end condition not found do

s′ = local search(s, f ′)
update penalty vector(p, s′)
s = s′

end while

4. Iterated local search

In each iteration of iterated local search (ILS) (Stützle, 1999) (see

Algorithm 10) the current solution s′, which is a local minimum,

is subject to the perturbation function, which returns a perturbed

solution s′′. Afterwards, solution s′′ is subject to local search which

provides a new local minimum s′′′. Finally, the algorithm must decide

between solutions s′ and s′′′ for a new current solution. The pertur-

bation prevents the algorithm from being trapped in local minima,

whereas the acceptance criterion has an influence on the diversifica-

tion and intensification behavior of the algorithm.

Algorithm 10 Iterated local search (ILS)

s = generate initial solution()
s′ = local search(s)
while end condition not found do

s′′ = perturbation(s′,memory)
s′′′ = local search(s′′)
s′ = apply acceptance criteria(s′′′, s′,memory)

end while
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• The term memory (see Algorithm 10) refers, for example, to the

fact that solutions found during the search process may be stored

and used for different purposes.

• generate initial solution(): this function constructs the initial

solution. The most important requirement is to be fast, such as,

for example, the generation of a random solution or the use of a

simple greedy heuristic.

• perturbation(s′,memory): the perturbation usually tends to be

non-deterministic. The most important feature of the pertur-

bation is the strength, defined as the ”damage” inflicted on the

current solution. This feature can be fixed or variable. In the

first case the distance between s′ and s′′ will always be the same

regardless of the state of the search process. However, a variable

strength is usually more effective and must be experimentally

found, depending on the current state of the search process.

• apply acceptance criteria(s′′′, s′,memory): the two extreme cases

for the acceptance criterion are as follows. We may only accept

s′′′ as new current solution in case it is better than s′, or we may

always accept the new local minimum regardless of its quality.

In between these two cases we have several possibilities to adopt,

for example, acceptance criteria similar to the one used in SA.
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3.1.2.7 Population-Based Methods

The most well known metaheuristics based on populations for the appli-

cation to combinatorial optimization problems are evolutionary algorithms

(EAs), or (evolutionary computation(EC) algorithms), and ant colony op-

timization (ACO) algorithms.

3.1.2.7.1 Evolutionary Algorithms Evolutionary algorithms (EC)

are inspired by nature’s ability to adapt to the environment, that is, the

natural evolution of species. In each iteration the individuals that make

up the current population are subject to operations such as recombination,

which produces the individuals of the next generation (iteration). These

next generation individuals are selected based on their fitness, which is de-

termined by their objective function value.

The family of evolutionary algorithms can be divided into three cat-

egories of independent development: Firstly, evolutionary programming

(EP) was introduced by Fogel (Fogel et al., 1966). Then, evolutionary

strategies (ES) were proposed by Rechenberg (Rechenberg and Eigen, 1973)

and finally genetic algorithms (GA) as proposed by Holland (Holland,

1992).

Algorithm 11 shows the basic structure of EC algorithms. In the algo-

rithm, P denotes the population. New individuals are produced by apply-

ing recombination and mutation operators to the individuals of P . Then

the new population P ′′ is selected from P and from the newly generated

individuals. The main features of the EC algorithm are as follows:
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Algorithm 11 Evolutionary Computation (EC)

P = generate initial population()
evaluate(P )
while end condition not found do

P ′ = recombination(P )
P ′′ = mutation(P ′)
evaluate(P ′′)
P = choose(P ′′, P )

end while

• Representation of the individuals: commonly used solution rep-

resentations are bit-strings or permutations of integers. Note that a

solution representation is generally called genotype whereas the solu-

tion which is represented is called phenotype.

• Process of evolution: in each iteration, individuals are chosen to

constitute the next generation. In some cases the new population

is exclusively composed of new individuals. In other cases, the new

population is chosen as the best set of solutions from the old popula-

tion and the newly generated individuals. Many times the number of

individuals is constant from iteration to iteration.

• Neighborhood function: in the context of EC algorithms, this

concept refers to a function Nεc : I −→ 2R that assigns to each

individual i ∈ I a set of individuals Nεc(i) ⊆ I, which refers to the

set of solutions with which individual i can be recombined.

• Information source: this refers to the input parameters of a recom-

bination operator. In the standard case, a pair of parent individuals
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are recombined to generate one or two new individuals (children).

But it could also be the case that more than two individuals are

recombined to create new individuals.

• Unfeasible solutions: an important aspect of EC algorithms is the

way of dealing with individuals who are not feasible. This problem

is often encountered, because many genetic operators may generate

unfeasible individuals. There are three ways to address this: the first

is to discard the infeasible individuals, the second way is to penalize

infeasible individuals based on decreasing their quality, and the third

way is to try to fix the corresponding individual.

3.1.2.7.2 Ant Colony Optimization In order to solve a given CO

problem, the metaheuristic ant colony optimization (ACO) has first to

derive a finite set C of solution components, which is used to assemble

solutions (Dorigo and Blum, 2005; Blum and Roli, 2003). Then we have

to define a set T of pheromone values, which is generally known as the

pheromone model. Together with a mechanism for constructing solutions,

these values define a probability distribution over the search space. The

pheromone model is the heart of each ACO metaheuristic. Generally, each

solution component from C has an associated pheromone value τi ∈ T , so

that solutions can be generated by assembling components probabilistically.

The ACO in each iteration has two phases:

• Solutions are built on the basis of the pheromone model.
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• The values of the pheromone model are updated depending on the

quality of the solutions built.

The general idea is that the pheromone model can guide the search

process to those parts of the search space containing high quality solu-

tions. This is because the pheromone value update increases the value of

the pheromone components depending on the quality of the corresponding

solutions. A precondition for ACO is that good solutions contain good

solution components.

Algorithm 12 Ant Colony Optimization (ACO)

while end condition not found do
build solution()
update pheromones()
daemon actions()

end while

In the following we give a more detailed description of ACO (see Algo-

rithm 12). ACO is an iterative algorithm which consists of three stages or

procedures build solution(), update pheromones(), and daemon actions().

These procedures are explained in more detail next:

build solution(): (see Algorithm 13) the exploration of the ants is sim-

ulated with a probabilistic constructive heuristic that assembles solution

components from a finite set C = {c1, . . . , cn}. Each component ci of this

set C has an associated pheromone value τi. A complete solution is obtained

as a sequence of solution components s. A solution construction start with

the empty sequence s = 〈〉. At each step, the current sequence s is ex-
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tended by adding a solution component from N(s) ⊆ C \ s. The selection

of component ci ∈ N(s) is done in a probabilistic way: to each component

we assign a probability p(ci | s) which depends on greedy information (η)

and pheromone information:

p(ci | s) =
[τi]

α · [η(ci)]
β∑

cj∈N(s) [ηj ]α · [η(cj)]β
, ∀ci ∈ N(s), (3.14)

Hereby, η is a greedy function which is also known as the heuristic in-

formation. This greedy function assigns to each component ci ⊆ N(s) a

value η(s). Moreover, the positive exponents α and β are parameters that

scale the weight of the heuristic information in relation to the weight of the

pheromone information.

Algorithm 13 build solution()

s = 〈〉
compute(cc(s))
while Cc(s) 6= ∅ do

c = choose(cc(s))
s = add component c to s
compute(cc(s))

end while

update pheromones(): the pheromone updating process has two phases:

the first phase consists of the so-called pheromone evaporation, which de-

creases the value of the pheromones uniformly. This function is necessary

in order to avoid the rapid convergence of the algorithm and explore dif-

ferent regions of the solution space. Second, pheromones are increased in
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each iteration as follows:

τi = (1− ρ) · τi + ρ ·
∑

{s∈Supd|ci∈s}

(ws · F (s)) , (3.15)

for i = 1, . . . , n. Hereby, Supd the set of solutions that are used to up-

date the pheromones, and F (s) is a function F : S 7−→ R+ such that

f(s) < f(s′) −→ F (s) > F (s′), ∀s, s′ ∈ S, and ws ∈ R+ denotes the weight

of the solution s. In most cases, Supd is composed of the best solutions

built in the current iteration.

daemon action(): here we apply those actions that require a global

vision.

3.1.2.8 Hybrid Metaheuristics

The concept of hybrid metaheuristics was developed in recent years, even

if the idea of combining different metaheuristic strategies and algorithms

dates back to the 1980s. Today, we can observe a generalized common

agreement on the advantage of combining components from different search

techniques and the tendency of designing hybrid techniques is widespread

in the fields of operations research and artificial intelligence. The consoli-

dated interest around hybrid metaheuristics is also demonstrated by pub-

lications on classifications, taxonomies and overviews on the topic (Raidl,

2006; Talbi, 2002).

In general, a hybrid metaheuristic is obtained by combining a meta-

heuristic with algorithmic components originating from other techniques
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for optimization (possibly another metaheuristic). We may distinguish

between two categories: the first consists in designing a solver including

components from a metaheuristic into another one, while the second com-

bines metaheuristics with other techniques typical of fields like operations

research and artificial intelligence. A prominent representative of the first

category is the introduction of trajectory methods into population based

techniques or the use of specific local search methods into a more general

trajectory method such as ILS. The second category includes hybrids result-

ing from the combination of metaheuristics with constraint programming

(CP), integer programming (IP), tree-based search methods, data mining

techniques, etc. Both categories contain numerous instances and an ex-

haustive description is out the scope of this Thesis Blum et al. (2011).

3.1.2.8.1 Large Neighbourhood Search The large neighbourhood

search (LNS) was introduced by (Shaw, 1998) and it is an example of hybrid

metaheuristic that we apply in this thesis to solve supply chain problems

(see Section 6). The main idea behind the LNS hybrid metaheuristic is that

the large neighborhood allows the algorithm to explore the solution space

easily, applying a balanced trade-off between intensification and diversifi-

cation (see Section 3.1.2.9).

All LSN algorithms are based on the observation that searching a large

neighbourhood results in finding local optima of high quality, where the

neighborhood is defined implicitly by a destroy and a repair method (see

Algorithm 14). We combined the general framework of LNS with an MILP

solver in order to deal with the particularities of the supply chain problem
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under study. Further details of our approach are provided in section 3.2.1.1.

3.1.2.8.2 Component Exchange Among Metaheuristics One of

the most popular ways of metaheuristic hybridization is the use of trajectory

methods inside population-based methods. Indeed, most of the successful

applications of EC and ACO make use of local search procedures. The

reason for that becomes apparent when analyzing the respective strengths

of trajectory methods and population-based methods.

The power of population-based methods is certainly their capability of

recombining solutions to obtain new ones. In EC algorithms explicit re-

combinations are implemented by one or more recombination operators.

In ACO, for example, recombination is implicit, because new solutions are

generated by using a probability distribution over the search space which is

a function of earlier populations. This enables the search process to perform

a guided sampling of the search space, usually resulting in a coarse grained

exploration. Therefore, these techniques can effectively find promising ar-

eas of the search space.

The strength of trajectory methods is mainly the way in which they ex-

plore a promising region of the search space. In those methods local search

is the driving component. Because of this, promising areas in the search

space are searched in a more structured way than in population-based meth-

ods. Therefore, the danger of being close to good solutions but “missing”

them is not as high as in population-based methods. More formally, local
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search techniques efficiently drive the search toward the attractors, i.e., lo-

cal optima or confined areas of the space in which many local optima are

condensed.

In summary, population-based methods are better in identifying promis-

ing areas in the search space from which trajectory methods can quickly

reach good local minim. Therefore, hybrid metaheuristics that can effec-

tively combine the strengths of both population-based methods and trajec-

tory methods are often very successful.

3.1.2.8.3 Integration of metaheuristics with artificial intelligence

and operations research techniques One of the most prominent re-

search directions is the integration of metaheuristics with more classical

artificial intelligence (AI) and operations research (OR) methods, such as

constraint programming (CP) and branch & bound as well as other tree

search techniques. In the following we outline some of the possible ways of

integration.

Metaheuristics and tree search methods can be sequentially applied or

they can also be interleaved. For instance, a tree search method can be

applied to generate a partial solution which will then be completed by a

metaheuristic approach. Alternatively, metaheuristics can be applied to

improve a solution generated by a tree-search method.

CP techniques can be used to reduce the search space or the neigh-

borhood to be explored by a local search method. In CP, combinatorial
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optimization problems are modelled by means of variables, domains and

constraints, which can be mathematical (as for example in linear program-

ming) or symbolic. Constraints encapsulate well-defined parts of the prob-

lem into sub-problems, thus making it possible to design specialized solving

algorithms for sub-problems that occur frequently. Every constraint is as-

sociated to a filtering algorithm that deletes values from a variable domain

that do not contribute to feasible solutions. Metaheuristics (especially tra-

jectory methods) may use CP to efficiently explore the neighborhood of

the current solution, instead of simply enumerating the neighbors or ran-

domly sampling the neighborhood. A prominent example of such a kind

of integration is Large Neighborhood Search (Shaw, 1998), which is the

technique developed in this thesis in the context of integer programming.

These approaches are effective mainly when the neighborhood to explore

is very large, or when problems (such as many real-world problems) have

additional constraints (usually called side constraints). A detailed overview

of the possible ways of integration of CP and metaheuristics can be found

in (Focacci et al., 2002).

Another possible combination consists in introducing concepts or strate-

gies from either class of algorithms into the other. For example, the con-

cepts of tabu list and aspiration criteria—known from tabu search—can

be used to manage the list of open nodes (i.e., the ones whose child nodes

are not yet explored) in a tree search algorithm. An example of such an

approach can be found in (Della Croce and T’kindt, 2002). Tree-based

search is also successfully integrated into ACO in (Blum, 2005), where

beam search (Ow and Morton, 1988) is used for solution construction.
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Integer and linear programming can be also effectively combined with

metaheuristics. For instance, linear programming is often used either to

solve a sub-problem or to provide dual information to a metaheuristic in

order to select the most promising candidate solution or solution compo-

nent (Ibaraki and Nakamura, 2006; Blum, 2005).

The kinds of integration we shortly mentioned belong to the class of in-

tegrative combinations. The other possible way of integration, called either

collaborative combinations or also cooperative search consists in a loose form

of hybridization, where search is performed by possibly different algorithms

that exchange information about states, models, entire sub-problems, so-

lutions or search space characteristics. Typically, cooperative search algo-

rithms consist of the parallel execution of search algorithms with a varying

level of communication. The algorithms can be different or they can be

instances of the same algorithm working on different models or running

with different parameter settings. The algorithms composing a cooperative

search system can be all approximate, all complete, or a mix of approxi-

mate and complete approaches. This area of research shares many issues

with the design of parallel algorithms and we forward the interested reader

to the specific literature on the subject (Alba, 2005).

3.1.2.9 Intensification and Diversification

As mentioned before, (hybrid) metaheuristics are intelligent strategies for

exploring a search space. Crucial for the success of such an algorithm is

a well-adjusted (dynamic) balance between diversification and intensifica-
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tion. The term diversification generally refers to the exploration of the

search space, while the term intensification refers to the exploitation of the

accumulated search experience. The balance between diversification and

intensification is important because, first, we would like to quickly identify

areas of search space with high quality solutions, and second, we would

like to avoid spending too much time in areas of the search space that are

already well explored or that only consist of poor-quality solutions. The

interested reader is referred to Blum (2004) for further details on this topic.

3.2 Proposed methodology

In this section we describe in detail the methods developed in this The-

sis to tackle the problems described above. We start by introducing a

customized LNS method suitable for complex SCM problems. We then

describe in detail an objective reduction method for MOO problems, with

particular emphasis on those that incorporate several environmental ob-

jectives. We conclude the section describing an enhanced version of the

epsilon constraint method (suitable for MOO problems) that incorporates

objective reduction methods and random sequences.

3.2.1 Large neighborhood search applied to SCM

3.2.1.1 Large neighborhood search

The standard large neighborhood search (see Algorithm 14) was first intro-

duced by (Shaw, 1998), the interested reader can find an excellent review
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in (Gendreau and Potvin, 2010). The LNS belongs to a class of algorithms

known as very large scale neighbourhood search (VLSN) (Ahuja et al., 2002;

Blum C. Puchinger et al., 2011; Talbi, 2002).

In the LNS hybrid metaheuristic the neighborhood is defined implicitly

by a destroy and a repair method. The destroy method removes part of the

current solution while the repair method rebuilds the destroyed solution.

The destroy method typically contains a random element, such that differ-

ent parts of the solution are destroyed in every iteration of the method. The

neighborhood N(x) (see section 3.2.1.2) of a solution x is then defined as

the set of solutions which are reached by first applying the destroy method

and then the repair method. The main idea behind the LNS hybrid meta-

heuristic is that the large neighborhood allows the algorithm to explore the

solution space easily, applying a balanced trade-off between intensification

and diversification.

In what follows, the algorithm pseudo-code (see Algorithm 14) is pre-

sented in more detail. Three variables are kept by this method. The vari-

able x∗ is the best solution obtained during the search, x is the current

solution, and x′ is the promising solution that can be discarded during

the current iteration. The function destroy(.) is the destroy method while

repair(.) is the repair method. More specifically, destroy(x) returns a copy

of x that is partly destroyed. Applying repair(.) to a partly destroyed solu-

tion repairs it, that is, it returns a feasible solution built from the destroyed

one. In line 1 the global best solution is initialized. In line 3 the method

applies the destroy method and then the repair method to obtain a new
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solution x′ . In line 4 the new solution is evaluated in order to determine

whether this solution should become the new current solution or whether

it should be rejected. The acceptance function can be implemented in dif-

ferent ways. Line 7 checks whether the new solution is better than the best

known solution through the objectiveV alue(.) function. The best solution

is updated in line 8 if necessary. In line 10 the termination condition is

checked. Classical termination criteria are the limit on the number of iter-

ations or the time limit.

Algorithm 14 The framework of LNS

Require: x feasible solution
Ensure: x∗ local optima

1: x∗ := x
2: repeat
3: x

′
:= repair(destroy(x))

4: if accept?(x′, x) then
5: x := x′

6: end if
7: if objectiveV alue(x′) < objectiveV alue(x∗) then
8: x∗ := x′

9: end if
10: until stopping conditions

With regard to the acceptance criteria of solution x, there are three

main alternatives: accepting only improved solutions, or applying accep-

tance criteria like in simulated annealing, or accepting randomly.

The destroy method is the most important part of the LNS method.
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The most critical decision when implementing the destroy method is the

degree of destruction: (Shaw, 1998) proposed to gradually increase the de-

gree of destruction (see section 3.2.1.2), while Ropke and Pisinger (2006)

choose the degree of destruction randomly in each iteration by choosing

the degree from a specific range dependent on the instance size. The de-

stroy method must also be chosen such that the entire search space can be

reached, or at least the interesting part of the search space where the global

optimum is expected to be found.

The repair method should be optimal in the sense that the best pos-

sible full solution is constructed from the partial solution. Alernatively,

an heuristic approach can also be employed if one is satisfied with a good

solution constructed from the partial solution.

3.2.1.2 Neighbourhood search space

The LNS decomposes the original problem into a number of smaller sub-

problems that are solved sequentially. Each sub-problem emerges from the

current solution x, which is destroyed thereby giving rise to a partial solu-

tion xp. The partial solution xp defines a neighbourhood of solutions N(xp)

(see Figure C.19) that can be explored rather fast by either tailored (e.g.,

another heuristic or meta-heuristic) or general purpose algorithms (e.g.,

branch and cut MIP solvers).

A neighbourhood is a function N : F → 2F (see Figure C.19) that

assigns to each x′′ ∈ F a set of neighbouring solutions N(xp) ⊆ F , where
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F is the space of all feasible solutions. Hereby, each solution x′′ ∈ N(x)

is obtained by applying an operator to xp, which performs a rather small

change to xp and therefore creates a new solution x′′. Operators or move-

ments are applied in a particular order.

To enable the control of the neighborhood size |N(xp)|, initially, the x

solution is destroyed slightly (n = 1). If during the search (repair(.)) a

number mmax of consecutive attempted has not resulted in an improved

solution, then the destruction process is increased by 1 up to nmax. Hence,

there is an upper limit of nmax, which establishes the size of the neighbor-

hood.

3.2.1.3 Solution Approach

LNS is a general framework that must be adapted to the particularities of

the problem under study. Hence, the definition of the large neighbourhood

is highly dependent on the problem of interest.

In our cases of study a solution is a set of integer decision variables.

The the destroy(.) method consists of fixing an appropriate portion of the

decision variables to the values that they have in the current solution x.

The remaining “free” variables are then the only ones considered by the

optimization algorithm.

The repair(.) method is implemented by an MILP-solver, which finds

an improved solution, which might become the new current solution. A new

large neighborhood is then defined around it, and the process is repeated

in subsequent iterations.
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Obviously, the selection of the decision variables that remain fixed and

the ones that are subject to optimization, respectively, plays a crucial role

in the performance of the algorithm. Particularly, the number of free

variables directly defines the size of the neighbourhood. Too restricted

neighbourhoods—that is, sub-problems—are unlikely to yield improved so-

lutions, while too large neighbourhoods might result in excessive running

times for solving the sub-problems by the MILPsolver. In our case we have

adopted a strategy for dynamically adapting the number of free variables

(see section 3.2.1.2), which are randomly selected.

The description of LNS implementation to deal with problems SC1 (sec-

tion 6.7.1) and SC2 (section 6.7.3) follows:

The algorithm requires the following input data:

• A maximum execution time (tmax)

• A maximum number of iterations (itmax)

• A maximum number of variables to be released (nmax).

• A maximum number of attempts (mmax).

The algorithm works as follows (see Algorithm 15 or 17 and Figures

C.20 and C.21). We generate first the initial solution and calculate the

corresponding objective function value. The initial solution is a feasible

solution with all the variables fixed. In the main loop, while end not equal
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to true, for each trial m, we do the following. First, we randomly choose

a set of n variables V to release. Second, we copy the solution s to s′ and

release the n variables from V . Third, we invoke the solver. The solver

seeks to improve the solution changing the value of the variables released.

The solve invocation gets the run time t employed by the solver, the new

value of the objective function fo and a new solution s′′. If the objective

function value is better than the current value, then we update the best

solution, and the objective function, and assign to variable improved the

value of true. Finally, we increase the number of iterations it, and the

current time ct, until at least one of them exceeds the predefined limits.

When this happens, then the variable end is assigned a value of true and

the algorithm terminates. The detailed procedures used in our algorithm

are described later in the case study section 4.

3.2.2 Objective reduction

Multi-objective optimization (MOO) is widely used in many areas of science

and engineering for simultaneously optimizing several objective functions

subject to some equality and inequality constraints. MOO has gained wider

interest, being nowadays increasingly used in process systems engineering

(PSE) (see section 7.2). Unfortunately, the complexity of MOO grows

rapidly in size with the number of objectives (Deb and Saxena, 2005), re-

quiring prohibitive computational times for medium/large size problems

accounting for several objectives. Dimensionality reduction techniques aim

at overcoming these limitations by identifying redundant objectives that

can be omitted while still preserving the problem structure to the extent
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Algorithm 15 LNS for Supply Chain

Require: model mdl, tmax > 0, itmax > 0, mmax > 0, nmax > 0
Ensure: solution s

1: 〈s, fo〉 := initial solution(mdl);
2: end := FALSE ; it := 0 ; ct := 0
3: repeat
4: n := 1 ; improved := FALSE;
5: repeat
6: m := 1;
7: repeat
8: V := choose(n)
9: s′ := release(s, V );

10: 〈t, fo′′, s′′〉 := MILP (mdl, s′);
11: if better(fo, fo′′) then
12: fo := fo′′

13: s := s′′

14: improved := TRUE
15: end if
16: ct := ct+ t
17: it := it+ 1
18: if ct ≥ tmax OR it ≥ itmax then
19: end := TRUE
20: end if
21: n := n+ 1;
22: until m > mmax AND improved
23: m := m+ 1;
24: until n > nmax AND improved
25: until end
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possible. Objective reduction methods facilitate in turn the post-optimal

analysis of the Pareto solutions, since they lower the number of objectives

to be considered in the decision-making process.

3.2.2.1 Background and Model

In this subsection we extend the definitions presented in section 7.3. We

follow the work by Brockhoff and Zitzler (2006a), in which the reader will

find further details.

Let MO(x) be a multi-objective minimization problem of the following

form:

MO(X) = min
x
{f(x) := (f1(x), ..., fk(x)) : x ∈ X} (3.16)

with k objective functions fi := X −→ R, 1 ≤ i ≤ k, where each

objective function fi maps a solution x ∈ X to a value of the function vector

f := (f1, ..., fk). The next 4 definitions are fundamental to understand how

objective reduction algorithms work:

Definition The weak Pareto dominance relationship is defined as follows:

�F ′ := {(x, y) | x, y ∈ X ∧ ∀fi ∈ F ′ : fi(x) ≤ fi(y)}, where F ′ is a set of

objectives with F ′ ⊆ F := {f1, . . . , fk}.

Therefore:

Definition x weakly dominates y (x �F ′ y) with respect to the objective

set F ′ if (x, y) ∈�F ′ .
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and

Definition x∗ ∈ X is called Pareto optimal if there is no other x ∈ X that

dominates x∗ with respect to the set of all of the objectives.

Finally,

Definition Two solutions x, y are non-dominated or incompatible if nei-

ther weakly dominates the other one.

We present an illustrative example in section 7.3.1 to clarify the con-

cepts presented before.

The notion of conflicts between objectives can be generalized by in-

troducing the concept of δ error (Zitzler et al., 2003). In the following

paragraphs, we formalize this definition in the following paragraphs:

Definition Let F1 and F2 be two objective sets. We define

F1 vδ F2 :⇐⇒�F1⊆�δF2
.

Definition Let F1 and F2 two objective sets. We call

• F1 δ-nonconflicting with F2 iff F1 vδ F2 and F2 vδ F1.

• F1 δ-conflicting with F2 iff not δ-nonconflicting with F2.

• Note that �εF ′ := {(x, y) | x, y ∈ X;∀i ∈ F ′ ⊆ F : fi(x)− ε ≤ fi(y)}.

Definition Let F be a set of objectives and δ ∈ R. An objective set

F ′ ⊆ F is denoted as:
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• δ-minimal wrt F iff:

– F ′ is δ-nonconflicting with F ,

– F ′ is δ′-conflicting with F , ∀ δ′ < δ,

– there exists no F ′′ ⊂ F ′ that is δ-nonconflicting with F .

• δ-minimum wrt F iff:

– F ′ is δ-minimal wrt F ,

– there exists no F ′′ ⊂ F with |F ′′| < |F ′| that is δ-minimal wrt

F.

Definition A set F of objectives is called δ-redundant iff there exists F ′ ⊂
F that is δ-minimal wrt F .

The problem called ”minimum objective subset (MOSS)”, proposed in

Brockhoff and Zitzler (2006c), can be generalized to give rise to the δ-MOSS

problem by allowing an error δ:

Definition Given a set of Pareto solutions with F objectives and δ ∈ R
error, the problem δ-MOSS consists of computing the δ-minimum objective

subset F ′ ⊂ F wrt F .

Definition Given a set of Pareto solutions with F objectives and k ∈ N,

the problem k-MOSS solved by computing the objective subset F ′ ⊂ F

which has size |F ′| ≤ k and is δ-nonconflicting with F with the minimal

possible δ.
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In this work, we present an algorithm to reduce the dimension (i.e.,

number of objectives) of MOO problems. According to the definitions pre-

sented before and given a set of objectives F := (f1, . . . , fk), our goal is

to determine a subset F ′ of F (F ′ ⊆ F ) of given cardinality such that the

error δ of removing the objectives not included in F ′ is δ-minimum. To this

end, we have developed a method based on an MILP approach presented

before by the authors (see section 7.4).

3.2.2.2 Solution strategy for objective reduction

The pivotal idea of our method is to decompose the original full space

MILP for dimensionality reduction into two sub-problems (see section 7.5):

a lower level and an upper level sub-problem in order to solve faster than

the full-space MILP. Our method make use of a set of cutting planes in

order to tighten the relaxation of the upper bounding sub-problem, thereby

expediting its solution. A brief explanation the algorithm is given below

(further details are available in section 7.5 and 3.2.2.5):

The proposed decomposition method (see Figures C.8, C.9 Algorithms

16 and 20) solves in each iteration a lower level problem MORµp and an up-

per level problem until the difference between the lower and upper bounds

provided by these two sub-problems falls within an epsilon tolerance ε pre-

viously defined in the Algorithm 16).

The lower level problem is very similar to the full-space MILP, but only

defined for a subset of size µ of Pareto solutions. Because of the way in

which they are constructed, the lower bounding MILPs contain fewer binary

variables than the original MILP. Furthermore, in each lower level problem
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we add a set of cutting planes obtained from previous sub-problems of size

µ′ , where µ′ < µ. The lower level problem produces a solution entailing a

set of objectives identified that should be removed from the origianl MOO

model. This solution is used by the upper bounding problem to expedite

its solution (see section 3.2.2.3).

The upper bounding problem consists of a customized algorithm that

calculates the delta error faster than the full space MILP by using the

solution provided by the lower level problem (see section 3.2.2.4).

3.2.2.3 Lower level

The lower level problem corresponds to the original MILP that is defined

only for a subset of solutions of small size (defined by variable µ). To ac-

celerate the solution of these sub-problems, we add cutting planes that are

obtained from previous sub-problems already solved (see Equations 7.12-

7.15). The solution obtained from each sub-problem MORµp has the prop-

erty of providing a lower bound on the global optimum of the full space

MILP. This property allows approximating the solution of the full space

MILP without having to solve it explicitly for problems involving a very

large number of solutions and objectives (see proof in Appendix B.1).

3.2.2.4 Upper level

The upper level problem computes the delta error for the combination of

objectives predicted by the lower bounding MILP. In this level we apply a

customized algorithm that calculates the delta error for a given combination
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of objectives. This method is described in detail in Algorithm 17.

3.2.2.5 Algorithmic Steps

The detailed steps of the proposed decomposition strategy are as follows

(see Algorithm 16):

The algorithm requires the following input data:

• A maximum execution time (tmax).

• A maximum number of iterations (itmax).

• A maximum size buffer for storing cuts (λ).

• Initial problem size (µ0).

• An optimal criteria (ε).

1. Set upper bound UB := +∞, lower bound LB := −∞, problem size

µ := µ0 (see Line 2 of Algorithm 16).

2. Outer loop: while end condition is not satisfied (Lines 3 and 16-18,

19-21 and 24-16), otherwise algorithm stops.

(a) Inner loop: while end condition is not satisfied (Lines 5 and

16-18, 19-21 and 24-16) and problem counter is not exceeded

(p ≤ N
µ ), otherwise if end condition is not satisfied set p := 1

(Line 4) and µ := r ∗ µ (Line 23) and Go to step 2.
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(b) Solve lower bounding problem MORµp pointed out by p with

size µ using cutting planes in list CutLB. A lower bound on

the delta value (δLB) and a set of objectives to be removed are

obtained ZO(i) (Line 6).

(c) Solve upper bounding problem fixing binary variables ZO(i) and

obtain an upper bound on the delta value(δUB) (Line 7).

(d) The list of cuts CutLB is updated: A new cut δLB is then inserted

in the corresponding position in the list of cuts CutLB, replacing

a previous cut when the list is filled. The list CutLB is sorted

in descending order of delta values for all of the lower bounding

problems solved in previous iterations (Line 14).

(e) Increase loop control variables: problem counter p, iterations it

and time t (Line 15) and Go to step 2.

(f) The LB and UB are updated: if LB < δLB then LB := δLB

and if UB > δUB then UB := δUB (Lines 16-21).

The method exposed above presents some remarks:

• The lower bounding MILPs can be either solved to global optimality

or stopped when an optimality gap is reached. When the second

option is selected (which expedites the solution of the sub MILPs),

the cutting planes are constructed considering the best possible bound

obtained by the branch and cut algorithm (instead of the delta value

of the best integer solution).

• Note that we have slightly modified the MILP introduced by Guillén-

Gosálbez (2011a) in order to calculate the approximation error in the
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Algorithm 16 Divide & Conquer

Require: λ > 0, N ≥ µ0 > 0, µ0 | N , tmax > 0, itmax > 0, ε > 0
Ensure: : LB is the minimum δ error of the ps.

1: function ComputeDeltaError(mdl : Model, ps : Matrix[N,K] of R,
λ : N, µ0 : N, tmax : N, itmax : N, ε : R)

2: UB :=∞; LB := −∞; µ := µ0;
3: while NOT end do
4: p := 1;
5: while NOT end AND p ≤ N

µ do
6: 〈δLB, ZO(i), t1〉 := SolveMOR(mdl, ps, CutLB, p);
7: 〈δUB, t2〉 := customizedDeltaError(mdl, ps, ZO(i));
8: if UB > δUB then
9: UB := δUB

10: end if
11: if LB < δLB then
12: LB := δLB
13: end if
14: insertSorted(CutLB, 〈δLB, p〉);
15: p := p+ 1; it := it+ 1; t := t+ t1 + t2;
16: if UB − LB ≤ ε then
17: end = TRUE;
18: end if
19: if t > tmax OR it > itmax then
20: end := TRUE;
21: end if
22: end while
23: µ := µ ∗ r;
24: if µ > N then
25: end := TRUE;
26: end if
27: end while
28: end function
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same manner as proposed by Brockhoff and Zitzler (2006a). Hence, to

determine the delta error, we consider any pair of solutions such that

one dominates the other in the reduced space regardless of whether

both solutions are Pareto optimal in such a reduced domain. Figure

C.10 provides an illustrative example on this issue.

3.2.3 Enhanced ε-constraint method

The ε-constraint method divides the domain of each objective transferred

to an auxiliary constraint into equal intervals, and then solves an exponen-

tial number of single-objective problems resulting from making all possible

combinations of objectives values. In general, by choosing p partitions for

each objective, we solve k + (p − 1)k−1 single-objective problems for the

case of k objectives, (note that we first need to optimize in turn each single

objective separately). Hence, the complexity of this method grows expo-

nentially in size with the number of objectives, and can get out of hand

very easily for problems with several objectives (see section 8.1). Besides,

the use of an arbitrary of selecting the required epsilon parameter can lead

to an important waste of computational effort resulting from attempts to

solve instances which are either infeasible or which produce repeated so-

lutions. In this work we introduce an enhanced ε-constraint method that

integrates two main techniques:

1. A rigorous objective reduction technique that eliminates redundant

objectives.

2. Pseudo/quasi-random sequences that allow generating in a more ef-

ficient manner the values of the ε parameters. We explain in detail
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both ingredients of the method in the ensuing sections.

3.2.3.1 Dimensionality reduction

Dimensionality reduction methods allow eliminating redundant objectives

in MOO problems (see Figure C.14). Consider the general MOO model

introduced in sections 3.1.1.6 and 8.2 . The goal of dimensionality reduction

is to find a subset F ′ of objectives functions pertaining to the original set F

with the following property: when we optimize the problem in the reduced

domain of objectives F ′ instead of the original domain F , we will generate

in less CPU time a Pareto front that is very close to the Pareto front

of the original problem. A review about dimensionality reduction can be

found in sections 7.2 and 8.3.1. In this work, we use the dimensionality

reduction method introduced in section 3.2.2 and in chapter 7 to expedite

the performance of the ε-constraint method.

3.2.3.2 Random sequences

During the application of the ε-constrain method, we partition the domain

of each objective into equal intervals. This leads to large number of single-

objective models, most of which might be either unfeasible or produce the

same Pareto solution. To overcome this limitation to the extent possible,

we propose to generate the ε parameters using pseudo/quasi-random se-

quences. Particularly, in this work we focus on the following strategies: the

pseudo-random sequence (uniform distribution), and the Halton and Sobol

sequences (quasi-random).
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The pseudo-random sequence is well known, and therefore we will not

get deeper into its details. The Halton and Sobol sequences (also called

low-discrepancy or quasi-random sequences) are useful in numerical inte-

gration, as well as in simulation and optimization. Surveys of applications

of low-discrepancy sequences can be found in Fox (1986); Bratley and Fox

(1988); Bratley et al. (1992).

These sequences are used, in the context of our work, to generate the

values of the ε parameters in a more effective manner. The goal is to spread

these values as much as possible so they cover a wider region of the search

space, which will eventually lead to a better Pareto front.

The concept of low-discrepancy is introduced in section 8.3.2 and mea-

sures the error in hypervolume estimation (see Figure C.15).

3.2.3.2.1 Halton sequence The Halton sequence, which was intro-

duced by Halton (1960), can be used like a random number generator to

produce points in the interval [0, 1]. More details on this strategy can be

found in section 8.3.2.1.

3.2.3.2.2 Sobol sequence The Sobol sequence is the other low-discrepancy

sequence applied in this work in order to generate random numbers. This

sequence was introduced by Sobol (1967). We give an informal description

in section 8.3.2.2.
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3.2.3.3 Detailed steps of the algorithm

The algorithm proposed is this thesis is presented in detail in section 8.3.2.3

(and see Algorithm 21), and here we just summarize the main aspects:

• The first step is to generate an initial set of Pareto points on the

basis of which we will perform the objective-reduction analysis. To

this end, we can apply a heuristic approach consisting of solving a

set of bi-criteria problems in which we trade-off one objective (when

dealing with environmental problems, we will choose the economic

performance) against each of the remaining criteria (i.e. the individ-

ual environmental indicators). For each of these bi-criteria problems,

the ε-constraint method is executed for a given number of iterations,

producing a set of Pareto solutions. The objective reduction method

is then applied to identify and eliminate redundant objectives (Step

1 of Algorithm 21).

• A set of values of the epsilon parameters is next generated using the

pseudo/quasi-random sequences. The single-objective problems are

finally solved for these parameters values (Step 2 of Algorithm 21).
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Chapter 4

Results

In this section we provide numerical results obtained from the application

of the algorithms described above.

4.1 Large neighborhood search: generalities and

tuning of the algorithm

We apply the LNS algorithm described above to solve a spatially explicit

SCM problem. The goal is to determine the structure of a SC (in this case,

a three-echelon SC: production-storage-market, as shown see Figure C.1).

This network includes a set of production and storage facilities, where prod-

ucts are stored before being delivered to the final customers. The facilities

can be installed in a set of sub-regions that correspond to the potential

locations in which the overall regions of interest is divided. The different

SC problems to be solved are summarized in the following paragraphs:

• Case SC1: single-objective optimization of the hydrogen supply

chain (see section 6.7.1): given are a fixed time horizon and number

of time periods, the set of available production, storage and trans-
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portation technologies, the capacity limitations of plants and storage

facilities, the costs associated with the network operation, the in-

vestment cost, and the interest rate. The final goal is to determine

the SC design, including the number, type, location and capacity of

plants and storage facilities; the number and type of transportation

units and transportation links to be established between the poten-

tial locations; and the associated planning decisions, including the

production rates at the plants, the inventory levels at the storage fa-

cilities and the hydrogen flows between plants and storage facilities;

in order to minimize the total cost.

• Case SC2: single-objective optimization of ethanol supply chains

(see section 6.7.3): given are a fixed time horizon, product prices,

cost parameters for production, storage and transportation of mate-

rials, demand forecast, tax rate, capacity data for plants, storages

and transportation links, fixed capital investment data, interest rate,

storage holding period and landfill tax. The goal is to determine

the configuration of a three-echelon bioethanol supply chain and the

associated planning decisions with the objective of maximizing the

economic performance calculated over the entire useful life of the SC.

Cases SC1 and SC2 (see section 2) are both related with energy applica-

tions that have attracted an increasing interest in recent years. Both cases

are taken as benchmark to test the capabilities of our algorithm. For each

case study, we provide a general definition of the problem, and then discus

some implementation (see sections 6.6 and 3.2.1.1 ) details of the algorithm

before presenting the numerical results (see section 6.7).
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In the following subsections we present numerical results that illustrate

the performance of our solution method compared with the commercial

full space branch and cut code implemented in CPLEX, where the numer-

ical experiments were performed on a PC Intel (R) Core (TM) Quad CPU

Q9550@2.83 GHz and 3 GB of RAM.

We have selected different instances of the models comprising 2, 4, 6,

8, 10, 12, 14 and 16 time periods, respectively. The MILP size is shown in

Table C.1. In Table C.1, we display the number of continuous variables, the

number of binary variables, the number of integer variables, the number of

decision variables (Bin+Int), the total number of variables, and finally, the

number of equations.

Firstly, we tune the algorithm in order to determine tight values of the

input parameters mmax and nmax by solving problems for different values

of nmax and mmax. Recall that nmax is the maximum number of variables

released and mmax the maximum number of attempts. Figures C.2 and

C.4 show the results obtained for 10 runs of the algorithm, where the final

values are highlighted in red color.

We next provide further details on the tuning of the algorithm for the

two case studies solved in this section:

• Case SC1 (section 6.7.1): design of hydrogen SCs for vehicle use

(Sabio et al., 2010).
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The first SC (SC1) design problem has as objective to determine

the configuration of a three-echelon hydrogen network for vehicle use

(production-storage-market) with the goal of minimizing the total

cost (Sabio et al., 2010). More details can be found in sections 6 and

A.1.

The model includes three main types of discrete variables that are

relevant in the implementation of our algorithm (see sections 6 and

A.1):

– Integer variables NPL
igpt: Number of facilities producing hydro-

gen in form i using technology p established in location g at

period t.

– Integer variables NST
gst : Number of storage facilities of type s

opened in location g at period t.

– Binary variables Xgg′lt: Equal 1 if there is a link between g

and g′ using transportation mode l in period t and 0 otherwise.

– initial solution(mdl): The initial solution in this case is gener-

ated by solving the hydrogen model (MH) with variables NPPLigpt,

NST
gst and Xgg′lt fixed to the values obtained from a reduced-space

model that considers a single time period with a demand equal

to the average value over all the time periods (see Algorithm 18).

– choose(n): this function selects n places. In the case of the

hydrogen SC, we consider a set of regions pertaining to Spain,

which are numbered from 1 to 19 (see Figure C.22).
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– release(s, V ): This method returns a copy of the solution s with

some variables released. The variables are released as follows:

For every variable PRigpt or NST
gst or Xgg′lt where g ∈ v impose

the lower bounds

s[PRigpt].lb = LB

s[NST
gst ].lb = LB

s[Xgg′lt].lb = 0

and impose the upper bounds

s[PRigpt].ub = UB

s[NST
gst ].ub = UB

s[Xgg′lt].ub = 1

.

– MILP (mdl, s′): For a model of type mdl MILP, and a solution

s′, this function solves the model. The solver tries to improve

the solution changing the value of the variables released, while

the function itself implements a branch & cut method. We used

a commercial software called CPLEX that implements the state

of the art branch & cut theory.

– better(fo, fo′): Given two objective functions fo y fo′, this func-

tion identifies the best, which is the smallest one, since we are

dealing with a minimization problem.
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• Case SC2 (section 6.7.3): design supply chains for ethanol production

(Kostin et al., 2011a). Application to the sugar cane industry of

Argentina.

The second SC (SC2) example addresses the design of supply chains

for ethanol production. We consider a generic three-echelon SC (production-

storage-market). The model is described in detail in (Kostin et al.,

2011a) and it is summarized in section A.2.

The most relevant variables manipulated by our algorithm are the

following:

– Integer variables NPpgt: Number of factories of technology p

established in region g at period t.

– Integer variables NSsgt: Number of storage facilities s opened

in region g at period t.

– Binary variables Xlgg′t: Equals 1 if there is a link between g

and g′ using transportation mode l at period t and 0 otherwise.

The initial solution for model Ethanol is generated as follows. We

first solve a relaxed MILP in which some integer variables are treated

as continuous ones. The solution provided by this relaxed model is

then rounded to the nearest integer, and an LP with fixed binaries is

finally solved (see Algorithm 19).

In the ethanol SC, the implementation of the methods is as follow:

– initial solution(mdl): we obtain the initial solution by solving
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a relaxed problem where the integer variables are treated as con-

tinuous (see Algorithm 19).

– choose(n): this function selects n places. In the case of ethanol,

they are the provinces of Argentine, which are numbered from 1

to 25 (see Figure C.23).

– release(s, V ): this method returns a copy of the solution s with

some variables released. The variables are released as follows:

For every variable NPgpt or NSsgt or Xlgg′t where g ∈ v impose

the lower bounds

s[NPgpt].lb = LB

s[NSsgt].lb = LB

s[Xlgg′t].lb = 0

and impose the upper bound

s[NPgpt].ub = UB

s[NSsgt].ub = UB

s[Xlgg′t].ub = 1

.

– MILP (mdl, s′): is the same as for the hydrogen case. We used

a commercial software called CPLEX to solve the MILP sub-

problems.

– better(fo, f
′
o): given two objective functions fo y fo′, this func-
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tion determines the best of two. The best solution shows the

greatest objective function values, since we are dealing with a

maximization problem.

4.1.1 Numerical results

4.1.1.1 Case SC1: Design of hydrogen SCs for vehicle use

Case SC1 design problem has as objective to determine the configuration

of a three-echelon hydrogen network for vehicle use (production-storage-

market) with the goal of minimizing the total cost. The complete math-

ematical formulation for this problem can be found in Sabio et al. (2010)

and it is summarized in the Appendix A.1.

The initial solution in this case is generated by solving the model with

its integer variables fixed to the values obtained considering only a single

time period with a demand equal to the average demand over all time pe-

riods (see Algorithm 18 and section 6.7.1).

Figure C.3 shows the evolution of the lower and upper bounds found

by CPLEX along with the values provided by the proposed LNS algorithm.

As can be seen, for low time periods (less than or equal to 6), CPLEX out-

performs the proposed algorithm, finding better solutions in shorter CPU

times. On the contrary, for more than 6 time periods, CPLEX cannot find

any solution, whereas LNS is always able to provide at least one feasible

solution. Note that the variability of the results obtained with our algo-

rithm is rather low.
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In Table C.2, we provide the time at which the best solution calculated

by the LNS has been found, the best objective function value in all the

runs, the average objective function value and CPU time, and the standard

deviation of the objective function and CPU time. Note that in periods 14

and 16 the standard deviation of the CPU time is zero because the algo-

rithm convergence is very fast.

Finally in Table C.3 the optimality gaps of the following solutions are

displayed: the best solution calculated by CPLEX after 12 hours of CPU

time and after the same CPU time provided to the LNS, the best solution

found by the LNS and the average solution calculated by the LNS. Note

that in some instances, CPLEX is unable to provide any bound even after

the aforementioned CPU time.

4.1.1.2 Case SC2: Ethanol supply chain model

Case SC2 addresses the design of supply chains for ethanol production.

We consider a generic three-echelon SC (production-storage-market). The

model is described in detail in Kostin et al. (2011b) and it is summarized

in the Appendix A.2.

The initial solution for model Ethanol is generated as follows. We first

solve a relaxed MILP in which some integer variables are treated as con-

tinuous ones. The solution provided by this relaxed model is then rounded

to the nearest integer, and an LP with fixed binaries is finally solved (see

Algorithm 19).
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Figure C.5 shows that for a small number of time periods (less than 8),

CPLEX outperforms the proposed algorithm. However, for 8 time periods

our algorithm outperforms CPLEX. For more than 8 time periods, none

of the methods performs better than the other one for the whole range of

CPU times. Particularly, LNS tend to behave better for short CPU times,

whereas CPLEX provides better solutions when long CPU times are con-

sidered. The Table C.5 is equivalent to Table C.2, whereas Table C.6 is

equivalent to Table C.3. Finally, for this case we observed that LNS pro-

vides better solutions (i.e., with better optimality gaps) for problems with

larger sizes containing 12, 14 and 16 time periods.

4.2 Objective reduction

We applied our objective reduction algorithm to two MOO problems (see

section 2): the MOO of hydrogen supply chains (see section 7.6.1) and the

MOO of metabolic pathways (se section 7.6.2).

• Case SC3: multi-objective optimization of the hydrogen supply

chain (see section 7.6.1); the SC topology is similar to the one pre-

sented in the previous case, but several additional objectives were

appended to the objective function in order to reformulate the orig-

inal single-objective model into a MOO one. The new formulation

attempts to optimize a set of environmental indicators that are quan-

tified following the life-cycle methodology. Particularly, we use the
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Eco-indicator-99 framework, which considers 15 individual impact

metrics in three damage categories (see sections 7.6.1 and A.1).

• Case ethanol metabolic: multi-objective optimization of the syn-

thesis rate of ethanol in the fermentation of Saccharomyces cerevisiae

(see section 7.6.2). Given a metabolic network (see Figure C.13) de-

scribed by a Genralized Mass Action (GMA) model, the goal is to

determine a set containing the preferred enzymatic profiles that opti-

mize the synthesis rate of a metabolite at minimum cost and minimum

increase in the concentration of intermediate metabolites (Pozo and

Guillén, 2012).

Case SC3 and the model of metabolic pathways, both presented in sec-

tion 2. The case SC3 addresses the design of hydrogen supply chains (a

problem in the area of green engineering), while the second model deals

with the multi-objective optimization of metabolic networks (an important

area in systems biology). In both cases, our method was compared against

the full space MILP model introduced by Guillén-Gosálbez (2011a), and

the exact and greedy methods developed by Brockhoff and Zitzler (2006a).

All the numerical experiments were conducted on a computer Intel(R) Core

(TM) i7-3612QM CPU@ 2.10GHz 2.10GHz and 6GB of memory RAM (see

section 7.6).
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4.2.1 Multi-objective optimization of hydrogen supply chains

for vehicle use

In this example, we dealt with the optimal design of a hydrogen SC for vehi-

cle use in Spain taking into account economic and environmental concerns

(see section 7.6.1). The goal is to determine the optimal network configura-

tion in terms of its economic and environmental performance. The problem

can be formulated as a multi-objective MILP that seeks to minimize the

total cost of the network and its environmental impact. The environmental

impact was calculated through 15 life cycle assessment indicators based on

the Eco-indicator 99 methodology. Further details on this case study can

be found in Sabio et al. (2010).

Our dimensionality reduction method was applied to 300 normalized

Pareto solutions obtained from this model. The normalization procedure

can be found in Appendix B.2. Particularly, we solved different instances

of the dimensionality reduction problem, in each of which the goal was to

eliminate a given number of objectives ranging from 1 to 15. The MILP for

dimensionality reduction contains 4485034 variables and 7445102 equations.

Table C.7 shows that the MILP and our approach solve the problem to

global optimality (i.e., with an optimality gap of 0%), whereas the greedy

algorithm provides no information regarding the gap of the final solution

found. As observed, our method identifies the optimal solution faster than

both the MILP (Guillén-Gosálbez, 2011a) and the exhaustive method pro-

posed by Brockhoff and Zitzler (Brockhoff and Zitzler, 2006a) in almost all
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of the cases solved. Particularly, our method lead to reductions of CPU

time 1 of up to 3 orders of magnitude when compared to the other methods

(i.e., the full space MILP and the exhaustive method, while still guaran-

teeing the global optimality of the solution found).

Although the greedy algorithm is always the fastest approach, it offers

no theoretical guarantee of reaching the global optimum. This high perfor-

mance of the greedy algorithm is mainly due to the simple search strategy

it implements, which starts with a reduced set of one objective, and then

adds progressively the objective that leads to the minimum error, and keeps

on doing this until the desired number of objectives kept is reached. This

strategy performs very well in practice, but offers no guarantee of conver-

gence to the global optimum.

Note also that the exhaustive method is the best algorithm only for

those cases with a small number of objectives kept (i.e., when removing

more than 12). The exhaustive method calculates the error for every pos-

sible combination of objectives kept. When the number of objectives kept

is small, this strategy performs well because the number of potential com-

binations is small. On the contrary, for a large number of potential combi-

nations, the exhaustive algorithm will very likely perform worse than our

method.

4.2.2 Multi-objective optimization of metabolic networks

The use of mathematical optimization to improve biotechnological processes

has the potential to produce significant economical savings, because of the
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reduction in the number of experiments required to find strains with im-

proved features. Moreover, the optimization procedure could provide valu-

able insight into the behavior of biological systems, thereby enhancing our

understanding of cellular metabolism.

Given a metabolic network (see Figure C.13) described by a Generalized

Mass Action (GMA) model, the goal is to determine a set containing the

preferred enzymatic profiles that optimize the synthesis rate of a metabolite

at minimum cost (minimum number of changes in the enzyme activities, i.e.

minimum change in gene expression) and minimum increase in the concen-

tration of intermediate metabolites in the fermentation of Saccharomyces

cerevisiae for ethanol production. We consider a total of 15 objectives (Pozo

and Guillén, 2012).

• Objectives 1 − 8 correspond to changes in the enzyme expressions

that should be minimized so as to make it easier to manipulate ge-

netically the strain of interest and maintain cells homeostasis (en-

zymes K1-K8). K1: Hexose transporters, K2: Glucokinase/Hexoki-

nase, K3: Phosphofructokinase, K4: Trehalose 6-phosphate syntase

complex (+Glycogen production), K5: Glyceraldehyde-3-phosphate

dehydrogenase, K6: GOL (Glycerol production), K7: Pyruvate ky-

nase, K8: ATPase.

• Objective 9 is the total cost (the cost of changing the enzyme activi-

ties).

• Objective 10 is the synthesis rate of ethanol (that should be maxi-
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mized).

• The remaining 5 objectives represent the concentration of metabolites

X1-X5, which should be minimized and be kept as close as possible to

those in the basal state to ensure the cell’s homeostasis. X1: Internal

glucose, X2: Glucose-6- phosphate, X3: Fructose-1,6-diphosphate,

X4: Phosphoenolpyruvate, X5: Adenosine triphosphate (see section

7.6.2).

For this case, we generated 300 normalized Pareto solutions (see Ap-

pendix B.2) using the ε-constraint method (Haimes, Y.Y.; Lasdon, L.S.;

Wismer, 1971). We then solved the dimensionality reduction problem,

where the goal was to minimize the delta error associated with the elimi-

nation of a number of objectives ranging from 1 to 14. This case contains

1421528 variables and 3529528 equations.

Table C.8 shows the results obtained, in which the MILP and our ap-

proach are both solved with an optimality gap of 0%. As observed , our

method identifies the optimal solution much faster than the MILP (Guillén-

Gosálbez, 2011a) and the exhaustive method (Brockhoff and Zitzler, 2006a),

obtaining reductions in the CPU time of approximately 3 orders of magni-

tude when compared to the other exhaustive methods that guarantee global

optimality. The greedy algorithm is the fastest, but recall that it offers no

theoretical guarantee of global optimality. In fact, for this case it provides

solutions that are suboptimal.

The exhaustive method is the best algorithm only for the case with 1
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objective kept (14 objectives removed). Note that the MILP method fails

to provide a solution for those cases with a small number of objectives kept

(i.e, more than 11 objectives removed).

4.3 Enhanced ε-constraint method

We test the capabilities of our method (see Algorithm 21 and section 3.2.3)

through its application to cases SC3 and SC4 (supply chain design prob-

lems), which optimize the economic performance along with a set of life

cycle assessment metrics. We compare in both cases our algorithm with

the standard ε-constraint. These problems are presented in sections 8.4.1

and 8.4.2. Further details can be found in Kostin et al. (2012) and Sabio

et al. (2010) .

Particularly, the following approaches are tested in the case studies (see

Algorithm 22):

• Standard ε-constraint algorithm (equidistant ε values).

• Standard ε-constraint algorithm with pseudo-random ε values.

• Standard ε-constraint algorithm with Halton ε values.

• Standard ε-constraint algorithm with Sobol ε values.

• Enhanced ε-constraint algorithm with equidistant ε values

• Enhanced ε-constraint algorithm with pseudo-random ε values.

• Enhanced ε-constraint algorithm with Halton ε values.
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• Enhanced ε-constraint algorithm with Sobol ε values.

In order to assess the experiments, two different indicators are used to

quantify the quality of the Pareto front produced by each of these methods.

The first is the number of unique Pareto solutions generated in a given time

frame. The second is the quality of the Pareto front. The latter indicator

is quantified using the hypervolume indicator. The hypervolume indicator

is presented in section 8.4.

The multi-objective MILPs were implemented in GAMS, where the ob-

jective reduction algorithm was also coded. The MILPs were solved by

CPLEX 12.5.1.0 on an Ubuntu 13.10 with an Intel i7-4770, 3.4GHz 8-cores

processor, and 16GB of RAM. The Halton and Sobol sequences were im-

plemented in GAMS as an extrinsic function. The objective reduction was

carried out by the algorithm presented in section 3.2.2.

4.3.1 Sustainable planning of ethanol supply chain

• Case SC4: multi-objective optimization of the ethanol supply chain

(see section 8.4.1): the SC topology is similar to the one presented in

the previous case, but it was reformulated into a MOO by appending

to the objective function 5 environmental indicators based on the

Eco-indicator 99 framework (see sections 8.4.1 and A.2).

The first example (SC4) aims at determining the configuration of a

three-echelon bioethanol network and associated planning decisions that

maximize the net present value and minimize the environmental impact

(Kostin et al., 2012).
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Following the comparison process (explained in section 8.4.1), we ob-

tained the results depicted in Figure C.17. As observed, in terms of number

of feasible solutions generated and hypervolume value, the best approach

is our ε-constraint method.

We found that among the pseudo/quasi-random sequences, the one with

better performance is the Halton sequence. Furthermore, numerical results

reveal that objective reduction techniques improve the performance of the

algorithm from the viewpoints of number of feasible solutions generated

and quality of the Pareto front (see section 8.4.1 and Figure C.17).

4.3.2 Sustainable planning of hydrogen supply chains

• Case SC3: multi-objective optimization of the hydrogen supply

chain (see section 7.6.1). The SC topology is similar to the one pre-

sented in the previous case, but it was reformulated into an MOO by

appending to the objective function 15 individual indicators quanti-

fied according to the Eco-indicator 99 framework (see sections 7.6.1

and A.1).

According to our comparison process explained in section 8.4.2, we ob-

tained the results depicted in Figure C.18. As seen, our approach requires

less CPU time to find feasible solutions. The standard ε-constraint (equidis-

tant in the full space) is unable to obtain feasible solutions in 300 iterations,

since for this case we need to solve (N − 1)15 single-objective problems,

most of which are unfeasible. Regarding the hypervolume indicator, we
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observe that our approach is clearly better than the rest, mainly because

it can generate a larger amount of feasible points that cover a wider range

of the search space.

Finally, we found that among the pseudo/quasi-random sequences, the

best one is the Sobol sequence. Hence, objective reduction improves the

performance of the standalone ε-constraint method from the viewpoints of

number of feasible solutions per time unit and quality of the Pareto front

(see section 8.4.2 and Figure C.18).
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Chapter 5

Conclusions & Future work

5.1 Conclusions

From the results presented above, we draw the set of conclusions listed

below:

• An efficient hybrid metaheuristic algorithm has been developed for

spatially explicit SCM models. Our algorithm consists of a hybrid

metaheursitic which combines the metaheuristic LNS with the com-

mercial available branch-and-cut software CPLEX. The capabilities

of the proposed technique were illustrated through its application to

two SCs that focus on energy applications: the design of SCs for sugar

and ethanol production and the strategic planning of infrastructures

for hydrogen production. Our approach proved to obtain near opti-

mal solutions in a fraction of the time spent by the full space MILP.

Furthermore, this method allows identifying feasible solutions even

in those cases in which CPLEX fails to converge. Numerical exam-

ples demonstrate that our method is particularly suited for tackling

large scale problems with high number of time periods and potential

locations in which CPLEX is likely to fail.
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• A novel approach has been proposed for dimensionality reduction in

MOO problems that is based on an MILP formulation introduced

in a previous work by Guillén-Gosálbez (2011b). The method pre-

sented relies on decomposing the original MILP into a set of sub

MILPs whose solution is used to construct cutting planes for solving

the original problem. Numerical results show that our method works

efficiently, outperforming in complex problems with a large number

of objectives and/or solutions the full space MILP and the exhaus-

tive and greedy algorithms for dimensionality reduction introduced

by Brockhoff and Zitzler (2006a). Our tool aims to ameliorate the

numerical difficulties arising in the solution of MOO problems with

a large number of objectives.

• Two improvements have been proposed to be implemented in ε-constraint

method: To incorporate the objective reduction technique and the

pseudo/quasi-random sampling of epsilon parameter. In order to test

the capabilities of our approach we have carried out a comparison

applying our algorithm to the multi-objective optimization of supply

chains considering economic along with environmental concerns. This

comparison took into account the number of unique feasible solutions

and the hypervolume indicator. Numerical experiments reveal that

the best sampling technique is the quasi-random sequence (Halton or

Sobol). In addition, the use of a objective reduction method improves

the performance of the algorithm from the viewpoints of quantity and

quality of Pareto solutions.
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5.2 Future Research

• Future work will concentrate on further exploiting the hybridization

of LNS and CPLEX, and particularly on investigating how to incor-

porate the information obtained after solving the MILP sub-problems

into the original model in order to expedite the solution of the full

space formulation.

• Another key aspect that should be investigated in more detail is the

integration of LNS within MOO algorithms in order to enhance their

numerical performance.

• As third point, we need to further explore how to systematically select

Pareto alternatives according to the decision maker preferences once

the Pareto front has been created. This approach could be eventually

incorporated into the MOO algorithm itself in order to expedite its

solution.
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Chapter 6

Large neighbourhood search applied to the

efficient solution of spatially explicit strate-

gic supply chain management problems (PUB-

LISHED)

6.1 abstract

Supply chain management (SCM) has recently gained wider interest in both

academia and industry given its potential to improve the benefits of a com-

pany through an integrated coordination of all its entities. Optimization

problems in SCM are commonly cast as large scale mixed-integer linear pro-

grams (MILP) that are hard to solve in short CPU times. This limitation is

critical in spatially explicit SCM models since they require a large number

of discrete variables to represent the geographical configuration of the net-

work, which leads to complex MILPs. We present herein a novel solution

method for this type of problems that combines the strengths of standard

branch and cut techniques with the efficiency of large neighbourhood search

(LNS). We illustrate the capabilities of this novel approach through its ap-
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plication to two case studies arising in energy applications: the design of

supply chains (SCs) for bioethanol production and the strategic planning

of hydrogen infrastructures for vehicle use.

6.2 Introduction

Supply chain management (SCM) has gained wider interest in both, academia

and industry, given its potential to increase the benefits through an effi-

cient coordination of the operations of supply, manufacturing and distri-

bution carried out in a network (Puigjaner and Guillén-Gosálbez, 2008;

Naraharisetti et al., 2009). SCM problems can be classified into strategic,

tactical and operational according to the temporal and spatial scales con-

sidered in the analysis (Fox et al., 2000). In this work we will focus on the

strategic level, which deals with decisions that have a long lasting effect on

the firm, such as those related with the establishment of new facilities and

transportation links between the SC entities.

Traditional SCM models focused on optimizing the economic perfor-

mance in the private sector. Recently, novel of SCM formulations have

emerged that provide decision-making support for public policy makers.

Particularly, spatially explicit models have gained wider interest in SCM

during the last years. These formulations are particularly suited for strate-

gic SCM problems in which the SC performance shows a strong geographical

dependence. This modelling framework maps all possible network configu-

rations within the area of study to a set of geographical locations in which

the SC entities (i.e., production and storage facilities) can be established.
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This gives rise to large scale MILP models with three types of variables:

(1) integers representing the number of facilities opened in a given location;

(2) binary variables denoting the existence of transportation links between

two sub-regions; and (3) continuous variables that quantify the materials

flows and inventory levels. Areas of application of spatially explicit models

include the strategic planning of hydrogen SCs for vehicle use (Almansoori

and Shah, 2006; Guillén-Gosálbez et al., 2010; Sabio et al., 2009; LI et al.,

2008; Kim et al., 2008), and the strategic planning of ethanol SCs (Kostin

et al., 2010; Dal-Mas et al., 2011; Giarola et al., 2011; Dunnett et al., 2008;

Guillén-Gosálbez and Grossmann, 2009; Duque et al., 2010; Pinto-Varela

T. Barbosa-Póvoa and Novais, 2011; Frota Neto et al., 2008; Bojarski et al.,

2009; Giarola et al., 2012a).

In spatially explicit SCM models a trade-off exists between modelling

accuracy and computational burden. Realistic models require the definition

of a large number of discrete variables, which gives rise to large scale MILPs

that lead to prohibitive computational times. Decomposition strategies aim

to overcome this computational limitation by exploiting the mathematical

structure of the problem. This work is to introduces a novel hybrid strategy

for the efficient solution of spatially explicit SCM models that combines the

complementary strengths of deterministic branch and cut techniques and

LNS. We illustrate the capabilities of our method through two case studies

that focus on energy applications: the design of hydrogen SCs for vehicle use

and the strategic planning of SCs for bioethanol production. Our method,

as shown by means of numerical examples, produces near optimal solutions

in a fraction of the computational time required by stand-alone determin-
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istic branch and cut techniques applied to the original full space MILP.

Our solution approach can be easily extended to tackle similar engineering

problems with large numbers of discrete decisions, expediting current solu-

tion approaches for a certain class of process systems engineering models.

The remainder of this article is organized as follows. Section 6.3 reviews

the main solution approaches for SCM problems, with emphasis on math-

ematical programming techniques and metaheuristics. In section 6.4, we

formally define the problem of interest, whereas in section 6.5, we present

a generic formulation to solve it. Section 6.6 describes a hybrid approach

for the efficient solution of these models that combines branch and cut with

LNS. The capabilities of our solution strategy are illustrated in section 6.7

through two case studies based on applications found in the energy sector.

The conclusions of the work are finally drawn in section 6.8.

6.3 Literature review: solution methods for SCM

6.3.1 Mathematical programming in SCM

Mathematical programming is probably the prevalent approach for solving

SCM problems. A general review on the application of these techniques in

SCM can be found in the work by Mula et al. (2010) whereas more specific

reviews devoted to process industries have been presented by Grossmann

(2005) and Papageorgiou (2009). Particularly, MILP is nowadays the most

widely used modelling tool for solving strategic SCM problems. MILP

formulations for SCM typically adopt fairly simple linear aggregated repre-
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sentations of capacity. Besides avoiding the numerical difficulties associated

with dealing with nonlinearities, this simplification permits an easy adapta-

tion to a wide range of industrial applications. In these MILPs, continuous

variables represent materials flows and purchases and sales of products,

whereas binary variables model tactical and/or strategic decisions related

to the network configuration, such as selection of technologies, and estab-

lishment of facilities and transportation links (Guillén et al., 2006).

Recently, several spatially explicit SCM models based on MILP have

appeared in the literature. Akgul et al. (2011) presented a spatially ex-

plicit MILP for the optimal design of a biothanol SC with the objective

of minimizing the total cost. The model seeks to optimize the locations

of the bioethanol production plants, the biomass and bioethanol flows be-

tween regions, and the number of transport units required for transfering

these products between several regions of Northern Italy. Dal-Mas et al.

(2011) developed a dynamic spatially explicit MILP modeling framework

devised to optimize the design and planning of biomass-based fuel SCs un-

der uncertainty in market conditions considering different financial criteria.

Mele et al. (2011) presented an MILP to optimize the design of SCs for

the combined production of sugar and ethanol. In this work, the problem

is formulated as a multi-objective MILP that optimizes simultaneously the

economic performance of the network and several LCA metrics (Giarola

et al., 2012a,b; Elghali et al., 2007).

Several strategies have been explored for the efficient solution of the

aforementioned MILPs arising in SCM. These strategies can be roughly
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classified into two major groups: deterministic and stochastic approaches.

The former ones provide a rigorous bound on the global optimal solution

whereas the latter do not. This is typically accomplished at the expense of

larger CPU times, which are required to ensure the quality of the solution

found within the desired tolerance.

In addition, deterministic methods can rely on either solving the full

space MILP using branch and cut techniques, or decomposing it into sub-

problems of smaller size between which an algorithm iterates until a ter-

mination criterion is satisfied. We should clarify that in many cases this

second type of approaches make also use of branch and cut techniques, but

only for solving the sub-problems resulting from decomposing the original

MILP and not for the solution of the original MILP itself.

Several decomposition strategies have been devised that exploit the un-

derlying mathematical structure of MILPs arising in SCM. Bok et al. (2000)

developed a bi-level decomposition algorithm for an MILP model that maxi-

mized the profit of a production-distribution network. This algorithm could

halve the solution time compared to the rigorous branch and cut algorithm

implemented in CPLEX. Guillén-Gosálbez et al. (2010) introduced a bi-

level algorithm for solving the strategic planning of hydrogen SCs for ve-

hicle use. This decomposition method achieved reductions of up to one

order of magnitude in CPU time compared with the full space method (the

whole model without decomposition, relaxation or approximations) while

still providing near optimal solutions (i.e., with less than 1% of optimality

gap).
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Lagrangean decomposition has also been used in the context of strategic

SCM problems. Gupta and Maranas (1999) applied Lagrangean decompo-

sition to solve a planning problem that considered different products and

manufacturing sites. The authors reported a solution with an optimality

gap of 1.6%, reducing in one order of magnitude the CPU time required

by CPLEX 4.0 to find a solution with a gap of 3.2%. You and Grossmann

(2010) introduced a spatial decomposition algorithm based on the integra-

tion of Lagrangean relaxation and piecewise linear approximation to reduce

the computational expense of solving multi-echelon SC design problems un-

der uncertain customer demands. Chen and Pinto (2008) investigated the

application of various Lagrangean-based techniques to planning problems

that allowed them to reduce considerably the computational burden method

while still achieving optimality gaps of less than 2%.

Other solution methods applied to SCM problems have been Benderś

decomposition (Geoffrion and Graves, 1974) and “rolling horizon” algo-

rithms based on the original work by Jain and Palekar (2005). The for-

mer approach has been applied to strategic/tactical SCM problems with

medium-large time horizons (Dogan and Goetschalckx, 1999; Mirhassani

et al., 2000; Paquet et al., 2004; Soner Kara and Onut, 2010; Üster et al.,

2007). In contrast, rolling horizon algorithms have been primarily used for

solving operational SCM problems (Dimitriadis et al., 1997; Elkamel and

Mohindra, 1999; Balasubramanian and Grossmann, 2004). In the recent

past this approach has also been adapted to deal with strategic SCM prob-

lems (Kostin et al., 2011b).
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6.3.2 Metaheuristics and hybrid metaheuristics in SCM

Within the second group of mathematical approaches for SCM, we find

different types of metaheuristics. Sadjadi et al. (2009) proposed a method

to solve the vehicle routing problem (VRP) that combines genetic algo-

rithms with mathematical programming. Chiang et al. (2009) examine

the “open” vehicle routing problem with time windows (OVRPTW) us-

ing a combination of simulation techniques with tabu search. Amodeo

et al. (2009) compared several evolutionary algorithms as applied to SCM

models. Delavar et al. (2010) employed genetic algorithms for solving the

coordinated scheduling of production and air transportation. Warren Liao

and Chang (2010) introduced a method for optimizing inventory levels ac-

cording to future demand forecasts combining Ant Colony Optimization

(ACO) with an exponential shooting technique. Baykasoglu and Gocken

(2010) proposed a direct solution strategy based on ranking methods of

fuzzy numbers and tabu search to solve fuzzy multi-objective aggregate

production planning problems.

Some of these metaheuristics have been implemented in several commer-

cial packages and in general-purpose optimization software (Fu, 2002). For

instance, the metaheuristic called relaxation induced local search (RINS)

(Danna et al., 2005) is currently available in the latest versions of the

commercial MIP solvers: LINDO/LINGO (inc. Lindo Systems, 2012) and

CPLEX (IBM ILOG, 2012).
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In recent years, a new type of algorithms has emerged that combines

deterministic and stochastic methods. The idea of integrating different

metaheuristic strategies and algorithms dates back to the 1980s. Today, we

can observe a generalized common agreement on the advantage of combin-

ing components from different search techniques. As a result, there is an

increasing tendency of designing hybrid techniques in the fields of opera-

tions research and artificial intelligence. The consolidated interest around

hybrid metaheuristics is also demonstrated by publications on classifica-

tions, taxonomies and overviews on the subject (Blum C. Puchinger et al.,

2011).

In general, a hybrid metaheuristic is obtained by combining a meta-

heuristic with algorithmic components originating from other techniques

for optimization (Blum et al., 2008). We may distinguish between two cat-

egories. The first relies on designing a solver including components from a

metaheuristic into another one, a prominent example being called memetic

algorithms (Moscato, 1999). The second combines metaheuristics with

other techniques that pertains to fields such as operations research and ar-

tificial intelligence (van Hoeve and Hooker, 2009; Lodi, 2010). A prominent

representative of the first category is the introduction of trajectory methods

into population based techniques or the use of a specific local search method

into a more general trajectory method such as iterative local search (ILS)

(Stützle, 1999). The second category includes hybrid approaches result-

ing from the combination of metaheuristics with constraint programming

(CP) (Shaw, 1998; Applegate and Cook, 1991), integer programming (IP)

(Mitrovic-Minic and Punnen, 2009; Prandtstetter and Raidl, 2008), tree-
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based search methods and data mining techniques. Both categories contain

numerous instances and an exhaustive description is out of the scope of this

paper. Particularly, as will be discussed later in this article, in this work

we will explore the use of a special type of hybrid method based on the

combined used of LNS and branch and cut MIP solvers for tackling strate-

gic SCM problems.

6.4 Problem statement

As mentioned before, we address the solution of MILPs resulting from the

formulation of spatially explicit models used in SCM. The problem under

study can be formally stated as follows (see Figure C.1). Given are a set of

available production, storage and transportation technologies that can be

adopted in different locations of a region in order to fulfill the demand of

a product of interest. We are also given economic data associated with the

establishment and operation of these facilities. The goal of the analysis is

to determine the optimal SC configuration, including the type of technolo-

gies selected, the capacity expansions over time, and their optimal location,

along with the associated planning decisions that optimize a predefined ob-

jective function.
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6.5 Mathematical Formulation

The strategic planning problem presented above can be posed in mathe-

matical terms as an MILP of the following form:

(M)

min
x,Y,N

f(x, Y,N)

s.t.

h(x, Y,N) = 0

g(x, Y,N) ≤ 0

x ⊂ R, Y ⊂ {0, 1}, N ⊂ Z+

This generic formulation includes three types of variables: continuous

variables x, denoting capacity expansions, production rates, inventory lev-

els and materials flows; discrete variables N , representing the number of

transportation units and production and storage facilities opened in a given

region; and binary variables Y employed for modelling the establishment

of transportation links between two potential locations within the over-

all region of interest. The inequality and equality constraints, denoted by

g(x, Y,N) and h(x, Y,N) respectively, represent mass balances, capacity

limitations and objective function calculations. In this work, without loss

of generality, we address the solution of two spatially explicit SCM models

introduced by the authors in previous works (Mele et al., 2011; Kostin et al.,

2011b; Guillén-Gosálbez et al., 2010; Sabio et al., 2010). These multi-period

models provide the optimal SC structure along with the capacity expan-

sions over time required to follow a given demand pattern.

For the sake of brevity, a detailed description of the model equations

for the two applications addressed in this work (i.e., ethanol and hydrogen
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SCs) can be found in Appendix A. Further details on the complete MILP

formulations can be found in the original works.

6.6 Solution approach

The difficulty in solving model (M) is highly dependent on the number of

integer and binary variables since they are responsible for the combinatorial

complexity of the problem. The number of discrete variables required in-

creases with the number of time periods and sub-regions considered in the

model. The MILP can be solved via standard branch-and-cut techniques

implemented in software packages such as CPLEX. Models accounting for a

large number of time periods and/or sub-regions may lead to branch-and-

bound trees with a prohibitive number of nodes, thus making the MILP

computationally intractable. We next present a hybrid method that com-

bines LNS with standard branch and cut for the efficient solution of (M).

Large neighbourhood search was first introduced by Shaw (1998). In LNS

an initial solution is gradually improved by alternately destroying and re-

pairing it. This hybrid metaheuristic belongs to a class of algorithms known

as Very Large Scale Neighbourhood Search (VLSN) (Ahuja et al., 2002).

This approach combines components from different search techniques, and

has many potential applications in the fields of operations research and arti-

ficial intelligence. Classifications, taxonomies and overviews on the subject

can be found in the work by Blum C. Puchinger et al. (2011); Talbi (2002).

All LSN algorithms are based on the observation that searching a large
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neighbourhood results in finding local optima of high quality. Specifi-

cally, LNS decomposes the original problem into a number of smaller sub-

problems that are solved in a sequential way. Each sub-problem emerges

from a partial solution, in which some decision variables are fixed and oth-

ers released. A partial solution defines a neighbourhood of solutions that

can be explored rather fast by either tailored (e.g., another heuristic or

meta-heuristic) or general purpose algorithms (e.g., branch and cut MIP

solvers). A neighbourhood is a function N : F → 2F that assigns to each

a ∈ F a set of neighbouring solutions N(a) ⊆ F , where F is the space

of all feasible solutions. Hereby, each solution a′ ∈ N(a) is obtained by

applying an operator to a, which performs a rather small change to a and

hereby creates a new solution a′. Operators or movements are applied in a

particular order.

LNS is a general framework that must be adapted to the particularities

of the problem under study. Hence, the definition of the large neighbour-

hood is highly dependent on the problem of interest. In the simplest case,

an appropriate portion of the decision variables is fixed to the values that

they have in the current solution, and only the remaining “free” variables

are considered by the optimization algorithm (typically, a MIP-solver). If

the MIP-solver finds an improved solution, it becomes the new current so-

lution, a new large neighbourhood is defined around it, and the process is

repeated in subsequent iterations. Obviously, the selection of the variables

that remain fixed and the ones that are subject to optimization, respec-

tively, plays a crucial role in the performance of the algorithm. Particu-

larly, the number of free variables directly defines the size of the neighbour-
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hood. Too restricted neighbourhoods—that is, sub-problems—are unlikely

to yield improved solutions, while too large neighbourhoods might result

in excessive running times for solving the sub-problems by the MIP-solver.

Therefore, a strategy for dynamically adapting the number of free variables

is sometimes used. Furthermore, the variables to be optimized might be

selected either purely at random or in a more sophisticated guided way

by considering the variables with largest potential impact on the objective

function and their relatedness. The section that follows describes the main

features of our algorithm.

6.6.1 Algorithm

In this section we will describe the LNS implementation to our particular

problem. The algorithm requires the following input data:

• A maximum execution time of the algorithm (tmax)

• A maximum number of iterations (itmax)

• A maximum number of variables to be released (nmax).

• A maximum number of attempts (mmax).

The algorithm works as follows (see Algorithm 17). We generate first

the initial solution and calculate the corresponding objective function value.

The initial solution is a feasible solution with all the variables fixed. In the

main loop, while end not equal to true, for each trial m, we do the follow-

ing. First, we randomly choose a set of n variables V to release. Second,
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we copy the solution s to s′ and release the n variables from V . Third, we

invoke the solver. The solver seeks to improve the solution changing the

value of the variables released. The solve invocation gets the run time t

employed by the solver, the new value of the objective function fo and a

new solution s′′. If the objective function value is better than the current

value, then we update the best solution, the objective function, and assign

to variable improved the value of true. Finally, we increase the number of

iterations it, and the current time ct, until at least one of them exceeds the

predefined limit. When this happens, then the variable end is assigned a

value of true and the algorithm terminates. The detailed procedures used

in our algorithm are described later in the case study section.

6.7 Case studies

Two SCM problems related to energy applications that have attracted an

increasing interest in recent years are taken as a benchmark to test the ca-

pabilities of our algorithm. For each case study, we first provide a general

definition of the problem, and then discus some implementation details of

the algorithm before presenting the numerical results.

6.7.1 Design of hydrogen SCs for vehicle use

The first SC design problem has as objective to determine the configuration

of a three-echelon hydrogen network for vehicle use (production-storage-

market) with the goal of minimizing the total cost. The structure of the
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Algorithm 17 LNS for Supply Chain

Require: mdl is the model AND tmax > 0 AND itmax >
0 AND mmax > 0 AND nmax > 0

Ensure: s

1: 〈s, fo〉 := initial solution(mdl);
2: end := FALSE ; it := 0 ; ct := 0
3: while NOTend do
4: n := 1 ; improved := FALSE;
5: while n ≤ nmax AND NOT improved do
6: m := 1;
7: while m ≤ mmax AND NOT improved do
8: V := choose random vars to release(n)
9: s′ := release vars(s, V );

10: 〈t, fo′′, s′′〉 := solve(mdl, s′);
11: if better(fo, fo′′) then
12: fo := fo′′

13: s := s′′

14: improved := TRUE
15: end if
16: ct := ct+ t
17: it := it+ 1
18: if ct ≥ tmax OR it ≥ itmax then
19: end := TRUE
20: end if
21: n := n+ 1;
22: end while
23: m := m+ 1;
24: end while
25: end while
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three-echelon SC includes a set of plants, where hydrogen can be produced,

and a set of storage facilities, where hydrogen is stored before being deliv-

ered to final customers. The complete mathematical formulation for this

problem can be found in Sabio et al. (2010) and is summarized in Appendix

A. From now on, we will refer to this model as Hydrogen.

The model includes three main types of discrete variables that are rel-

evant in the implementation of our algorithm (see Appendix A):

• Integer variables NPL
igpt: Number of facilities producing hydrogen in

form i using technology p established in location g at period t.

• Integer variables NST
gst : Number of storage facilities of type s opened

in location g at period t.

• Binary variables Xgg′lt: Equal 1 if there is a link between g and g′

using transportation mode l in period t and 0 otherwise.

The initial solution in this case is generated by solving the hydrogen

model (MH) with variables NPPLigpt, N
ST
gst and Xgg′lt fixed to the values

obtained from a reduced-space model that considers a single time period

with a demand equal to the average demands over all the time periods (see

Algorithm 18).

6.7.2 Numerical results

In the following subsection we present numerical results that illustrate the

performance of our solution method compared with the commercial full
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Algorithm 18 Initial solution (MH)

for all g do

Dg :=
∑T

t Dgt

T
end for
Solve MH considering one period (t = 1) with demand Dg

Solve MH for all the time periods fixing 〈NPL
igpt, N

ST
gst , Xgg′lt〉 :=

〈NPL
igp1, N

ST
gs1 , Xgg′l1〉

space branch and cut code implemented in CPLEX. We have selected dif-

ferent instances of the model comprising 2, 4, 6, 8, 10, 12, 14 and 16 time

periods, respectively. The MILP size is shown in Table C.1. In Table

C.1, we display number of continuous variables, number of binary vari-

ables, number of integer variables, number of decision variables (Bin+Int),

total number of variables, and finally number of equations. The numeri-

cal experiments were performed on a PC Intel (R) Core (TM) Quad CPU

Q9550@2.83 GHz and 3 GB of RAM.

First, we tune the algorithm, solving the problems for different values of

n and m. In this context, remember that n is the maximum number of vari-

ables released and m the maximum number of attempts. Figure C.2 show

the results obtained for 10 runs of the algorithm. This figure is a boxplot, a

convenient way of graphically depicting groups of numerical data through

their five-number summaries: the smallest observation (sample minimum),

lower quartile (Q1), median (Q2), upper quartile (Q3), and largest observa-

tion (sample maximum). A boxplot may also indicate which observations,

if any, might be considered as outliers. That is, in red we show the median

or Q2 quartile of the runs, whereas the blue boxes denote the Q1 and Q3
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quartiles. The final values selected are highlighted in red color.

Once the algorithm is tuned, we compare its performance with the com-

mercial branch and cut code implemented in CPLEX. Figure C.3 shows for

periods t = 6 and t = 12, the evolution of the lower and upper bounds

found by CPLEX as a function of time, along with the values provided by

the proposed LNS algorithm as iterations proceed. The time frame consid-

ered in the analysis is that for which no further improvement is observed

in the LNS. As can be seen, for low time periods (less than or equal to

6), CPLEX outperforms the proposed algorithm, finding better solutions

in shorter CPU times. For more than 6 time periods, CPLEX cannot find

any solution, whereas the LNS is always able to provide at least one solu-

tion. Note that the variability of the results obtained with our algorithm

is rather low.

In Table C.2, we provide for each instance being solved, the time at

which the best solution calculated by the LNS has been found, the best ob-

jective function value in all the runs, the average objective function value

and CPU time, and the standard deviation of the objective function and

CPU time. Note that in periods 14 and 16 the standard deviation of the

CPU time is zero because the algorithm convergence is very fast.

Finally, in Table C.3 displays the optimality gaps of the following solu-

tions: the best solution calculated by CPLEX after 12 hours of CPU time

and after the same CPU time provided to the LNS, the best solution found

by the LNS and the average solution calculated by the LNS. The optimality
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gap is determined from the best solution calculated by CPLEX in 12 hours.

Note that in some instances, CPLEX is unable to provide any bound even

after the aforementioned CPU time.

6.7.3 Ethanol supply chain model

This second example addresses the design of supply chains for ethanol

production. We consider a generic three-echelon SC (production-storage-

market). The model is described in detail in Kostin et al. (2011b) and it

is summarized in Appendix A. We refer to this model as Ethanol. The

model size is shown in Table C.4, which is equivalent to Table C.1.

The most relevant variables manipulated by our algorithm are the fol-

lowing:

• Integer variables NPpgt: Number of factories of technology p es-

tablished in place g at period t.

• Integer variables NSsgt: Number of storage facilities s opened in

location g at period t.

• Binary variables Xlgg′t: Equals 1 if there is a link between g and

g′ using transportation mode l at period t and 0 otherwise.

The initial solution for model Ethanol is generated as follows. We first

solve a relaxed MILP in which some integer variables are treated as con-

tinuos ones. The solution provided by this relaxed model is then rounded

to the nearest integer, and an LP with fixed binaries is finally solved (see
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Algorithm 19).

Algorithm 19 Initial solution (ME)

Solve ME relaxing integer variables.
Fix variables to the nearest integer 〈NTlt, NSsgt, NPpgt, Xlgg′t〉 :=
〈[NTlt], [NSsgt], [NPpgt], [Xlgg′t]〉
Solve ME

The results of the tunning are shown in Figure C.4, where the best

setting is highlighted in red colour. For low time periods (less than 8),

CPLEX outperforms the proposed algorithm. Figure C.5 shows that for

8 time periods our algorithm outperforms CPLEX. For more than 8 time

periods, none of the methods performs better than the other one for the

whole range of CPU times. Particularly, LNS tend to behave better for

short CPU times, whereas CPLEX provides better solutions when long

CPU times are considered. Finally, Table C.5 is equivalent to Table C.2,

whereas Table C.6 is equivalent to Table C.3.

As observed, LNS provides better solutions (i.e., with better optimal-

ity gaps) for problems with large size containing 12, 14 and 16 time periods.

6.8 Conclusions

This work has introduced an efficient hybrid algorithm for spatially explicit

SCM models. Our algorithm combines LNS with standard branch-and-

cut techniques implemented in the commercial MIP solver CPLEX. The

capabilities of the proposed method were illustrated through its application
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to two cases studies that focus on energy applications: the design of SCs for

sugar and ethanol production and the strategic planning of infrastructures

for hydrogen production. Our algorithm was shown to provide near optimal

solutions in a fraction of the time spent by the stand-alone branch and

cut method implemented in CPLEX and applied to the full space MILP.

Furthermore, this method allows identifying feasible solutions even in those

cases in which CPLEX fails to converge. Numerical examples demonstrate

that our method is particularly suited for tackling large scale problems

with high number of time periods and potential locations (and therefore

high number of integer and binary variables) in which CPLEX is likely to

fail. Future work will concentrate on further exploiting the hybridization

of both methods, and particularly on investigating how to incorporate the

information obtained after solving the MILP sub-problems into the original

model in order to expedite the solution of the full space formulation.
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Chapter 7

MILP-based decomposition algorithm for

dimensionality reduction in multi-objective

optimization: Application to environmen-

tal and systems biology problems (PUB-

LISHED)

7.1 abstract

Multi-objective optimization has recently gained wider interest in differ-

ent domains of engineering and science. One major limitation of this ap-

proach is that its complexity grows rapidly as we increase the number of

objectives. This work proposes a computational framework to reduce the

dimensionality of multi-objective optimization (MOO) problems that iden-

tifies and eliminates in a systematic manner redundant criteria from the

mathematical model. The method proposed builds on a mixed-integer lin-

ear programming (MILP) formulation introduced in a previous work by the

authors. We illustrate the capabilities of our approach by its application

123
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to two SC design problems related to biofuels. Numerical examples show

that our method outperforms other existing algorithms for dimensionality

reduction.

7.2 Introduction

Multi-objective optimization (MOO) is widely used in many areas of sci-

ence and engineering for simultaneously optimizing several objective func-

tions subject to some equality and inequality constraints. With the recent

advances in software packages and optimization theory, MOO has gained

wider interest, being nowadays increasingly used in process systems engi-

neering (PSE). MOO has been applied to several fields like the mean-risk

multi-stage capacity investment problem (Claro J., 2012), portfolio selec-

tion (Ustun O., 2012), laser cutting of thin sheets of aluminium alloys

(Sharma A., 2012), power planning problems in power networks (Alonso

M., 2012) and reconfiguration problems in distribution feeders (Niknam

T., Fard A. K., 2012), among others.

Unfortunately, the complexity of MOO grows rapidly in size with the

number of objectives due to two main reasons (see Deb and Saxena (2005),

for further details). First, the solution techniques available for MOO are

rather sensitive to the number of objectives. Second, even if we could gen-

erate a sufficiently large number of Pareto solutions in an efficient manner,

there is still the issue of visualizing and analysing them. To avoid these lim-

itations, most MOO models restrict the optimization task to two or three

objectives (López Jaimes et al., 2009). These approaches either omit ob-
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jectives, or aggregate them into single metrics defined by attaching weights

to them. Both approaches are inadequate, as they change the dominance

structure of the problem in a manner such that they might leave solutions

that are optimal in the original space out of the analysis.

Dimensionality reduction techniques aim at overcoming these limita-

tions by identifying redundant objectives that can be omitted while still

preserving the problem structure to the extent possible. Deb and Saxena

(2005) proposed a method based on principal component analysis for re-

ducing the number of objectives in MOO. Brockhoff and Zitzler (2006c)

introduced the concept of delta error, an approximation error that arises

after removing objectives in a multi-objective optimization problem. These

authors formally stated the following two problems: (1) computing a min-

imum objective subset (MOSS) of a multi-objective problem that does not

exceed a certain approximation error (denoted as the δ-MOSS problem);

and (2) identifying a minimum objective subset of size k with minimum

approximation error (k-MOSS problem). The authors presented both an

exact and an approximation algorithm to tackle these problems and ap-

plied them to several case studies, showing that substantial dimensionality

reductions are possible while still preserving to a large extent the problem

structure.

Based on these ideas, Guillén-Gosálbez (2011a) introduced an approach

for dimensionality reduction based on an MILP that solves both the k-

MOSS and δ-MOSS problems, and which takes advantage of the power-

ful branch-and-cut algorithms available for MILPs. More recently, Thoai
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(2011) proposed an approach to reduce the number of criteria as well as

the dimension of a linear MOO problem using the concept of representa-

tive and extreme criteria, while López Jaimes et al. (2009) introduced two

algorithms for objective reduction in MOO based on a feature selection

technique.

In this paper, we present a new decomposition approach for objective

reduction that is shown from numerical examples to outperform other ex-

isting algorithms Brockhoff and Zitzler (2006c). We apply our algorithm

to MOO problems arising in systems biology and sustainable engineering,

showing how significant reductions in problem size can be attained with-

out changing too much the problem structure. The article is organized

as follows. In section 7.3, we introduce the main concepts and theory

behind objective reduction. We then describe the MILP formulation for

dimensionality reduction proposed in a previous contribution and discuss

its computational limitations (section 7.4). Our computational framework,

which is based on this MILP, follows (section 7.5). The capabilities of our

approach are tested next (section 7.6), while in the final section (section

7.7) the conclusions of the work are drawn.

7.3 Background

In the next subsections, we present the main concepts behind dimensional-

ity reduction in MOO. We follow the work by Brockhoff and Zitzler (2006a),

in which the reader will find further details on this topic.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF EFFICIENT ALGORITHMS FOR SOLVING COMPLEX 
SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMIZATION MODELS.  
Pedro Jesús Copado méndez 
Dipòsit Legal: T 1773-2014 



Chapter 7. MILP-based for dimensionality reduction 127

Let MO(x) be a multi-objective minimization problem of the following

form:

MO(X) = min
x
{f(x) := (f1(x), ..., fk(x)) : x ∈ X} (7.1)

with k objective functions fi := X −→ R, 1 ≤ i ≤ k, where each ob-

jective function fi maps a solution x ∈ X to a value of the function vector

f := (f1, ..., fk).

We consider the weak Pareto dominance relationship defined as follows

: �F ′ := {(x, y) | x, y ∈ X ∧ ∀fi ∈ F ′ : fi(x) ≤ fi(y)}, where F ′ is a set of

objectives with F ′ ⊆ F := {f1, . . . , fk}. The following definitions are used

in our analysis.

Definition x weakly dominates y (x �F ′ y) with respect to the objective

set F ′ if (x, y) ∈�F ′ .

Definition x∗ ∈ X is called Pareto optimal if there is no other x ∈ X that

dominates x∗ with respect to the set of all objectives.

In this work we present an algorithm to reduce the dimension (i.e., num-

ber of objectives) of MO(X). Given a set of objectives F := (f1, . . . , fk),

our goal is to determine a subset F ′ of F (F ′ ⊆ F ) of given cardinality such

that the error of removing the objectives not included in F ′ is minimum.

The main ideas underlying dimensionality reduction are illustrated next by

means of a simple example.
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7.3.1 Illustrative example: objective reduction in environ-

mental problems

Consider the 3 Pareto optimal solutions depicted in Fig. C.6 that minimize

4 different objectives: (f1, f2, f3, f4). This figure is a parallel coordinates

plot (Purshouse and Fleming, 2003) that depicts in the x axis the set of

objectives and in the y axis the normalized value attained by each solution.

Each line in the figure represents a different Pareto solution. As seen, all

of these lines intersect in at least one point, since no solution is dominated

by any of the others.

As observed, two objectives can be omitted (i.e.,objective 2 and 3) with-

out changing the dominance structure. This is because x �f1,f4 y is satisfied

if and only if x �f1,f2,f3,f4 y is satisfied. Further reductions are not possi-

ble without modifying the dominance structure. For instance, if we remove

f1 and f4, then x2 �f2,f3 x1 is satisfied although x2 �f1,f2,f3,f4 x1.

As seen, solution x2 would dominate x1 in the original 4-dimensional

Pareto space {f1, f2, f3, f4} if it showed the same value of f4 than x1. The

difference between the true value of f4 in x2 and that required to dominate

x1 in the original space of objectives can be used as a measure to quan-

tify the change in the dominance structure. For this example, this value,

referred to as δ value by Brockhoff and Zitzler, is 0.9. The delta value

quantifies the change in the dominance structure of a MOO problem that

takes place after removing objectives. Our goal is to determine subsets of

objectives of a MOO model that minimize the δ value. This problem was
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formally defined in a pioneering work by Brockhoff and Zitzler (2006a).

Alternatively, we may also be interested in calculating the minimum num-

ber of objectives for a given allowable approximation error. We will refer

to these problems as δ-MOSS and k-MOSS problems, respectively. The

sections that follow describe in detail our algorithmic approach to tackle

them.

7.4 Mathematical Model

A computational framework is proposed for the efficient solution of the k-

MOSS and δ-MOSS problems. Our approach builds upon the MILP for

dimensionality reduction introduced by Guillén-Gosálbez (2011a). We pro-

vide first an overview of this MILP before presenting our methodology for

dimensionality reduction (further details on this MILP can be found in the

original article).

Given aMOO problem where a set of k objective functions is minimized,

we aim at determining an objective subset of given size (i.e., | F ′ |= j) such

that the dominance structure is preserved with a minimal value of δ. For

this subset F ′, the dominance structure of both, the original and reduced

sets of objectives, will be the same except for an error equal to δ.

We use the following notation. The parameter OF (s, i) denotes the

value of the i objective in solution s. The binary parameter Y P (s′, s, i)

takes the value of 1 if solution s′ is better than solution s in objective i

(i.e., OF (s, i) ≥ OF (s′, i)) and 0 otherwise. The binary variable ZO(i) is 1
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if objective i is removed and 0 otherwise, while the binary variable ZD(s, s′)

takes the value of 1 if solution s′ dominates solution s in the space resulting

from removing the objectives i for which ZO(i) = 1 (reduced Pareto space)

and it is 0 otherwise.

Figure C.7 illustrates an example of this notation. Variable ZD(s, s′)

is determined by means of the following constraints:

(k −
∑
i

ZO(i))− k(1− ZD(s, s′)) ≤
∑
i

Y P (s′, s, i)(1− ZO(i))

≤ (k −
∑
i

ZO(i)) + k(1− ZD(s, s′)) ∀s 6= s′
(7.2)

∑
i

Y P (s′, s, i)(1−ZO(i)) ≤ (k−
∑

ZO(i))−1+kZD(s, s′) ∀s 6= s′ (7.3)

Solution s′ dominates s in the reduced space, if and only if it is better

than s in all of the objectives kept. Therefore, if s′ dominates s, then

Y P (s′, s, i) will be equal to 1 for all of the objectives for which ZO(i) = 0,

and the summation of Y P (s′, s, i) will equal the number of objectives kept

in the reduced space. By adding constraint A.33, we ensure that this will

hold if ZD(s, s′) is 1. On the other hand, if solution s′ does not dominate s,

then there will be objectives in which s will be better than s′ and others in

which the opposite will hold. Consequently, the term Y P (s′, s, i)(1−ZO(i))

will be necessarily lower than the cardinality of the set of objectives kept,

and constraint A.34 will force the binary variable ZD(s, s′) to take the
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value of 0.

Constraint A.35 specifies the total number of objectives to be omitted:

∑
i

(ZO(i)) = OB (7.4)

Note that the approximation error increases with larger values of OB.

The continuous variables δ(s, s′, i) quantifies the error of removing objec-

tives. We define this variable via constraint A.36:

(OF (s′, i)−OF (s, i))ZOD(i, s, s′) = δ(s, s′, i) ∀i, s 6= s′ (7.5)

In which ZOD(i, s, s′) is defined via the following constraints:

ZOD(i, s, s′) ≤ ZO(i) ∀i, s 6= s′ (7.6)

ZOD(i, s, s′) ≤ ZD(s, s′) ∀i, s, s′, s 6= s′ (7.7)

ZOD(i, s, s′) ≥ ZO(i) + ZD(s, s′)− 1 ∀i, s 6= s′ (7.8)

As observed, the value of δ(s, s′, i) is determined only for those solutions

s dominated by at least another solution s′ in the reduced space of objec-

tives, and only for the omitted objectives i. On the other hand, constraint

A.36 forces variable δ(s, s′, i) to take a 0 value when s is Pareto optimal in

the reduced space and i is a non-omitted objective. Note that in the latter

case variable ZOD(i, s, s′) will take a 0 value, making δ(s, s′, i) equal to
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zero.

The model seeks to minimize the maximum error of omitting objectives.

The overall mathematical formulation can therefore be expressed as follows:

(MOR) min max
s,s′,i

δ

s.t. constraints 2, 3 and 4 to 8
(7.9)

We can slightly modify model (MOR) in order to calculate the smallest

possible set of objectives that preserves the original dominance structure

except for an error of δ. This is accomplished by replacing constraint A.35

by Eq. A.41, which imposes an upper bound on the maximum allowable

error.

δ(s, s′, i) ≤ δ (7.10)

The modified model (MOR2) can then be expressed as follows:

(MOR2) max
∑
i

(ZO(i))

s.t. constraints 2,3,5 to 8, and 10
(7.11)

The complexity of these MILPs grows rapidly with the number of solu-

tions and objectives. We present in the section that follows a decomposition

strategy to expedite their solution.
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7.5 Proposed methodology

The pivotal idea of our method is to decompose the original full space MILP

for dimensionality reduction into two sub-problems: a lower bounding and

upper bounding sub-problem, between which our algorithm iterates until a

termination criterion is satisfied. Furthermore, the solution of these sub-

problems, which can be both solved faster than the full-space MILP, are

used to construct a set of cutting planes that are used in order to tighten

the relaxation of the upper bounding sub-problem, thereby expediting its

solution. A brief outline of the algorithm is given below:

7.5.1 Solution Strategy

The proposed decomposition algorithm (see Figures C.8, C.9 and Algo-

rithm 20) solves in each iteration a lower bounding problem (MORµp) and

an upper bounding problem until the difference between the lower and up-

per bounds falls within an epsilon tolerance ε.

The lower bounding problem is very similar to the full-space MILP, but

as oppose to it, it is defined only for a subset of the Pareto solutions. To

this end, we divide the Pareto set of N solutions into subsets containing

µ solutions each, with the property that the intersection of these sub-sets

contains the original set. Because of the way in which they are constructed,

the lower bounding MILPs contain fewer binary variables than the original

MILP, and for this reason their combinatorial complexity and computa-

tional burden is lower. Furthermore, in each lower level problem we add

a set of cutting planes obtained from previous sub-problems of size µ′ ,
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where µ′ < µ. The lower level problem (MORµp) serves two major pur-

poses. First, it yields a lower bound LB on the global optimum of the full

space MILP. Second, it identifies sets of objectives that are likely to yield

a good approximation error after being removed from the original MILP.

This information is used in the upper bounding problem to expedite its

solution.

The upper bounding problem consists of a customized algorithm that

calculates the delta error for a given set of objectives removed. This set of

objectives is given by the lower bounding problem. The upper bounding

problem provides therefore an upper bound UB on the global optimum

of the original MILP. Note that calculating the delta error with the cus-

tomized algorithm is faster than solving the full space MILP. We describe

next each of the levels of the algorithm in more detail.

The algorithmic steps of the inner loop are summarized in section 7.5.4.

The notation used here is as follows. Variable p denotes the lower bounding

problem solved, while µ represents the size of this sub-problem, which is

denoted by variable p (hence, MORµp is the problem of size µ solved in

iteration p). At the end of each algorithmic iteration, the value of variable

µ is kept, while p is increased by one until the value N
µ is attained, thereby

finishing the inner loop. In the outer loop, the value of variable µ is multi-

plied by r, where r ∗ µ represents the size of the lower bounding problems

in the next iterations. When µ is equal to N , then the outer loop finishes

and the algorithm stops giving a solution. At the end of each iteration p,

the list of cuts CutsLB are updated. The list keeps the best cuts derived
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from the lower bounding problems. These cuts are sorted according to the

delta values attained by the corresponding lower bounding problems. Since

the space is limited, we replace the worst cuts be new ones as iterations

proceeds.

7.5.2 Lower Level

As previously mentioned, the lower bounding problem corresponds to the

original MILP that is defined only for a subset of solutions of size µ. To

expedite the solution of these sub-problems, we add cutting planes that are

obtained from previous sub-problems already solved. These cutting planes

take the following form:

aj ≥ bj ∀j ∈ CUTµp (7.12)

Where CUTµp is the set of cuts used in iteration p to solve problems of

size µ, and aj is an auxiliary continuous variable defined as follows:

δ′(s, s′) ≤ δµp , ∀s, s′ ∈ Sµp (7.13)

δ′(s, s′) ≤ aj ∀s, s′ ∈ Sµp ∀j ∈ CUTµp (7.14)

δ(s, s′, i) ≤ δ′(s, s′) ∀s, s′ ∈ Sµp ∀i (7.15)

The solution of each sub-problem MORµp solved at iteration p provides

a lower bound on the global optimum of the full space MILP. This is because
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these sub-problems are defined over a reduced number of solutions (i.e.,

they are relaxations of the full space MILP, and are therefore guaranteed

to produce a rigorous lower bound). This property is quite appealing, as it

allows approximating the solution of the full space MILP without having

to solve it explicitly for problems involving a very large number of solutions

and objectives (see proof in Appendix B.1).

7.5.3 Upper Bounding

The upper bounding level determines the delta error for the combination of

objectives predicted by the lower bounding MILP. In this level we apply a

customized algorithm that calculates the delta error for a given combination

of objectives. This algorithm is described in detail in Algorithm 20.

7.5.4 Algorithmic Steps

The detailed steps of the proposed decomposition strategy as follows:

1. Set problem count p := 1 , upper bound UB := +∞, lower bound

LB := −∞, problem size µ := µ0, and tolerance to zero (ε := 0).

2. Outer loop: while gap condition is satisfied (UB − LB ≥ ε) and

problem size is not exceeded (µ ≤ N), otherwise algorithm stops.

(a) Inner loop: while gap condition is satisfied (UB − LB ≥ ε)

and problem counter is not exceeded (p ≤ N
µ ), otherwise if gap

condition is satisfied (UB − LB ≥ ε) set p := 1 and µ := r ∗ µ
and Go to step 2.
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Algorithm 20 Algorithm to solve the upper level problem, where lines 7
to 12 compute dominance relationship (dominance[i, j]) according to fixed
variables ZO. Lines 13 to 26 compute delta error δ.

Require: PS : Matrix[N,K] of R, ZO : Array[i] of Boolean
Ensure: δ is the maximum delta error of the Pareto set of solutions PS

function customizedDeltaError(PS : Matrix[N,K] of R, ZO :
Array[i] of Boolean) return δ : R

δ, δ′, δ′′ : R
i, j, k : N
dominance : Matrix[N,N ]ofBoolean;
dominance := FALSE;
δ := δ′ := δ′′ := 0;
for i := 1; i ≤ N ; i := i+ 1 do

for j := i+ 1; j ≤ N ; j := j + 1 do
dominance[i, j] :=

∧
ZO[k]

(PS[i, k] ≤ PS[j, k]) and
∧

ZO[k]

(PS[i, k] ≥ PS[j, k]);

dominance[j, i] :=
∧

ZO[k]

(PS[j, k] ≤ PS[i, k]) and
∧

ZO[k]

(PS[j, k] ≥ PS[i, k]);

end for
end for
for i := 1; i ≤ N ; i := i+ 1 do

for j := i+ 1; j ≤ N ; j := j + 1 do
for k := 1; k ≤ K; k := k + 1 do

δ′ := (PS[j, k]− PS[i, k]) ∗ 1dominance[i,j] ∗ 1ZO[k];
δ′′ := (PS[i, k]− PS[j, k]) ∗ 1dominance[j,i] ∗ 1ZO[k];
if δ ≤ δ′ then

δ := δ′;
end if
if δ ≤ δ′′ then

δ := δ′′;
end if

end for
end for

end for
end function
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(b) Solve lower bounding problem MORµp pointed out by p with

size µ using cutting planes in list CutLB. A lower bound on

the delta value (δLB) and a set of objectives to be removed are

obtained (ZO(i)).

(c) Solve upper bounding problem fixing binary variables (ZO(i))

and obtain an upper bound on the delta value(δUB).

(d) List of cuts CutLB is updated: A new cut δLB is then inserted

in the corresponding position in the list of cuts CutLB, replacing

a previous cut when the list is filled. The list CutLB is sorted

in descending order of delta value for all of the lower bounding

problems solved in previous iterations.

(e) The LB and UB are updated: if LB < δLB then LB := δLB

and if UB > δUB then UB := δUB .

(f) Increase problem counter p by one (p := p + 1) and Go to step

2.

Remarks

• As we discussed above, our approach is based on the MILP intro-

duced in a previous work (Guillén-Gosálbez, 2011b), but incorpo-

rates some differentiating issues. On the one hand, we decompose the

origina MILP via a bi-level algorithm, where the lower level solves

sub-problems using the original MILP (that are smaller in size than

the original MILP), and the upper level, which employs the results

obtained of lower level, is computed by a customized algorithm (see

Algorithm 20). On the other hand, our method differs from Guillén-
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Gosálbez (2011b) in the inclusion of cuts, which are implemented

through equations 7.12 to B.1.

• The lower bounding MILPs can be either solved to global optimality

or stopped when an optimality gap is reached. When the second

option is selected (which expedites the solution of the sub MILPs),

the cutting planes are constructed considering the best possible bound

obtained by the branch and cut algorithm (instead of the delta value

of the best integer solution).

• Note that we have slightly modified the MILP introduced by Guillén-

Gosálbez (2011a) in order to calculate the approximation error in the

same manner as proposed by Brockhoff and Zitzler (2006a). Hence, to

determine the delta error, we consider any pair of solutions such that

one dominates the other in the reduced space regardless of whether

both solutions are Pareto optimal in such a reduced domain. Figure

C.10 provides an illustrative example on this issue.

• The Pareto solutions must be normalized before the application of the

algorithm. There are different alternatives to perform this step. The

method followed in this work is described in detail in the Appendix

B.2.

7.6 Computational Results

We illustrate the capabilities of our approach using two case studies, which

have been solved following the steps summarized in Figure C.11. The first

addresses the design of hydrogen supply chains (a problem in the area of
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green engineering), while the second deals with the multi-objective opti-

mization of metabolic networks (taken from the field of systems biology).

In both cases, our method was compared against the full space MILP model

introduced by Guillén-Gosálbez (2011a), and the exact and greedy meth-

ods developed by Brockhoff and Zitzler (2006a). All the numerical ex-

periments were conducted on a computer Intel(R) Core (TM) i7-3612QM

CPU@ 2.10GHz 2.10GHz and 6GB of memory RAM. We describe next in

detail the numerical results obtained in each case.

7.6.1 Design of hydrogen supply chains for vehicle use

This example deals with the optimal design of a hydrogen SC for vehicle

use in Spain taking into account economic and environmental concerns.

The problem, which was first proposed by Almansoori and Shah (2009),

considers different technologies for production, storage and transportation

of hydrogen to be established in a set of geographical regions distributed

all over the country (see Figure C.12). The goal is to determine the op-

timal network configuration in terms of its economic and environmental

performance. The problem can be formulated as a multi-objective MILP

that seeks to minimize the total cost of the network and its environmental

impact. In this formulation, integer variables indicate the number of plants

and storage facilities to be opened in a specific region (i.e., grid), whereas

binary variables are employed to denote the existence of transportation

links connecting the SC entities. The environmental impact was calculated

through 16 life cycle assessment indicators based on the Eco-indicator 99

methodology. Further details on this case study can be found in Sabio et al.

(2010).
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Designing efficient hydrogen supply chains requires the simultaneous

assessment of several alternatives and identification of the best combina-

tion of technologies. These technologies might differ in capital investments,

required feedstocks, production cost (Balat and Kirtay, 2010) and environ-

mental performance (Koroneos et al., 2004; Spath and Mann, 2001; Spath,

P. Mann, 2001). In this context, optimizing exclusively the economical per-

formance may lead to solutions that do not fully exploit the environmental

benefits of moving toward a hydrogen-based energy system De-León Al-

maraz et al. (2013). It is therefore clear that environmental concerns must

be accounted for along with economic criteria in the optimization of hydro-

gen supply chain. Several works have been presented and we review briefly

these. Hugo and Pistikopoulos (2005) developed a model that identifies the

optimal infrastructure taking account different hydrogen pathways in Ger-

many in terms of investment and environmental criteria. This model has

been extended and considered as a basis for other works (Lin et al., 2008;

INGASON et al., 2008; QADRDAN et al., 2008; Guillén-Gosálbez et al.,

2010). Murthy Konda et al. (2011) presented a multi-period optimiza-

tion framework for the design of spatially-explicit and time-evolutionary

hydrogen supply networks. Finally, Sabio et al. (2012) addressed the min-

imization of the total cost along with a set of life cycle assessment (LCA)

impacts. The authors performed as well a post-optimal analysis of the re-

sults using principal component analysis (PCA) in order to facilitate the

interpretation and selection of final alternatives.

We first generated 300 Pareto solutions using the ε-constraint method
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(Haimes, Y.Y.; Lasdon, L.S.; Wismer, 1971), which solves a set of single-

objective problems in which one objective is kept as main objectives while

the others are transferred to auxiliary constraints. These solutions were

normalized (see Appendix B.2) and then used for dimensionality reduction.

Particularly, we solved different instances of the dimensionality reduction

problem, in each of which the goal was to eliminate a given number of ob-

jectives ranging between 1 to 15. The MILP for dimensionality reduction

contains 4485034 variables and 7445102 equations.

Table C.7 shows the numerical results obtained with each of the algo-

rithms (i.e., the full space MILP, the proposed approach, and the two algo-

rithms of Brockhoff and Zitzler (2006a)). Particularly, the table provides

the CPU time, the number of iterations (only for the case of our approach)

and the optimality gap (only for the case of the greedy algorithm). The

MILP and our approach are solved to global optimality (i.e., with an opti-

mality gap of 0%; note that the exhaustive method also provides a solution

with a zero gap). On the other hand, the greedy algorithm provides no

information regarding the gap of the final solution found. However, for this

later algorithm we determine the optimality gap through comparison with

the optimal solution calculated with the other exact approaches.

As observed, our method identifies the optimal solution faster than the

MILP (Guillén-Gosálbez, 2011a) and than the exhaustive method proposed

by Brockhoff and Zitzler (Brockhoff and Zitzler, 2006a) in almost all of the

cases solved. Particularly, we get reductions of CPU time in between 1

to 3 orders of magnitude when compared to the other methods that also
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guarantee global optimality (i.e., the full space MILP and the exhaustive

method). On the other hand, the greedy algorithm is always the fastest ap-

proach. Note that despite yielding the global optimum in all of the cases,

there is indeed no theoretical guarantee of reaching the global optimum

when using this algorithm.

The high performance of the greedy algorithm is due largely to its strat-

egy, which starts with a reduced set of one objective, and then adds to this

set the objective that leads to the minimum error, and keeps on doing this

until the desired number of objectives kept is reached. This strategy per-

forms very well in practice, but offers no guarantee of convergence to the

global optimum.

Note also that the exhaustive method is the best algorithm only for

those cases with a small number of objectives kept (i.e., when removing

more than 12). Recall that the exhaustive method calculates the error for

every possible combination of objectives kept. Hence, when the number of

objectives kept is small, and so is the number of potential combinations, the

algorithm performs well, since it can determine the delta error of each such

combination quite fast. On the contrary, for a large number of potential

combinations, we expect the exhaustive algorithm to perform worst than

our method.

7.6.2 Multi-objective optimization of metabolic networks

This example deals with metabolic optimization problems arising in sys-

tems biology studies (Pozo and Guillén, 2012). Given a metabolic network
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(see Figure C.13) described by a GMA model, the goal is to determine a

set containing the preferred enzymatic profiles that optimize the synthe-

sis rate of a metabolite at minimum cost (minimum number of changes in

these activities, i.e., minimum change in gene expression) and minimum in-

crease in the concentration of intermediate metabolites in the fermentation

of Saccharomyces cerevisiae for ethanol production, considering 15 objec-

tives: Objectives 1 − 8 correspond to changes in the enzyme expressions

that should be minimized so as to make it easier to manipulate genetically

the strain of interest and maintain cells homeostasis (enzymes K1-K8). K1:

Hexose transporters, K2: Glucokinase/Hexokinase, K3: Phosphofructoki-

nase, K4: Trehalose 6-phosphate syntase complex (+Glycogen production),

K5: Glyceraldehyde-3-phosphate dehydrogenase, K6: GOL (Glycerol pro-

duction), K7: Pyruvate kynase, K8: ATPase; objective 9 is the total cost

(the cost of changing the enzyme activities, that should be also minimized);

objective 10 is the synthesis rate of ethanol (that should be maximized); and

the remaining 5 objectives represent the concentration of metabolites X1-

X5 that should all be minimized and be kept as close as possible to those

in the basal state to ensure as well cells homeostasis. X1: Internal glucose,

X2: Glucose-6- phosphate, X3: Fructose-1,6-diphosphate, X4: Phospho-

enolpyruvate, X5: Adenosine triphosphate (Pozo and Guillén, 2012).

The importance of multi-objective optimization in metabolic studies has

been pointed out by several authors Vera et al. (2003); Liu and Wang (2008);

Wu et al. (2011). Pozo and Guillén (2012) presents a strategy of combining

multi-objective global optimization and Pareto filters as a manner to iden-

tify optimal genetic manipulations in metabolic models. de Hijas-Liste et al.
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(2014) apply multi-objective optimization to metabolic pathways. Wang

and Wu (2013) introduces a generalized fuzzy multi-objective optimization

approach for finding optimal enzyme effects on metabolic network systems.

Higuera et al. (2012) apply a multi-objective optimization approach to the

allosteric regulation of enzymes using a model of a metabolic substrate-

cycle.

For this case, we proceeded similarly as in the previous case. We first

generated 300 solutions using the ε-constraint method (Haimes, Y.Y.; Las-

don, L.S.; Wismer, 1971). The solutions were next normalized (see Ap-

pendix B.2), and we then solved the dimensionality reduction problem,

where the goal was to minimize the delta error eliminating a number of

objectives ranging between 1 to 14. This case contains 1421528 variables

and 3529528 equations.

Table C.8 shows the numerical results obtained with each of the al-

gorithms (i.e., the full space MILP, the proposed approach and the two

algorithms of Brockhoff and Zitzler (2006a)). The MILP and our approach

are both solved with an optimality gap of 0%. As observed in this case, our

method identifies the optimal solution much faster than the MILP (Guillén-

Gosálbez, 2011a) and the exhaustive method (Brockhoff and Zitzler, 2006a).

Particularly, we get reductions of CPU time of approximately 3 orders of

magnitude when compared to the other exhaustive methods that guarantee

global optimality. In this case, the greedy algorithm is again always the

fastest approach, but recall that it offers no theoretical guarantee of global

optimality.
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Note the greedy algorithm also shows an exceptional performance in

this case, but as already mentioned before, we should emphasize that: (i)

it offers no guarantee of convergence to the global optimum; (ii) it provides

in this case solutions that are suboptimal.

The exhaustive method is the best algorithm only for the case with 1

objective kept (14 objectives removed). Note that the MILP method fails

to provide a solution for those cases with a small number of objectives kept

(i.e, more than 11 objectives removed).

7.7 Conclusions

This work has proposed a novel approach for reducing the number of ob-

jectives in MOO that is based on an MILP formulation for dimensionality

reduction introduced in a previous work by the authors. The method pre-

sented relies on decomposing the aforementioned MILP formulation into

a set of sub MILPs whose solution is used to construct cutting planes for

the original full space MILP. Numerical results show that the method pro-

posed works efficiently, outperforming in complex problems with a large

number of objectives and/or solutions the stand alone MILP and the ex-

haustive and greedy algorithms for dimensionality reduction introduced by

Brockhoff and Zitzler (2006a). Our tool aims to ameliorate the numerical

difficulties arising in the solution of MOO problems with a large number

of objectives. Future work will focus on integrating this tool within MOO

algorithms in order to enhance their numerical performance.
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Summary

The ε-constraint method is an algorithm widely used to solve multi-objective

optimization (MOO) problems. In this work, we improve this algorithm

through its integration with rigorous dimensionality reduction methods and

pseudo/quasi-random sequences. Numerical examples show that the en-

hanced algorithm outperforms the standard ε-constraint method in terms

of quantity and quality of the Pareto points produced by the algorithm. Our

approach, which is particularly suited for environmental problems, which

typically contain several redundant objectives, allows dealing with complex

MOO models with many objectives.

8.1 Introduction

Multi-objective optimization (MOO) problems arise in all kinds of indus-

trial application areas ranging from production to service industries, en-

tertainment, and many others. The ε-constraint method is probably the

most widely used approach to solve MOOs. This technique, which was

first introduced by Haimes, Y.Y.; Lasdon, L.S.; Wismer (1971), relies on

solving a series of single-objective problems in which one objective is kept

in the objective function while the others are transferred to auxiliary con-

straints that bound them within some allowable levels. Each run of these

single-objective problems generates a different solution that is guaranteed
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UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF EFFICIENT ALGORITHMS FOR SOLVING COMPLEX 
SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMIZATION MODELS.  
Pedro Jesús Copado méndez 
Dipòsit Legal: T 1773-2014 



Chapter 8. Enhancing ε-constraint method 152

to be, at least, weakly Pareto efficient. One of the main advantages of this

algorithm is that it can handle non-convex Pareto sets, as oppose to other

approaches like the weighted-sum method (Zadeh, 1963) or goal program-

ming (Charnes et al., 1955; Charnes and Cooper, 1961; Ijiri, 1965; Charnes

et al., 1967).

Because of its advantageous characteristics, the ε-constraint method has

found many applications in process systems engineering, system biology,

and particularly in problems in which several objectives must be simulta-

neously optimized. These include the optimal design of supply chains (Yue

et al., 2014; Guillén-Gosálbez, 2008), refineries (Gebreslassie et al., 2013;

Zhang et al., 2014; Santibañez Aguilar et al., 2014; Murillo-alvarado and El-

halwagi, 2013), reverse osmosis networks (Du et al., 2014), chemical plants

(Azapagic and Clift, 1999; Buxton and Pistikopoulos, 2004; Kravanja and

Čuček, 2013) and the multi-objective optimization of metabolic networks

(Pozo and Guillén, 2012; Banga, 2008).

The main drawback of the ε-constraint method is that it is very sen-

sitive to the number of objectives. The standard ε-constraint algorithm

keeps one objective as main criterion and divides the domain of the rest

into equal intervals. A set of single-objective problems is then solved for

the limits of those intervals, generating in each run a different Pareto point.

If we choose p partitions for each objective, we will have to solve 2 + p− 1

problems for the case of two objectives, 3 + (p− 1)2 for three, and so on (in

general, k + (p− 1)k−1, being k the number of objectives being optimized,

and p the number of partitions, (note that to determine the limits of the
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intervals, we first need to optimize each single objective separately). Hence,

the complexity of this method grows exponentially in size with the number

of objectives, and can get out of hand very easily for problems with sev-

eral objectives. For this reason, the overwhelming majority of works in the

literature that make use of the ε-constraint method optimize two objective

functions, and three at most, but very seldom more than three.

In this work we introduce an enhanced ε-constraint method that in-

tegrates two main ingredients: (i) a rigorous objective reduction tech-

nique that eliminates redundant objectives from the search (and which

simplifies the generation and analysis of the Pareto solutions); and (ii)

pseudo/quasi-random sequences (i.e., uniform distribution and Sobol and

Halton sequences), which are employed to generate in a more efficient man-

ner the values of the epsilon parameters used in the single-objective prob-

lems solved by the ε-constraint algorithm. We illustrate the capabilities of

our approach through its application to two supply chain design problems,

in which we optimize the economic performance along with a set of envi-

ronmental metrics quantified following LCA principles. Numerical results

show that, compared to the standard ε-constraint method, the enhanced

algorithm provides solutions of better quality in less computational time.

Our approach can find many applications in process systems engineering,

but it is particularly suited for environmental problems in which several

environmental objectives tend to be redundant.

The article is organized as follows. In section 8.2, we introduce the

ε-constraint method. We then describe the improvements proposed in this
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paper (section 8.3). The capabilities of our approach are tested next (sec-

tion 8.4), while in the final section (section 8.5) the conclusions of the work

are drawn.

8.2 Mathematical background

Let us consider the following MOO problem:

min
x
F (x) := (f1(x), ..., fk(x))

s.t. gj(x) ≤ 0, j = 1, 2, . . . ,m,

hl(x) = 0, l = 1, 2, . . . , e,

(8.1)

with k objective functions fi := X −→ R, 1 ≤ i ≤ k, where each objec-

tive function fi maps a solution x ∈ X to a value of the function vector

F (x) := (f1(x), ..., fk(x)), m is the number of inequality constraints, and e

is the number of equality constraints. x ∈ X is a vector of design variables

(also called decision variables).

Definition x weakly dominates y with respect to the objective set F ′(x �F ′
y) if (x, y) ∈�F ′ .

Definition x∗ ∈ X is called Pareto optimal if there is no other x ∈ X that

dominates x∗ with respect to the set of all objectives.

The ε-constraint method relies on solving a set of single-objective aux-

iliary problems in which one objective is kept as main objective while the
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others are transferred to auxiliary constraints that bound them within some

limits. This algorithm solves single-objective problems of the following

form:

min fi(x) where 1 ≤ i ≤ k
...

...
...

...

s.t. fj(x) ≤ εrj where i 6= j 1 ≤ j ≤ k 1 ≤ r ≤ p
x ∈ X where LBj ≤ εrj ≤ UBj

(8.2)

As already mentioned, this method is quite sensitive to the number of

objectives. In general, the number of iterations is equal to k + (p− 1)k−1,

being p the number of partitions defined for every objective and k the

number of objectives. It is therefore clear that the computational burden

grows rapidly (in fact, exponentially) in size with the number of objectives.

In the sections that follow we introduce some improvements that expedite

the application of this algorithm.

8.3 Proposed approach: enhanced ε-constraint method

The ε-constraint algorithm is expedited through the integration of two main

ingredients: a dimensionality reduction method and the use of pseudo/quasi-

random sequences. Each of these techniques is next explained in detail

before providing a detailed description of whole algorithm.
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8.3.1 Dimensionality reduction

Dimensionality reduction methods eliminate redundant objectives in MOO

problems (see Figure C.14). Consider the general MOO model introduced

before. The goal of dimensionality reduction algorithms is to find a subset

F ′ of objectives functions pertaining to the original set F with the following

property: when we optimize the problem in the reduced domain of objec-

tives F ′ (rather than on the original domain F ), we will generate (in less

CPU time) a Pareto front that is very close to the “ true ” Pareto front of

the original problem.

Different dimensionality reduction strategies have been proposed in the

literature. In a seminar work, Deb and Saxena (2005) introduced an algo-

rithm for objective reduction based on principal component analysis. An

alternative algorithm to reduce the number of objectives that is based on

a feature selection technique was introduced by López Jaimes et al. (2008).

Brockhoff and and Zitzler were the first to formally state the problem of

reducing the number of objectives in MOO. Their seminar work introduced

the concept of error of the approximation obtained after removing objec-

tives in a MOO problem, and formally stated the following two problems:

(1) computing a minimum objective subset (MOSS) of a multi-objective

problem that does not exceed a certain approximation error (denoted as

the δ-MOSS problem); and (2) identifying a minimum objective subset of

size k with minimum approximation error (k-MOSS problem). The au-

thors presented also an exact and an approximation algorithm to tackle

these problems that were applied to well-known test case studies, show-

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF EFFICIENT ALGORITHMS FOR SOLVING COMPLEX 
SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMIZATION MODELS.  
Pedro Jesús Copado méndez 
Dipòsit Legal: T 1773-2014 



Chapter 8. Enhancing ε-constraint method 157

ing that substantial dimensionality reductions are possible while keeping

the approximation error low (Brockhoff and Zitzler, 2006b). Bearing these

ideas in mind, Guillén-Gosálbez (2011a) introduced an approach for dimen-

sionality reduction based on a mixed-integer linear program (MILP) that

solves both the k-MOSS and δ-MOSS problems, and takes advantage of the

powerful branch-and-cut algorithms available for MILP (Guillén-Gosálbez,

2011a; Copado-Méndez et al., 2014). More recently, Thoai (2011) proposed

ways to reduce the number of objectives and dimension of a linear multiple

criteria optimization problem using the concept of so-called representative

and extreme criteria (Thoai, 2011).

In this paper, we use the dimensionality reduction method introduced

by Guillén-Gosálbez (2011a) and later enhanced by Copado-Méndez et al.

(2014), to expedite the performance of the ε-constraint method. We next

provide a very simple example of dimensionality reduction. Further details

of this method can be found in the original publication.

Consider the 3 Pareto optimal solutions depicted in Figure C.14 that

minimize 4 different objectives: (f1, f2, f3, f4). This figure is a parallel co-

ordinates plot (Purshouse and Fleming, 2003) that depicts in the x axis the

set of objectives and in the y axis the normalized value attained by each

solution. Each line in the figure represents a different Pareto solution. As

seen, all these lines intersect in at least one point, as no solution is dom-

inated by any of the others. As observed, two objectives can be omitted

(i.e., objective 2 and 3) without changing the dominance structure. This

is because x �f1,f4 y is satisfied if and only if x �f1,f2,f3,f4 y is satis-
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fied. Further reductions are not possible without modifying the dominance

structure. For instance, if we remove f1 and f4, then x1 �f2,f3 x2 is sat-

isfied although x1 �f1,f2,f3,f4 x2. As seen, solution x2 would dominate x1

in the original 4-dimensional Pareto space {f1, f2, f3, f4} if it showed the

same value of f4 than x1. The difference between the true value of f4 in x2

and that required to dominate x1 in the original space of objectives can be

used as a measure to quantify the change in the dominance structure. For

this example, this value, referred to as δ value by Brockhoff and Zitzler, is

1.5. The delta value quantifies the change in the dominance structure of a

MOO problem that takes place after removing objectives. Our goal is to

determine subsets of objectives of a MOO model that minimize the δ value.

This problem was formally defined in a pioneering work by Brockhoff and

Zitzler (2006a). Alternatively, we may also be interested in calculating the

minimum number of objectives for a given allowable approximation error.

We will refer to these problems as δ-MOSS and k-MOSS problems, respec-

tively. The sections that follow describe in detail our algorithmic approach

to tackle them.

8.3.2 Random sequences

Objective-reduction techniques might be unable to eliminate a significant

amount of objectives in cases where few redundant criteria exist. If we

partition the domain of each objective into equal intervals during the ap-

plication of the ε-constrain method, we might still need to solve a very

large number of single-objective models. Moreover, most of them might be

either unfeasible or produce the same Pareto solution. To overcome this

limitation to the extent possible, we propose to generate the epsilon pa-

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF EFFICIENT ALGORITHMS FOR SOLVING COMPLEX 
SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMIZATION MODELS.  
Pedro Jesús Copado méndez 
Dipòsit Legal: T 1773-2014 



Chapter 8. Enhancing ε-constraint method 159

rameters using random sequences. Particularly, in this paper we focus on

the following strategies: a pseudo-random sequence (uniform distribution),

and the Halton and Sobol sequences (quasi-random).

The pseudo-random sequence is well known, and therefore we will not

get deeper into its details. The Halton and Sobol sequences (also called low-

discrepancy or quasi-random sequences) are useful in numerical integration,

as well as in simulation and optimization. Surveys of applications of low-

discrepancy sequences can be found in Fox (1986); Bratley and Fox (1988);

Bratley et al. (1992).

In the context of our work, the aforementioned sequences are used, to

generate the values of the epsilon parameters in a more effective manner.

The goal is to spread these values as much as possible so they cover a wider

region of the search space, which will eventually lead to a better Pareto

front.

The concept of low-discrepancy, which is introduced next, will be used

in the ensuing sections for justifying the use of the sequences:

Definition The discrepancy Dk
p of point set {xi}i=1...p ∈ [0, 1)k is:

Dk
p = sup

E

∣∣∣A(E,p)p − λ(E)
∣∣∣

where E = [0, t1)× . . .× [0, tk), 0 ≤ tj ≤ 1, j = 1, . . . k,

λ(E) is the hypervolume of E,

A(E, p) is the number of xi contained in E,

p is number of points and k is the number of dimensions.

(8.3)

In other words, E is a set of hyperectangles, λ(E) is the hypervolume,
A(E,p)
p is the percentage of points xi, that fall in E, and discrepancy is
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the largest difference between A(E,p)
p and λ(E), that is, the discrepancy

measures the error in the hypervolume estimation (see Figure C.15).

Definition A sequence of p points is considered a low-discrepancy se-

quence, if its Dk(p) is in O
(
log(p)

)k
.

We next describe each of the sequences used in our work in detail.

8.3.2.1 Halton sequence

The Halton sequence, which was introduced by Halton (1960), can be used

like a random number generator to produce points in the interval [0, 1]. The

standard approach shown below is employed in our work. More details on

this strategy can be found in Faure and Lemieux (2010). In one dimension,

the standard Halton sequence is generated by choosing a prime number r

(r ≥ 2), and decomposing an integer g in terms of the base r:

g =
L∑
l=0

bl(g)rl

where 0 ≤ bl(g) ≤ r − 1 and rL ≤ g ≤ rL+1

L is the length of the integer g in base r.

(8.4)

The Halton value ϕ(g) is generated by multiplying each digit in base r

of g in reverse order by the power of r−l−1:

ϕ(g) =
L∑
l=0

bl(g)r−l−1

where 0.b0(g), . . . , bL(g) are digits of g in base r in reverse.

(8.5)
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For instance, suppose we want to obtain the fourth element (g = 4)

of the Halton sequence in base 2. The integer 4 is written in base 2 as

4 = 1∗22 +0∗21 +0∗20. According to equation 8.5, this number in reverse

is 0.001, and then 0 ∗ 2−1 + 0 ∗ 2−2 + 1 ∗ 2−3 = 1
8 . Therefore 1

8 forms the

fourth number of the Halton sequence.

The Halton sequence for k dimensions is generated by the method shown

above, but taking k first prime numbers as base.

8.3.2.2 Sobol sequence

The other low-discrepancy sequence applied here is the Sobol sequence,

which was introduced by Sobol (1967). We provide an informal description

below, while theoretical aspects can be found in Sobol (1967) and Bratley

and Fox (1988). For simplicity, we assume the case of one dimension in

which we aim to generate the g Sobol value ϕ(g), with low discrepancy over

the unit interval. To begin, we need to obtain the set of direction numbers

v1, v2, . . ., where each vi is a binary fraction with this form vi = 0.vi1vi2 . . ..

Alternatively, vi = mi

2i
, where mi is an odd integer, 0 < mi < 2i. The

direction numbers come from a primitive polynomial belonging to the finite

field Z2
1, which presents the form P ≡ xd + a1 ∗ xd−11 + . . .+ ad−1 ∗ x+ 1

where ai ∈ {0, 1} and P is a primitive polynomial of degree d in Z2. The

polynomial coefficients are used to define the recurrence for calculating vi,

1The field Z2 is the finite set {0,1}.
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thus:

vi = a1 ∗ vi−1 ⊕ a2 ∗ vi−2 ⊕ . . .
⊕ad−1 ∗ vi−d+1 ⊕ vi−d ⊕ (

vi−d

2d
), i > d

where⊕ denotes exclusive-or operator.

(8.6)

Therefore, this recurrence can be rewritten in terms of mi

mi = 2 ∗ a1 ∗mi−1 ⊕ 22 ∗ a2 ∗ vi−2 ⊕ . . .
⊕2d−1 ∗ ad−1 ∗mi−d+1 ⊕ 2d ∗ vi−d ⊕ vi−d, i > d

where ⊕ denotes exclusive-or operator.

(8.7)

The g Sobol value ϕ(g) is obtained as follows:

ϕ(g) = ϕ(g − 1)⊕ vc
where c is right-most zero bit of Gray code representation of g

(8.8)

The Gray code is a binary numeral system where each number differs

from the previous one in only one bit, and it can be computed as follows:

g = . . . g3g2g1 := . . . b3b2b1 ⊕ . . . b4b3b2 (8.9)

To start the recurrence, we take ϕ0 = 0. For example, we take as

primitive polynomial

x3 + x+ 1

then

mi = 2 ∗mi−2 ⊕ 8 ∗mi−3 ⊕mi−3
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and take

m1 = 1,m2 = 3 and m3 = 7

. Therefore

m4 = 12⊕ 8⊕ 1 = 1100⊕ 1000⊕ 0001 = 0101 = 5

,

v1 =
1

21
=binary 0.1

v2 =
3

22
=binary 0.11

v3 =
7

23
=binary 0.111

v4 =
5

24
=binary 0.0101

ϕ(g(1)) = ϕ(g(0))⊕ v1 = 0⊕ 0.1 = 0.1 =decimal
1

2
(c = 1 and g(1) = 0001)

ϕ(g(2)) = ϕ(g(1))⊕v2 = 0.1⊕0.11 = 0.01 =decimal
1

4
(c = 2 and g(2) = 0011)

ϕ(g(3)) = ϕ(g(2))⊕v1 = 0.01⊕0.1 = 0.11 =decimal
3

4
(c = 1 and g(3) = 0010)

ϕ(g(4)) = ϕ(g(3))⊕v3 = 0.01⊕0.111 = 0.101 =decimal
5

8
(c = 3 and g(4) = 0110)

And so on . . .

This method can be extended to k dimensions by choosing k different

primitive polynomials, computing their direction numbers and generating

each component ϕ(g, k) separately.
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8.3.2.3 Detailed steps of the algorithm

Having presented the ingredients of our algorithm, we next describe in detail

how it works. The first step is to generate an initial set of Pareto points on

the basis of which we will perform the objective-reduction analysis. To this

end, we apply a heuristic approach consisting of solving a set of bi-criteria

problems in each of which we trade-off one objective (when dealing with

environmental problems, we will choose the economic performance), against

each of the remaining criteria (the environmental indicators) separately. For

each of these bi-criteria problems, the ε-constraint method is run for a given

number of iterations, producing a set of Pareto solutions.

The objective reduction method is then applied to identify and elimi-

nate redundant objectives. A set of values of the epsilon parameters are

next generated using the pseudo-random sequences. The single-objective

problems are finally solved for these parameters values. Hence, the de-

tailed steps of the enhanced ε-constraint algorithm (Algorithm 21) are the

following:
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Algorithm 21 The ε-constraint method presented.

1. Step: Initialization:

(a) Step: Compute bounds for each objective function fj(x), optimizing

each individual objective separately. Store the best LBj and worst

UBj values of each objective function obtained in these optimizations.

(b) Step: Generate an initial solutions set |I| using a bi-criteria algo-

rithm. In each run of the bi-objective algorithm, trade-off one objec-

tive against another. The values of the auxiliary epsilon parameters are

obtained by splitting the auxiliary intervals using a random sequence.

(c) Step: Apply the objective reduction method to the solution set I in

order to identify the set of non-redundant (essential) objectives (F ′),

assuming a maximum allowable approximation error.

2. Step: Apply the enhanced ε-constraint method taking into account only

those objectives contained in F ′ as follows:

(a) Step: Choose an objective fi as main objective and transfer the re-

maining objectives (i.e., fi 6= fj ) to auxiliary constraints, giving rise

to the problem expressed by Equation 8.2.

(b) Step Calculate the epsilon parameter values (εj) for each objective j

by splitting the interval [LBj , UBj ] into N − 1 sub-intervals according

to a pseudo/quasi-random sampling approach

discussed in previous sections.

(c) Step Solve the resulting single-objective problems (see Equation 8.2)

for each set of epsilon parameters a total of N |F
′|−1 problems must be

solved.
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8.3.2.4 Remarks

• The outcome of the objective-reduction algorithm depends on the

number of Pareto points used in the analysis. Experimental results

generated for different problems indicate that a set of Pareto points

of small/medium size suffices to identify the redundant objectives.

Furthermore, our dimensionality reduction algorithm provides similar

results regardless of the region of the search space from where the

Pareto points are taken.

• The general approach presented in this article can be easily extended

to work with other MOO solution algorithms.

• It is possible to define an outer loop in the calculations in order to

repeat the application of the dimensionality reduction algorithm with

more Pareto points as iterations proceed and more Pareto points are

generated in the reduced domain. In practice, we found that such

a loop does not improve significantly the performance of the overall

method, since the algorithm for dimensionality reduction provides

consistent results for a small number of Pareto points.

8.4 Experiments and results

We test the capabilities of our method through its application to two sup-

ply chain design problems, where we optimize the economic performance

against a set of life cycle assessment metrics . These problems are formu-

lated as multi-objective MILPs. Details on them can be found in Kostin

et al. (2012) and Sabio et al. (2010). The case studies that we deal with
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are based on a superstructure of alternatives that accounts for a set of

available technologies to produce, store and deliver ethanol/hydrogen (see

Figure C.16).

Two multi-objective MILPs were derived, one for each example, and

implemented in GAMS, where the objective reduction algorithm was also

coded. The MILPs were solved by CPLEX 12.5.1.0 on an Ubuntu 13.10

with an Intel i7-4770, 3.4GHz 8-cores processor, and 16 GB of RAM. The

Halton and Sobol sequences were implemented in GAMS as an extrinsic

function.

The objective reduction was carried out using the algorithm presented

in a previous publication (see Section 8.3.1). To run this algorithm, we

used a Pareto set generated by solving a set of 2-objective problems in each

of which we applied pseudo-random sequences to generate the values of the

epsilon parameters.
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Particularly, the following approaches are tested in the case studies (see

Algorithm 22):

• Standard ε-constraint (equidistant epsilon values, see Algorithm 24).

• Standard ε-constraint with pseudo-random epsilon values.

• Standard ε-constraint with Halton epsilon values.

• Standard ε-constraint with Sobol epsilon values.

• ε-constraint integrated with objective reduction and using equidistant

epsilon values (see Algorithm 24).

• Our ε-constraint integrated with objective reduction and using pseudo-

random epsilon values.

• Our ε-constraint integrated with objective reduction and using Halton

epsilon values.

• Our ε-constraint integrated with objective reduction and using Sobol

epsilon values.

In order to assess the performance of each algorithm, we used two dif-

ferent indicators that quantify the quality of the Pareto front produced by

them. The first is the number of unique Pareto solutions generated in a

given time. The second is the quality of the Pareto front, which is quanti-

fied using the hypervolume indicator. The detailed calculations performed

in this sections are as follows:

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF EFFICIENT ALGORITHMS FOR SOLVING COMPLEX 
SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMIZATION MODELS.  
Pedro Jesús Copado méndez 
Dipòsit Legal: T 1773-2014 



Chapter 8. Enhancing ε-constraint method 169

Algorithm 22 Procedure comparison

1. Step: Run our ε-constraint described in Algorithm 21 following the next

sampling techniques:

(a) Step: Split epsilon parameters in equidistant sub-intervals (see Algo-

rithm 24).

(b) Step: Split epsilon parameters by means of the pseudo-random

method.

(c) Step: Split epsilon parameters by means of the Halton sequence.

(d) Step: Split epsilon parameters by means of the Sobol sequence.

2. Step: Run the ε-constraint method without eliminating objectives, that is,

taking into account all of the objectives (full space) and applying the same

sampling techniques described above.

3. Step: Carry out a feasibility analysis in order to assess the number of new

(unique) feasible solutions per iteration and per time unit. The analysis is

depicted in Figures C.17a-C.17b and C.18a-C.18b.

4. Step: Compute the hypervolume indicator per time unit (Figures C.17c

and C.18c).

The hypervolume indicator (or S-metric, Lebesgue measure), which was

introduced by Zitzler and Thiele (1998), is regarded as a fair measure of

the quality of a Pareto front, given its convenient mathematical properties

(Zitzler et al., 2003). Formally, the hypervolume indicator is defined as

follows:

Definition Given a set P of Pareto points ρ, the hypervolume indicator is
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the size of the polytope πd where

πd = {x ∈ Rd+ : ρ � x for some ρ ∈ P}

This polytope corresponds to the space which is dominated by at least

one point in the set P . The dominated hypervolume is calculated with

respect to a reference point which is chosen to coincide with the nadir

point.

The calculation of the hypervolume indicator is a particular case of the

Klee’s measure problem, which was formulated by Klee (1977). The best

algorithm currently known for a d-dimensional space is O
(
Nlog(N +N

d
2 )
)
,

and was obtained by Beume (2006). The complexity of computing the hy-

pervolume grows rapidly in size with the number of objectives and Pareto

points. For our experiments, the approximation algorithm developed by

Everson et al. (2002) and implemented in Matlab was used. This approach

uses Monte Carlo sampling to approximate the hypervolume and avoid ex-

pensive calculations. A brief outline of this algorithm is given in Algorithm

23.

8.4.1 Sustainable planning of Ethanol supply chain

The first example determines the configuration of a three-echelon bioethanol

network and associated planning decisions that maximize the net present

value and minimize the environmental impact. Decisions to be made in-

clude the number, location, and capacity of the production plants, and

warehouses to be set up in each region, their capacity expansion policy
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Algorithm 23 Hypervolume algorithm

1. Input: normalized Pareto Set P , α natural

2. Output: hypervolume πd

3. Generate a pseudo-random set D ∈ [0, 1]d with the cardinal of α.

4. Count the number of points x ∈ D, which are dominated by any point
in ρ ∈ P

5. Compute the fraction of points that are dominated.

for a given forecast of prices and demand over the planning horizon, the

transportation links and transportation modes that need to be established

in the network, and the production rates and flows of feedstocks, wastes,

and final products (Kostin et al., 2012).

The mutli-objective optimization problem contains 6 objectives: the

net present value (economic objective and abbreviated as NPV), and the

individual categories considered in the Eco-indicator 99, namely, damage to

human health (DHH), damage to eco-system quality (DTE), and damage

to resources (DTR), along with the global warming potential (GWP), and

the Eco-indicator 99 itself (EI99). Note that the later 5 objectives are used

to quantify the environmental performance. The MILP contains 36, 629

continuous variables, 10, 962 discrete variables, and 48, 588 equations.

Following our approach (see Algorithms 21 and 22), we first gener-

ated 100 Pareto solutions solving bi-criteria problems in the original search

space where 20 of these solutions were generated by the 2-objective model

NPV-DTE, other 20 with the 2-objective model NPV-DTR, and so on. We
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Algorithm 24 Equidistant method

1. Input: itMAX ,alphabet ({a, b, c . . .})

2. Output: Pareto set solutions

3. w ← permutation with repeats randomly chosen from alphabet. (w =
〈ε2, . . . , εk〉)

4. Loop: while number iteration it is less than a maximum number
iterations (it <= itMAX).

(a) Solve ε-constraint using w as epsilon parameters.

(b) w ← next word in lexicographic order.

(c) Go to step 2.

then applied the objective reduction (δ-MOSS) algorithm (Copado-Méndez

et al., 2014), which took 2 seconds to identify 2 redundant objectives con-

sidering an approximation δ equal to 0. We next ran 2, 000 iterations of the

enhanced ε-constraint method and the standard ε-constraint method using

each sampling technique (equidistant, random, Halton and Sobol).

The equidistant sampling was carried out by optimizing the NPV against

the different environmental objectives considering 5 partitions for each ob-

jective, so that the 4 interior partition points of each objective j were la-

belled with alphabet letters aj . . . dj , taking into account each sub-problem

as a permutation with repeats on the letters a . . . d in the lexicographic

order2 (see Algorithm 24). As observed in Algorithm 24, firstly, we choose

a permutation randomly as seed, and then, we solve the next 2, 000 sub-

2lexicographic order is the same as dictionary order.
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problems considering the environmental objectives in the order presented

above.

The results are shown in Figure C.17 and Tables C.9 and C.10. Partic-

ularly, in Table C.9 we show the number of unique feasible solutions, the

total time required to run 2, 000 iterations and the hypervolume obtained

for each approach, whereas in Table C.10 some intermediate results (i.e., at

2, 000 seconds) are shown. Note that the results in both Tables (C.9 and

C.10) have been sorted first by the hypervolume indicator and second by

the number of unique feasible solutions (both in descending order).

As seen in Tables C.9 and C.10 and Figure C.17, the best approach

according to the hypervolume obtained after the 2000 iterations is the ε-

constraint method with Halton sampling run in reduced space (RS), fol-

lowed by the Sobol and random executed in the RS, the Sobol and Halton

run in the full space (FS), the equidistant sampling in the RS, the ran-

dom sampling in the FS and the equidistant sampling in the FS. We next

proceed to analyze in detail these results:

• Full space (FS) against reduced space (RS): the ε-constraint

method run in the RS solves single-objectives problems with less aux-

iliary constraints than the FS approach. This leads to significant CPU

time reductions for each iteration, as seen in Figure C.17 and in the

column “Total Time” of Table C.9. Besides, having less constrained

objectives reduces the chances of having one constraint acting as a

bottle neck. This prevents the algorithm from calculating repeatedly

the same solution over the 2, 000 iterations. This increases signifi-

cantly the amount of new unique feasible solutions, having in turn a

positive effect on the hypervolume indicator. Note that the gain ob-
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tained by reducing objectives in terms of hypervolume is higher than

using only pseudo/quasi-sampling sequences (see Table C.9 and C.10

).

• Equidistant sampling against pseudo/quasi-random sampling:

as we observe in Tables C.9 and C.10 and Figure C.17, the equidis-

tant sampling is the slowest even in the RS. The reason why this

happens is that solvers firstly try to identify solutions involving ac-

tive constraints yet when epsilon parameters of the epsilon constraint

are chosen equidistantly, it is more unlikely that there is no feasible

integer solution satisfying the constraint as an equality (Ehrgott and

Ryan, 2003). In practice, the branch and bound method needs to

perform a large number of iterations until it can guarantee that the

problem is unfeasible. On the other hand, when the epsilon parame-

ters values are chosen by pseudo/quasi-random sequences, it is more

likely that there will be an integer solution satisfying the auxiliary ep-

silon constraint as an equality (Ehrgott and Ryan, 2003). Note that,

even in the FS, the number of unique feasible solutions obtained with

psuedo/quasi-random sequences is greater than that obtained with

the traditional (i.e., equidistant) ε-constraint in RS.

• Pseudo-random against quasi-random sampling: Halton and

Sobol sequences (see Section 8.3.2) choose epsilon parameters values

with random properties but more uniformly distributed than pseudo-

random sequences. This is because the quasi-random sequences choose

the next parameter value taking into account the previous one, and

because of this not all the values have the same probability of occur-
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rence. On the other hand, the epsilon parameters chosen by pseudo-

random sequences are all equiprobable. If we compare the percentage

of epsilon parameters values giving rise to Pareto frontier points, we

will see that it is higher for quasi-random sampling than for pseudo-

random sampling, as we can observe in Tables C.9 and C.10 where

quasi-random sampling obtained more feasible solutions.

• Number of feasible solutions against hypervolume indicator:

the enhanced ε-constraint method obtained more unique feasible so-

lutions, yielding in turn a Pareto front with a better hypervolume

value (see Tables C.9 and C.10 and Figure C.17). Note however, that

the hypervolume value does not depend exclusively on the number

of Pareto solutions, but rather on their quality (i.e., the amount of

space of the space that they cover). This is reflected in Tables C.9

and C.10, where the Sobol RS method shows more unique solutions

than the Halton RS, yet the Halton RS yields a better hypervolume

(Tables C.9 and C.10).

In summary, we find that in this case study, both strategies (i.e., re-

ducing objectives and using pseudo-random sampling) improve the perfor-

mance of the algorithm from the viewpoints of number of feasible solutions

generated and quality of the Pareto front.

8.4.2 Sustainable planning of Hydrogen supply chains

This example deals with the optimal design of a hydrogen SC for vehicle

use in Spain taking into account economic and environmental concerns.

The problem, which was first proposed by Almansoori and Shah (2009),
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considers different technologies for production, storage and transportation

of hydrogen to be established in a set of geographical regions distributed

all over the country. The goal is to determine the optimal network config-

uration in terms of its economic and environmental performance.

The problem can be formulated as a multi-objective MILP that seeks to

minimize the total cost of the network and its environmental impact. In this

formulation, integer variables indicate the number of plants and storage fa-

cilities to be opened in a specific region (i.e., grid), whereas binary variables

are employed to denote the existence of transportation links connecting the

SC entities. The environmental impact was quantified via 15 life cycle as-

sessment indicators based on the Eco-indicator 99 methodology (Hischier

et al., 2010). The objectives considered are taking account in this order:

the cost, the acidification potencial, the climate change, the eutrophica-

tion potencial, the freshwater aquatic ecotoxicity, the freshwater sediment

ecotoxicity, the human toxicity, the ionising radiation the land use, the mal-

odours air, the marine aquatic ecotoxicity, the marine sediment ecotoxicity,

the photochemical oxidation, the resources, the stratospheric ozone deple-

tion and the terrestrial ecotoxicity (Hischier et al., 2010). Further details on

this case study can be found in a previous publication (Sabio et al., 2010).

The MILP contains 11, 804 continuous variables, 7, 304 discrete variables

and 29, 495 equations.

We proceeded in the same manner as before (see Algorithms 21 and

22 and 24). That is, we first generated 100 Pareto solutions using a bi-

criteria algorithm in the original search space. A total of 15 2-objective

models were constructed by combining the cost and each environmental

objective. With the aim of obtaining a representative approximation of the
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Pareto frontier, each solution was generated choosing randomly a different

2-objective model until obtaining 100 solutions. The equidistant sampling

was carried out by optimizing the cost against environmental objectives

considering the 3 partitions for each objective. The 2 interior partition

points of each objective j are labeled as point aj and point bj . According

to the Algorithm 24, an initial word is chosen as seed, then from this seed

(i.e abb . . . ab), then we solve the next 300 sub-problems in lexicographic or-

der considering the environmental objectives in the order presented above.

In this case study we only ran 500 iterations in contrast to the 2, 000 itera-

tions we run in the previous case, since in this case each iteration requires

high CPU time. The objective reduction method (Copado-Méndez et al.,

2014) identified 13 redundant objectives, taking 4 seconds for this task. We

next ran 300 iterations of the enhanced and standard ε-constraint methods

using each sampling technique (random, Halton and Sobol). Figure C.18,

which is equivalent to Figure C.17, summarizes the results obtained.

Table C.11 is equivalent to Table C.9 and Table C.12 is equivalent to

Table C.10. It can be seen in Table C.11 and Figure C.18 that the best

approach, according to hypervolume indicator obtained after completing

the 300 iterations is the ε-constraint method with Sobol sampling run in the

reduced space (RS) followed by the Sobol in the full space (FS), random in

the RS, Halton in the RS, random in the FS, equidistant in the RS, Halton

in the FS and finally equidistant in the FS. We next proceed to analyze the

results in further detail.

• Full space (FS) against reduced space (RS): in this case, during

the first 500 seconds, all the RS approaches outperform the FS meth-
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ods in terms of both feasible solutions and hypervolume, as seen in

Table C.12. Besides, the RS approaches are able to perform the 300

iterations in a fraction of the CPU time required by the FS methods,

as shown in Tables C.11 and C.12. This might be due to the fact that

the RS methods shows less auxiliary constraints. However, when the

300 iterations have been completed, the RS approaches identify less

unique feasible solutions than the corresponding FS ones as we can

observe in Table C.11. This happens because the objective reduction

in this case study is very strong, going from 16 to only 3 criteria

which, when optimized, give rise to many repeated solutions thus re-

ducing the number of unique feasible solutions. The only exception

for this tendency is the ε-constraint with equidistant sampling, which

in the FS was unable to obtain a single feasible solution. Note that

running the FS equidistant method considering 3 partitions for every

objective would lead to 215 iterations out of which we only performed

300. Because of this, the probability to obtain a feasible solution in

these 300 iterations is extremely low.

• Equidistant sampling against pseudo/quasi-random sampling:

the ε-constraint with pseudo/quasi-random sampling outperforms the

equidistant sampling in terms of hypervolume indicator and number

of feasible solutions, as seen in Table C.12. The reason why this

happens is the same as in the previous case, i.e, solvers firstly try to

identify solutions involving active constraints so that when the epsilon

parameters are chosen by pseudo/quasi-random sequences, it is more

likely that there will be an integer solution satisfying the epsilon con-
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straints as an equality and thus the solver will find this solution rather

fast (Ehrgott and Ryan, 2003). On the other hand, when epsilon pa-

rameters are chosen by the equidistant method, it is more unlikely

that a feasible integer solution will exist when the epsilon constraint

is active, and thus the solver may waste several iterations until dis-

missing the possibility of finding a solution at that point Interestingly,

in Table C.11, the Halton sequence in the FS is the lowest in terms of

hypervolume, yet, it identifies the largest number of feasible solutions.

• Pseudo-random against quasi-random sampling: as seen in Ta-

ble C.11, the Sobol sequence outperforms the pseudo-random method

in both, number of unique solutions and hypervolume indicator. We

already explained in the previous case study the advantages of quasi-

random sequences over the pseudo-random sequence. Note, however,

that the Halton sequence did not work so well in this case (i.e., it

obtained the lowest hypervolume), while in the FS, it identified the

highest number of feasible solutions. Recall that obtaining many so-

lutions does not necessarily guarantee a better hypervolume value, as

shown in Tables C.11 and C.12, where it can be seen the Halton FS

identified more solutions than the other methods, but obtained the

second lowest hypervolume value.

• Number of feasible solutions against hypervolume indicator:

in the first 500 seconds, the enhanced ε-constraint with pseudo/quasi-

random sampling in the RS obtained more unique feasible solutions

which did lead to higher hypervolume values than the FS methods

as seen in Table C.12. On the contrary, if more time is allowed so
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that the 300 iterations can be completed, some pseudo/quasi-random

approaches in the FS achieve more unique solutions than the corre-

sponding RS approaches yet their hypervolume is still lower. Hence,

there is no evidence that a higher number of solutions necessarily

leads to a higher hypervolume. For instance the Halton sequence in

the FS identifies the highest number of feasible solutions but leads to

the second lowest hypervolume (see Table C.11).

Finally, we find that the best approach in terms of the hypervolume

indicator obtained after 300 iterations is the Sobol in the RS, followed by the

Sobol in the FS in terms of hypervolume indicator. If we took into account

time requirements, we would then choose the pseudo-random or Halton

methods in the RS instead of the Sobol in the FS. In this second case study,

the performance patterns observed in the first case are not so well defined,

probably due to numerical issues, yet in general the same tendencies still

hold. In both cases, the use of objective reduction or/and pseudo/quasi-

random sampling leads to significant improvements when compared to the

standard ε-constraint method, mainly in terms of CPU time and quality of

the Pareto set.

8.5 Conclusions and future work

This work introduced an enhanced ε-constraint method that incorporates

two main ingredients: an objective reduction technique, and the use of

pseudo/quasi-random sampling methods for generating the auxiliary ep-

silon parameter values. To test the capabilities of our approach, we applied

it to the multi-objective optimization of supply chains considering both,
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economic and environmental concerns. For this comparison, we used sev-

eral sampling techniques (pseudo-random, Halton and Sobol and standard,

that is, equidistant) combined with an objective reduction algorithm. The

performance of each method was assessed in terms of number of unique

feasible solutions and hypervolume indicator values.

The experiments reveal that the best sampling techniques are the quasi-

random sequences (Halton or Sobol), since they improve the performance

from the viewpoints of number of feasible solutions and hypervolume value

per time unit. This is due to the property of low-discrepancy, which dis-

tributes the epsilon parameters values in a more efficient manner compared

to the pseudo-random and equidistant techniques.

Concerning the objective reduction approach, the results show that it

expedites the ε-constraint method by eliminating auxiliary epsilon con-

straints.

Finally, we conclude that combining quasi-random sampling methods

with objective reduction improves in general the overall performance of the

standalone ε-constraint method in terms of number of feasible solutions

and hypervolume per time unit. Our enhanced method can find many

applications in a wide variety of multi-objective problems arising in all

domains of science and engineering.
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Appendix A

Models

A.1 Model Hydrogen

We provide next a brief overview of the mathematical models used in our

work. Further details can be found in Sabio et al. (2010), Guillén-Gosálbez

et al. (2010) and Kostin et al. (2011b).

Equation A.1 defines the mass balance for the grids considered in the

analysis, whereas Equation A.2 forces the model to fulfill a minimum de-

mand satisfaction level. Equation A.3 limits the production capacity be-

tween lower and upper bounds. Equation A.4 determines the production

capacity in a time period from the previous one plus the expansion in

capacity executed in the same period. Equation A.5 limits the capacity ex-

pansions within lower and upper bounds given by the number of facilities
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opened.

∑
s∈SI(i)

Sigst−1 +
∑
p

PRigpt +
∑
g′ 6=g

∑
l

Qilg′glt

=
∑

s∈SI(i)

Sigst +Digt +
∑
g′ 6=g

∑
l

Qilgg′lt∀i, g, t
(A.1)

Dgtdsat ≤
∑
i

Digt ≤ Dgt∀g, t (A.2)

τCPLgpt ≤
∑
i

PRigpt ≤ CPLgpt ∀g, p, t (A.3)

CPLgpt = CPLgpt−1 + CEPLgpt ∀g, p, t (A.4)

PCPLp NPL
gpt ≤ CEPLgpt ≤ PCPLp NPL

gpt ∀g, p, t (A.5)

Equations A.6 to A.9 are equivalent to equations A.3 to A.5, but apply

to warehouses. Particularly, equation A.6 limits the amount of materials

stored to be lower than the existing capacity. Equation A.7 forces the

average inventory level, which is determined from the demand and turnover

ratio, to be lower than the existing capacity. Equation A.8 provides the

storage capacity in a time period from the previous one and the expansion in

capacity in the previous period, whereas equation A.9 limits the expansion

in capacity between lower and upper limits given by the number of storage
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facilities installed.

∑
i∈IS(s)

Sigst ≤ CSTgst∀g, s, t (A.6)

2(θDigt) ≤
∑

s∈SI(i)

CSTgst∀i, g, t (A.7)

CSTgst = CSTgst−1 + CESTgst∀g, s, t (A.8)

SCSTs NST
gst ≤ CESTgst ≤ SCSTs NST

gst ∀g, s, t (A.9)

Equation A.10 limits the transportation links between lower and upper

bounds provided the link is finally established. Equations A.11 and A.12 are

defined for the construction of pipelines. Equation A.13 is a logic constraint

that makes the formulation tighter. Equations A.14 and A.15 avoid the

transportation between certain maritime grids, whereas equation A.16 is a

symetric cut. Finally, equations A.17 to A.31 allow to determine the cost

of the network.

QClgg′Xgg′lt ≤
∑
i

Qilgg′t ≤ QClgg′Xgg′lt

∀g, g′(g 6= g′), l ∈ LI(i) ∪NPL, t
(A.10)

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF EFFICIENT ALGORITHMS FOR SOLVING COMPLEX 
SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMIZATION MODELS.  
Pedro Jesús Copado méndez 
Dipòsit Legal: T 1773-2014 



Appendix A 190

∑
t′≤t+1

QClgg′Xgg′lt′ ≤
∑
i

Qilgg′t ≤
∑
t′≤t+1

QClgg′Xgg′lt

∀g, g′(g 6= g′), l = pipeline, t

(A.11)

∑
t′≤t+1

Xgg′lt′ ≤ 1 ∀g, g′(g 6= g′), l = pipeline, t (A.12)

Xgg′lt +Xg′glt ≤ 1 ∀g, g′(g 6= g′), l ∈ LI(i, t (A.13)

Xlgg′t = 0 ∀l, g, g′ ∈ LG′

LG′ = {l, g, g′ : (l = ship) ∧ ((g, g′) /∈ SGG(gg′))}
(A.14)

Xlgg′t = 0 ∀l, g, g′ ∈ LG

LG = {l, g, g′ : (l 6= ship) ∧ ((g, g′) ∈ SGG′(gg′))}
(A.15)

Xlgg′t = 0 ∀l, g = g′ (A.16)

TDC =
∑
t

TC

(1 + ir)t−1
(A.17)

TCt = FCCt + TCCt + FOCt + TOCt ∀t (A.18)
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FOCt =
∑
i

∑
g

∑
p

upcigptPRigpt

+
∑
i

∑
g

∑
s

∈ SI(i)uscigst (θDigt) ∀t
(A.19)

FCCt =
∑
g

∑
p

(
αPLgptN

PL
gpt + βPLgptCE

PL
gpt

)
+
∑
g

∑
s

(
αSTgstN

ST
gst + βSTgstCE

ST
gst

)
∀t

(A.20)

TCCt =
∑

l 6=ship,pipeline
NTR
lt · cclt + PCCt (A.21)

PCC(t) =
∑
g

∑
g′ 6=g

∑
l∈LI(i)

upcctXlgg′tdistancegg′ ∀t (A.22)

∑
t′≤t+1

NTR
lt′ ≥

∑
i∈IL(l)

∑
g

∑
g′ 6=g

∑
t

Qigg′lt
avltcapl

(
2distancegg′

speedl
+ lutimel

)
∀l 6= ship, pipeline

(A.23)

TOCt = ROCt + POCt + SOCt ∀t (A.24)
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ROCt = FCt + LCt +MCt +GCt ∀t (A.25)

FCt =
∑
i

∑
g

∑
g′ 6=g

∑
l∈LI(i)

fuelplt
2distancegg′Qilgg′t

fuelcltcapl
∀t (A.26)

LCt =
∑
i

∑
g

∑
g′ 6=g

∑
l∈LI(i)

wagelt

×
[
Qilgg′t
tcapl

(
2distancegg′

speedl
+ lutimel

)]
∀t

(A.27)

MCt =
∑
i

∑
g

∑
g′ 6=g

∑
l∈LI(i)

cudl
2distancegg′Qilgg′t

tcapl
∀t (A.28)

GCt =
∑
l

∑
t′≤t

gltN
TR
lt′ ∀t (A.29)

POC(t) =
∑
i

∑
g

∑
g′ 6=g

∑
l∈LI(i)

upoctQilgg′t ∀t (A.30)

SOCt =
∑
i

∑
g

∑
g′ 6=g

∑
l∈LI(i)

usoct

(
distancegg′

speedl

)
Qilgg′t ∀t (A.31)
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A.1.1 Notation

Indices

e scenarios

i hydrogen form

g potential locations

l transportation mode

p manufacturing technologies

s storage technologies

t time period

Sets

IL(l) set of hydrogen forms that can be transported via trans-

portation mode l

IS(s) set of hydrogen forms that can be stored via technology s

LI(i) set of transportation modes that can transport hydrogen

form i

SI(i) set of storage technologies that can store hydrogen form i

Parameters
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avl availability of transportation mode l

cclt capital cost of transport mode l in period t

cudlt maintenance cost of transportation mode l in period t per

unit of distance traveled

Dgt total demand of hydrogen in location g in period t

distancegg′ average distance traveled between locations g and g′

dsat demand satisfaction level to be fulfilled

fuelcl fuel consumption of transportation mode l

fuelplt price of the fuel consumed by transportation mode l in pe-

riod t

gelt general expenses of transportation mode l in period t

ir interest rate

lutimel loading/unloading time of transportation mode l

PCPLp upper bound on the capacity expansion of manufacturing

technology p

PCPLp lower bound on the capacity expansion of manufacturing

technology p

QCgg′l upper bound on the flow of materials between locations g

and g′ via transportation model l

QCgg′l lower bound on the flow of materials between locations g

and g′ via transportation model l

SCSTs upper bound on the capacity expansion of storage technol-

ogy s

SCSTs lower bound on the capacity expansion of storage technology

s

speedl average speed of transportat mode l
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tcapl capacity of transport mode l

upcigpte mean value of unit production cost of hydrogen form i pro-

duced via technology p in location g in period t in scenario

e

V upcigpte Variance associated to the probability distribution of

upcigpte

uscigst unit storage cost of hydrogen form i stored via technology s

in location g in period t

wagelt driver wage of transportation mode l in period t

αPLgpt fixed investment term associated with manufacturing tech-

nology p installed in location g in period t

αSTgst fixed investment term associated with storage technology s

installed in location g in period t

βPLgpt variable investment term associated with manufacturing

technology p installed in location g in period t

βSTgst variable investment term associated with storage technology

s installed in location g in period t

θ average storage period

τ minimum desired percentage of the capacity that must be

used

probe occurrence probability of scenario e

Variables

CPLgpt capacity of manufacturing technology p in location g in pe-

riod t
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CSTgst capacity of storage technology s in location g in period t

CEPLgpt capacity expansion of manufacturing technology p in loca-

tion g in period t

CESTgst capacity expansion of storage technology s in location g in

period t

Digt amount of hydrogen form i distributed in location g in period

t

FCt fuel cost in period t

FCCt facility capital cost in period t

FOCte facility operating cost in period t in scenario e

GCt general cost in period t

LCt labor cost in period t

MCt maintenance cost in period t

TPIC capital cost of pipelines establishment (euros/km)

UTP unit transportation cost of pipelines (euros/kg day)

UTCB unit transportation cost of ship rental (euros/h kg)

PICCt pipeline capital cost (euros/yr)

PICt pipeline operating cost (euros/yr)

TOCBt ship operating cost

NPL
gpt number of plants of type p installed in location g in period

t (integer variable)

NST
gst number of storage facilities of type s installed in location g

in period t (integer variable)

NTR
lt number of transportation units of type l purchased in period

t (integer variable)

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF EFFICIENT ALGORITHMS FOR SOLVING COMPLEX 
SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMIZATION MODELS.  
Pedro Jesús Copado méndez 
Dipòsit Legal: T 1773-2014 



Appendix A 197

PRigpt production of hydrogen mode i via technology p in period t

in location g

Qigg′lt flow of hydrogen mode i via transportation mode l between

locations g and g′ in period t

Sigst amount of hydrogen in physical form i stored via technology

s in location g in period t

TCte total amount of money spent in period t for scenario e

TCCt total transportation capital cost in period t

TDCe total discounted cost for scenario e

TOCt transportation operating cost in period t

Xgg′lt binary variable (1 if a link between locations g and g′ using

transportation technology l is established, 0 otherwise)

A.2 Model Ethanol

Equation A.32 defines the mass balance for every grid and time period,

whereas equation A.33 forces the sales to be lower than the demand. Equa-

tion A.34 determines the total production rate in a give grid, whereas equa-

tion A.35 provides the amount produced in a facility from the production

rate of its main product. Equation A.36 limits the production rate within

lower and upper bounds, whereas equation A.37 determines the production

capacity from the previous one and the expansion in capacity in the current

period. The expansions in capacity are given by the number of facilities

opened, as expressed in constraint A.38. Constraint A.39 limits the amoung
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of raw materials purchased.

∑
s∈SI(i)

STisgt−1 + PTigt + PUigt +
∑

l∈LI(i)

∑
g′ 6=g

Qilg′gt =
∑

s∈SI(i)

STisgt

+DTSigt +
∑

l∈LI(i)

∑
g′ 6=g

Qilgg′t +Wigt ∀i, g, t

(A.32)

DTSigt ≤ SDigt ∀i, g, t (A.33)

PTigt =
∑
p

PEipgt ∀i, g, t (A.34)

PEipgt = ρpiPEi′pgt ∀i, p, g, t ∀i′ ∈ IM(p) (A.35)

τPCappgt ≤ PEipgt ≤ PCappgt ∀i, p, g, t (A.36)

PCappgt = PCappgt−1 + PCapEpgt ∀p, g, t (A.37)

PCappNPpgt ≤ PCapEpgt ≤ PCappNPpgt ∀p, g, t (A.38)

PUigt ≤ CapCropgt ∀i = Sugar cane, g, t (A.39)
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SCapsNSsgt ≤ SCapEsgt ≤ SCapsNSsgt ∀s, g, t (A.40)

Constraint A.40 limits the expansions in capacity of the storage facilities

within lower and upper bounds given by the number of facilities opened.

Equation A.41 provides the storage capacity of a region from the previous

one and the expansion in capacity in the current period. Equation A.42

constraints the amount of materials stored in a region to be lower than the

installed capacity in that region. Constraint A.43 determines the average

inventory level from the product sales, whereas equation A.44 forces this

average inventory to be lower than the existing capacity.

SCapsgt = SCapsgt−1 + SCapEsgt ∀s, g, t (A.41)

∑
i∈IS(s)

STisgt ≤ SCapsgt ∀s, g, t (A.42)

AILigt = βDTSigt ∀i, g, t (A.43)

2AILigt ≤
∑

s∈SI(i)

SCapsgt ∀i, g, t (A.44)

Constraint A.45 models the establishment of transportation links be-

tween two grids, whereas equation A.46 is a logic cut that makes the for-

mulation tighter.

QlXlgg′t ≤
∑

i∈IL(l)

Qilgg′t ≤ QlXlgg′t ∀l, t, g, g′(g′ 6= g) (A.45)
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Xlgg′t +Xlg′gt = 1 ∀l, t, g, g′(g′ 6= g) (A.46)

Equations A.47 to A.64 are added to determine the NPV of the network.

ROI =
(
∑

tCFt)/T

FCI
(A.47)

NPV =
∑
t

CFt
(1 + ir)t−1

(A.48)

CFt = NEt − FTDCt t = 1, ..., T − 1 (A.49)

CFt = NEt − FTDCt + svFCI t = T (A.50)

NEt = (1− ϕ)(Revt − FOCt − TOCt) + ϕDEPt ∀t (A.51)

Revt =
∑

i∈SEP

∑
g

DTSigtPRigt ∀t (A.52)

FOCt =
∑
i

∑
g

∑
p∈IM(p)

UPCipgtPEipgt+

∑
i

∑
g

∑
s∈IS(s)

USCisgtAILigt+

DCt ∀t

(A.53)
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DCt =
∑
i

∑
g

WigtLTig ∀t (A.54)

TOCt = FCt + LCt +MCt +GCt ∀t (A.55)

FCt =
∑
g

∑
g′ 6=g

∑
l

∑
i∈IL(l)

[
2ELgg′ Qilgg′t
FEl TCapl

]
FPlt ∀t (A.56)

LCt =
∑
g

∑
g′ 6=g

∑
l

DWlt

∑
i∈IL(l)

[
Qilgg′t
TCapl

(
2ELgg′

SPl
+ LUTl

)]
∀t (A.57)

MCt =
∑
g

∑
g′ 6=g

∑
l

∑
i∈IL(l)

MEl
2ELgg′Qilgg′t

TCapl
∀t (A.58)

GCt =
∑
l

∑
t′≤t

GEltNTlt′ ∀t (A.59)

DEPt =
(1− sv)FCI

T
∀t (A.60)

FCI =
∑
p

∑
g

∑
t

(αPLpgtNPpgt + βPLpgtPCapEpgt)+∑
s

∑
g

∑
t

(αSsgtNSsgt + βSsgtSCapEsgt)+∑
l

∑
t

(NTltTMClt)

(A.61)
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∑
t≤T

NTlt ≥
∑

i∈IL(l)

∑
g

∑
g′ 6=g

∑
t

Qilgg′t
avllTCapl

(
2ELgg′

SPl
+ LUTl

)
∀l (A.62)

FCI ≤ FCI (A.63)

FTDCt =
FCI

T
∀t (A.64)

A.2.1 Notation

Indices

i materials

g sub-region zones

l transportation modes

p manufacturing technologies

s storage technologies

t time periods

Sets
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IL(l) set of materials that can be transported via transportation

mode l

IM(p) set of main products for each technology p

IS(s) set of materials that can be stored via storage technology s

SEP set of products that can be sold

SI(i) set of storage technologies that can store materials i

Parameters

αPLpgt fixed investment coefficient for technology p

αSsgt fixed investment coefficient for storage technology s

β storage period

βPLpgt variable investment coefficient for technology p

βSsgt variable investment coefficient for storage technology s

ρpi material balance coefficient of material i in technology p

τ minimum desired percentage of the available installed ca-

pacity

ϕ tax rate

avll availability of transportation mode l

CapCropgt total capacity of sugar cane plantations in sub-region g in

time t

DWlt driver wage

ELgg′ distance between g and g′

FCI upper limit for capital investment

FEl fuel consumption of transport mode l

FPlt fuel price
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GElt general expenses of transportation mode l

LTig landfill tax

MEl maintenance expenses of transportation mode l

PCapp maximum capacity of technology p

PCapp minimum capacity of technology p

PRigt prices of final products

Ql maximum capacity of transportation mode l

Ql minimum capacity of transportation mode l

SCaps maximum capacity of technology p

SCaps minimum capacity of storage technology s

SDigt actual demand of product i in sub-region g in time t

SPl average speed of transportation mode l

sv salvage value

T number of time intervals

TCapl capacity of transportation mode l

TMClt cost of establishing transportation mode l in period t

UPCipgt unit production cost

USCisgt unit storage cost

Variables

CFt cash flow in time t

DCt disposal cost in time t

DTSigt delivered amount of material i in sub-region g in period t

FCt fuel cost

FCI fixed capital investment
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FOCt facility operating cost in time t

FTDCt fraction of the total depreciable capital in time t

GCt general cost

LCt labor cost

MCt maintenance cost

NEt net earnings in time t

NPpgt number of installed plants with technology p in sub-region

g in time t

NPV net present value of SC

NSsgt number of installed storages with storage technology s in

sub-region g in time t

NTlt number of transportation units l

PCappgt existing capacity of technology p in sub-region g in time t

PCapEpgt expansion of the existing capacity of technology p in sub-

region g in time t

Qilgg′t flow rate of material i transported by mode l from sub-region

g′ to current sub-region g in time period t

Revt revenue in time t

RNPpgt “relaxed” number of installed plants with technology p in

sub-region g in time interval t

RNSsgt “relaxed” number of installed storages with storage technol-

ogy s in sub-region g in time interval t

RNTlt “relaxed” number of transportation units l in time interval

t

SCapsgt capacity of storage s in sub-region g in time t

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF EFFICIENT ALGORITHMS FOR SOLVING COMPLEX 
SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMIZATION MODELS.  
Pedro Jesús Copado méndez 
Dipòsit Legal: T 1773-2014 



Appendix A 206

SCapEsgt expansion of the existing capacity of storage s in sub-region

g in time t

STisgt total inventory of material i in sub-region g stored by tech-

nology s in time t

TOCt transport operating cost in time t

PEipgt production rate of material i in technology p in sub-region

g in time t

PTigt total production rate of material i in sub-region g in time t

PUigt purchase of material i in sub-region g in time t

Xlgg′t binary variable, which is equal to 1 if material flow between

two sub-regions g and g′ is established and 0 otherwise

Wigt amount of wastes i generated in sub-region g in period t
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Proofs and Normalization

B.1 Proof of Theorem B.1.1

Theorem B.1.1 shows that the solution of each sub-problem MORµp solved

at iteration p is a relaxation of the full space MILP, and it in turn provides

a rigorous lower bound on the global optimum of the full space MILP. We

demonstrate this property below:

Theorem B.1.1 Let δµp be the optimal solution of sub-problem MORµp

solved at iteration p and size µ of the algorithm (which is defined for the

subset of solutions Sµp contained in S ), and bj be a parameter used in cut

j that corresponds to the optimal solution of an instance of problem MOR

that is used to construct cut j (i.e., instance MORj defined for solutions

Sj). The inequalities from 7.12 to 7.15 are a valid cut for problem MORµp.

Proof The proof is by contradiction. We claim that inequalities 7.12 and

7.15 do not chop off any feasible solution of problem MOR. Assume that

there is a feasible solution of MOR such that for this solution (i.e., combi-

nation of objectives omitted) the value of the auxiliary variable aj (denoted

by aj) is strictly lower than bj . From equations 7.13 to 7.15, it follows that
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for such combination of objectives omitted, the value of the error (denoted

by δ(s, s′, i)) in every objective and pair of solutions in the set Sj will be

strictly lower than bj , that is:

δ(s, s′, i) < bj ∀s, s′ ∈ Sj , ∀j ∈ CUTµp , ∀i (B.1)

This contradicts the fact that bj is the global optimum of problem

MORj �.

B.2 Normalization of the Pareto optimal solutions

A normalization step is applied to the Pareto set of solutions in order

to make them comparable in all of the objectives. Several methods are

available for this purpose (Cloquell V, Santamarina M, 2001). We have

used in our case the following expression:

v′i =
vi − vMIN

vMAX − vMIN

where v′i is the normalized value, and vi is the original value. This

method covers exactly the range [0, 1], where zero is the best value and one

the worst value (we consider that we aim to minimize all of the objectives

simultaneously).
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Tables and Figures

C.1 Tables

Per Con Bin Int Dec Tot Equ

2 1.03x104 4.57x104 4.80x102 4.62x104 5.65x104 1.07x105

4 2.06x104 9.15x104 9.60x102 9.24x104 1.13x105 2.14x105

6 3.09x104 1.37x105 1.40x103 1.39x105 1.70x105 3.21x105

8 4.18x104 1.84x105 1.92x103 1.85x105 2.26x105 4.28x105

10 5.15x104 2.29x105 2.4x103 2.31x105 2.83x105 5.35x105

12 6.17x104 2.74x105 2.88x103 2.77x105 3.39x105 6.42x105

14 7.20x104 3.20x105 3.36x103 3.24x105 3.96x105 7.49x105

16 8.23x104 3.66x105 3.84x103 3.70x105 4.52x105 8.56x105

Table C.1: Number of variables and equations of hydrogen. For each period,
we display number of continuous variables, number of binary variables,
number of integer variables, number of decision variables (Bin+Int), total
number of variables, and finally number of equations.
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Per Time Bst Time Bst Cost Avg Time Std Time Avg Cost Std Cost

2 1.00x103 7.2.8x10 1.05x1012 4.78x102 2.48x102 1.05x1012 1.89x107

4 2.00x103 1.39x102 1.30x1012 7.48x102 5.81x102 1.30x1012 3.80x107

6 3.00x103 2.73x102 1.54x1012 1.16x103 7.84x102 1.54x1012 4.20x107

8 4.00x103 2.95x102 1.79x1012 1.65x103 1.20x103 1.79x1012 5.83x107

10 5.00x103 2.96x102 2.02x1012 2.75x103 1.66x103 2.02x1012 1.12x108

12 6.00x103 6.39x102 2.24x1012 2.97x103 1.51x103 2.24x1012 1.29x108

14 7.00x103 5.80x10 2.45x1012 1.95x102 1.26x102 2.45x1012 0

16 8.00x103 1.45x102 2.64x1012 2.28x102 1.17x102 2.64x1012 0

Table C.2: Results of the LNS algorithm to the problem of Hydrogen.
The notation used in the table is as follows: Per stands for time periods, Bst
is the time at which the best solution calculated by the LNS has been found,
Bst Cost is the best objective function value in all the runs, Avg Time and
Avg Cost represent the average objective function value and CPU time,
respectively, of the LNS algorithm over all the replications executed, while
Std Time and Std Cost are the standard deviation of the objective function
and CPU time, respectively. Note that in periods 14 and 16 the standard
deviation of the CPU time is zero because the algorithm convergence is
very fast.
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Per CPLEX 12h CPLEX Time LNS Avg LNS Bst

2 0.05 0.05 0.05 0.05
4 0.05 0.06 0.07 0.06
6 0.06 0.07 0.07 0.07
8 0.08 Not available 0.08 0.08
10 0.10 Not available 0.09 0.09
12 Not available Not available Not available Not available
14 Not available Not available Not available Not available
16 Not available Not available Not available Not available

Table C.3: Hydrogen GAP’s. GAP’s are calculated respect to lower bound
found by CPLEX for 12h. This table displays: the best solution calculated
by CPLEX after 12 hours of CPU time and after the same CPU time
provided to the LNS, the best solution found by the LNS and the average
solution calculated by the LNS. Note that in some instances, CPLEX is
unable to provide any bound even after the aforementioned CPU time. No
result means that CPLEX was unable to provide even a feasible solution
after the specified CPU time. Not available means that the quality of the
solution produced by the LNS cannot be determined since CPLEX did not
provide any reference solution for comparison purposes after the specified
running time.
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Per Con Bin Int Dec Tot Equ

2 3.72x104 3.46x103 3.42x102 3.80x103 4.10x104 2.18x104

4 7.42x104 6.91x103 6.84x102 7.60x103 8.18x104 4.34x104

6 1.11x105 1.04x104 1.03x103 1.14x104 1.23x105 6.50x104

8 1.48x105 1.38x104 1.37x103 1.52x104 1.63x105 8.66x104

10 1.85x105 1.73x104 1.71x103 1.90x104 2.04x105 1.08x105

12 2.22x105 2.07x104 2.05x103 2.28x104 2.45x105 1.30x105

14 2.59x105 2.42x104 2.39x103 2.66x104 2.86x105 1.51x105

16 2.96x105 2.76x104 2.74x103 3.04x104 3.27x105 1.73x105

Table C.4: Number of variables and equations of ethanol.
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Per Time Bst Time Bst Profit Avg Time Std Time Avg Profit Std Profit

2 5.00x102 1.51x102 3.47x108 2.48x102 1.18x102 3.45x108 2.69x106

4 2.00x103 4.07x102 1.08x109 6.87x102 3.03x102 1.08x109 0

6 3.50x103 1.30x103 1.78x109 1.56x103 7.65x102 1.78x109 1.76x106

8 5.00x103 4.65x103 2.36x109 3.91x103 1.05x103 2.36x109 1.89x106

10 6.50x103 1.71x103 2.77x109 5.21x103 1.46x103 2.77x109 5.45x106

12 8.00x103 6.86x103 3.18x109 7.15x103 9.75x102 3.18x109 2.33x103

14 9.50x103 9.53x103 3.54x109 8.45x103 1.31x103 3.54x109 5.11x106

16 1.10x104 9.53x103 3.81x109 1.01x104 8.93x102 3.81x109 7.60x106

Table C.5: Results of the LNS algorithm to the problem of ethanol
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Per CPLEX 12h CPLEX Time LNS Avg LNS Bst

2 0.00 0.00 5.67 5.04
4 0.00 0.00 2.13 2.13
6 0.35 0.35 1.55 1.48
8 0.83 1.08 1.82 1.80
10 1.38 1.60 2.30 2.21
12 2.09 3.43 2.74 2.74
14 1.92 3.10 2.80 2.73
16 2.06 3.32 2.87 2.70

Table C.6: Ethanol GAP’s. GAP’s are calculated respect to upper bound
found by CPLEX for 12h
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2, 000 Iterations # Solutions Total Time (sec) Hypervolume

Halton RS 936 5.45x103 0.16
Sobol RS 943 5.43x103 0.15
Random RS 925 5.40x103 0.15
Sobol FS 557 4.93x103 0.05
Halton FS 531 4.58x103 0.05
Equidistant RS 127 9.74x103 0.05
Random FS 537 4.61x103 0.04
Equidistant FS 69 12.43x103 0.03

Table C.9: Final results obtained for each approach in Ethanol case.
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2, 000 seconds # Solutions Hypervolume

Halton RS 340 0.15
Sobol RS 347 0.14
Random RS 341 0.14
Sobol FS 233 0.05
Halton FS 222 0.05
Equidistant RS 48 0.05
Random FS 232 0.04
Equidistant FS 38 0.03

Table C.10: Intermediate results computed up to 2, 000 seconds in Ethanol
case
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300 Iterations # Solutions Total Time (sec) Hypervolume

Sobol RS 48 10.60x102 0.955
Sobol FS 203 533.00x102 0.948
Random RS 59 16.80x102 0.946
Halton RS 53 12.30x102 0.946
Random FS 204 529.00x102 0.944
Equidistant RS 24 5.62x102 0.939
Halton FS 300 538.00x102 0.936
Equidistant FS 0 6.10x102 0

Table C.11: Final results obtained for each approach in Hydrogen case
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500 seconds # Solutions Hypervolume

Sobol RS 18 0.949
Random RS 22 0.942
Halton RS 15 0.941
Equidistant RS 24 0.939
Sobol FS 3 0.656
Halton FS 2 0.557
Random FS 2 0.396
Equidistant FS 0 0

Table C.12: Intermediate results computed up to 500 seconds in Hydrogen
case

C.2 Figures

Figure C.1: Decision variables used by the LNS algorithm.
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Figure C.2: Tuning of hydrogen results sorted by m and n
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Figure C.3: LNS compared with CPLEX for model hydrogen for t = 6 and
t = 12. The vertical bars show the standard deviation of LNS over 10 runs.
For t > 6 CPLEX was not able to obtain a solution.
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Figure C.4: Tuning of ethanol results sorted by m and n
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Figure C.5: LNS compared with CPLEX for model ethanol for t = 12. The
vertical bars show the standard deviation of LNS over 10 runs.
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Figure C.6: Illustrative example of dominance structure.
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µ := µ0;p := 1;UB :=
+∞;LB := −∞

UB − LB ≥
ε and µ ≤ N

UB − LB ≥
ε and p ≤ N

µ
UB −LB ≥ ε

Solve lower bound
problem MORµp

for µ solutions

Solve upper bound
problem fixing

binary variables
ZO(i) see Alg.20

Update list of
cuts CutLB

Update bounds
LB,UB; p := p + 1;

p := 1; µ := r ∗ µ;

End

no

yes

no

yes

no

yes

Figure C.8: Flowchart of the decomposition algorithm.
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Insert Insert

Insert Insert

Figure C.9: Illustrative example of how the algorithm works. In each iter-
ation we solve a problem of size µ. The solution of this problem is located
in the first position in the list CutsLB. The CutsLB list is sorted in a
descendent order of delta values. Finally, the cuts are generated and added
to the model.
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Figure C.10: Illustrative example on how to define the delta error (accord-
ing to either Brockhoff and Zitzler (Brockhoff and Zitzler, 2006a), or to
Guillén-Gosálbez, (Guillén-Gosálbez, 2011a). In this example, we remove
objectives two, three and four. According to Brockhoff and Zitzler (Brock-
hoff and Zitzler, 2006a), the error would be δ′, as we consider the error
between any two solutions such that one dominates the other in the re-
duced space. However, according to Guillén-Gosálbez (Guillén-Gosálbez,
2011a), the error would be δ.
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Pareto Set:
n solutions and
k objectives

Normalitzation and Feasibility filters

Pareto Set:
n′ feasible solutions

and k objectives

Objective Reduction

Pareto Set:
n′ feasible solutions

and k′ objectives

Figure C.11: Proposed framework to Pareto set generation.
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Figure C.12: Superstructure for the hydrogen supply chain design problem,
which is formulated as an MILP. We derive an MILP for the optimal design
of the network that optimizes simultaneously the total cost and environ-
mental performance (quantified in terms of 16 environmental impacts). The
MILP provides the optimal location of production and storage facilities, the
technologies to be implemented and the transportation links between the
SC entities.
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Figure C.13: Metabolic pathway of the fermentation of Saccharomyces cere-
visiae. The problem of identifying optimal enzymatic profile in terms of
several biological criteria is posed as an MINLP based on a generic kinetic
representation of the network. The objectives considered include the mini-
mization of the enzymatic manipulations, the maximization of the ethanol
synthesis rate and the minimization of several intermediate metabolites.
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Figure C.14: Illustrative example of objective redaction, where we con-
sider the 3 Pareto optimal solutions that minimize 4 different objectives:
(1, . . . , 4). As observed in (a), the objectives 2 and 3 can be omitted (gray
rectangles) without changing the dominance structure. This is because
x �f1,f4 y is satisfied if and only if x �f1,f2,f3,f4 y is satisfied. But as can
be observed in (b), further reductions are not possible without modifying
the dominance structure.
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Figure C.15: Illustrative example of how to define discrepancy. The area
of union rectangles is known, which is 0.44, but it can approximated by
means of counting those points amongst 100 that fall into the rectangles,
whether these points are distributed according a pseudo-random sequence,
we obtain a discrepancy of | 39100−0.44| = 0.05, whereas whether these points
are distributed according to Halton sequence , the discrepancy computed
is | 44100−0.44| = 0.
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Figure C.16: Superstructure for the supply chain design problem, which is
formulated as an MILP.We derive an MILP for the optimal design of the
network that optimizes simultaneously the net present value/total cost and
environmental performance. The MILP provides the optimal location of
the production and storage facilities, the technologies to be implemented
and the transportation links between the SC entities.
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Figure C.17: Feasibility analysis and hypervolume for the case of sustain-
able planning of ethanol supply chains in each sampling techniques for
6 objectives and 4 objectives: (a) Number of unique feasible olutions vs
number of iterations. (b) Number of unique feasible solutions vs time. (c)
Hypervolume vs CPU time.
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Figure C.18: Feasibility analysis and hypervolume for the case of optimal
design of a hydrogen supply chains in each sampling techniques for 16
objectives and 3 objectives: (a) Number of unique feasible solutions vs
number of iterations. (b) Number of unique feasible solutions vs time. (c)
Hypervolume vs CPU time. ε-constraint was not able to obtain feasible
solutions with equidistant technique in full space.
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x

x′

N(xp)

Figure C.19: The neighbourhood search space N(xp) from solution x, where
x′ is the optimal solution of N(xP ), and xp is the partial solution devided
from x.
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Init

n := 1;
improved := false;

m := 1

Inner body see Figure C.21

m := m + 1

Until
m > mmax

or improved

n := n + 1

Until
n > nmax or
improved

Until end

yes

yes

no

no

no

yes

Figure C.20: Flowchart of our tailored LNS for SC.
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V := choose(n)

s′ := release(s, V )

〈t, fo′′, s′′〉 :=
MILP (mdl, s′)

better(f0, f
′′
0 )

f0 := f ′′0
s := s′′

improved := TRUE

ct := ct + t
it := it + 1

ct ≤ tmax
OR

it ≤ itmax
end := TRUE

yes

no

yes

no

Figure C.21: Inner body of LNS algorithm.
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Figure C.22: Autonomous communities of Spain.
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Figure C.23: Provinces of Argentina.
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MILP-based decomposition algorithm for dimensionality reduction in

multi-objective optimization: Application to environmental and systems

biology problems. Computers & Chemical Engineering.

Dal-Mas, M., Giarola, S., Zamboni, A., Bezzo, F., 2011. Strategic design

and investment capacity planning of the ethanol supply chain under price

uncertainty. Biomass and Bioenergy 35 (5).

Danna, E., Rothberg, E., Pape, C. L., 2005. Exploring relaxation induced

neighborhoods to improve MIP solutions. Mathematical Programming

102 (1), 71–90.

Dantzig, G. B., 1963. Linear programming and extensions. Princeton Uni-

versity, Princeton, NJ.

Das, I., Dennis, J., 1996. AN ALTERNATE METHOD FOR GENERAT-

ING PARETO OPTIMAL POINTS IN MULTICRITERIA OPTIMIZA-

TION (96).

Dave, U., Dantzig, G. B., Thapa, M. N., Nov. 1998. Linear Programming-1:

Introduction. The Journal of the Operational Research Society 49 (11),

1226.

de Hijas-Liste, G. M., Klipp, E., Balsa-Canto, E., Banga, J. R., Jan. 2014.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF EFFICIENT ALGORITHMS FOR SOLVING COMPLEX 
SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMIZATION MODELS.  
Pedro Jesús Copado méndez 
Dipòsit Legal: T 1773-2014 



Bibliography 249

Global dynamic optimization approach to predict activation in metabolic

pathways. BMC systems biology 8, 1.

De-León Almaraz, S., Azzaro-Pantel, C., Montastruc, L., Pibouleau, L.,

Senties, O. B., Nov. 2013. Assessment of mono and multi-objective op-

timization to design a hydrogen supply chain. International Journal of

Hydrogen Energy 38 (33), 14121–14145.

Deb, K., Saxena, D. K., 2005. On finding Pareto-optimal solutions through

dimensionality reduction for certain large-dimensional multi-objective

optimization problems. KanGal Report Number 2005011.

Delavar, M. R., Hajiaghaei-Keshteli, M., Molla-Alizadeh-Zavardehi, S.,

2010. Genetic algorithms for coordinated scheduling of production and

air transportation. Expert Systems with Applications 37 (12).

Della Croce, F., T’kindt, V., 2002. A {R}ecovering {B}eam {S}earch al-

gorithm for the one machine dynamic total completion time scheduling

problem. Journal of the Operational Research Society 53 (11), 1275–1280.

Dimitriadis, A. D., Shah, N., Pantelides, C. C., 1997. {RTN}-based rolling

horizon algorithms for medium term scheduling of multipurpose plants.

Computers and Chemical Engineering 21 (SUPPL.1), S1061–S1066.

Dogan, K., Goetschalckx, M., 1999. A primal decomposition method for

the integrated design of multi-period production-distribution systems.

IIE Transactions (Institute of Industrial Engineers) 31 (11), 1027–1036.

Dorigo, M., Blum, C., 2005. Ant colony optimization theory: A survey.

Theoretical computer science 344 (2-3), 243–278.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF EFFICIENT ALGORITHMS FOR SOLVING COMPLEX 
SINGLE-OBJECTIVE AND MULTI-OBJECTIVE OPTIMIZATION MODELS.  
Pedro Jesús Copado méndez 
Dipòsit Legal: T 1773-2014 



Bibliography 250

Du, Y., Xie, L., Liu, J., Wang, Y., Xu, Y., Wang, S., Jan. 2014. Multi-

objective optimization of reverse osmosis networks by lexicographic opti-

mization and augmented epsilon constraint method. Desalination 333 (1),

66–81.

Dunnett, A. J., Adjiman, C. S., Shah, N., 2008. A spatially explicit whole-

system model of the lignocellulosic bioethanol supply chain: An assess-

ment of decentralised processing potential. Biotechnology for Biofuels 1.
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