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Prólogo 

This thesis has been divided into one introduction and three research chapters.  

� The introduction provides some basic concepts and methods for the generation of 

free carbenes and gold(I) carbenes. 

� Chapter 1 presents all of the reactions (except reactions discussed in Chapter 2 

and 3) we have found based on the gold-catalyzed retro-Buchner reaction. Part of 

this work on the cyclopropanation of gold-carbenes is included in the following 

publication: César R. Solorio-Alvarado, Yahui Wang, and Antonio M. Echavarren, 

J. Am. Chem. Soc. 2011, 133, 11952–11955. To avoid overlap with the thesis of Dr. 

César R. Solorio-Alvarado, his work in this publication is not included in this thesis. 

We present some reactions of cycloheptatrienes that do not undergo retro-Buchner 

reactions. Some results presented in this chapter support the mechanism of “Gold 

for the Generation and Control of Fluxional Barbaralyl Cations”, as published in: 

Paul R. McGonigal, Claudia de León, Yahui Wang, Anna Homs, César R. Solorio-

Alvarado, and Antonio M. Echavarren, Angew. Chem. Int. Ed. 2012, 51, 13093–

13096. 

� Chapter 2 gives the detailed study on a new formal (4+1) cycloaddition strategy 

by using methylenecyclopropanes or cyclobutenes as synthetic equivalent of 1,3-

dienes. The entirety of this work was published in: Yahui Wang, Michael E. 

Muratore, Zhouting Rong, and Antonio M. Echavarren, Angew. Chem. Int. Ed. 2014, 

53, DOI: 10.1002/anie.201404029. 

� Chapter 3 discusses a formal C-H insertion of gold carbenes generated by retro-

Buchner reaction. The entirety of this work was published in: Yahui Wang, Paul R. 

McGonigal, Bart Herlé, Maria Besora, and Antonio M. Echavarren, J. Am. Chem. 
Soc. 2014, 136, 801–809. 
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List of Catalysts, Abbreviations and Acronyms 

All of the gold(I) complexes used in this thesis have been listed bellow. They were 

prepared according to our previous publications.1 

 

 

In this manuscript, the abbreviations and acronyms used follow the 

recommendations found in the on-line “Guidelines for authors” of the Journal of 
Organic Chemistry. 

 

 

��������������������������������������������������������
1 (a) Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Cárdenas, D. J.; Buñuel, E.; Nevado, C.; Echavarren, 
A. M. Angew. Chem. Int. Ed. 2005, 44, 6146–6148. (b) López, S.; Herrero-Gómez, E.; Pérez-Galán, P.; 
Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 6029–6032. (c) Amijs, C. H. 
M.; López-Carrillo, V.; Raducan, M.; Pérez-Galán, P.; Ferrer, C.; Echavarren, A. M. J. Org. Chem. 2008, 
73, 7721–7730. (d) M. Raducan, PhD thesis, ICIQ, 2010. 
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Resumen 

Los carbenos metálicos son uno de los intermedios más fundamentales en síntesis 

orgánica y se han sido utilizados ampliamente para preparar moléculas muy 

complejas.2 Se han utilizado varios metales de transición para la descomposición de 

diazocompuestos como un método muy potente de generación de carbenos.3  

Considerando el interés de nuestro grupo en el desarrollo de nuevas 

transformaciones catalizadas por oro,4,5 descubrimos un nuevo método para generar 

carbenos de oro(I) 3 a través de una reacción retro-Buchner del tautómero 

norcaradieno 2 basado en su equilibrio con el cicloheptatireno 1. Los carbenos de 

oro(I) 3 son especies muy reactivas respeto a varios tipos de nucleófilos para formar 

diferentes tipos de productos que no son fáciles de preparar con otros métodos. 

Además, esta estrategia constituye una alternativa más segura en la síntesis de 

carbenos metálicos evitando el uso de diazocompuestos que son altamente 

explosivos (Esquema 1).  

 

Esquema 1. Carbenos de oro(I) a partir de cicloheptatrienos. 

Los carbenos de oro(I) con un arilo como sustituyente generados a través de la 

reacción retro-Buchner pueden atraparse con alquenos para formar ciclopropanos 

1,2,3-trisustituidos con rendimientos excelentes (Esquema 2).6 

 

Esquema 2. Reacción de ciclopropanación. 

��������������������������������������������������������
2 Libros y reviews seleccionados: (a) Doyle, M. P. Chem. Rev. 1986, 86, 919–939. (b) Moss, R. A.; Platz, 
M. S.; Jones, M. Jr., Reactive Intermediate Chemistry; Wiley: New York, 2004. (c) Jones, M. Jr.; Moss, 
R. A., Carbenes; John Wiley & Sons, New York, 1973. 
3 Reviews seleccionados sobre el uso de diazocompuestos como precursores de carbenos: (a) Díaz-
Requejo, M. M.; Pérez, P. J. Chem. Rev. 2008, 108, 3379–3394. (b) Davies, H. M. L.; Manning, J. R. 
Nature 2008, 451, 417–424. (c) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577–6605. (d) Lebel, H.; 
Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977–1050. 
4 (a) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326–3350. (b) Obradors, C.; 
Echavarren, A. M. Chem. Commun. 2014, 50, 16–28. (c) Obradors, C.; Echavarren, A. M. Acc. Chem. 
Res. 2014, 47, 902–912.  
5 Solorio-Alvarado, C. R.; Echavarren, A. M. J. Am. Chem. Soc. 2010, 132, 11881–11883. 
6 Solorio-Alvarado, C. R.; Wang, Y.; Echavarren, A. M. J. Am. Chem. Soc. 2011, 133, 11952–11955. 
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Los carbenos de oro(I) sustituidos con un ciclopropilo cis-6 y trans-6 fueron 

generados con el método de la reacción retro-Buchner pero mostraron una 

reactividad diferente. La configuración relativa de los dos grupos fenilos juega un 

papel clave en la estereoquímica del producto final obtenida durante el proceso 

(Esquema 3). 

 

Esquema 3. Carbenos de oro(I) con un ciclopropilo. 

Los carbenos de oro(I) 3 generados desde los cicloheptatrienos pueden atraparse 

intermolecularmente con furanos para formar el intermedio 8, el cual no es muy 

estable y reacciona a través de un reordenamiento sigmatrópico para obtener 9. La 

reactividad de los intermedios 9 depende completamente de los sustituyentes del 

furano. Tal y como se muestra en el Esquema 4, cuando R2 = H, se produce una 

isomerización muy rápida (ruta a) obteniendo dienos lineales tipo 10. En cambio, 

cuando R2 ≠ H, domina una adición tipo Mukaiyama-Michael (ruta b) promovida 

por oro(I) para formar los productos cíclicos 11.7 

 

Esquema 4. Reacción entre cicloheptatrienos y furanos. 

Además, descubrimos que los metilenciclopropanos (MCPs)8 y los ciclobutenos 

también pueden usarse para atrapar los carbenos de oro(I) generados desde los 

cicloheptatrienos dando lugar a cicloadiciones (4+1) con muy buenos rendimientos 

(Esquema 5). Esta reacción representa una nueva y complicada estrategia para usar 

��������������������������������������������������������
7  Lebœuf, D.; Gaydou, M.; Wang, Y.; Echavarren, A. M. Org. Chem. Front. 2014, 1, DOI: 
10.1039/c4qo00130c. 
8 Los metilociclopropanos pueden transformarse en ciclobutenos usando catálisis de platino o paladio: (a) 
PtCl2: Fürstner, A.; Aissa, C. J. Am. Chem. Soc. 2006, 128, 6306–6307. (b) Paladio: Shi, M.; Liu, L.-P.; 
Tang, J. J. Am. Chem. Soc. 2006, 128, 7430–7431. 
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metilenciclopropanos o ciclobutenos como equivalentes sintéticos de 1,3-dienos en 

una cicloadición (4+1) con carbenos. A parte de los carbenos de oro(I) generados en 

la reacción retro-Buchner desde 7-arilo-1,3,5-cicloheptatrienos, otros precursores, 

por ejemplo derivados de diazocompuestos3 o acetatos propargílicos,9 también se 

pueden usar en esta nueva estrategia de adición (4+1).10 

 

Esquema 5. Cicloadición (4+1). 

Los carbenos de oro(I) generados a través de la reacción retro-Buchner desde los 

1,3,5-cicloheptatrienos 18 pueden atraparse intramolecularmente con arenos o 

alquenos para formar fluorenos 19 o indenos 20. Esta metodología representa una 

estrategia completamente nueva para la síntesis de estos compuestos y puede 

aplicarse en la síntesis de indenofluorenos usados en materiales orgánicos 

electrónicos (Esquema 6). Estas reacciones se llevan a cabo a través de una reacción 

Friedel−Crafts intramolecular  atacando el carbeno de oro(I), que es altamente 

electrofílico, con un alqueno o un areno. La reactividad de los intermedios 

catiónicos generados con la reacción retro-Buchner es más similar a los carbenos de 

rodio o cobre, o incluso a los carbenos libres, que a la de los carbocationes.11 

 

Esquema 6. Síntesis directa de fluorenos y indenos. 

Los correspondientes cálculos DFT del mecanismo de estas reacciones revelaron 

detalles muy intrigantes de las diferentes rutas (Esquema 7). Así, en la síntesis de 

��������������������������������������������������������
9 Reviews de reordenamientos de carboxilatos propargílicos catalizados por oro: (a) de Haro, T.; Gómez-
Bengoa, E.; Cribiú, R.; Huang, X.; Nevado, C. Chem. Eur. J. 2012, 18, 6811–6824. (b) Wang, S.; Zhang, 
G.; Zhang, L. Synlett 2010, 692–706. (c) Shiroodi, R. K.; Gevorgyan, V. Chem. Soc. Rev. 2013, 42, 
4991–5001. (d) Correa, A.; Marion, N.; Fensterbank, L.; Malacria, M.; Nolan, S. P.; Cavallo, L. Angew. 
Chem. Int. Ed. 2008, 47, 718–721. (e) Marco-Contelles, J.; Soriano, E. Chem. Eur. J. 2007, 13, 1350–
1357. (f) Amijs, C. H. M.; López-Carrillo, V.; Echavarren, A. M. Org. Lett. 2007, 9, 4021–4024. 
10 Wang, Y.; Muratore, M. E.; Rong, Z.; Echavarren, A. M. Angew. Chem. Int. Ed. 2014, 53, DOI: 
10.1002/anie.201404029. 
11 Wang, Y.; McGonigal, P. R.; Herlé, B.; Besora, M.; Echavarren, A. M. J. Am. Chem. Soc. 2014, 136, 
801–809. 
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indenos, descubrimos que una migración 1,4- del metal compite con la ruta principal 

de formación del complejo de oro(I) coordinado al producto con una 1,2-H 

migración/eliminación concertada del oro(I). La formación de los fluorenos incluye 

un proceso tipo diatrópico para la formación del complejo (η1-fluoren)-oro(I). 

 

Esquema 7. Proposición mecanística. 
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General Introduction 

Singlet and triplet carbenes 

Carbenes, carbanions, carbocations and radicals are four types of fundamental 

reactive intermediates in organic synthesis. Among them, carbenes have been 

widely used as one-carbon synthon source for the construction of complex 

molecules. 12 Depending on the electronic spins they possess, in general, free 

carbenes can be classified into two types: singlet and triplet carbenes (Figure 1). The 

singlet state, with its two paired electrons and unfilled p orbital, exhibits 

electrophilic reactivity and the cyclopropanation with alkene in a concerted pattern 

should be stereospecific. In contrast, the triplet carbene reacts like a diradical and 

the additions would not be stereospecific. 

�

Figure 1 

Fischer and Schrock carbenes 

Two types of metal-coordinated carbenes, LnM=CR2, can be distinguished: the 

singlet-derived Fischer carbenes and triplet-derived Schrock carbenes. 

The first Fischer carbene complex was prepared in the laboratory of E. O. Fischer in 

1964 by the attack of methyllithium on the tungsten hexacarbonyl complex followed 

by methylation (Scheme 1).13 Soon after the discovery of Fischer type complexes 

their chemistry was systematically explored and they have been since well 

established as valuable species in organic synthesis as well as in catalytic 

processes.14 

��������������������������������������������������������
12 Selected reviews and books: (a) Baird, M. S. Chem. Rev. 2003, 103, 1271–1294. (b) Doyle, M. P.; 
Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704–724. (c) Harvey, D. F.; Sigano, D. M. 
Chem. Rev. 1996, 96, 271–288. (d) Moss, R. A. Acc. Chem. Res. 2006, 39, 267–272. (e) Doyle, M. P. 
Chem. Rev. 1986, 86, 919–939. (f) Barluenga, J.; Santamaría, J.; Tomás, M. Chem. Rev. 2004, 104, 
2259–2284. (g) Cheng, Y.; Meth-Cohn, O. Chem. Rev. 2004, 104, 2507–2530. (h) Brookhart, M.; 
Studabaker, W. B. Chem. Rev. 1987, 87, 411–432. (i) Moss, R. A.; Platz, M. S.; Jones, M. Jr., Reactive 
Intermediate Chemistry; Wiley: New York, 2004. (j) Jones, M. Jr.; Moss, R. A., Carbenes; John Wiley & 
Sons, New York, 1973. 
13 Fischer, E. O.; Maasböl, A. Angew. Chem. Int. Ed. 1964, 3, 580–581. 
14 Selected recent publications of Fischer carbenes: (a) Barluenga, J.; Santamaría, J.; Tomás, M. Chem. 
Rev. 2004, 104, 2259–2284. (b) Barluenga, J.; Vicente R.; Barrio, P.; López, L. A.; Tomás, M.; Borge, J. 
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�

Scheme 1 

Fischer carbenes normally contain a π-donating group, such as −OMe or −NMe2, on 

the carbene carbon to stabilize the empty p orbital on the carbene carbon by π-

donation from one of the lone pairs of the heteroatom. This stability effect makes 

the metal to carbene π-back-donation very weak and the direct carbene to metal σ-

donation predominates. Therefore, the carbon tends to be positively charged, and the 

carbene behaves as an electrophile (Figure 2). 

�

Figure 2 

In the Schrock case, two covalent bonds between metal and triplet carbene are 

formed, and each metal-carbon bond is polarized toward the carbon because of its 

higher electronegativity. As a result, the carbon tends to be more negatively charged, 

and the carbene exhibits nucleophilic character. Binding of a Schrock carbene is 

considered to increase the oxidation state of the metal by two units. Alternatively, 

the Schrock carbene can also be considered as a Fischer carbene with a very strong 

back-donation (Figure 3). 

�

Figure 3 Fischer carbene and Schrock carbene. 

Due to their more electronegative properties and more stable M (dπ) orbitals, 

generally, most of the late transition metal carbenes can be classified into Fischer 

carbenes and act as electrophiles. 
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J. Am. Chem. Soc. 2004, 126, 14354–14355. (c) Barluenga, J.; Vicente R.; Barrio, P.; López, L. A.; 
Tomás, M. J. Am. Chem. Soc. 2004, 126, 5974–5975. (d) Barluenga, J.; Vicente R.; López, L. A.; Rubio, 
E.; Tomás, M.; Álvarez-Rúa, C. J. Am. Chem. Soc. 2004, 126, 470–471. (e) Barluenga, J.; Vicente R.; 
López, L. A.; Tomás, M. J. Am. Chem. Soc. 2006, 128, 7050–7056. 
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Gold carbenes 

Gold(I) carbenes have very often been proposed as the key intermediates in many 

gold-catalyzed reactions, and are structurally related to singlet carbenes and posses 

similar reactivity.4 However, the structure of gold carbenes has been questioned, 

because in some cases both the gold carbene and the gold-stabilized carbocation 

intermediates can be invoked to rationalize the outcome of a given reaction.15  

In 2009, chemists began to make substantial progress towards resolving this 

controversy.16 

The ligand and carbene can both donate their paired electrons to gold, forming a 

three-center-four-electron σ-hyperbond. The gold center can also form two π-bonds 

by back-donation of its electrons from two filled d-orbitals into empty π-acceptors 

on the ligand and carbene (Figure 4).  

�

Figure 4 Bonding of gold carbenes. 

The more carbene-like structure occurs with an increase in gold-carbon π-bonding 

and a decrease in the σ-bonding. Considering the competition between ligand and 

carbene for the electron density from gold,17 strongly σ-donating and weakly π-

acidic ligands are expected to increase carbene-like reactivity. In contrast, π-acidic 

ligands increase carbocation-like reactivity of the intermediate by decreasing gold-

to-carbene π-donation (Figure 5). 

�

Figure 5 Carbocation-like or carbene-like. 
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15 (a) Fürstner, A.; Morency, L. Angew. Chem. Int. Ed. 2008, 47, 5030–5033. (b) Seidel, G.; Mynott, R.; 
Fürstner, A. Angew. Chem. Int. Ed. 2009, 48, 2510–2513.  
16 (a) Benitez, D.; Shapiro, N. D.; Tkatchouk, E.; Wang, Y.; Goddard III, W. A.; Toste, F. D. Nat. Chem. 
2009, 1, 482–486. (b) Echavarren, A. M. Nat. Chem. 2009, 1, 431–433. 
17 For a review on ligand effects in homogeneous gold catalysis: Gorin, D. J.; Sherry, B. D.; Toste, F. D. 
Chem. Rev. 2008, 108, 3351–3378. 
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N-Heterocyclic carbenes (NHCs) are strong σ-donors and weak π-acceptors. These 

ligands are strong σ-donors because the carbon of these carbenes is softer and less 

electronegative than most heteroatom Lewis bases. The NHC ligands acts as a 

strong π-donor to the unoccupied p-orbital of the NHC carbon center. This 

participation of the p-orbital at carbon on NHC minimizes the π-donation from gold 

to the NHC. Therefore, the π-back-donation from gold to carbon center is increased, 

and the intermediate should be more carbene-like (Figure 6). 

�

Figure 6 NHC ligands increase π-back-donation from gold to carbene center. 

For example, gold complexe with IPr18 has been shown to be the best catalyst for the 

cyclopropanation of cis-stilbene. In this transformation, the intermediate shows a 

carbene-like reactivity (Scheme 2).16a 

�

Scheme 2 

Recently, a diaryl gold carbene complex (a in Figure 7) was isolated and 

characterized by X-ray diffraction by Alois Fürstner and his coworker.19 The Au–C 

carbene bond length (2.039(5) Å) is not significantly different from the bond length 

normally associated with gold-carbon single bond (for comparison, the Au–C bond 

length in [Ph3PAu–Ph] is 2.045(6) Å).20 However, the bond between the carbene 

center and the aryl group is shortened appreciably. The more contracted C–C bond 

connects to an aryl ring that is nearly co-planar with the carbene center to enable 

efficient orbital overlap, which stabilizes the electron-deficient carbene center. 

These observations are quite comparable to the structural features of 

diarylcarbenium ions, such as c.  

For complex a, electron back donation from the filled d-orbitals of gold to the empty 

p-orbital of the carbene alone is not sufficient and is actually very weak, and the 
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18 IPr: 1,3-bis(2,6-diisopropylphenyl)imidazolidene. 
19 Seidel, G.; Fürstner, A. Angew. Chem. Int. Ed. 2014, 53, 4807–4811. 
20 Fernández, E. J.; Laguna, A.; Olmos, M. E. Adv. Organomet. Chem. 2004, 52, 77–141. 
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substituted arene rings play a dominant role in stabilizing the gold carbene (see b*). 

Therefore, Alois Fürstner concluded: Since carbon species that carry a formal 
positive charge (or a good leaving group) and a carbon–metal bond at the same site 
are commonly called “carbenoids”,21 gold carbenes should be scientifically called 
gold carbenoids and the structure like a is not recommended to use. 

�

Figure 7 

However, the structure chosen in Figure 7 is a very special example, since the 4-

methoxyl phenyl substituent is a very strong electron-donating group and its 

powerful ability to stabilize the carbene center gives gold no chance to back-donate 

electrons to the empty p obital of carbene. Predictably, in cases in which the carbene 

center cannot obtain enough stabilization from substituents, the back-donation from 

gold is still a source of stabilization, and the gold carbene bonding model is still a 

pertinent representation. 

As noted above, actually for Fischer carbenes, the π-back-donation from metal to 

carbene is always weak. Therefore, we cannot exclude gold carbenes from the 

Fischer carbene family, based solely on the bonding arrangement shown in Figure 7, 

which shows the π-back-donation is negligible in this extreme case.22 

In our opinion, so far, the best description of gold carbene originates from Toste and 

Goddard: “The reactivity in gold(I)-coordinated carbenes is best accounted for by a 
continuum ranging from a metal-stabilized singlet carbene to a metal-coordinated 
carbocation. The position of a given gold species on this continuum is largely 
determined by the carbene substituents and the ancillary ligand”.16a 

In this thesis manuscript, we have chosen to employ Occam's razor and represent 

gold–carbon bonds in the manner which best describes their observed reactivity. 

The reactions discussed in the following chapters are best described by invoking 

gold-coordinated carbenes as intermediate species; however, we advise the reader to 
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21 IUPAC´s definition of carbenoid: “Complexed carbene-like entities that display the reactivity 
characteristics of carbenes, either directly or by acting as sources of carbenes”. 
22 For a recent discussion about the structure of gold carbenes: Hussong, M. W.; Rominger, F.; Krämer, 
P.; Straub, B. F. Angew. Chem. Int. Ed. 2014, 53, DOI: 10.1002/anie.201404032. 
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bear in mind the discussion concerning the continuum that exists between gold-

stabilized singlet carbene and gold-coordinated carbocation. 

Methods for generating free carbenes 

Because of their electron-deficient nature (six valence electrons), most carbenes are 

highly reactive and are normally generated in situ. 

Some of the classical, transition metal-free, ways of forming carbene intermediates 

are summarized below. 

1. α-Elimination 

Carbenes can be generated by the α-elimination of a hydrogen halide from a suitable 

alkylhalide. The most common example is the formation of dichlorocarbene upon 

treating chloroform with a strong base.23 A 50% aqueous NaOH solution and 

benzyltriethylammonium chloride, as phase transfer catalyst, are frequently 

employed to promote α-elimination efficiently (Scheme 3). 

�

Scheme 3 

There is an alternative route for the generation of dichlorocarbene by the treatment 

of trichloroacetic acid with a base through decarboxylation and loss of chloride 

(Scheme 4).24 

�

Scheme 4 

Similar α-elimination methodology can also be applied to dichloromethane and 

benzyl chlorides with alkyl lithium reagents. The aromatic group provides the 

carbanion extra stabilization, which makes the lithiation feasible (Scheme 5).25 

�

Scheme 5 

These α-elimination methods shown above are restricted to halohydrocarbon 

without β-hydrogens, because β-elimination occurs preferentially. 
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23 (a) Hine, J. J. Am. Chem. Soc. 1950, 72, 2438–2445. (b) Hine, J.; Dowell Jr., A. M. J. Am. Chem. Soc. 
1954, 76, 2688–2692.  
24 Wagner, W. M.; Kloosterziel, H.; Bickel, A. F. Recl. Trav. Chim. Pays–Bas. 1962, 81, 933–946. 
25 Closs, G. L.; Closs, L. E. J. Am. Chem. Soc. 1960, 82, 5723–5728. 
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The α-elimination method can also be applied in organomercury compounds for 

carbene generation. The carbon-mercury bond is more covalent than the C-Li bond, 

therefore, the organomercury reagents are generally stable at room temperature and 

isolable (Scheme 6).26 

�

Scheme 6 

Because of the high toxicity of organomercury compounds, they have seldom been 

used for synthetic purposes. 

2. From halomethylzinc reagents 

Methylene iodide with a zinc-copper couple, referred as Simmons-Smith reagent, is 

very useful for the transfer of a methylene unit to alkenes.27 Although it looks like a 

carbene mechanism 28 , the reactive intermediate has been identified as 

iodomethylzinc iodide (Scheme 7).29  

�

Scheme 7 

The results of classical Simmons-Smith conditions have been found to be sensitive 

to the method of zinc activation and are sometimes difficult to reproduce. The 

combination of diethylzinc and diiodomethane, the Furukawa modification, has 

been developed as a convenient and reliable method for Simmons-Smith reaction.30 

Both the EtZnCH2I and ICH2ZnI generated in the reaction are reactive reagents 

toward cyclopropanation with alkenes (Scheme 8). 

�

Scheme 8 

��������������������������������������������������������
26 Seyferth, D.; Burlitch, J. M.; Minasz, R. J.; Mui, J. Y.; Simmons, H. D.; Treiber, A. J. H.; Dowd, S. R. 
J. Am. Chem. Soc. 1965, 87, 4259–4270. 
27 Simmnos, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323–5324. 
28 According to IUPAC´s�definition of carbenoid, Simmons–Smith reagents should be called carbenoids. 
29 (a) Charette, A. B.; Marcoux, J.-F. J. Am. Chem. Soc. 1996, 118, 4539–4549. (b) Nakamura, M.; Hirai, 
A.; Nakamura, E. J. Am. Chem. Soc. 2003, 125, 2341–2350. 
30 Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron 1968, 24, 53–58. 
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The main limitation of Simmons-Smith reaction is that only the methylene unit can 

be transferred successfully, although some other modifications have been 

developed.31 

3. Decomposition of diazo compounds 

Decomposition of diazo compounds is one of the most general ways of generating 

carbenes. The driving force for decomposition of diazo compounds to carbenes is 

the formation of the very stable nitrogen molecule (Scheme 9).  

�

Scheme 9 

Although carbenes can be formed by photolysis or thermolysis, metal-catalyzed 

decomposition of diazo derivatives32 is particularly powerful and allows the diazo 

compounds to undergo various transformations delivering many functionalized 

products under very mild conditions. The reactivity depends on their electronic 

properties as well as the nature of the metal-based catalysts (Scheme 10). 

�

Scheme 10 

The main drawback of this method is the limited stability of the diazo compounds. 

In order to counter their relatively facile dimerization, the diazo compound is 

usually added slowly into the reaction mixture using a syringe pump. 

4. From diazirines 
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31 (a) Vicente, R.; González, J.; Riesgo, L.; González, J.; López, L. A. Angew. Chem. Int. Ed. 2012, 51, 
8063–8067. (b) Lévesque, É.; Goudreau, S. R.; Charette, A. B. Org. Lett. 2014, 16, 1490–1493 and 
references cited therein. 
32 Selected reviews on the use of diazo compounds as carbene precursors: (a) Díaz-Requejo, M. M.; 
Pérez, P. J. Chem. Rev. 2008, 108, 3379–3394. (b) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 
417–424. (c) Davies, H. M. L.; Denton, J. R. Chem. Soc. Rev. 2009, 38, 3061–3071. (d) Zhang, Z.; Wang, 
J. Tetrahedron 2008, 64, 6577–6605. (e) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091–1160. (f) 
Forbes, D. C.; Doyle, M. P. Chem. Rev. 1998, 98, 911–935. (g) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; 
Charette, A. B. Chem. Rev. 2003, 103, 977–1050. 
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The diazirines are the cyclic isomers of diazo compounds and are highly reactive 

carbene precursors resulting from their highly strained structure and also the 

potential for loss of nitrogen (Scheme 11).33 

�

Scheme 11 

Because of their difficult preparation, diazirines are normally only applicable to 

mechanistic studies. 

5. From sulfonylhydrazones 

Sulfonylhydrazones can be used as precursors for diazo compounds. In the presence 

of base under photochemical irradiation or by heating, they can decompose to form 

diazo intermediates, which usually generate carbenes under the same conditions.34 

Sometimes, this method can be used to prepare several relatively stable diazo 

derivatives (Scheme 12).35 

�

Scheme 12 

Recently, transition metals have also been exploited to generate carbene 

intermediates from sulfonylhydrazones under very mild conditions, and many 

potentially useful reactions have been developed.36 

6. From oxadiazolines 

Thermolysis of oxadiazolines can generate (CH3O)2C: and related dioxacarbenes.37 

Similarly, dithiacarbenes can also be formed by this method (Scheme 13).38 
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33 (a) Liu, M. T. H. Chemistry of Diazirines, 2 vols., CRC Press, Boca Raton, FL, 1987. For reviews: (b) 
Liu, M. T. H. Chem. Soc. Rev. 1982, 11, 127–140. (c) Moss, R. A. Acc. Chem. Res. 2006, 39, 267–272. 
For synthesis, see: (d) Martinu, T.; Dailey, W. P. J. Org. Chem. 2004, 69, 7359–7362 and references 
cited therein. 
34 (a) Kaufman, G. M.; Smith, J. A.; Vander Stouw, G. G.; Shechter, H. J. Am. Chem. Soc. 1965, 87, 935–
937. For recent examples: (b) Barluenga, J.; Tomás-Gamasa, M.; Aznar, F.; Valdés, C. Nat. Chem. 2009, 
1, 494–499. (c) Li, H.; Wang, L.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2012, 51, 2943–2946. 
35 For example, phenyl diazomethane was prepared by this method: (a) Zhou, Y.; Trewyn, B. G.; 
Angelici, R. J.; Woo, L. K. J. Am. Chem. Soc. 2009, 131, 11734–11743. (b) Creary, X. Org. Synth. 1986, 
64, 207. 
36 Selective publications: (a) Zhang, Y.; Wang, J. Topics in Current Chemistry, Stereoselective Alkene 
Synthesis, Edited by Jianbo Wang, Springer, 2012, 327, 239–270. (b) Xia, Y.; Liu, Z.; Xiao, Q.; Qu, P.; 
Ge, R.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2012, 51, 5714–5717. (c) Ye, F.; Ma, X.; Xiao, Q.; 
Li, H.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2012, 134, 5742–5745. (d) Zhou, L.; Ye, F.; Ma, J.; 
Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2011, 50, 3510–3514. 
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�

Scheme 13 

Interestingly, these carbenes are quite different from the carbenes discussed above 

and they exhibit some nucleophilic properties through donation of electron density 

from the heteroatoms into the vacant p-orbital of the carbene center.39 

7. From phenanthrene precursors 

Free carbenes can be generated from phenanthrene precursors under photochemical 

conditions.40 The driving force for this reaction is the release of stable phenanthrene. 

Interestingly, this can be regarded as a special retro-Buchner process (Scheme 14). 

�

Scheme 14 

However, due to the difficulty of preparing phenanthrene derivatives, this route of 

forming carbenes is not suitable for application in organic synthesis. 

8. Atomic carbon mediated carbene formation 

Atomic carbon is a highly reactive species.41 Since most of the reactions involving C 

atoms are very fast and extremely exothermic, it suggests that there is no energy 

barrier for these reactions. Carbenes are often the intermediates in C atom reactions, 
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37 Warkentin, J. Acc. Chem. Res. 2009, 42, 205–212. 
38 (a) Rigby, J. H.; Danca, M. D. Tetrahedron Lett. 1999, 40, 6891–6894. (b) Rigby, J. H.; Laurent, S. J. 
Org. Chem. 1999, 64, 1766–1767. 
39 (a) Moss, R. A. Acc. Chem. Res. 1989, 22, 15–21. (b) Venneri, P. C.; Warkentin, J. Can. J. Chem. 
2000, 78, 1194–1203. (c) Pole, D. L.; Sharma, P. K.; Warkentin, J. Can. J. Chem. 1996, 74, 1335–1340. 
(d) Couture, P.; Warkentin, J. Can. J. Chem. 1997, 75, 1281–1294. 
40 (a) Graves, K. S.; Thamattoor, D. M.; Rablen, P. R. J. Org. Chem. 2011, 76, 1584–1591. (b) Moore, K. 
A.; Vidaurri-Martinez, J. S.; Thamattoor, D. M. J. Am. Chem. Soc. 2012, 134, 20037−20040. (c) Nigam, 
M.; Platz, M. S.; Showalter, B. M.; Toscano, J. P.; Johnson, R.; Abbot, S. C.; Kirchhoff, M. M. J. Am. 
Chem. Soc. 1998, 120, 8055–8059. (d) Glick, H. C.; Likhotvorik, I. R.; Jones, M. Tetrahedron Lett. 1995, 
36, 5715–5718. (e) Richardson, D. B.; Durrett, L. R.; Martin, J. M.; Putnam, W. E.; Slaymaker, S. C.; 
Dvoretzky, I. J. Am. Chem. Soc. 1965, 87, 2763–2765. 
41 Moss, Robert A; Jones, Maitland (2004). "Atomic carbon". Reactive intermediate chemistry. pp. 463–
500. 
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and in general there are two ways in which carbenes can be produced: C–H insertion 

of alkanes42 and deoxygenation of carbonyl compounds (Scheme 15).43  

�

Scheme 15 

However, because of the lack of general and convenient method for atomic carbon 

generation, the chemistry of carbenes from C atom is still a relatively young field.44  

Generation of gold carbenes 

Additionally, several ways of generating gold(I) carbene intermediates are 

illustrated below. 

1. Diazo compounds 

Gold(I) complexes have also been found limited application with diazo precursors 

(Scheme 16).45 However, rhodium and copper complexes are more popular catalysts 

for the decomposition of diazo compounds. 

�

Scheme 16 

2. Cyclopropenes 

It has been demonstrated that ring cleavage of cyclopropenes gives vinyl gold(I) 

carbene intermediates (Scheme 17).46 
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42 Skell, P. S.; Engel, R. R. J. Am. Chem. Soc. 1966, 88, 4883–4890. 
43 Selected references: (a) Dewar, M. J. S.; Nelson, D. J.; Shevlin, P. B.; Biesiada, K. A. J. Am. Chem. 
Soc. 1981, 103, 2802–2807. (b) Armstrong, B. M.; McKee, M. L.; Shevlin, P. B. J. Am. Chem. Soc. 1995, 
117, 3685–3689. 
44 “Future researchers should be encouraged by the fact that is difficult to imagine a molecule that will 
not react with atomic carbon.”---by Philip B. Shevlin in (2004). "Atomic carbon". Reactive intermediate 
chemistry. (eds. Moss, Robert A; Jones, Maitland) pp. 495. 
45 (a) Fructos, M. R.; Belderrain, T. R.; de Frémont, P.; Scott, N. M.; Nolan, S. P.; Díaz-Requejo, M. M.; 
Pérez, P. J. Angew. Chem. Int. Ed. 2005, 44, 5284–5288. (b) Prieto, A.; Fructos, M. R.; Díaz-Requejo, M. 
M.; Pérez, P. J.; Pérez-Galán, P.; Delpont, N.; Echavarren, A. M. Tetrahedron 2009, 65, 1790–1793. (c) 
Rivilla, I.; Gõmez-Emeterio, B. P.; Fructos, M. R.; Díaz-Requejo, M. M.; Pérez, P. J. Organometallics 
2011, 30, 2855–2860. (d) Pérez, P. J.; Díaz-Requejo, M. M.; Rivilla, I. Beilstein J. Org. Chem. 2011, 7, 
653–657. (e) Yu, Z.; Ma, B.; Chen, M.; Wu, H.-H.; Liu, L.; Zhang, J. J. Am. Chem. Soc. 2014, 136, 
6904–6907. 
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Scheme 17 

3. Propargylic carboxylates 

In the presence of a gold(I) catalyst, propargylic carboxylates undergo 1,2-acyloxy 

migration to generate vinyl gold carbene intermediates, which can be trapped by 

1,3-diones, alkenes, or electron-rich aromatics intra- or intermolecularly.47 Because 

propargylic carboxylates are readily available, they are very effective and common 

carbene precursors in gold catalysis (Scheme 18). 

�

Scheme 18 

4. 1,6-Enynes 

We have revealed that cyclopropanyl gold carbenes are the intermediates of 1,6-

enyne cycloisomerizations. These reactive intermediates exhibit various reactivities 

toward many functional groups intra- or intermolecularly (Scheme 19).48 

�

Scheme 19 
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46 (a) Hadfield, M. S.; Bauer, J. T.; Glen, P. E.; Lee, A.-L. Org. Biomol. Chem. 2010, 8, 4090–4095. (b) 
For review on gold(I) catalyzed transformations of cyclopropenes: Miege, F.; Meyer, C.; Cossy. J. 
Beilstein. J. Org. Chem. 2011, 7, 717–734.  
47 For reviews and lead references on gold-catalyzed propargylic carboxylate rearrangement: (a) de Haro, 
T.; Gómez-Bengoa, E.; Cribiú, R.; Huang, X.; Nevado, C. Chem. Eur. J. 2012, 18, 6811–6824. (b) Wang, 
S.; Zhang, G.; Zhang, L. Synlett 2010, 692–706. (c) Shiroodi, R. K.; Gevorgyan, V. Chem. Soc. Rev. 
2013, 42, 4991–5001. (d) Correa, A.; Marion, N.; Fensterbank, L.; Malacria, M.; Nolan, S. P.; Cavallo, L. 
Angew. Chem. Int. Ed. 2008, 47, 718–721. (e) Marco-Contelles, J.; Soriano, E. Chem. Eur. J. 2007, 13, 
1350–1357. (f) Amijs, C. H. M.; López-Carrillo, V.; Echavarren, A. M. Org. Lett. 2007, 9, 4021–4024. 
(g) Li, G.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 3740–3741. (h) Shapiro, N. D.; Shi, Y.; 
Toste, F. D. J. Am. Chem. Soc. 2009, 131, 11654–11655. (i) Shapiro, N. D.; Toste, F. D. J. Am. Chem. 
Soc. 2008, 130, 9244–9245. (j) Gorin, D. J.; Dubé, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 14480–
14481. For Cu(I) and Pt(II) catalyzed this rearrangement: (k) Barluenga, J.; Riesgo, L.; Vicente, R.; 
López, L. A.; Tomás, M. J. Am. Chem. Soc. 2007, 129, 7772–7773. 
48 (a) Escribano-Cuesta, A.; López-Carrillo, V.; Janssen, D.; Echavarren, A. M. Chem. Eur. J. 2009, 15, 
5646–5650. (b) López, S.; Herrero-Gómez, E.; Pérez-Galán, P.; Nieto-Oberhuber, C.; Echavarren, A. M. 
Angew. Chem. Int. Ed. 2006, 45, 6029–6032. For reviews, see: (c) Jiménez-Núñez, E.; Echavarren, A. M. 
Chem. Rev. 2008, 108, 3326–3350. (d) Obradors, C.; Echavarren, A. M. Chem. Commun. 2014, 50, 16–
28. (e) Obradors, C.; Echavarren, A. M. Acc. Chem. Res. 2014, 47, 902–912. (f) Taduri, B. P.; Sohel, S. 
M. A.; Cheng, H.-M.; Lin, G.-Y.; Liu, R.-S. Chem. Commun. 2007, 2530–2532. 
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5. Gold-catalyzed alkyne oxidation 

The groups of Zhang and Toste demonstrated that alkynes effectively serve as 

precursors to versatile α-oxo gold carbenes in the presence of a suitable oxidant. In 

general, sulfoxides are the best oxidants for intramolecular alkyne oxidation and 

pyridine or quinoline N-oxides are suitable for intermolecular reactions (Scheme 

20).49 

�

Scheme 20 

6. Acetylenic Schmidt reaction 

Similar to alkyne oxidation, azides can serve as leaving-group-bearing nucleophiles. 

After loss of dinitrogen, gold(I) iminocarbene intermediates are generated. 

Subsequent rearrangements produce 1H-pyrroles as the final products (Scheme 

21).50 

�

Scheme 21 

7. Loss of SO2 and imidazolylidene 

The SO2-imidazolium moiety in the gold complex can act as a leaving group. By 

heating, the gold carbene is formed with the dissociation of SO2 and 

imidazolylidene (Scheme 22). 51 
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49 (a) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160–4161. (b) Ye, L.; Cui, L.; Zhang, 
G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258–3259. (c) He. W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 
2011, 133, 8482–8485. (d) Noey, E. L.; Luo, Y.; Zhang, L.; Houk, K. N. J. Am. Chem. Soc. 2012, 134, 
1078–1084. (e) Luo, Y.; Ji, K.; Li, Y.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 17412–17415. (f) Ji, K.; 
Zhao, Y.; Zhang, L. Angew. Chem. Int. Ed. 2013, 52, 6508–6512. (g) Lu, B.; Li, Y.; Wang, Y.; Aue, D. 
H.; Luo, Y.; Zhang, L. J. Am. Chem. Soc. 2013, 135, 8512–8524. (h) Ji, K.; Zhang, L. Org. Chem. Front. 
2014, 1, 34–38. For a review, see: (i) Zhang, L. Acc. Chem. Res. 2014, 47, 877–888. 
50 (a) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260–11261. (b) Lu, B.; Luo, 
Y.; Liu, L.; Ye, L.; Wang, Y.; Zhang, L. Angew. Chem. Int. Ed. 2011, 50, 8358–8362. (c) Yan, Z.; Xiao, 
Y.; Zhang, L. Angew. Chem. Int. Ed. 2012, 51, 8624–8627. 
51 Ringger, D. H.; Chen, P. Angew. Chem. Int. Ed. 2013, 52, 4686–4689. 
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Scheme 22 

Similarly, cationic N-heterocyclic carbene (NHC) gold(I) benzylidene complex can 

also be generated from a phosphonium ylide.52 

8. Gold vinylidenes from (2-ethynylphenyl)alkynes 

Gold vinylidenes are proposed as the most likely intermediates in the gold catalyzed 

cycloisomerization of (2-ethynylphenyl)alkynes (Scheme 23). The gold vinylidene 

intermediates are highly reactive and can undergo intramolecular/intermolecular C-

H insertions, cyclopropanations/ring-expansions with alkenes.53 Recently, a new 

aryne generation method from related substrates by hexadehydro-Diels–Alder 

(HDDA) reaction has attracted much attention.54 Interestingly, in some cases, simple 

silver salts, such as AgOTf, AgSbF6 and AgNO3, are effective for promoting the 

HDDA aryne formation under milder conditions.55 

  

Scheme 23 
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52 Fedorov, A.; Moret, M.-E.; Chen, P. J. Am. Chem. Soc. 2008, 130, 8880–8881. 
53 (a) Ye, L.; Wang, Y.; Aue, D. H.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 31–34. (b) Hashmi, A. S. K.; 
Braun, I.; Nösel, P.; Schädlich, J.; Wieteck, M.; Rudolph, M.; Rominger, F. Angew. Chem. Int. Ed. 2012, 
51, 4456–4460. (c) Hashmi, A. S. K.; Wieteck, M.; Braun, I.; Rudolph, M.; Rominger, F. Angew. Chem. 
Int. Ed. 2012, 51, 10633–10637. (d) Hansmann, M. M.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. 
Angew. Chem. Int. Ed. 2013, 52, 2593–2598. 
54 (a) Hoye, T. R.; Baire, B.; Niu, D.; Willoughby, P. H.; Woods, B. P. Nature 2012, 490, 208–212. (b) 
Niu, D.; Willoughby, P. H.; Woods, B. P.; Baire, B.; Hoye, T. R. Nature 2013, 501, 531–534. (c) Niu, D.; 
Hoye, T. R. Nat. Chem. 2013, 6, 34–40. (d) Holden, C.; Greaney, M. F. Angew. Chem. Int. Ed. 2014, 53, 
5746–5749. 
55 Yun, S. Y.; Wang, K.-P.; Lee, N.-K.; Mamidipalli, P.; Lee, D. J. Am. Chem. Soc. 2013, 135, 4468–
4471. 
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Buchner ring expansion 

The Buchner ring expansion is a carbene addition to benzene or its homologs to 

form cycloheptatrienes.56 This reaction was first reported by E. Buchner and T. 

Curtius in 1885.57 One typical example is shown below. The first step involves 

formation of a carbene from ethyl diazoacetate, which cyclopropanates benzene to 

form a norcaradiene derivative. Ring expansion occurs in the second step, with an 

electrocyclic opening of the cyclopropane to form a 7-membered ring. Although 

photochemical or thermal conditions can be used to initiate the carbene formation, 

transition metal catalysts (mainly rhodium- and copper-based) are often used to 

perform this reaction under very mild conditions (Scheme 24).58 

�

Scheme 24 

Because the regioselectivity is not easy to control, Buchner reactions are normally 

only applied in synthesis in cases where the insertion occurs in an intramolecular 

fashion. Two recent total syntheses featuring Buchner reactions as key steps are 

listed below. 

In 2001, the group of Danheiser reported a new ring expansion-annulation strategy 

for the synthesis of substituted azulenes (Scheme 25). This method was successfully 

used as a key step to construct the skeleton of antiulcer drug egualen sodium (KT1-

32).59 
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56 For reviews, see: (a) Dave, V.; Warnhoff, E. W. Org. React. 1970, 18, 217–401. (b) Ye, T.; McKervey, 
M. A. Chem. Rev. 1994, 94, 1091–1160. (c) Reisman, S. E.; Nani, R. R.; Levin, S. Synlett 2011, 2437–
2442. 
57 Buchner, E.; Curtius, T. Chem. Ber. 1885, 18, 2371–2377. 
58 Anciaux, A. J.; Demonceau, A.; Noels, A. F.; Hubert, A. J.; Warin, R.; Teyssie, P. J. Org. Chem. 1981, 
46, 873–876. 
59 Kane, J. L.; Shea, K. M.; Crombie, A. L.; Danheiser, R. L. Org. Lett. 2001, 3, 1081–1084. 
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Scheme 25 

In 2011, Reisman reported the enantioselective total synthesis of (+)-salvileucalin B. 

The synthetic route features a copper-catalyzed arene cyclopropanation reaction to 

provide the unusual norcaradiene core (Scheme 26).60 

�

Scheme 26 

Retro-Buchner reactions 

There have only been few reported examples of retro-Buchner processes, all of 

which are lacking generality and simplicity to make them synthetically useful. 

1,2,3,4,5,6-Hexamethyltricyclo[4.1.0.02.5]hept-3-ene reacts in the presence of 

[Rh(CO)2Cl]2 to give quantitatively hexamethylbenzene. The carbene (:CH2) 

generated alongside could be trapped with cyclohexene (Scheme 27).61 However, its 

lower methylated analogues proved to be inactive. 

�

Scheme 27 
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60 Levin, S.; Nani, R. R.; Reisman, S. E. J. Am. Chem. Soc. 2011, 133, 774–776.  
61 Volger, H. C.; Hogeveen, H.; Roobeek, C. F. Recueil 1973, 92, 1223–1231. 
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It has been shown previously in this chapter that free carbenes can be generated 

from phenanthrene precursors under photochemical conditions (Scheme 28).40 

�

Scheme 28 

The reaction of 7-ethoxycarbonyl-1,3,5-cycloheptatriene with an equimolecular 

amount of Pd(OAc)2 at 80 °C in MeCN has been reported to give ethyl 2-and 4-

formylbenzoate (8% each) by cleavage of one cyclopropane C-C bond of the 

corresponding norcaradienes. In addition, diethyl maleate (14% yield) was formed, 

presumably by a dimerization of a Pd(II) carbene formed by a retro-Buchner process 

(Scheme 29).62 
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Scheme 29 
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Chapter 1. The generation and fate of gold carbenes by retro-

Buchner reactions 

Background 

Several representative methods for generating gold(I) carbenes intermediates are 

listed in the general introduction. 

A new example of gold(I) carbene formation through retro-cyclopropanation was 

reported by our laboratory in 2010 (Scheme 1-1).5 This gold(I) carbene 4 was 

generated from intermediate 3 by cycloisomerization of 1,6-enynes with the general 

structure 1 through a mechanism that involves loss of one molecule of 1-

methoxynaphthalene 5. The gold(I) carbene 4 can be trapped by intermediate 3 to 

form di-cyclopropanated naphthalene derivatives 6. This was the first time that of 

gold(I) catalyzed retro-cyclopropanation was achieved in the context of bench 

chemistry with easy to handle reagents.63 

�

Scheme 1- 1 Gold(I) carbenes through retro-cyclopropanations. 

A similar process was also proposed in the gas phase cleavage of 1-ethoxy-2-

methoxycyclopropane with [AuIMes]+ on the basis of collision-induced dissociation 

(CID) experiments and theoretical calculations.64  
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63 Cleavage of cyclopropanes to form metal carbenes had only been reported previously with low 
efficiency using highly electrophilic PhWCl3/RAlCl2 (R = Et, Cl): (a) Gassman, P. G.; Johnson, T. H. J. 
Am. Chem. Soc. 1976, 98, 6057–6058. (b) Gassman, P. G.; Johnson, T. H. J. Am. Chem. Soc. 1976, 98, 
6058–6059. 
64 (a) Batiste, L.; Fedorov, A.; Chen, P. Chem. Commun. 2010, 46, 3899–3901. (b) Fedorov, A.; Chen, P. 
Organometallics 2010, 29, 2994–3000. (c) Fedorov, A.; Batiste, L.; Bach, A.; Birney D. M.; Chen, P. J. 
Am. Chem. Soc. 2011, 133, 12162–12171. (d) Batiste, L.; Chen, P. J. Am. Chem. Soc. 2014, 136, DOI: 
10.1021/ja4084495. 
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Objectives 

Although gold(I) carbenes can be generated by this annulation/fragmentation 

process shown in Scheme 1-1, the tedious preparation of the required substrates 

detracts significantly from its synthetic utility.   

It is known that cycloheptatrienes 7 are in equilibrium with norcaradienes 8. In 

general, the equilibrium lies on the side of the cycloheptatriene tautomer, as a result 

of the strained cyclopropane ring present in the norcaradiene (Scheme 1-2).65  

We postulated that gold(I) carbenes could be generated by a similar retro-

cyclopropanation from the norcaradiene tautomer, as shown in Scheme 1-2. 

�

Scheme 1- 2 Gold(I) carbenes from cycloheptatrienes. 
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65 (a) Ciganek, E. J. Am. Chem. Soc. 1965, 87, 1149–1150. For recent review on this equilibrium: (b) 
McNamara, O. A.; Maguire. A. R. Tetrahedron 2011, 67, 9–40. 
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Synthesis of 7-aryl cycloheptatrienes 

7-Aryl cycloheptatrienes 10 were easily prepared in good yields by reactions of 

organolithium or Grignard reagents with tropylium tetrafluoroborate or tropylium 

bromide (Scheme 1-3).66  

It is worthy to note that organolithium reagents, generated in situ by lithium-

bromine exchange, normally give better results than Grignard reagents for this 

reaction. This is due to the ease of homo-coupling of Grignard reagents and the 

quite similar polarity of biaryl byproduct to the desired 7-arylcycloheptatrienes 10, 

which makes the separation very difficult. We also found the commercially 

available organolithium reagents, such as phenyl lithium, give poorer results 

compared with reagents generated in situ by lithium-bromine exchange. 

In Chapter 3 of this Thesis we also present a series of o-styryl substituted 

cycloheptatrienes obtained through this procedure. 

�

Scheme 1- 3 Synthesis of 7-aryl cycloheptatrienes from organolithium or Grignard 

reagents. 

Alternatively, we also prepared 7-substituted cycloheptatrienes 10 under mild 

conditions employing commercially available or easily accessible potassium 

trifluoroborate salts67 instead of organolithium or Grignard reagents (Table 1-1). By 

using this method, no biaryl byproduct was observed. Acetal (10q), iodide (10t) and 

benzofuran (10r) containing cycloheptatrienes were successfully obtained in good 

yields. Unfortunately, electron-deficient and alkyl nucleophiles were unreactive 

under these conditions. 
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66 Tropylium tetrafluoroborate was purchased from Alfa Aesar (€ 657/100 g) or can be easily prepared 
according to: (a) Conrow, K. Org. Synth. 1963, 43, 101–103. Tropylium bromide was prepared according 
to the reported procedure: (b) Doering, W. E.; Knox, L. H. J. Am. Chem. Soc. 1957, 79, 352–356. 
67 Trifluoroborate salts were prepared from boronic acids RB(OH)2 and potassium bifluoride K[HF2]. For 
reviews on their application in synthesis, see: (a) Darses, S.; Genet, J. P. Chem. Rev. 2008, 108, 288–325. 
(b) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275–286. 
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Table 1- 1 Cycloheptatrienes from potassium trifluoroborate salts.
a
 

 

a Reaction at 60 °C, 0.12 M in THF, 2 equiv of potassium trifluoroborate salts, 12 h. Yields are for 

isolated products. 
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Results and discussions 

Cyclopropanation 

With the cycloheptatrienes in hand, the first reaction between 10a and trans-stilbene 

was tested. After screening different gold(I) catalysts, solvents, and temperatures, 

we found the best conditions for this transformation: by heating in 1,2-

dichloroethane (DCE) at 120 ºC for 2 h in the presence of 5 mol% cationic gold(I) 

complex B, namely [t-BuXPhosAu(CH3CN)]SbF6. Under these standard conditions, 

tri-substituted cyclopropane 11a was obtained in 84% yield (Table 1-2).68 The 

overall transformation can be regarded as a retro-Buchner reaction. Interestingly, the 

reverse process, formation of cycloheptatrienes, occurs as a side reaction in the 

gold(I)-catalyzed reaction between ethyl diazoacetate and arenes.45a, c 

Table 1- 2 Cyclopropanation of trans-stilbene with cycloheptatriene 1-1a.
a
 

�

Entry Catalyst Temp, Time Yield(%)b Entry Catalyst Temp, Time Yield(%)b 

1 A 80 ºC, 8 h 26 6 C 80 ºC, 10 h -c 

2 A 100 ºC, 5 h 31 7 D 80 ºC, 8 h -c 

3 B 80 ºC, 8 h 49 8 E 80 ºC, 8 h 43 

4 B 100 ºC, 5 h 73 9 E 100 ºC, 5 h 64 

5 B 120 ºC, 2 h 84 10 E 120 ºC, 2 h 70 

a Reaction at 0.2 M in DCE, 2 equiv of 10a, catalyst (5 mol%). b Isolated yields were reported. c Not 

detected. 

There are several points worthy of comment: 

1) It is necessary to heat the reaction to 120 ºC for it to occur effectively (so far,69 

the lowest temperature that successfully led to product formation is 80 ºC).  Thus, 

thermally labile gold complexes (e.g. C, D, F, G) are not suitable catalysts. 

2) Toluene can also be used as solvent, but this requires longer reaction time. 
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68 The optimization of this reaction was done by Dr. César Rogelio Solorio-Alvarado. For the detailed 
information, see his PhD thesis and reference 6. 
69 27/06/2014 
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3) [JohnPhosAu(CH3CN)]SbF6 (A) and [IPrAu(PhCN)]SbF6 (E) are the other two 

alternative catalysts for this transformation, although in this case the yields are 

lower than using [t-BuXPhosAu(CH3CN)]SbF6 (B). It should be mentioned that for 

some substrates, catalyst A and E perform better than B. 

Some examples 70  are illustrated in Table 1-3. Interestingly, 1-naphthyl-

cycloheptatriene (10j) and 2-naphthyl-cycloheptatriene (10k) exhibited different 

reactivities with trans-stilbene (11b, 11c). The reaction with methylenecyclobutane 

derivative led to spiro-compound (11d) in good yield. Mono-cyclopropanated 

product (11e) was obtained from cycloocta-1,3-diene, albeit with low 

diasteroselectivity. Interestingly, the intermolecular cyclopropanation of gold(I) 

carbene (11f, 11g) is favored over the possible intramolecular Csp2-H insertion with 

ether as tethering group. Finally, 6-chloro-1H-indene also took part in the 

cyclopropanation reaction with gold carbenes leading to 11h, 11i, 11j. 

Table 1- 3 Cyclopropanation of different subtrates.
a
 

 
a Reaction at 120 °C, 0.2 M in DCE, 2 equiv of olefins, 2 h. Yields are for isolated adducts. The ratio of 

isomers was determined by 1H NMR. b Catalyst B was used. brsm: based on unrecovered starting 

materials. 

When 7,7-disubstituted cycloheptatriene 10v was submitted to the standard 

conditions, however, no desired product was observed (Scheme 1-4). Since the 

cycloheptatriene/norcaradiene equilibrium exists with disubstituted 10v according to 

the literature,65b we hypothesized that its sluggish reactivity may result from the 

��������������������������������������������������������
70 More examples of the reaction scope, see PhD thesis of Dr. César Rogelio Solorio-Alvarado and 
reference 6. 
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steric hindrance presented by the geminal disubstitution, which inhibits the approach 

of the gold complex. 

�

Scheme 1- 4 7,7-Disubstituted cycloheptatriene. 

Kinetic study of cyclopropanation 

A kinetic study of 10a and its electron-rich analog 10u is shown below (Scheme 1-

5).  

�

Scheme 1- 5 

The electronic effect has a significant influence on the rate at which the gold(I) 

carbene is generated (Figure 1-1). Due to the high reactivity of 3-methoxy-7-

phenylcyclohepta-1,3,5-triene (10u), it was found to be fully consumed within 1 h. 

We also performed this experiment at 60 ºC. In this case, the reaction involving 7-

phenylcyclohepta-1,3,5-triene (10a) did not proceed, but that of 10u gave the 

desired product 11a. This observation suggested the gold(I) catalyzed retro-Buchner 

reaction is a electrophilic ring-opening process, which is in accord with the DFT 

calculations shown below. 

+ Ph
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Figure 1- 1 Kinetic study of cyclopropanation.
a 

a Reaction conditions: 18 mg (0.1 mmol) of (E)-1,2-diphenylethene, 3.7 mg (5 mol%) gold complex A 

and 7-phenylcyclohepta-1,3,5-triene (10a, 25 mg, 0.15 mmol) or 3-methoxy-7-phenylcyclohepta-1,3,5-

triene71 (10u, 30 mg, 0.15 mmol) were dissolved in 0.5 mL 1,1,2,2-tetrachloroethane-d2 (TCE-d2, 99.5 

atom%D)72 in a NMR tube. The mixture was heated to 80 ºC and monitored by 1H NMR. The signal of 

CDCl2CHCl2 was used as internal standard to calculate the yield of product. 

DFT calculations of the retro-Buchner reaction 

Our DFT computational study of the gold-catalyzed retro-Buchner reaction (M06 

level, 1,2-dichloroethane) was complicated by the likely existence of several η2-

coordinated gold(I) species in solution. Thus, in addition to η2-coordinated 

cycloheptatriene (Ia) and norcaradiene (Ib), the (η1-arene)gold(I) complex Ic was 

also found as a local minimum (Figure 1-2). An intermediate norcaradiene in which 

gold(I) is η2-coordinated to the cyclopropane C−C bond (Id) was also found at a 

free energy 12.7 kcal·mol-1 higher than that of Ib.  

Previously, on the basis of related DFT calculations, we proposed the formation of 

related edge- or corner-metalated cyclopropanes as products in intra- and 

intermolecular gold(I)-catalyzed cyclopropanations of alkenes with 1,6-enynes73 and 

intramolecular cyclopropanation of 1,5-enynes.74 

��������������������������������������������������������
71 Prepared according to the literature: Tatsuya, S.; Hirofuni, N.; Tetsuo, N.; Shigenori, K. Tetrahedron 
Lett. 1990, 31, 895–898. 
72 The abundance was rechecked by NMR using 1,4-Diacetylbenzene as internal standard. 
73 (a) Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Jiménez-Núñez, E.; Buñuel, E.; Cárdenas, D. J.; 
Echavarren, A. M. Chem. Eur. J. 2006, 12, 1694–1702. (b) Pérez-Galán, P.; Herrero-Gómez, E.; Hog, D. 
T.; Martin, N. J. A.; Maseras, F.; Echavarren, A. M. Chem. Sci. 2011, 2, 141–149. 
74 López-Carrillo, V.; Huguet, N.; Mosquera, Á; Echavarren, A. M. Chem. Eur. J. 2011, 17, 10972–
10978. 
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A transition state (TSId−II) was found for the electrophilic cleavage of intermediate 

Id (Figure 1-2), which lies 23.3 kcal·mol-1 higher than the most stable initial 

complex Ib. This value for the activation energy of the retro-Buchner reaction is 

consistent with the range of temperatures required for these reactions (100−120 °C). 

Transition state TSId−II leads to Wheland-type intermediate II, which is in a shallow 

minimum that smoothly evolves through TSII−III to form phenyl gold(I) carbene III 

and benzene. Although the overall process of the retro-Buchner reaction is 

moderately endothermic, further reactions of gold(I) carbene III with alkenes are 

highly exothermic processes. 

�

Figure 1- 2 DFT calculations of retro-Buchner reaction. Free energies in kcal·mol-1. 

Cyclopropanation/Cope-rearrangement 

1-Phenyl-1,3-butadiene reacted with cycloheptatriene 10n in the presence of gold(I) 

catalysts to give 11k as a result of the cyclopropanation at the least-substituted 

double bond. Interestingly, it is not stable at high temperature and undergoes Cope 
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rearrangement to form cis-6,7-diphenylcyclohepta-1,4-diene (12) in 43–55% yield 

as the only isolated product (Scheme 1-6).75 

�

Scheme 1- 6 Cyclopropanation/Cope-rearrangement cascade. 

C-H insertions 

We envisioned that a gold(I) carbene formed by retro-Buchner reaction could 

undergo facile intramolecular C-H insertion. 76  For this purpose, we chose 

cycloheptatriene 10w as a substrate that could form 2-phenylindane 14a via gold(I) 

carbene 13. Interestingly, although 14a was indeed obtained in this reaction, the 

major product was the unsymmetrical biscyclopropane 14b, which was formed by 

trapping of gold(I) carbene 13 with endo-norcaradiene 10w-n (Scheme 1-7). This 

result highlights the high propensity of gold(I) carbenes to react with alkenes in 

cyclopropanation reactions. 

�

Scheme 1- 7 Dimerization of 10w. 

1,3-Diones (10a and 10h) did react with the gold(I) carbenes generated from 

cycloheptatrienes and formal C-H insertion products 15a and 15b were exclusively 

obtained in good yields (Scheme 1-8). To our surprise, di-alkylation was not 

observed in this reaction even with excess of cycloheptatriene starting material. 

��������������������������������������������������������
75 For lead references on cyclopropanation/Cope–rearrangement: (a) Parr, B. T.; Davies, H. M. L. Angew. 
Chem. Int. Ed. 2013, 52, 10044–10047. (b) lian, Y.; Miller, L. C.; Born, S., Sarpong, R.; Davies, H. M. L. 
J. Am. Chem. Soc. 2010, 132, 12422–12425 and the references cited therein. 
76 Horino, Y.; Yamamoto, T.; Ueda, K.; Kuroda, S.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 2809–
2811. 
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�

Scheme 1- 8 Carbene C-H insertion of 1,3-dione. 

3-Substituted indoles exhibited low reactivity toward gold(I) carbenes, and the 

desired product of formal C-H insertion, 16a and 16b, were obtained with low 

yields. Even when 1.5 equiv of cycloheptatriene starting material were employed, 

indole substrates were still not fully consumed (Scheme 1-9). In addition, 2-

substituted indoles failed at trapping gold carbenes generated by this method.77 

�

Scheme 1- 9 Reactions with indoles. 

Formation of cyclopropyl gold(I) carbenes 

We conjectured that a expected retro-Buchner reaction of (trans-2,3- 

diphenylcyclopropyl)cyclohepta-1,3,5-triene 10x-trans would generate cyclopropyl 

gold(I) carbene 18, which could evolve to cyclobutene 19
78 and subsequently (E,E)-

17 by thermal conrotatory opening (Scheme 1-10).79 However, reaction of 10x-trans 

with catalyst A led exclusively to (Z,Z)-17. This surprising result suggests that 

intermediate 18 evolves by a mechanism analogous to the skeletal rearrangement of 

1,6-enynes,80 bypassing the formation of cyclobutene 19. We decided to prepare a 

��������������������������������������������������������
77 It is reported that a 2-substituted indole react with vinyl Rh-carbene to generate chiral 3-substituted 
indoles: Lian, Y.; Davies, H. M. L. Org. Lett. 2012, 14, 1934–1937. 
78 López-Carrillo, V.; Echavarren, A. M. J. Am. Chem. Soc. 2010, 132, 9292–9294. 
79 Wilcox, C. F.; Carpenter, B. K. J. Am. Chem. Soc. 1979, 101, 3897–3905. 
80 Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Cárdenas, D. J.; Buñuel, E.; Nevado, C.; Echavarren, 
A. M. Angew. Chem. Int. Ed. 2005, 44, 6146–6148. 
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similar substrate with two cis-phenyls 10x-cis to study its effect on the 

stereochemical outcome of this process.  

�

Scheme 1- 10 Cycloproply gold carbene reactivity. 

�

Scheme 1- 11 Cycloproply gold carbene reactivity. 

However, due to the difficulty in synthesizing 10x-cis, we prepared 20 instead, in 

which the enyne system has the potential to form similar cyclopropyl gold carbene.5�
Indeed, enyne 20 reacted with gold complex A at room temperature and two 

fractions P1 and P2 were obtained from this reaction mixture (Scheme 1-11). The 

first product with higher polarity was identified as naphthalene derivative P1, which 

confirms that the fragmentation occurs. The other fraction P2 was a mixture of three 

compounds. All of the three compounds are known and well characterized. By 

comparing the NMR and MS, the structures of these three compounds were 

determined: (E,Z)-17, (E,E)-17, and 21.  
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Regarding the mechanism, enyne 20, in the presence of gold catalyst A, cyclized to 

give intermediate 22, which can be isolated81 when performing this reaction at room 

temperature for a period of 10 min. According to our previous work,5 release of a 

naphthalene derivative (P1) is much more favorable than that of a benzene, which 

permits formation of related intermediate cis-18 at lower temperature. After similar 

ring opening of cyclopropyl gold carbene cis-18, a gold-containing cationic species 

23 was proposed and the final two isomeric dienes ((E,Z)-17, (E,E)-17) were 

obtained with regeneration of the gold catalyst. The other competing pathway of cis-

18 is also possible, and it is through this pathway that intermediate 24, an isomer of 

23, was also formed. After protodeauration and probable gold-catalyzed ring closure 

followed by spontaneous oxidative aromatization, naphthalene derivative 21 was 

formed as one component of the mixture P2. Detailed study of related 

stereochemical effects is still ongoing in our laboratory. 

Biscycloheptatriene 

We envisaged that gold complex could react with 27-n, the norcaradiene-form of 

biscycloheptatriene 27, to generate an interesting cycloheptatrienyl gold carbene 28. 

The carbene intermediate 28 could then be trapped by an olefin intermolecularly to 

give 29. This cyclopropanyl structure has been demonstrated to be reactive towards 

further carbene formation in the presence of gold (Scheme 1-12).  

�

Scheme 1- 12 Biscycloheptatriene. 

Unfortunately, when we tested this idea under the standard conditions with trans-

stilbene as trapping reagent, no product was observed. The sluggish reactivity of 27 

may result from the very low concentration of norcaradiene-form 27-n in the 

equilibrium. 

��������������������������������������������������������
81 Unpublished results by Masha Kirillova. 
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Based on the fact that cycloheptatrienes can undergo thermal induced Diels–Alder 

reaction with some dienophiles,82 we expected that a similar cyclopropanyl gold-

carbene intermediate 31 should be formed more easily from the initial Diels–Alder 

adduct 30. 

Indeed, when the reaction depicted in Scheme 1-13 was performed, the desired 

polycyclic compound 32
83 was isolated, albeit in low yield. For this reaction, we 

screened many conditions, including: the three best gold catalysts (A, B, E) for 

retro-Buchner reaction, a range of solvents, lower temperature, and other 

dienophiles. In all cases, the yields were in the range of 10–28%. The formation of a 

large amount of a highly insoluble compound was observed, which was also 

obtained in the absence of gold catalyst. We tentatively suggest this insoluble 

byproduct may be the double Diels-Alder adduct of 27. 

�

Scheme 1- 13 

Reaction with furans 

Monoarylsubstituted furans reacted with 7-arylcycloheptatrienes 10a, 10j under the 

standard conditions to form α, β, γ, δ-unsaturated ketones 33a-c with exclusive E,E- 

configuration (Table 1-4). 

Table 1- 4 With  monoarylsubstituted furans. 

 

��������������������������������������������������������
82 (a) Mori, A.; Mametsuka, H.; Takeshita, H. Bull. Chem. Soc. Jpn. 1985, 58, 2072–2077. (b) Ohnishi, 
Y.; Akasaki, Y.; Ohno, A. Bull. Chem. Soc. Jpn. 1973, 46, 3307–3308. 
83 This is a known compound and was prepared from Diels-Alder reaction of cyclooctatetraene (COT) 
with N-phenylmaleimide. It has been used as a monomer for the ring-opening metathesis polymerization: 
Charvet, R.; Novak, B. M. Macromolecules 2001, 34, 7680–7685. 
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Mixing 1,3-diphenylisobenzofuran with 10j produced benzene-tethered ketone 34 

via the similar pathway. The configuration of the double bond of 34 was confirmed 

by X-ray diffraction (Scheme 1-14). 

�

Scheme 1- 14 

However, this reaction is not general and is very sensitive to the substituent nature 

of the furans. For example, 2,5-diphenylfuran reacted with 10j to give indene 

derivative 35 in good yield (Scheme 1-15). Probably, the initially formed α, β, γ, δ-

unsaturated ketone was not stable at high temperature and cyclized again to give the 

observed product. Heating 2,5-dimethylfuran with 10j in the presence of gold 

complex A at 100 ºC overnight (considering the volatility of dimethylfuran) 

afforded 36, as a 3:1 mixture of two isomers. 

�

Scheme 1- 15 

We proposed a mechanism for the reaction with furans that proceeds as follows 

(Scheme 1-16).84 Gold carbenes 37 generated from cycloheptariene 10j are trapped 

intermolecularly by the furan to form intermediates 38, which is followed by a 

sigmatropic rearrangement leading to 39. The reactivity of intermediate 39 is quite 

dependent on the substituents of furans. As shown in Scheme 1-16, when R2 = H, 

fast isomerization (path a) occurs to give linear dienes 33a-c and 34. Whereas, when 

��������������������������������������������������������
84 It is reported that gold-carbenes, generated by rearrangement of cyclopropenes, reacted with furans to 
give trienes through a similar pathway: Hadfield, M. S.; Lee, A.-L. Chem. Commun. 2011, 47, 1333–
1335. 
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R2 ≠ H, a Mukaiyama-Michael-type addition (path b) promoted by gold(I) 

dominates to form cyclized products 35, 36. 

�

Scheme 1- 16 Proposed mechanism for reactions with furans. 

7-Alkylcycloheptatriene 

Scheme 1-17 shows the only example of a 7-alkylcycloheptatriene that we have 

found so far which can undergo this retro-Buchner reaction. When catalyst A was 

used, a 1:1 mixture of 40 and 41 was obtained due to the two competing pathways in 

intermediate 42 shown in Scheme 1-17. The selectivity was enhanced to 19:1 when 

E was used as catalyst, but the yield was still low. 

�

Scheme 1- 17 9-(Cyclohepta-2,4,6-trien-1-yl)-9H-fluorene. 

7-Alkynyl cycloheptatrienes 

7-Alkynyl cycloheptatrienes reacted with cationic gold(I) complex in a different 

fashion. Instead of resulting in aryl gold-carbenes, gold-stabilized fluxional 

barbaralyl cations were generated which followed several complicated 

rearrangement pathways and, in the absence of nucleophile, ultimately gave rise to 

indenes.85 

��������������������������������������������������������
85 For details of this reaction, see: McGonigal, P. R.; de_Leoń, C.; Wang, Y.; Homs, A.; Solorio-
Alvarado, C. R.; Echavarren, A. M. Angew. Chem. Int. Ed. 2012, 51, 13093–13096. 
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Interestingly, the nature of the gold catalyst affects the fluxionality and evolution of 

the cationic intermediates. 13C labeling experiments revealed that the ring of 

cycloheptatriene was split in the presence of gold(III) complex G, whereas, the ring 

contraction of cycloheptatriene was observed when highly electrophilic phosphite–

gold(I) complex F was employed as catalyst (Scheme 1-18). 

�

Scheme 1- 18 

In order to gain some insight into the mechanism of this unusual reaction, we 

prepared several alkene-tethered substrates in order to trap the intermediate 

generated in the process of this reaction. A polycyclic barbaralane derivative 46 was 

obtained with excellent diasteroselectivity when 45 was treated with 5 mol% gold 

catalyst E, and the structure was confirmed by X-ray diffraction (Scheme 1-19). 

�

Scheme 1- 19 

The tautomeric barbaralanes 48 and 48´, obtained similarly, interconvert rapidly on 

the NMR timescale at room temperature in CDCl3 through a strain-assisted Cope 

rearrangement and were even detected as a 1:1 mixture in the crystal state (Scheme 

1-20).86  

 

��������������������������������������������������������
86 For similar observations: (a) Bosse, D.; de Meijere, A. Tetrahedron Lett. 1978, 19, 965–968. (b) 
Siegwarth, J.; Bornhöft, J.; Näther, C.; Herges, R. Org. Lett. 2009, 11, 3450–3452. 
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�

Scheme 1- 20 

�

Figure 1- 3 Variable temperature experiment (500 MHz, THF-d8/CS2 = 1:5) spectra of 

48/48��  

Variable temperature NMR spectra of 48/48´ recorded under ambient conditions 

show sharp signals due to rapid exchange on the NMR timescale, averaging the 

resonances due to protons 2 and 4, or 6 and 8. As the temperature was lowered, the 

peaks broadened and merged with the baseline before reappearing at 148 K at which 

point exchange is slow on the NMR timescale and one isomer exists in solution as 

the major species. At room temperature, protons 3 and 7 resonate at 5.6 ppm but 

protons 2, 4, 6 and 8 do not appear in the olefin region. At 148 K, four protons 
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appear in the olefin region (5.9–5.3 ppm), protons 3 and 7, as well as two more 

protons–either 2 and 8 or 4 and 6. 

The overall transformation of these two reactions is quite relevant to the gold(I)-

catalyzed intramolecular cyclopropanation of dienynes.87 Therefore, we proposed 

that the first step of generating barbaralyl cations from alkynyl cycloheptatrienes is 

forming cyclopropyl, cycloheptatrienyl gold-carbene intermediates. 

Interestingly, a similar substrate with two geminal methyls gave different product 

under the same conditions (Scheme 1-21). Probably, in this case, the more electron-

rich alkene, instead of cycloheptatriene, reacted preferentially with gold(I) activated 

alkyne to generate another intermediate. Subsequently, the cyclopropane ring in the 

norcaradiene-form was opened, due to the high electrophilicity of the adjacent 

gold(I) carbene. After protodeauration, the final product was obtained. The proposed 

mechanism for the formations of 46, 48/48´ and 50 is shown in Scheme 1-22. 

�

Scheme 1- 21 

�

Scheme 1- 22 

In the alkene-tethering 7-alkynyl cycloheptatriene reactions (Scheme 1-22), we 

assumed the alkene could also be from a cycloheptatriene ring. For this purpose, 

substrate 56 (Scheme 1-23) was prepared. As expected, cycloheptatrienyl gold(I) 

carbene 58 was generated through this special enyne cyclization. Similarly, the ring-

��������������������������������������������������������
87 Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Jiménez-Núñez, E.; Buñuel, E.; Cárdenas, D. J.; 
Echavarren, A. M. Chem. Eur. J. 2006, 12, 1694–1702. 
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contraction occurred in the same manner, and followed by protodeauration to afford 

the final product 57.88 

�

Scheme 1- 23 

In order to test a gold(I)-catalyzed gold-containing alkynyl cycloheptatriene 

reaction, we prepared 62 from 7-ethynylcyclohepta-1,3,5-triene 61. In the presence 

of one equivalent of IPrAuPhCNSbF6 (E) at room temperature, a digold complex 

63
89 was isolated in good yield (Scheme 1-24). The structure was confirmed by X-

ray diffraction (Figure 1-4). Interestingly, it is very stable, and even by heating at 

100 ºC for 1 hour, no decomposition of this digold complex was observed. 

�

Scheme 1- 24 

��������������������������������������������������������
88 In collaboration with Dr. Paul R. McGonigal. 
89 Digold complexes have been observed during previous research in the group: (a) Obradors, C.; 
Echavarren, A. M. Chem. Eur. J. 2013, 19, 3547–3551. (b) Homs, A.; Obradors, C.; Leboeuf, D.; 
Echavarren, A. M. Adv. Synth. Catal. 2014, 356, 221–228. 

Br

A (5 mol%)

CDCl3, 0 ºC, 1 h, 60%

Model of product from MarvinSketch

AuL AuL AuL H

Aromatization
and

protodeauration5-exo-dig

1) n-BuLi, THF, -78 ºC, 30 min

2) Tropylium trtrafluoroborate
-78 ºC to 23 ºC, 16 h, 63%

55 56 57

58 59 60

1) n-BuLi

2) IPrAuCl
AuIPr

CH2Cl2, 23 ºC
AuIPr

AuIPr
SbF6

63 (83%)

IPrAuPhCNSbF6

61 62 (74%)



� 57

�

Figure 1- 4 

Another feasible route of in situ generation of the substrates for gold-catalyzed 

retro-Buchner reaction is shown below (Scheme 1-25). Tricyclic structure 65 was 

obtained in excellent yield by a gold(I) catalyzed hydroarylation of cyclopropyl-

tethered alkyne 64. Surprisingly, product 65 is stable enough at room temperature to 

withstand purification by chromatography. Future work may focus on a gold-

catalyzed cascade reaction, combining this new method of substrate synthesis and 

retro-Buchner reaction. 

�

Scheme 1- 25 
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Conclusions 

We have found that cationic gold(I) complexes promote the retro-Buchner reaction 

of 1,3,5-cycloheptatrienes to form substituted gold(I) carbenes that can be trapped 

intermolecularly by alkenes as a new cyclopropanation reaction. 1,2,3-Trisubstituted 

cyclopropanes, which are not easily prepared by other methods, can be synthesized 

from 1,2-substituted alkenes and readily available 7-substituted 1,3,5-

cycloheptatrienes as a safe alternative to the use of explosive diazo compounds. 

Using this methodology, we generated substituted cyclopropyl gold(I) carbenes and 

revealed some mechanistic insight into 1,6-enynes cyclization. 

Some very interesting structures can be constructed by trapping these very reactive 

gold(I) carbenes with furans.  

We also described a new type of gold(I)-catalyzed intramolecular cyclopropanation 

of dienynes with cycloheptatriene-containing substrates. These results gave some 

mechanistic support for a very complicated rearrangement of fluxional barbaralyl 

cations generated by gold(I)-catalyzed reaction of alkynyl cycloheptatrienes. An 

interesting cycloheptatriene-containing digold complex was also synthesized.  

In addition, we also developed two alternative ways of generating substrates for 

retro-Buchner reaction: coupling of potassium trifluoroborate salts with tropylium 

tetrafluoroborate and gold-catalyzed hydro-aromatization. 
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Experimental part 

General procedure from organolithium 

 

n-BuLi (1.3 equiv) was added dropwise to the solution of corresponding aryl 

bromide  (1.2 equiv) in dry THF (6 mL/mmol) at -78 ºC under argon. The mixture 

was stirred for 30 min at -78 ºC, and then tropylium tetrafluoroborate (1 equiv) was 

added in one portion. The cooling bath was removed and the reaction was stirred at 

room temperature (23 ºC) for 12 h. The reaction was quenched by addition of water. 

The aqueous phase was extracted with ether, the combined organic extracts were 

dried over MgSO4, and the solvent was evaporated. The crude reaction mixture was 

purified by column chromatography on silica gel with cyclohexane as eluent unless 

otherwise stated. 

1-(Cyclohepta-2,4,6-trien-1-yl)naphthalene (10j) 

 

This compound (yellow oil, 1.47 g, yield: 67%) was prepared according to the 

general procedure from 1-bromonaphthalene (2.07 g, 10 mmol), n-BuLi (1.6 M, 6.9 

mL, 11 mmol) and tropylium tetrafluoroborate (1.78 g, 10 mmol). 

1
H NMR (500 MHz, CDCl3) δ 8.01 (d, J = 8.1 Hz, 1H), 7.93 (d, J = 7.9 Hz, 1H), 

7.84 (d, J = 8.3 Hz, 1H), 7.65 (d, J = 7.1 Hz, 1H), 7.56 - 7.46 (m, 3H), 6.84 (dd, J = 

3.7, 2.7 Hz, 2H), 6.38 - 6.33 (m, 2H), 5.64 (dd, J = 8.7, 5.4 Hz, 2H), 3.51 - 3.47 (m, 

1H). 

13
C NMR (126 MHz, CDCl3) δ 139.1, 134.3, 131.5, 131.0, 128.9, 127.4, 126.8, 

125.7, 125.5, 125.5, 124.5, 124.5, 124.4, 42.4.  

HRMS-ESI: calculated for C17H15 [M+H]+: 219.1174; found: 219.1179. 

9-(Cyclohepta-2,4,6-trien-1-yl)phenanthrene (10l) 

 

1) n-BuLi, THF, -78 oC

2) tropylium tetrafluoroborate,
 23 ºC,12 h

Ar Br Ar

Br

1) n-BuLi, THF, -78 oC

2) tropylium tetrafluoroborate, 
23 ºC,12 h

Br

1) n-BuLi, THF, -78 oC

2) tropylium tetrafluoroborate, 
23 ºC,12 h
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This compound (yellow solid, 1.47 g, yield: 70%) was prepared according to the 

general procedure from 9-bromophenanthrene (2 g, 7.78 mmol) and tropylium 

tetrafluoroborate (1.38 g, 7.78 mmol). The product was purified by trituration with 

hot ethanol (50 mL, then left to cool to r.t.). 

M.p.: 133-135 ºC. 

1
H NMR (400 MHz, CDCl3) δ 8.80 (d, J = 8.2 Hz, 1H), 8.72 (d, J = 8.2 Hz, 1H), 

8.07 (d, J = 8.3 Hz, 1H), 7.96 - 7.90 (m, 2H), 7.72 - 7.58 (m, 4H), 6.86 (dd, J = 3.7, 

2.7 Hz, 2H), 6.39 (dddd, J = 8.9, 3.9, 2.6, 1.4 Hz, 2H), 5.73 (dd, J = 8.7, 5.6 Hz, 

2H), 3.51 (t, J = 5.4 Hz, 1H). 

13
C NMR (101 MHz, CDCl3) δ 136.8, 131.7, 131.1, 131.0, 130.8, 129.9, 128.5, 

126.8, 126.4, 126.4, 126.3, 126.2, 125.2, 125.0, 124.6, 123.4, 122.5, 42.5. 

HRMS-APCI: calculated for C21H17 [M+H]+: 269.1325; found: 269.1331. 

7-(2-Cyclopropylphenyl)cyclohepta-1,3,5-triene (10g) 

 

This compound (colorless oil, 250 mg, yield: 64%) was prepared according to the 

general procedure from 1-bromo-2-cyclopropylbenzene90 (370 mg, 1.88 mmol) and 

tropylium tetrafluoroborate (335 mg, 1.88 mmol). 

1
H NMR (400 MHz, CDCl3) δ 7.49 (dd, J = 7.6, 1.5 Hz, 1H), 7.28 (td, J = 7.6, 1.5 

Hz, 1H), 7.23 (td, J = 7.5, 1.5 Hz, 1H), 7.08 (dd, J = 7.5, 1.4 Hz, 1H), 6.77 (dd, J = 

3.7, 2.7 Hz, 2H), 6.29 (dddd, J = 8.9, 3.9, 2.6, 1.6 Hz, 2H), 5.45 (dd, J = 8.6, 5.5 Hz, 

2H), 3.37 (t, J = 5.4 Hz, 1H), 1.90 - 1.83 (m, 1H), 0.87 - 0.80 (m, 2H), 0.69 - 0.59 

(m, 2H). 

13
C NMR (101 MHz, CDCl3) δ 143.4, 141.1, 130.8, 127.0, 126.9, 126.5, 126.3, 

126.3, 124.4, 41.7, 13.1, 7.3. 

HRMS-APCI: calculated for C16H17 [M+H]+: 209.1325; found: 209.1318. 

7-(2-Phenoxyphenyl)cyclohepta-1,3,5-triene (10h) 

 

��������������������������������������������������������
90 Prepared according to literature: He, Z.; Yudin, A. K. Org. Lett. 2006, 8, 5829–5832. 
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n-BuLi (1.6 M in hexanes, 15 mL, 24 mmol) was added dropwise to the solution of 

diphenyl ether (3.4 g, 20 mmol) and tetramethylethylenediamine (2.79 g, 3.58 mL, 

24 mmol) in 50 mL THF at 0 ºC. After stirring at room temperature (23 ºC) for 5 h, 

tropylium tetrafluoroborate (3.56 g, 20 mmol) was added, and stirred at room 

temperature overnight. The reaction was quenched by addition of water. The 

aqueous phase was extracted with ether, the combined organic extracts were dried 

over MgSO4, and the solvent was evaporated. The crude reaction mixture was 

purified by column chromatography on silica gel with cyclohexane as eluent to give 

2.7 g colorless oil in 52% yield. 

1
H NMR (500 MHz, CDCl3) δ 7.50 (dd, J = 7.6, 1.7 Hz, 1H), 7.34 - 7.24 (m, 3H), 

7.19 (td, J = 7.5, 1.3 Hz, 1H), 7.10 - 7.05 (m, 1H), 6.97 - 6.93 (m, 3H), 6.68 (dd, J = 

3.6, 2.7 Hz, 2H), 6.22 - 6.25 (m, 2H), 5.46 (dd, J = 8.8, 5.6 Hz, 2H), 3.18 (tt, J = 5.6, 

1.4 Hz, 1H).  

13
C NMR (126 MHz, CDCl3) δ 157.7, 154.7, 134.8, 130.8, 129.6, 129.3, 127.9, 

126.3, 124.4, 123.9, 122.8, 119.5, 118.3, 40.2. 

HRMS-MALDI: calculated for C19H15O [M-H]+: 259.1117; found: 259.1111. 

7-(2-(Benzyloxy)phenyl)cyclohepta-1,3,5-triene (10i) 

 

n-BuLi (2.0 M in hexanes, 5.5 mL, 11 mmol) was added dropwise to the solution of 

1-(benzyloxy)-2-iodobenzene91 (3.1 g, 10 mmol) in 40 mL THF at -78 ºC. After 

stirring for 0.5 h, tropylium tetrafluoroborate (2.0 g, 11 mmol) was added, and 

stirred at room temperature overnight (12 h). The reaction was quenched by addition 

of water. The aqueous phase was extracted with ether, the combined organic 

extracts were dried over MgSO4, and the solvent was evaporated. The crude reaction 

mixture was purified by column chromatography on silica gel to give 1.7 g colorless 

oil in 62% yield. 

1
H NMR (400 MHz, CDCl3) δ 7.43 - 7.25 (m, 7H), 7.06 - 6.99 (m, 2H), 6.75 (dd, J 

= 3.7, 2.6 Hz, 2H), 6.27 (dddd, J = 8.9, 3.9, 2.6, 1.4 Hz, 2H), 5.52 (dd, J = 8.7, 5.6 

Hz, 2H), 5.14 (s, 2H), 3.31 - 3.21 (m, 1H).  

13
C NMR (101 MHz, CDCl3) δ 156.4, 137.3, 132.2, 130.8, 128.9, 128.4, 127.8, 

127.6, 127.0, 126.7, 124.2, 121.1, 112.6, 70.0, 40.6. 

��������������������������������������������������������
91 1-(Benzyloxy)-2-iodobenzene was prepared according to the reported procedure: Cakir, S. P.; Stokes, 
S.; Sygula, A.; Mead, K. T. J. Org. Chem. 2009, 74, 7529–7532. 

2) tropylium tetrafluoroborate,
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HRMS-APCI: calculated for C20H19O [M+H]+: 275.1430; found: 275.1428. 

7-(2-Phenethylphenyl)cyclohepta-1,3,5-triene (10w) 

 

This compound (colorless oil, 1.18 g, yield: 45%) was prepared according to the 

general procedure from 1-bromo-2-cyclopropylbenzene92 (2.52 g, 9.6 mmol), n-

BuLi (2.0 M, 5.3 mL, 10.6 mmol) and tropylium tetrafluoroborate (1.7 g, 9.6 

mmol). 

1
H NMR (400 MHz, CDCl3) δ 7.53 (dd, J = 7.7, 1.0 Hz, 1H), 7.32 (td, J = 7.3, 1.8 

Hz, 1H), 7.27-7.14 (m, 5H), 7.12-7.05 (m, 2H), 6.78 (dd, J = 3.5, 2.8 Hz, 2H), 6.29-

6.26 (m, 2H), 5.37 (dd, J = 8.7, 5.4 Hz, 2H), 3.01 (t, J = 5.4 Hz, 1H), 2.83-2.77 (m, 

2H), 2.75- 2.65 (m, 2H).  

13
C NMR (101 MHz, CDCl3) δ 142.3, 142.0, 140.0, 131.1, 129.9, 128.5, 128.5, 

127.6, 127.1, 127.1, 126.7, 126.1, 124.7, 41.3, 38.2, 36.0. 

HRMS-APCI: calculated for C21H21 [M+H]+: 273.1643; found: 273.1634. 

7-((2R*,3R*)-2,3-diphenylcyclopropyl)cyclohepta-1,3,5-triene (10x-trans) 

 

n-BuLi (2.0 M, 3.7 mL, 7.4 mmol) was added dropwise to the solution of 

((1R*,2R*)-3-bromocyclopropane-1,2-diyl)dibenzene 93  (2 g, 7.3 mmol) in dry 

THF/Et2O (10 mL/10 mL) at -110 ºC under argon. The mixture was stirred for 30 

min at -110 ºC, and then tropylium tetrafluoroborate (1.43 g, 8.1 mmol) was added 

in one portion. The cooling bath was removed and the reaction was warmed to room 

temperature (23 ºC) slowly. The reaction was quenched by addition of water. The 

aqueous phase was extracted with ether, the combined organic extracts were dried 

over MgSO4, and the solvent was evaporated. The crude reaction mixture was 

purified by column chromatography on basic aluminum with cyclohexane as eluent 

to give 600 mg (yield 64%) white solid. 

M.p.: 72-73 ºC. 

��������������������������������������������������������
92 Prepared according to literature: Parham, W. E.; Jones, L. D.; Sayed, Y. A. J. Org. Chem. 1976, 41, 
1184–1186. 
93 Fox, M. A.; Chen, C. C.; Campbell, K. A. J. Org. Chem. 1983, 48, 321–326. 
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1
H NMR (400 MHz, CDCl3) δ 7.36-7.12 (m, 10H), 6.58-6.39 (m, 2H), 6.15 (dd, J = 

9.4, 4.8 Hz, 1H), 6.03 (dd, J = 9.3, 4.8 Hz, 1H), 5.41 (dd, J = 9.3, 5.4 Hz, 1H), 5.29 

(dd, J = 9.3, 5.3 Hz, 1H), 2.64 (dd, J = 9.1, 5.6 Hz, 1H), 2.29 (t, J = 5.4 Hz, 1H), 

2.03-1.81 (m, 1H), 1.31-1.17 (m, 1H).  

13
C NMR (101 MHz, CDCl3) δ 142.4, 137.9, 130.9, 130.4, 129.1, 128.4, 127.9, 

126.3, 126.2, 126.1, 126.0, 125.7, 124.9, 124.4, 38.7, 33.2, 31.8, 27.5.  

HRMS-APCI: calculated for C19H18 [M+H]+: 285.1643; found 285.1636. 

For the synthesis of other cycloheptatrienes, see reference 68. 

General procedure from potassium trifluoroborate salts 

 

The 4 mL THF solution of 1 mmol Potassium trifluoroborate salts and 0.5 mmol 

tropylium tetrafluoroborate was heated at 60 ºC under argon overnight (12 h). The 

solution was cooled down to room temperature (23 ºC), and passed through a short 

column of silicon gel. After removing solvent, the crude was purified by 

chromatography to yield the arylcycloheptatrienes. 

7-Phenylcyclohepta-1,3,5-triene (10a) 

 

This compound was prepared according to the general procedure from 0.5 mmol (92 

mg) potassium phenyltrifluoroborate and 0.25 mmol (45 mg) tropylium 

tetrafluoroborate, colorless oil 34 mg, yield 81%. 

The spectroscopic data match with those reported in the literature.6  

1
H NMR (400 MHz, CDCl3) δ 7.44 - 7.30 (m, 5H), 6.78 (dd, J = 3.7, 2.7 Hz, 2H), 

6.32 - 6.28 (m, 2H), 5.46 (dd, J = 8.7, 5.5 Hz, 2H), 2.76 (t, J = 5.5 Hz, 1H). 

4-(Cyclohepta-2,4,6-trien-1-yl)-1,1'-biphenyl (10o) 

 

This compound was prepared according to the general procedure from 1 mmol (260 

mg) potassium 4-phenyl-phenyltrifluoroborate and 0.5 mmol (89 mg) tropylium 

tetrafluoroborate, white solid 99 mg, yield 81%. 

M.p.: 71-73 ºC. 

R-BF3K
tropylium tetrafluoroborate

THF, 60 ºC, 12 h
R

Ph
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1
H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 8.2 Hz, 4H), 7.50 - 7.45 (m, 4H), 7.40 - 

7.34 (m, 1H), 6.80 (t, J = 3.1 Hz, 2H), 6.32 (d, J = 8.9 Hz, 2H), 5.50 (dd, J = 9.2, 5.6 

Hz, 2H), 2.81 (t, J = 5.6 Hz, 1H).  

13
C NMR (101 MHz, CDCl3) δ 142.9, 140.9, 139.6, 130.9, 128.7, 128.0, 127.4, 

127.1, 127.0, 126.1, 124.5, 44.9. 

HRMS-APCI: calculated for C19H17 [M+H]+: 245.1330; found: 245.1331. 

7-(4-(tert-Butyl)phenyl)cyclohepta-1,3,5-triene (10p) 

 

This compound was prepared according to the general procedure from 1 mmol (240 

mg) potassium 4-(tert-butyl)phenyltrifluoroborate and 0.5 mmol (89 mg) tropylium 

tetrafluoroborate, white crystal 88 mg, yield 79%. 

M.p.: 43-46 ºC. 

1
H NMR (400 MHz, CDCl3) δ 7.44 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 

6.78 (dd, J = 3.6, 2.7 Hz, 2H), 6.31 - 6.27 (m, 2H), 5.46 (dd, J = 8.8, 5.6 Hz, 2H), 

2.72 (t, J = 5.6 Hz, 1H), 1.38 (s, 9H).  

13
C NMR (101 MHz, CDCl3) δ 149.4, 140.8, 130.9, 127.2, 126.4, 125.5, 124.2, 

44.8, 34.4, 31.4. 

HRMS-APCI: calculated for C17H21 [M+H]+: 225.1643; found: 225.1647. 

5-(Cyclohepta-2,4,6-trien-1-yl)benzo[d][1,3]dioxole (10q) 

 

This compound was prepared according to the general procedure from 1 mmol (228 

mg) potassium 3,4-(methylenedioxy)phenyltrifluoroborate and 0.5 mmol (89 mg) 

tropylium tetrafluoroborate, yellow oil 100 mg, yield 94%. 

1
H NMR (400 MHz, CDCl3) δ 6.93 - 6.81 (m, 3H), 6.76 (dd, J = 3.7, 2.7 Hz, 2H), 

6.29 - 6.25 (m, 2H), 5.99 (s, 2H), 5.41 (dd, J = 8.7, 5.6 Hz, 2H), 2.68 (tt, J = 5.6, 1.5 

Hz, 1H).  

13
C NMR (101 MHz, CDCl3) δ 147.8, 146.1, 137.9, 130.9, 126.4, 124.3, 120.4, 

108.3, 108.0, 100.9, 45.0. 

HRMS-APCI: calculated for C14H12O2 [M]+: 212.0837; found: 212.0827. 

7-(4-Methoxyphenyl)cyclohepta-1,3,5-triene (10e) 

O

O
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This compound was prepared according to the general procedure from 1 mmol (214 

mg) potassium 4-methoxylphenyltrifluoroborate and 0.5 mmol (89 mg) tropylium 

tetrafluoroborate, colorless oil 84 mg, yield 85%. 

The spectroscopic data match with those reported in the literature.6  

1
H NMR (400 MHz, CDCl3) δ 7.31 (d, J = 8.7 Hz, 2H), 6.95 (d, J = 8.7 Hz, 2H), 

6.77 (dd, J = 3.7, 2.7 Hz, 2H), 6.29-6-26 (m, 2H), 5.43 (dd, J = 8.7, 5.6 Hz, 2H), 

3.85 (s, 3H), 2.70 (t, J = 5.6 Hz, 1H). 

2-(Cyclohepta-2,4,6-trien-1-yl)benzofuran (10r) 

 

This compound was prepared according to the general procedure from 1 mmol (224 

mg) potassium 2-benzofuranyltrifluoroborate and 0.5 mmol (89 mg) tropylium 

tetrafluoroborate, colorless oil 83 mg, yield 80%. 

1
H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 7.9 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 

7.32 - 7.22 (m, 2H), 6.79 (dd, J = 3.6, 2.7 Hz, 2H), 6.66 (s, 1H), 6.38 - 6.34 (m, 2H), 

5.62 (dd, J = 9.2, 5.6 Hz, 2H), 3.12 - 3.09 (m, 1H).  

13
C NMR (101 MHz, CDCl3) δ 159.0, 154.8, 131.2, 128.6, 125.3, 123.6, 122.6, 

122.2, 120.6, 111.0, 102.0, 39.4.  

HRMS-APCI: calculated for C15H13O [M+H]+: 209.0966; found: 209.0962. 

(E)-7-styrylcyclohepta-1,3,5-triene (10n) 

 

This compound was prepared according to the general procedure from 0.5 mmol 

(105 mg) potassium trans-styryltrifluoroborate and 0.25 mmol (45 mg) tropylium 

tetrafluoroborate, yellow oil 39 mg, yield 80%. 

The spectroscopic data match with those reported in the literature.6   

1H NMR (400 MHz, CDCl3) δ 7.40 (dd, J = 7.5, 1.2 Hz, 2H), 7.32 (t, J = 7.5 Hz, 

2H), 7.24 (t, J = 7.4 Hz, 1H), 6.70 (dd, J = 3.5, 2.8 Hz, 2H), 6.55 (d, J = 15.8 Hz, 

1H), 6.50 (d, J = 15.8 Hz, 1H), 6.28-6.22 (m, 2H), 5.34 (dd, J = 8.8, 5.7 Hz, 2H), 

2.48-2.40 (m, 1H).  

2-(Cyclohepta-2,4,6-trien-1-yl)naphthalene (10k) 

O

O
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This compound was prepared according to the general procedure from 0.5 mmol 

(117 mg) potassium 2-naphthalenetrifluoroborate and 0.25 mmol (45 mg) tropylium 

tetrafluoroborate, white solid 40 mg, yield 74%. 

The spectroscopic data match with those reported in the literature.6   

1H NMR (400 MHz, CDCl3) δ 8.14-7.68 (m, 4H), 7.60-7.40 (m, 3H), 6.93-6.69 (m, 

2H), 6.47-6.14 (m, 2H), 5.54 (dd, J = 8.8, 5.7 Hz, 2H), 2.92 (t, J = 5.3 Hz, 1H). 

7-(2-Methoxyphenyl)cyclohepta-1,3,5-triene (10s) 

 

This compound was prepared according to the general procedure from 0.5 mmol 

(107mg) potassium 2-methoxyphenyltrifluoroborate and 0.25 mmol (45 mg) 

tropylium tetrafluoroborate, colorless crystal 38 mg, yield 77%. 

M.p.: 72-75 ºC. 

1
H NMR (300 MHz, CDCl3) δ 7.40 - 7.23 (m, 2H), 7.05 - 6.90 (m, 2H), 6.76 – 6.71 

(m, 2H), 6.25 (d, J = 9.3Hz, 2H), 5.44 (dd, J = 9.3, 5.6 Hz, 2H), 3.83 (s, 3H), 3.15 

(td, J = 5.5, 1.8 Hz, 1H).  

13
C NMR (75 MHz, CDCl3) δ 157.3, 131.7, 130.7, 128.9, 127.7, 127.1, 124.1, 

120.7, 110.9, 55.3, 40.4. 

HRMS-APCI: calculated for C14H15O [M+H]+: 199.1123; found: 199.1123. 

7-(4-Iodophenyl)cyclohepta-1,3,5-triene (10t) 

 

This compound was prepared according to the general procedure from 0.45 mmol 

(139 mg) potassium 4-iodophenyltrifluoroborate and 0.225 mmol (40 mg) tropylium 

tetrafluoroborate, colorless oil 32 mg, yield 49%. 

1
H NMR (400 MHz, CDCl3) δ 7.72 (d, J = 8.3 Hz, 2H), 7.15 (d, J = 8.3 Hz, 2H), 

6.76 (dd, J = 3.7, 2.7 Hz, 2H), 6.32 – 6.28 (m, 2H), 5.39 (dd, J = 8.7, 5.6 Hz, 2H), 

2.73 (dd, J = 6.4, 4.9 Hz, 1H).  

13
C NMR (101 MHz, CDCl3) δ 143.5, 137.7, 131.0, 129.6, 125.4, 124.8, 91.7, 44.7. 

HRMS-MALDI: calculated for C17H21 [M-H]+: 292.9827; found: 292.9794. 

O

I
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7-Methyl-7-phenylcyclohepta-1,3,5-triene (10v) 

 

7-Methyl-7-phenylcyclohepta-1,3,5-triene was prepared according to the reported 

method.94 

1
H NMR (400 MHz, CDCl3) δ 7.25 - 7.21 (m, 2H), 7.18 - 7.07 (m, 3H), 6.39 - 6.37 

(m, 2H), 6.35 - 6.28 (m, 2H), 5.50 (d, J = 8.8 Hz, 2H), 1.58 (s, 3H).  

3-Methoxy-7-phenylcyclohepta-1,3,5-triene (10u) 

 

3-Methoxy-7-phenylcyclohepta-1,3,5-triene was prepared according to the reported 

method.95 

General procedure for gold catalyzed cyclopropanations 

 

A solution of the arylcycloheptatriene substrate (0.15 mmol), olefin (0.3 mmol) and 

gold complex A (5.5 mg, 5 mol%) in 1,2-dichloroethane (DCE, 0.75 mL) was 

heated at 120 ºC in a sealed tube until the starting material had been fully consumed 

(2-3 h). After the reaction mixture had been allowed to cool to room temperature, 

the solvent was removed in vacuo and the crude residue was purified by preparative 

TLC. The reaction was performed under an air atmosphere with no special 

precautions taken to exclude water. 

1-((2R*,3R*)-2,3-diphenylcyclopropyl)naphthalene (11b) 

 

��������������������������������������������������������
94 Adam, W.; Adamsky, F.; Klarner, F.-G.; Peters, E.-M.; Peters, K.; Rebollo, H.; Rungeler, W.; 
Schnering, H. G. Chem. Ber. 1983, 116, 1848–1859. 
95 Tatsuya, S.; Hirofuni, N.; Tetsuo, N.; Shigenori, K. Tetrahedron Lett. 1990, 31, 895–898. 
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The solution of 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (52 mg, 0.24 mmol), (E)-

stilbene (36 mg, 0.2 mmol) and gold complex A (3.7 mg, 2.5 mol%) in DCE (0.5 

mL) was heated at 120 ºC in a sealed tube for 2 h. After the reaction mixture had 

been allowed to cool to room temperature, the solvent was removed in vacuo and 

the crude residue was purified by preparative TLC to obtain 40 mg yellow oil (yield: 

63%). 

1
H NMR (400 MHz, CDCl3) δ 8.29 - 8.24 (m, 1H), 7.84 - 7.79 (m, 1H), 7.71 (d, J = 

8.0 Hz, 1H), 7.50 - 7.30 (m, 9H), 7.05 - 6.93 (m, 5H), 3.31 (dd, J = 9.3, 6.4 Hz, 1H), 

3.13 (t, J = 6.0 Hz, 1H), 3.01 (dd, J = 9.4, 5.6 Hz, 1H).  

13
C NMR (101 MHz, CDCl3) δ 141.9, 138.2, 133.5, 133.4, 133.3, 128.6, 128.3, 

127.5, 127.1, 126.9, 126.5, 126.2, 125.7, 125.6, 125.5, 125.0, 124.6, 34.6, 33.0, 

30.3. 

HRMS-APCI: calculated for C25H21 [M+H]+: 321.1643; found: 321.1649.  

2-((2R*,3R*)-2,3-diphenylcyclopropyl)naphthalene (11c) 

 

This compound was prepared as single stereoisomer, using gold catalyst B 

according to the general procedure, starting form trans-stilbene (1 equiv) and 2-

(cyclohepta-2,4,6-trien-1-yl)naphthalene (3 equiv). Colorless oil (44%, 93% brsm). 

1
H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 8.6 Hz, 1H), 7.71 (d, J = 7.3 Hz, 1H), 

7.63 (d, J = 8.5 Hz, 1H), 7.59 (s, 1H), 7.46-7.37 (m, 6H), 7.33-7.29 (m, 1H), 7.20-

7.04 (m, 6H), 3.02 (d, J = 7.7 Hz, 2H), 2.94 (t, J = 7.8 Hz, 1H).  

13
C NMR (101 MHz, CDCl3) δ 142.1, 137.8, 135.6, 133.4, 132.2, 129.1, 128.7, 

128.1, 127.7, 127.6, 127.5, 126.6, 126.3, 126.2, 125.9, 125.4, 34.9, 34.8, 31.1. 

HRMS-APCI: calculated for C25H21 [M+H]+: 321.1643; found: 321.1638.  

1-(2-Phenylspiro[2.3]hexan-1-yl)naphthalene (11d) 

 

This compound was prepared as a mixture of diastereoisomers using gold catalyst A 

(5.5 mg, 5 mol%) according to the general procedure, starting form 

Ph Ph

Ph
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(cyclobutylidenemethyl)benzene96 (43 mg, 0.3 mmol) and 1-(cyclohepta-2,4,6-trien-

1-yl)naphthalene (33 mg, 0.15 mmol). Colorless oil (32 mg, yield: 75%, 1.8:1 dr). 

1
H NMR (400 MHz, CDCl3) δ 8.42 (dd, J = 8.4, 1.1 Hz, minor1H), 8.35 - 8.30 (m, 

major1H), 7.95 (dd, J = 8.5, 1.2 Hz, minor1H), 7.89 - 7.85 (m, major1H), 7.80 (dd, 

J = 8.3, 1.2 Hz, minor1H), 7.75 (dd, J = 8.3, 1.2 Hz, major1H), 7.67 (ddd, J = 8.4, 

6.8, 1.4 Hz, minor1H), 7.59 (ddd, J = 8.1, 6.8, 1.3 Hz, minor1H), 7.52 - 6.70 (m, 

major9H + minor7H), 2.82 - 2.74 (m, major1H + minor1H), 2.65 - 1.95 (m, 

major7H + minor6H), 1.75 - 1.68 (m, minor1H). 

13
C NMR (101 MHz, CDCl3, mixed signals) δ 140.4, 138.8, 136.0, 134.0, 133.9, 

133.8, 133.7, 132.5, 128.9, 128.8, 128.6, 128.4, 128.3, 127.3, 127.2, 126.8, 126.8, 

126.0, 125.7, 125.6, 125.5, 125.5, 125.4, 125.0, 125.0, 125.0, 124.8, 124.4, 35.3, 

34.0, 33.9, 33.7, 32.9, 32.7, 31.9, 27.3, 27.1, 24.4, 17.0, 16.7. 

HRMS-APCI: calculated for C22H21 [M+H]+: 285.1638; found: 285.1631. 

1-(Bicyclo[6.1.0]non-2-en-9-yl)naphthalene (11e) 

 

This compound was prepared as a mixture of diastereoisomers using gold catalyst A 

(3.7 mg, 5 mol%) according to the general procedure, starting form 1,3-

cyclooctadiene (32 mg, 0.3 mmol) and 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene 

(22 mg, 0.1 mmol). Colorless oil (14 mg, yield: 57%, 2.5:1 dr). 

1
H NMR (400 MHz, CDCl3) δ 8.38 (d, J = 8.3 Hz, major1H), 8.27 (d, J = 8.3 Hz, 

minor1H), 7.89 - 7.85 (m, major1H + minor1H), 7.76 - 7.70 (m, major1H + 

minor1H), 7.58 - 7.30 (m, major4H + minor4H), 5.90 - 5.77 (m, minor2H), 5.59 - 

5.51 (m, major1H), 5.19 (dd, J = 11.2, 1.8 Hz, major1H), 2.52 - 1.33 (m, major7H + 

minor8H), 1.19 (dtd, J = 13.7, 12.0, 3.4 Hz, major1H). 

13
C NMR (101 MHz, CDCl3, mixed signals) δ 139.3, 135.7, 135.1, 134.5, 134.3, 

133.6, 133.4, 128.5, 128.4, 127.3, 126.6, 126.3, 125.8, 125.7, 125.6, 125.5, 125.5, 

125.4, 125.2, 125.2, 124.6, 123.4, 123.3, 31.5, 31.0, 29.9, 29.7, 28.8, 27.9, 26.6, 

25.8, 25.1, 24.8, 24.0, 23.3, 20.9, 19.5. 

 HRMS-APCI: calculated for C19H21 [M+H]+: 249.1638; found: 249.1634. 

((1R,2R)-3-(2-phenoxyphenyl)cyclopropane-1,2-diyl)dibenzene (11f) 

��������������������������������������������������������
96 Mubarak, M. S.; Jennermann, T. B.; Ischay, M. A.; Peters, D. G. Eur. J. Org. Chem. 2007, 5346–5352. 
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A solution of 7-(2-phenoxyphenyl)cyclohepta-1,3,5-triene (26 mg, 0.1 mmol), (E)-

1,2-diphenylethene (36 mg, 0.2 mmol) and gold complex A (3.7 mg, 5 mol%) in 

DCE (0.5 mL) was heated at 120 ºC in a sealed tube for 2 h. After cooling to room 

temperature, the solvent was removed in vacuo and the residue was purified by 

preparative TLC (eluent: cyclohexane) to give 29.2 mg the title compound in 81% 

yield as a colorless oil.  

1
H NMR (400 MHz, CDCl3) δ 7.38 - 6.96 (m, 13H), 7.05 - 6.96 (m, 3H), 6.76 - 6.66 

(m, 3H), 3.02 - 2.95 (m, 2H), 2.81 (dd, J = 8.6, 6.8 Hz, 1H).  

13
C NMR (101 MHz, CDCl3) δ 157.3, 156.4, 141.8, 138.2, 130.3, 129.5, 128.5, 

128.4, 128.1, 127.7, 127.5, 126.6, 126.1, 125.7, 122.8, 122.8, 118.5, 118.2, 34.3, 

30.3, 29.6. 

HRMS-APCI: calculated for C27H23O [M+H]+: 363.1743; found: 363.1740. 

((1R*,2R*)-3-(2-(benzyloxy)phenyl)cyclopropane-1,2-diyl)dibenzene (11g) 

 

A solution of 7-(2-(benzyloxy)phenyl)cyclohepta-1,3,5-triene (27 mg, 0.1 mmol), 

(E)-1,2-diphenylethene (36 mg, 0.2 mmol) and gold complex A (3.7 mg, 5 mol%) in 

DCE (0.5 mL) was heated at 120 ºC in a sealed tube for 2 h. After cooling to room 

temperature, the solvent was removed in vacuo and the residue was purified by 

preparative TLC (eluent: cyclohexane) to give 28.4 mg the title compound in 75% 

yield as a colorless oil.  

1
H NMR (500 MHz, CDCl3) δ 7.42 - 7.26 (m, 10H), 7.20 - 7.10 (m, 5H), 7.00 (dd, J 

= 7.7, 1.8 Hz, 2H), 6.88 (td, J = 7.5, 1.1 Hz, 1H), 6.81 - 6.77 (m, 1H), 5.06 (d, J = 

12.2 Hz, 1H), 4.88 (d, J = 12.2 Hz, 1H), 3.06 (dd, J = 9.6, 6.4 Hz, 1H), 2.95 (t, J = 

6.0 Hz, 1H), 2.83 (dd, J = 9.6, 5.7 Hz, 1H).  

13
C NMR (126 MHz, CDCl3) δ 158.0, 142.2, 138.7, 137.5, 129.9, 128.5, 128.4, 

128.0, 127.6, 127.6, 127.5, 127.0, 126.7, 126.1, 126.0, 125.6, 120.3, 111.6, 69.8, 

34.2, 30.6, 29.7. 

HRMS-APCI: calculated for C28H25O [M+H]+: 377.1900; found: 377.1890. 

Ph Ph
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(1R*,1aR*,6aR*)-4-chloro-1-phenyl-1,1a,6,6a-tetrahydrocyclopropa[a]indene 

(11h). 

 

This compound was prepared using gold catalyst A (3.7 mg, 5 mol%) according to 

the general procedure, starting from 6-chloro-1H-indene (30 mg, 0.2 mmol)97 and 7-

phenylcyclohepta-1,3,5-triene (17 mg, 0.1 mmol). Colorless oil (20 mg, yield: 82%, 

15.5:1 dr). Signals for the exo stereoisomer:  

1
H NMR (400 MHz, CDCl3) δ 7.25 (d, J = 8.0 Hz, 1H), 7.18 (d, J = 8.3 Hz, 2H), 

7.06 -7.02 (m, 1H), 6.80 (dd, J = 8.3, 1.0 Hz, 2H), 6.76 (s, 1H), 3.09 (dd, J = 17.6, 

7.0 Hz, 1H), 2.87 (ddd, J = 8.1, 6.2, 1.5 Hz, 1H), 2.62 (d, J = 17.6 Hz, 1H), 2.37 (t, J 
= 8.2 Hz, 1H), 2.31-2.23 (m, 1H).  

13
C NMR (101 MHz, CDCl3) δ 145.1, 141.4, 134.4, 132.8, 131.4, 131.1, 126.4, 

125.5, 124.8, 120.0, 31.9, 29.5, 26.7, 22.8.  

HRMS-APCI: calcd for C16H13Cl [M+H]+: 240.0705; found 240.0706. 

(1R*,1aR*,6aR*)-1-(4-bromophenyl)-4-chloro-1,1a,6,6a-

tetrahydrocyclopropa[a]in- dene (11i). 

 

This compound was prepared using gold catalyst A (3.7 mg, 5 mol%) according to 

the general procedure, starting from 6-chloro-1H-indene (30 mg, 0.2 mmol) and 7-

(4-bromophenyl)cyclohepta-1,3,5-triene (25 mg, 0.1 mmol). White solid (15 mg, 

yield: 47%, 20:1 dr). Signals for exo stereoisomer. 

M.p.: 139-141 ºC  

1
H NMR (400 MHz, CDCl3) δ 7.25 (d, J = 8.0 Hz, 1H), 7.18 (d, J = 8.3 Hz, 2H), 

7.06 -7.02 (m, 1H), 6.80 (dd, J = 8.3, 1.0 Hz, 2H), 6.76 (s, 1H), 3.09 (dd, J = 17.6, 

7.0 Hz, 1H), 2.87 (ddd, J = 8.1, 6.2, 1.5 Hz, 1H), 2.62 (d, J = 17.6 Hz, 1H), 2.37 (t, J 
= 8.2 Hz, 1H), 2.31-2.23 (m, 1H).  

13
C NMR (101 MHz, CDCl3) δ 145.1, 141.4, 134.4, 132.8, 131.4, 131.1, 126.4, 

125.5, 124.8, 120.0, 31.9, 29.5, 26.7, 22.8.  

��������������������������������������������������������
97 Lindsay, D. G.; McGreevy, B. J.; Reese, C. B. Chem. Comm. 1965, 16, 379–380. 
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HRMS-APCI: calcd for C16H12ClBr [M+H]+: 317.9811; found 317.9812. 

(1R*,1aR*,6aR*)-4-chloro-1-(4-methoxyphenyl)-1,1a,6,6a-

tetrahydrocyclopropa[a]- indene (11j). 

 

This compound was prepared as mixture of stereoisomers using gold catalyst A (3.7 

mg, 5 mol%)  according to the general procedure, starting from 6-chloro-1H-indene 

(30 mg, 0.2 mmol) and 7-(4-methoxyphenyl)cyclohepta-1,3,5-triene (20 mg, 0.1 

mmol). Colorless oil (21 mg, yield: 75%, 1.2:1 dr).  

1
H NMR (400 MHz, CDCl3) δ 7.24 (d, J = 8.0 Hz, 1H, exo), 7.20 (d, J = 8.0 Hz, 

1H, syn), 7.15 (s, 1H, syn), 7.09 (dd, J = 8.0, 2.0 Hz, 1H, syn), 7.02 (dd, J = 8.0, 1.8 

Hz, 1H, exo), 6.96 (d, J = 8.7 Hz, 2H, exo), 6.89-6.80 (m, 4H, syn), 6.73 (s, 1H, 

exo), 6.60 (d, J = 8.7 Hz, 2H, exo), 3.78 (s, 3H, syn), 3.68 (s, 3H, exo), 3.30 (dd, J = 

17.5, 6.7 Hz, 1H, syn), 3.14-2.99 (m, 1H cis + 1H exo), 2.85-2.80 (m, 1H, exo), 2.65 

(d, J = 17.5 Hz, 1H, exo), 2.59-2.51 (m, 1H, cis), 2.37 (t, J = 8.3 Hz, 1H, exo), 2.24-

2.20 (m, 1H, exo), 2.17- 2.02 (m, 1H, syn), 1.45 (t, J = 3.2 Hz, 1H, syn).  

13
C NMR (101 MHz, CDCl3) δ 158.0, 157.7, 145.5, 144.7, 144.5, 141.9, 134.0, 

132.0, 131.4, 131.0, 127.2, 126.5, 126.4, 126.1, 125.7, 125.4, 124.6, 124.5, 114.1, 

113.4, 55.5, 55.2, 36.3, 35.3, 33.9, 31.9, 29.6, 27.5, 26.5, 22.8.  

HRMS-APCI: calcd for C17H16OCl [M+H]+: 271.0890; found 271.0887. 

(6R*,7S*)-6,7-diphenylcyclohepta-1,4-diene (12) 

 

This compound (27 mg, yield: 55%) was synthesized following the general 

procedure, starting from (E)-buta-1,3-dien-1-ylbenzene (52 mg, 0.4 mmol) and 10n 

(40 mg, 0.2 mmol) (colorless oil, yield: [Au]=A, 52%; [Au]=B, 43%; [Au]=E, 

55%). 

1
H NMR (500 MHz, CDCl3) δ 7.21-7.08 (m, 6H), 6.93-6.74 (m, 4H), 5.91 (t, J = 

9.7 Hz, 2H), 5.76 (ddd, J = 10.1, 6.6, 3.0 Hz, 2H), 4.07 (br, 2H), 3.43-3.28 (m, 1H), 

2.79 (dt, J = 19.8, 7.0 Hz, 1H).  
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13
C NMR (126 MHz, CDCl3) δ 141.4, 133.1, 129.6, 128.0, 127.3, 126.3, 50.1, 27.9.  

HRMS-APCI: calcd for C19H18 [M+H]+: 246.1409; found 246.1416. 

(1R*,2R*,3S*,4R*,7R*)-3,8-bis(2-phenethylphenyl)tricyclo[5.1.0.02,4]oct-5-ene 

(14b) 

 

This compound (16 mg, yield: 69%) was synthesized as a colorless oil following the 

general procedure starting from 10w (27 mg, 0.1 mmol) and gold catalyst A (3.7 

mg, 5 mol%). Reaction with catalyst B gave 14b in 52% yield. Reaction with 

catalyst E gave exclusively 14b in 24% yield. 

1
H NMR (400 MHz, CDCl3) δ 7.43 (d, J = 7.5 Hz, 1H), 7.33-7.06 (m, 16H), 6.89-

6.82 (m, 1H), 5.66 (dd, J = 9.8, 4.6 Hz, 1H), 5.55 (dd, J = 9.8, 4.7 Hz, 1H), 3.11 -

3.02 (m, 4H), 2.98-2.86 (m, 4H), 2.27 (t, J = 8.6 Hz, 1H), 2.14 (t, J = 4.5 Hz, 1H), 

2.10 (d, J = 8.7 Hz, 1H), 1.80 (dd, J = 8.7, 4.9 Hz, 1H), 1.62 (td, J = 8.7, 4.7 Hz, 

1H), 1.01 (dt, J = 8.9, 4.5 Hz, 1H).  

13
C NMR (101 MHz, CDCl3) δ 142.6, 142.4, 142.3, 140.7, 139.8, 135.4, 131.8, 

129.2, 128.6, 128.6, 128.6, 128.6, 127.1, 126.5, 126.4, 126.1, 126.0, 125.2, 125.0, 

121.1, 37.4, 37.1, 35.8, 35.3, 33.9, 30.1, 23.2, 23.1, 20.3, 16.0. 

HRMS-APCI: calcd for C36H35 [M+H]+: 467.2739; found 467.2757. 

The spectroscopic data of 2-phenyl-2,3-dihydro-1H-indene (14a) match with those 

reported in the literature.98 

1
H NMR (500 MHz, CDCl3) δ 7.34-7.28 (m, 4H), 7.25-7.16 (m, 5H), 3.72 (quint, J 

= 8.5 Hz, 1H), 3.35 (dd, J = 15.4, 8.4 Hz, 2H), 3.09 (dd, J = 15.4, 8.5 Hz, 2H).  

13
C NMR (126 MHz, CDCl3) δ 145.6, 143.1, 128.6, 127.2, 126.6, 126.4, 124.5, 

45.7, 41.1. 

2-Benzyl-1-phenylbutane-1,3-dione (15a) 

��������������������������������������������������������
98 Kirmse, W.; Konrad, W.; Özkir, I. S. Tetrahedron 1997, 53, 9935–9964. 
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The solution of phenylcycloheptatriene (0.2 mmol, 34 mg), 1-phenylbutane-1,3-

dione (0.1 mmol, 16 mg) and gold complex (3.7 mg, 5 mol%) in DCE (0.4 mL) was 

heated at 120 ºC in a sealed tube for 3 h. The reaction mixture was cooled down to 

room temperature, after removing the solvent in vacuo, purified by preparative TLC 

directly to give 21 mg yellow oil in 82% yield. 

The spectroscopic data match with those reported in the literature.99 

1
H NMR (500 MHz, CDCl3) δ 7.94 (d, J = 7.3 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 

7.47 (dd, J = 8.4, 7.3 Hz, 2H), 7.29 - 7.25 (m, 2H), 7.23 - 7.16 (m, 3H), 4.82 (t, J = 

7.2 Hz, 1H), 3.37 (dd, J = 14.1, 7.2 Hz, 1H), 3.32 (dd, J = 14.0, 7.0 Hz, 1H), 2.16 (s, 

3H).  

13
C NMR (126 MHz, CDCl3) δ 203.2, 195.7, 138.3, 136.4, 133.7, 128.8, 128.8, 

128.7, 128.6, 126.6, 64.8, 34.7, 28.6. 

2-(2-Phenoxybenzyl)-1-phenylbutane-1,3-dione (15b) 

 

The solution of 7-(2-phenoxyphenyl)cyclohepta-1,3,5-triene (0.3 mmol, 78 mg), 1-

phenylbutane-1,3-dione (0.15 mmol, 24 mg) and gold complex A (5.5 mg, 5 mol%) 

in DCE (0.5 mL) was heated at 120 ºC in a sealed tube for 3 h. The reaction mixture 

was cooled down to room temperature, after removing the solvent in vacuo, purified 

by preparative TLC directly to give 46 mg yellow oil in 89% yield.  

1
H NMR (300 MHz, CDCl3) δ 7.94 (d, J = 7.0 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 

7.46 - 7.30 (m, 5H), 7.21 - 7.09 (m, 2H), 7.07 - 6.96 (m, 3H), 6.86 (dd, J = 8.1, 1.2 

Hz, 1H), 4.99 (t, J = 7.1 Hz, 1H), 3.45 - 3.27 (m, 2H), 2.14 (s, 3H).  

13
C NMR (75 MHz, CDCl3) δ 203.2, 196.1, 157.2, 154.8, 136.3, 133.6, 132.0, 

129.9, 129.5, 128.8, 128.7, 128.3, 123.8, 123.2, 118.9, 118.1, 62.5, 30.1, 28.9. 

HRMS-ESI: calculated for C23H20NaO3 [M+Na]+: 367.1305; found: 367.1314. 

2-Benzyl-3-methyl-1H-indole (16a) 

��������������������������������������������������������
99 Rueping, M.; Nachtsheim, B. J. and Kuenkel, A. Org. Lett., 2007, 9, 825–828. 
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The solution of phenylcycloheptatriene (0.3 mmol, 50 mg), 3-methyl-1H-indole (0.2 

mmol, 26 mg) and gold complex A (7.5 mg, 5 mol%) in DCE (0.5 mL) was heated 

at 120 ºC in a sealed tube for 12 h. The reaction mixture was cooled down to room 

temperature, after removing the solvent in vacuo, purified by preparative TLC 

directly to give 7 mg yellow oil in 15% yield.  

The spectroscopic data match with those reported in the literature.100 

1
H NMR (500 MHz, CDCl3) δ 7.63 - 7.53 (m, 2H), 7.33 (dd, J = 8.1, 6.7 Hz, 2H), 

7.28 - 7.22 (m, 4H), 7.15 - 7.12 (m, 2H), 4.14 (s, 2H), 2.35 (s, 3H). 

13
C NMR (126 MHz, CDCl3) δ 138.9, 135.5, 133.0, 129.3, 128.7, 128.7, 126.6, 

121.3, 119.1, 118.3, 110.3, 108.0, 32.3, 8.6. 

2-(2-(Naphthalen-1-ylmethyl)-1H-indol-3-yl)ethan-1-ol (16b) 

 

The solution of 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (0.3 mmol, 65 mg), 2-

(1H-indol-3-yl)ethan-1-ol (0.2 mmol, 32 mg) and gold complex A (7.5 mg, 5 mol%) 

in DCE (1 mL) was heated at 120 ºC in a sealed tube for 12 h. The reaction mixture 

was cooled down to room temperature, after removing the solvent in vacuo, purified 

by preparative TLC directly to give 25 mg colorless oil in 42% yield. 

1
H NMR (400 MHz, CDCl3) δ 8.06 - 8.03 (m, 1H), 7.95 - 7.91 (m, 1H), 7.84 (d, J = 

8.3 Hz, 1H), 7.66 - 7.61 (m, 2H), 7.57 - 7.49 (m, 2H), 7.45 (dd, J = 8.2, 7.0 Hz, 1H), 

7.33 - 7.30 (m, 1H), 7.21 - 7.11 (m, 3H), 4.60 (s, 2H), 3.97 (t, J = 6.5 Hz, 2H), 3.18 

(t, J = 6.5 Hz, 2H). 

13
C NMR (126 MHz, CDCl3) δ 135.5, 134.4, 134.2, 134.0, 132.0, 128.8, 128.6, 

127.9, 126.9, 126.6, 126.0, 125.7, 123.6, 121.5, 119.5, 118.3, 110.7, 108.1, 62.9, 

29.9, 28.0. 

(1Z,3Z)-1,4-diphenylbuta-1,3-diene (Z,Z-17) 

��������������������������������������������������������
100 Baccolini, G.; Bartoli, G.; Marotta, E.; Todesco, P. E. J. Chem. Soc. Perkin Trans. I 1983, 2695–2697. 
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The solution of 7-((2R*,3R*)-2,3-diphenylcyclopropyl)cyclohepta-1,3,5-triene (0.2 

mmol, 56 mg) and gold complex A (7.4 mg, 5 mol%) in DCE (2 mL) was heated at 

120 ºC in a sealed tube for 12 h. The reaction mixture was cooled down to room 

temperature, after removing the solvent in vacuo, purified by preparative TLC 

carefully to give 25 mg white solid in 59% yield. 

The spectroscopic data match with those reported in the literature.101 

1
H NMR (400 MHz, CDCl3) δ 7.47-7.33 (m, 8H), 7.28 (t, J = 7.2 Hz, 2H), 6.77-

6.68 (m, 2H), 6.63-6.53 (m, 2H).  

13
C NMR (101 MHz, CDCl3) δ 137.5, 132.2, 129.3, 128.4, 127.4, 126.7. 

(((E)-2-bromostyryl)cyclopropane-1,2-diyl)dibenzene 

 

To a suspension of NaH (60% in oil, 99 mg, 2.47 mmol) in THF (4 mL) at 0 ºC was 

slowly added diethyl 2-bromobenzylphosphonate (759 mg, 2.47 mmol). The 

resulting suspension was stirred for 1 h at room temperature (23 ºC). The reaction 

mixture was cooled to 0 ºC again, and then a 1 mL THF solution of trans-2,trans-3-

diphenylcyclopropanecarboxaldehyde102 (500 mg, 2.25 mmol) was added dropwise 

and slowly warmed to room temperature. After stirring for 12 h, the reaction was 

quenched with ice water and the aqueous phase was extracted with Et2O. The 

combined organic layers were washed with brine and dried over MgSO4. After 

concentration in vacuo, the residue was purified by silica gel flash column 

chromatography with cyclohexane as eluent to give 710 mg colorless solid in 84% 

yield. 

M.p.: 114-116 ºC. 

1
H NMR (500 MHz, CDCl3) δ 7.58 (dd, J = 8.1, 1.3 Hz, 1H), 7.56 (dd, J = 7.9, 1.7 

Hz, 1H), 7.29 (dd, J = 7.7 Hz, 1H), 7.20 - 7.08 (m, 7H), 7.05 - 6.99 (m, 5H), 6.15 

(dd, J = 15.6, 8.3 Hz, 1H), 2.72 (d, J = 5.6 Hz, 2H), 2.61 - 2.56 (m, 1H).  

��������������������������������������������������������
101 Yang, L. Y.; Liu, R. S. H.; Boarman, K. L.; Wendt, N. L.; Liu, J. J Am. Chem. Soc. 2005, 127, 2404–
2405. 
102 Castellino, A. J.; Bruice, T. C. J. Am. Chem. Soc. 1988, 110, 7512–7519. 
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13
C NMR (126 MHz, CDCl3) δ 137.1, 137.1, 135.3, 132.9, 128.9, 128.2, 127.8, 

127.5, 127.4, 126.5, 126.0, 123.1, 33.4, 30.0. 

HRMS-APCI: calculated for C23H20Br [M+H]+: 375.0743; found: 375.0740. 

((1R*,2S*,3S*)-3-((E)-2-(1-methoxy-3-phenylprop-2-yn-1-

yl)styryl)cyclopropane-1,2-diyl)dibenzene (20) 

 

n-BuLi (2.5 M in hexanes, 0.23 mL, 0.59 mmol) was added dropwise to the solution 

of (((E)-2-bromostyryl)cyclopropane-1,2-diyl)dibenzene (200 mg, 0.53 mmol) in 2 

mL dry THF at -78 ºC under argon. The mixture was stirred for 10 min at -78 ºC, 

and then 3-phenylpropiolaldehyde (83 mg, 0.64 mmol) was added slowly. After 20 

min, the reaction was warmed to room temperature (23 ºC) and quenched with 

water. The aqueous phase was extracted with ether, the combined organic extracts 

were dried over MgSO4, and the solvent was evaporated. The residue was passed 

through a short pad of silicon gel to give the crude alcohol.  

The alcohol obtained from last step was dissolved in 2 mL THF and added to the 

solution of NaH (23 mg, 0.59 mmol) in 2 mL THF/1 mL DMF at 0 ºC. After 

keeping at 0 ºC for 10 min, 0.1 mL Me2SO4 was added. The mixture was stirred at 

23 ºC for 1 h and quenched with water. The aqueous phase was extracted with ether, 

the combined organic extracts were dried over MgSO4, and the solvent was 

evaporated. The residue was purified by preparative TLC to give the final product 

(104 mg, colorless oil, yield: 44%). 

1
H NMR (500 MHz, CDCl3) δ 7.68 (dd, J = 7.6, 1.5 Hz, 1H), 7.55 (dd, J = 7.6, 1.4 

Hz, 1H), 7.49 - 7.47 (m, 2H), 7.37 - 7.24 (m, 5H), 7.19 - 7.11 (m, 7H), 7.01 - 6.97 

(m, 4H), 6.12 (dd, J = 15.6, 8.2 Hz, 1H), 5.53 (s, 1H), 3.55 (s, 3H), 2.73 - 2.68 (m, 

2H), 2.65 - 2.55 (m, 1H). 

13
C NMR (126 MHz, CDCl3) δ 137.3, 136.6, 135.0, 134.7, 131.7, 128.9, 128.6, 

128.4, 128.2, 128.1, 127.8, 127.0, 126.3, 125.9, 125.8, 122.6, 88.0, 86.7, 71.7, 56.1, 

33.4, 30.1. 

HRMS-APCI calculated for C33H29O [M+H]+: 441.2213; found: 441.2207.  
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The solution of 20 (0.1 mmol, 44 mg) and gold complex (3.7 mg, 5 mol%) in 

CH2Cl2 (1 mL) was stirred at 23 ºC in for 1 h. The reaction mixture was purified by 

preparative TLC carefully to give 6 mg P1 white solid in 26% yield and 7 mg P2 as 

a mixture (2.2 : 1 : 4) in 34% yield. 

The spectroscopic data of P1 match with those reported in the literature.5  

1
H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 8.2 Hz, 1H), 7.88 (d, J = 8.2 Hz, 1H), 

7.77 - 7.73 (m, 2H), 7.66 (s, 1H), 7.56 - 7.50 (m, 4H), 7.44 - 7.39 (m, 1H), 7.10 (d, J 

= 1.5 Hz, 1H), 4.11 (s, 3H). 

13
C NMR (126 MHz, CDCl3) δ 155.8, 141.6, 138.9, 134.6, 128.8, 127.7, 127.4, 

127.3, 126.8, 125.2, 124.8, 121.9, 118.4, 103.8, 55.6. 

The spectroscopic data of P2 match with those reported in the literature.103 

(3aR,4R,4aR,6aS,7S,7aS)-2-phenyl-3a,4,4a,6a,7,7a-hexahydro-1H-4,7-

ethenocyclobuta[f]isoindole-1,3(2H)-dione (32) 

 

The solution of N-phenylmaleimide (26 mg, 0.15 mmol), [1,1'-bi(cycloheptane)]-

2,2',4,4',6,6'-hexaene66b (55 mg, 0.3 mmol) and gold complex A (5.5 mg, 5 mol%) in 

toluene (0.5 mL) was heated at 120 ºC in a sealed tube for 12 h. The reaction 

mixture was cooled down to room temperature, after removing the solvent in vacuo, 

purified by preparative TLC to give 10 mg white solid in 24% yield. 

The spectroscopic data match with those reported in the literature.104 

1
H NMR (400 MHz, CDCl3) δ 7.46 (dd, J = 8.3, 6.8 Hz, 2H), 7.41 - 7.36 (m, 1H), 

7.24 - 7.19 (m, 2H), 6.06 - 6.02 (m, 2H), 5.94 (s, 2H), 3.30 (br, 2H), 2.98 (t, J = 1.6 

Hz, 2H), 2.92 - 2.87 (br, 2H). 

 

��������������������������������������������������������
103 (a) Alacid, E.; Nájera, C. J. Org. Chem. 2008, 73, 2315–2322. (b) Alacid, E.; Nájera, C. Adv. Synth. 
Catal. 2006, 348, 2085–2091. (c) Shen, H. C.; Pal, S.; Lian, J. J.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 
15762–15763. 
104 Charvet, R.; Novak, B. M. Macromolecules 2001, 34, 7680–7685. 
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13
C NMR (101 MHz, CDCl3) δ 177.9, 138.0, 132.0, 129.1, 128.6, 128.4, 126.5, 

44.1, 43.4, 37.1. 

(2E,4E)-1,5-diphenylpenta-2,4-dien-1-one (33a) 

 

The solution of 7-phenylcyclohepta-1,3,5-triene (0.15 mmol, 25 mg), 2-

phenylfuran105 (0.3 mmol, 43 mg) and gold complex A (3.7 mg, 5 mol%) in DCE 

(0.5 mL) was heated at 120 ºC in a sealed tube for 2 h. The reaction mixture was 

cooled down to room temperature, after removing the solvent in vacuo, purified by 

preparative TLC to give 18 mg yellow oil in 51% yield. 

The spectroscopic data match with those reported in the literature.106 

1
H NMR (400 MHz, CDCl3) δ 8.01 (dd, J = 8.4, 1.4 Hz, 2H), 7.69 - 7.58 (m, 2H), 

7.55 - 7.48 (m, 4H), 7.43 - 7.34 (m, 3H), 7.12 (d, J = 15.0 Hz, 1H), 7.08 - 6.92 (m, 

2H).  

13
C NMR (101 MHz, CDCl3) δ 190.5, 144.9, 141.9, 138.2, 136.1, 132.7, 129.2, 

128.9, 128.6, 128.4, 127.3, 127.0, 125.5. 

(2E,4E)-5-(naphthalen-1-yl)-1-phenylpenta-2,4-dien-1-one (33b) 

 

The solution of 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (0.1 mmol, 22 mg), 2-

phenylfuran (0.2 mmol, 29 mg) and gold complex A (3.7 mg, 5 mol%) in DCE (0.5 

mL) was heated at 120 ºC in a sealed tube for 2 h. The reaction mixture was cooled 

down to room temperature, after removing the solvent in vacuo, purified by 

preparative TLC to give 20 mg yellow oil in 51% yield. 

1
H NMR (400 MHz, CDCl3) δ 8.19 (dd, J = 8.5, 1.1 Hz, 1H), 8.07 - 8.02 (m, 2H), 

7.92 - 7.74 (m, 5H), 7.64 - 7.50 (m, 6H), 7.21 - 7.09 (m, 2H).  

13
C NMR (101 MHz, CDCl3) δ 190.6, 145.0, 138.6, 138.2, 133.8, 133.3, 132.7, 

131.2, 129.6, 129.5, 128.8, 128.6, 128.4, 126.7, 126.1, 125.7, 125.5, 124.2, 123.3.  

��������������������������������������������������������
105 The 2-phenylfuran was prepared according to the reference: Kuhl, N.; Hopkinson, M. N.; Glorius, F. 
Angew. Chem. Int. Ed. 2012, 51, 8230–8234 
106 Pinto, D. C. G. A.; Silva, A. M. S.; Lévai, A.; Cavaleiro, J. A. S.; Patonay, T. and Elguero, J.  Eur. J. 
Org. Chem., 2000, 2593–2599. 
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HRMS-APCI: calculated for C21H17O [M+H]+: 285.1274; found: 285.1272. 

(2E,4E)-1-(2-bromophenyl)-5-(naphthalen-1-yl)penta-2,4-dien-1-one (33c) 

 

The solution of 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (0.1 mmol, 22 mg), 2-(2-

bromophenyl)furan107 (0.2 mmol, 45 mg) and gold complex A (3.7 mg, 5 mol%) in 

DCE (0.5 mL) was heated at 120 ºC in a sealed tube for 2 h. The reaction mixture 

was cooled down to room temperature, after removing the solvent in vacuo, purified 

by preparative TLC to give 27 mg yellow oil in 75% yield. 

1
H NMR (400 MHz, CDCl3) δ 8.13 (d, J = 7.8 Hz, 1H), 7.92 - 7.86 (m, 2H), 7.83 - 

7.74 (m, 2H), 7.69 (d, J = 8.0 Hz, 1H), 7.60 - 7.48 (m, 3H), 7.47 - 7.44 (m, 2H), 

7.40 - 7.32 (m, 2H), 7.10 (ddd, J = 15.2, 11.1, 0.7 Hz, 1H), 6.71 (d, J = 15.3 Hz, 

1H).  

13
C NMR (101 MHz, CDCl3) δ 194.9, 146.9, 141.2, 139.1, 133.8, 133.4, 133.0, 

131.3, 131.1, 129.9, 129.7, 129.2, 129.1, 128.8, 127.4, 126.7, 126.2, 125.6, 124.4, 

123.2, 119.5.  

HRMS-APCI: calculated for C21H16OBr [M+H]+: 363.0379; found: 363.0373. 

(Z)-(2-(2-(naphthalen-1-yl)-1-phenylvinyl)phenyl)(phenyl)methanone (34) 

 

The solution of 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (0.3 mmol, 65 mg), 1,3-

diphenylisobenzofuran (0.1 mmol, 27 mg) and gold complex A (3.7 mg, 5 mol%) in 

DCE (0.5 mL) was heated at 120 ºC in a sealed tube for 2 h. The reaction mixture 

was cooled down to room temperature, after removing the solvent in vacuo, purified 

by preparative TLC to give 23 mg yellow solid in 56% yield. (The structure was 

confirmed by X-ray diffraction.) 

M.p.: 141-144 ºC. 

��������������������������������������������������������
107 2-(2-Bromophenyl)furan was prepared according to: Becht, J. A.; Ngouela, S.; Wagner, A.; 
Mioskowski, C. Tetrahedron 2004, 60, 6853–6857. 
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1
H NMR (400 MHz, CDCl3) δ 7.94 - 7.89 (m, 1H), 7.67 - 7.62 (m, 1H), 7.59 – 7.56 

(m, 1H), 7.47 – 7.44 (m, 3H), 7.39 - 7.15 (m, 14H), 7.04 (dd, J = 8.2, 7.3 Hz, 2H). 

13
C NMR (101 MHz, CDCl3) δ 196.2, 143.4, 142.9, 141.1, 139.5, 136.1, 134.9, 

133.3, 132.5, 132.4, 132.1, 130.1, 129.7, 129.1, 128.1, 128.1, 128.1, 127.8, 127.5, 

127.4, 127.3, 126.8, 126.2, 125.8, 125.5, 125.1, 124.4.  

HRMS-APCI: calculated for C31H23O [M+H]+: 411.1743; found: 411.1741. 

1-phenyl-2-(2-phenyl-3H-cyclopenta[a]naphthalen-3-yl)ethan-1-one (35) 

 

The solution of 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (0.1 mmol, 22 mg), 2,5-

diphenylfuran (0.2 mmol, 44 mg) and gold complex A (3.7 mg, 5 mol%) in DCE 

(0.5 mL) was heated at 120 ºC in a sealed tube for 2 h. The reaction mixture was 

cooled down to room temperature, after removing the solvent in vacuo, purified by 

preparative TLC to give 31 mg yellow oil in 88% yield. 

1
H NMR (500 MHz, CDCl3) δ 8.22 (dd, J = 8.0, 0.8 Hz, 1H), 7.96 (dd, J = 8.4, 1.3 

Hz, 2H), 7.90 (dd, J = 8.3 Hz, 1H), 7.80 (s, 1H), 7.69 - 7.64 (m, 3H), 7.61 (d, J = 8.3 

Hz, 1H), 7.58 - 7.55 (m, 2H), 7.51 - 7.42 (m, 5H), 7.34 (t, J = 7.4 Hz, 1H), 5.09 - 

4.95 (m, 1H), 3.50 (dd, J = 18.1, 2.5 Hz, 1H), 3.10 (dd, J = 18.1, 10.5 Hz, 1H).  

13
C NMR (126 MHz, CDCl3) δ 199.2, 151.1, 145.9, 139.8, 136.9, 134.9, 133.3, 

133.0, 129.0, 128.6, 128.5, 128.2, 127.7, 127.6, 126.9, 125.8, 125.4, 125.3, 124.4, 

123.8, 122.4, 45.2, 40.9.  

HRMS-ESI: calculated for C27H20NaO [M+Na]+: 383.1406; found: 383.1412. 

1-(2-methyl-3H-cyclopenta[a]naphthalen-3-yl)propan-2-one (36) 

 

The solution of 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (0.1 mmol, 22 mg), 2,5-

dimethylfuran (0.5 mmol, 48 mg) and gold complex A (3.7 mg, 5 mol%) in DCE 

(0.5 mL) was heated at 100 ºC in a sealed tube overnight (12 h). The reaction 

mixture was cooled down to room temperature, after removing the solvent in vacuo, 

purified by preparative TLC to give 13 mg yellow oil in 59% yield. (The two 

isomers can be separated partially by careful preparative TLC) 
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1
H NMR (400 MHz, CDCl3, major) δ 8.05 (d, J = 8.1 Hz, 1H), 7.87 (d, J = 8.1 Hz, 

1H), 7.64 (d, J = 8.3 Hz, 1H), 7.56 - 7.42 (m, 3H), 7.08 (d, J = 0.7 Hz, 1H), 4.05 - 

3.93 (m, 1H), 2.95 (dd, J = 17.2, 5.4 Hz, 1H), 2.68 (dd, J = 17.2, 7.9 Hz, 1H), 2.19 

(s, 3H), 2.17 (d, J = 1.5 Hz, 3H).  

13
C NMR (101 MHz, CDCl3, major) δ 207.5, 149.1, 144.1, 140.5, 132.9, 128.3, 

127.1, 125.4, 125.0, 124.6, 124.1, 123.9, 121.6, 48.5, 44.2, 30.7, 15.5.  

1
H NMR (400 MHz, CDCl3, minor) δ 7.91 (d, J = 7.0 Hz, 1H), 7.87 (d, J = 8.1 Hz, 

1H), 7.79 (d, J = 8.4 Hz, 1H), 7.49 (ddd, J = 8.3, 6.8, 1.2 Hz, 1H), 7.43 (d, J = 8.4 

Hz, 1H), 7.39 (ddd, J = 8.1, 6.8, 1.3 Hz, 1H), 3.71 (s, 2H), 3.70 (s, 2H), 2.24 (s, 3H), 

2.18 (s, 3H).  

13
C NMR (101 MHz, CDCl3, minor) δ 206.4, 143.1, 141.4, 138.3, 131.3, 130.8, 

129.8, 128.9, 127.2, 126.2, 124.3, 123.3, 118.1, 41.7, 41.6, 29.0, 14.3. 

HRMS-ESI: calculated for C17H16NaO [M+Na]+: 259.1093; found: 259.1096. 

9-Methylene-9H-fluorene (40) and phenanthrene (41) 

 

The solution of 9-(cyclohepta-2,4,6-trien-1-yl)-9H-fluorene108 (26 mg, 0.1 mmol) 

and gold complex A (3.7 mg, 5 mol%) in 1 mL DCE was heated to 120 ºC with 

microwave for 3 h. After removing the solvent in vacuo, purified by preparative 

TLC directly to give white solid 5.7 mg (32%, 1:1). When catalyst E was used, the 

product is mainly phenanthrene 10.1 mg (38%). 40 (CAS: 4425-82-5) and 41 (CAS: 

85-01-8) are known compounds. 

Dimethyl 2-cinnamyl-2-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)malonate 

(45) 

 

��������������������������������������������������������
108 Prepared according reported procedure: Minabe, M.; Tomiyama, T.; Nozawa, T.; Noguchi, M.; Nakao, 
A.; Oba, T.; Kimura, T. Bull. Chem. Soc. Jpn., 2001, 74, 1093–1100. 

[Au], DCE, MW

120 ºC, 3 h
+

Catalyst
A
E10y

40
16%
2%

41
16%
38%

AuL+

H
rout a

rout b

42

Ph
MeO2C

MeO2C

1) LiHMDS, THF, -78 ºC, 30 min

2) Tropylium trtrafluoroborate
-78 ºC to 23 ºC, 12 h

Ph
MeO2C

MeO2C
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LiHMDS (1.0 M, 5.0 mL, 5.0 mmol) was added dropwise to the solution of 

dimethyl 2-cinnamyl-2-(prop-2-yn-1-yl)malonate109 (1.2 g, 4.2 mmol) in 10 mL dry 

THF at -78 ºC. The mixture was stirred for 30 min at -78 ºC then tropylium 

tetrafluoroborate (822 mg, 4.62 mmol) was added in one portion. The cooling bath 

was removed and the reaction was stirred at 23 ºC overnight. The reaction was 

quenched by addition of a saturated aqueous solution of NH4Cl. The aqueous phase 

was extracted with diethyl ether, the combined organic extracts were dried over 

MgSO4, and the solvent was evaporated under reduced pressure. The crude reaction 

mixture was purified by chromatography using cyclohexane/EtOAc as eluent (30:1) 

to give the product (555 mg, 35%) as a yellow oil.  

1
H NMR (400 MHz, CDCl3) δ 7.38 – 7.25 (m, 5H), 6.67 (dd, J = 3.7, 2.7 Hz, 2H), 

6.54 (d, J = 15.7 Hz, 1H), 6.21 – 6.16 (m, 2H), 6.06 (dt, J = 15.5, 7.6 Hz, 1H), 5.31 

(dd, J = 9.0, 5.4 Hz, 2H), 3.78 (s, 6H), 3.01 (dd, J = 7.6, 1.3 Hz, 2H), 2.91 (d, J = 

2.3 Hz, 2H), 2.52 - 2.49 (m, 1H).  

13
C NMR (126 MHz, CDCl3) δ 170.4, 137.0, 134.4, 130.9, 128.4, 127.4, 126.2, 

124.6, 123.6, 123.4, 85.1, 74.8, 57.6, 52.7, 36.0, 31.6, 23.2.  

HRMS-APCI: calculated for C24H24NaO4 [M+Na]+: 399.1572; found: 399.1567. 

N-allyl-N-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-4-

methylbenzenesulfonamide (47) 

 

n-BuLi (1.6 M, 1.5 mL, 2.4 mmol) was added dropwise to the solution of N-allyl-4-

methyl-N-(prop-2-yn-1-yl)benzenesulfonamide (500 mg, 2 mmol) in dry THF (20 

mL, 0.1 M) at -78 ºC. The mixture was stirred for 30 min at -78 ºC, and then 

tropylium tetrafluoroborate (356 mg, 2 mmol) was added in one portion. The 

cooling bath was removed and the reaction was stirred at 23 ºC overnight. The 

reaction was quenched by addition of a saturated aqueous solution of NH4Cl. The 

aqueous phase was extracted with diethyl ether, the combined organic extracts were 

dried over MgSO4, and the solvent was evaporated under reduced pressure. The 

crude reaction mixture was purified by chromatography using cyclohexane/EtOAc 

as eluent (20:1) to give the product (378 mg, 56%) as yellow solid.  

M.p.: 72.4-73.6 ºC.  

��������������������������������������������������������
109 Synthesized according to the procedure reported in: Jiménez-Núñez, E.; Claverie, C. K.; Bour, C.; 
Cárdenas, D. J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2008, 47, 7892–7895. 

TsN
1) n-BuLi, THF, -78 ºC, 30 min

2) Tropylium trtrafluoroborate
-78 ºC to 23 ºC, 12 h

TsN
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1
H NMR (500 MHz, CDCl3) δ 7.77 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 

6.64 (t, J = 3.1 Hz, 2H), 6.18 –  6.06 (m, 2H), 5.80 (ddt, J = 16.7, 10.1, 6.5 Hz, 1H), 

5.33 (dd, J = 17.1, 1.5 Hz, 1H), 5.27 (dd, J = 10.0, 1.4 Hz, 1H), 4.97 (dd, J = 9.0, 

5.4 Hz, 2H), 4.15 (d, J = 2.1 Hz, 2H), 3.88 (d, J = 6.4 Hz, 2H), 2.39 (s, 3H), 2.20 – 

2.17 (m, 1H).  

13
C NMR (126 MHz, CDCl3) δ 143.4, 136.0, 132.1, 130.9, 129.5, 127.8, 124.6, 

122.9, 119.8, 87.3, 72.5, 49.1, 36.2, 31.3, 21.5.  

HRMS-APCI: calculated for C20H21NO2SNa [M+Na]+: 362.1198; found: 362.1191. 

Dimethyl 2-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-2-(3-methylbut-2-en-

1-yl)malonate (49) 

 

LiHMDS (1.0 M, 5.0 mL, 5.0 mmol) was added dropwise to the solution of 

dimethyl 2-(3-methylbut-2-en-1-yl)-2-(prop-2-yn-1-yl) malonate (1 g, 4.2 mmol) in 

dry THF (10 mL) at -78 ºC. The mixture was stirred for 30 min at -78 ºC, and then 

tropylium tetrafluoroborate (822 mg, 4.62 mmol) was added in one portion. The 

cooling bath was removed and the reaction was stirred at 23 ºC overnight. The 

reaction was quenched by addition of a saturated aqueous solution of NH4Cl. The 

aqueous phase was extracted with diethyl ether, the combined organic extracts were 

dried over MgSO4, and the solvent was evaporated under reduced pressure. The 

crude reaction mixture was purified by chromatography using cyclohexane/EtOAc 

as eluent (30:1) to give the product (539 mg, 39%) as yellow oil. 

1
H NMR (400 MHz, CDCl3) δ 6.69 - 6.62 (m, 2H), 6.20 - 6.17 (m, 2H), 5.29 (ddd, J 

= 9.5, 5.5, 0.8 Hz, 2H), 4.95 (dddd, J = 7.8, 6.3, 2.9, 1.5 Hz, 1H), 3.76 (s, 6H), 2.86 

- 2.79 (m, 4H), 2.45 (ddt, J = 6.9, 3.2, 1.6 Hz, 1H), 1.73 (d, J = 1.4 Hz, 3H), 1.69 (s, 

3H). 

13
C NMR (126 MHz, CDCl3) δ 170.7, 136.7, 130.9, 124.6, 123.8, 117.2, 84.6, 75.3, 

57.5, 52.6, 31.7, 30.8, 26.1, 22.8, 18.0. 

HRMS-APCI: calculated for C20H24O4Na [M+Na]+: 351.1572; found: 351.1572. 

(±)(1R,1aS,4aS,5S,5aR,6R)-dimethyl 5-phenyl-1,4,4a,5,6,8a-hexahydro-1,6-

ethenodicyclopropa[d,i]naphthalene-3,3(2H)-dicarboxylate (46) 

Me
Me

MeO2C

MeO2C

1) LiHMDS, THF, -78 ºC, 30 min

2) Tropylium trtrafluoroborate
-78 ºC to 23 ºC, 12 h

Me
Me

MeO2C

MeO2C
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A solution of gold complex E (4 mg, 5 mol%) and dimethyl 2-cinnamyl-2-(3-

(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)malonate (38 mg, 0.1 mmol) in CH2Cl2 

(1 mL, 0.1 M) was stirred for 16 h at 23 ºC. The crude reaction mixture was purified 

by preparative TLC using cyclohexane/EtOAc (10:1) to give the title compound as a 

colorless solid (19 mg, yield: 49%).  

M.p.: 171.6-173.1 ºC.  

1
H NMR (400 MHz, CDCl3) δ 7.26 – 7.12 (m, 5H), 5.77 (ddd, J = 9.1, 6.7, 1.3 Hz, 

1H), 5.69 (ddd, J = 9.1, 6.4, 0.8 Hz, 1H), 5.62 (dd, J = 9.0, 6.4 Hz, 1H), 5.33 (ddd, J 

= 9.1, 6.6, 1.3 Hz, 1H), 3.80 (s, 3H), 3.72 (s, 3H), 2.99 (ddd, J = 14.5, 8.4, 1.9 Hz, 

1H), 2.55 (d, J = 14.2 Hz, 1H), 2.35 (ddd, J = 7.9, 6.5, 1.4 Hz, 1H), 2.11 (ddd, J = 

7.6, 6.4, 1.3 Hz, 1H), 2.00 (dd, J = 14.2, 1.8 Hz, 1H), 1.89 (d, J = 5.2 Hz, 1H), 1.80 

– 1.67 (m, 3H).  

13
C NMR (101 MHz, CDCl3) δ 172.4, 171.4, 139.2, 129.0, 127.6, 125.7, 124.8, 

122.5, 122.2, 121.0, 52.7, 52.6, 52.3, 35.6, 35.1, 34.7, 32.4, 31.3, 30.4, 28.2, 25.8, 

17.8.  

HRMS-APCI: calculated for C24H24O4Na [M+Na]+: 399.1572; found: 399.1585. 

(±)(3aS,5aR,6aS,6bS)-2-tosyl-1,2,3,5a,6,6a,7,7a-octahydro-3a,6-

ethenodicyclopropa[d,f]isoquinoline (48/48´) 

 

A solution of gold complex E (4 mg, 5 mol%) and N-allyl-N-(3-(cyclohepta-2,4,6-

trien-1-yl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (34 mg, 0.1 mmol) in 

CH2Cl2 (1 mL, 0.1 M) was stirred for 16 h at 23 ºC. The crude reaction mixture was 

purified by preparative TLC using cyclohexane/EtOAc (10:1) to give the title 

compound as a colorless solid (18 mg, yield: 51%).  

M.p.: 101.7-103.2 ºC.  

1
H NMR (400 MHz, CDCl3) δ 7.67 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 

5.71 (td, J = 7.7, 3.4 Hz, 2H), 4.51 – 4.42 (m, 2H), 3.69 (dd, J = 12.0, 5.3 Hz, 1H), 

3.59 (ddd, J = 7.7, 4.8, 1.2 Hz, 1H), 3.51 (ddd, J = 7.5, 4.9, 1.1 Hz, 1H), 3.29 (d, J = 

12.0 Hz, 1H), 3.25 (dd, J = 12.0, 1.8 Hz, 1H), 2.83 (d, J = 11.8 Hz, 1H), 2.45 (s, 

Ph
MeO2C

MeO2C

Ph

HH

MeO2C

MeO2C

E  (5 mol%)

CH2Cl2, 23 ºC, 16 h

TsN TsN TsNE  (5 mol%)

CH2Cl2, 23 ºC, 16 h
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3H), 1.66 (t, J = 6.8 Hz, 1H), 1.08 – 1.03 (m, 1H), 0.36 (dd, J = 8.5, 5.5 Hz, 1H), 

0.30 (t, J = 5.1 Hz, 1H).  

13
C NMR (101 MHz, CDCl3) δ 143.2, 134.6, 129.6, 127.2, 122.0, 121.5, 85.8, 85.2, 

71.4, 67.6, 49.0, 43.3, 35.6, 31.6, 21.5, 15.5, 13.9, 11.2.  

HRMS-APCI: calculated for C20H21NO2SNa [M+Na]+: 362.1191; found: 362.1196. 

Dimethyl (1S*,5R*)-6,6-dimethyl-1-((E)-styryl)bicyclo[3.1.0]hexane-3,3-

dicarboxylate (50) 

 

A solution of gold complex E (4 mg, 5 mol%) and dimethyl 2-(3-(cyclohepta-2,4,6-

trien-1-yl)prop-2-yn-1-yl)-2-(3-methylbut-2-en-1-yl)malonate (33 mg, 0.1 mmol) in 

CH2Cl2 (1 mL, 0.1 M) was stirred for 16 h at 23 ºC. The crude reaction mixture was 

purified by preparative TLC using cyclohexane/EtOAc (10:1) to give the title 

compound as a colorless oil (21 mg, yield: 62%).  

1
H NMR (400 MHz, CDCl3) δ 7.35 - 7.28 (m, 4H), 7.22 - 7.17 (m, 1H), 6.44 (d, J = 

16.0 Hz, 1H), 6.29 (d, J = 16.0 Hz, 1H), 3.74 (s, 3H), 3.72 (s, 3H), 2.84 - 2.72 (m, 

2H), 2.44 (d, J = 14.7 Hz, 1H), 2.03 (dd, J = 14.5, 2.7 Hz, 1H), 1.59 - 1.54 (m, 1H), 

1.14 (s, 6H). 

13
C NMR (101 MHz, CDCl3) δ 173.0, 171.4, 137.9, 132.4, 128.8, 128.5, 126.7, 

125.8, 67.8, 52.8, 52.6, 41.3, 38.6, 37.4, 33.8, 31.4, 23.8, 16.7. 

HRMS-APCI: calculated for C20H24O4Na [M+Na]+: 351.1572; found: 351.1557. 

7-((2-(cyclohepta-2,4,6-trien-1-yl)phenyl)ethynyl)cyclohepta-1,3,5-triene (56) 

 

To a solution of 1-bromo-2-ethynyl-benzene (289 mg, 1.59 mmol) in THF (6.4 ml) 

at -78 °C was added n-BuLi (2.04 mL, 1.6 M, 3.27 mmol). The mixture was stirred 

for 30 min, solid tropylium tetrafluoroborate was added (710 mg, 3.99 mmol), and 

then the mixture was stirred for 16 h during which time it was allowed to gradually 

warm to room temperature. The crude mixture was diluted with EtOAc (40 mL) 

then washed with aqueous saturated ammonium chloride solution (40 mL) followed 

Me
Me

Ph

MeO2C

MeO2C

H

Me

MeMeO2C

MeO2C
E  (5 mol%)

CH2Cl2, 23 ºC, 16 h

Br

1) n-BuLi, THF, -78 ºC, 30 min

2) Tropylium trtrafluoroborate
-78 ºC to 23 ºC, 16 h, 63%
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by water (40 mL) then brine (40 mL). The organic layer was dried (MgSO4), 

concentrated under reduced pressure and the resulting residue purified by column 

chromatography to give the title compound (283 mg, 63%) as a yellow oil.  

1
H NMR (500 MHz, CDCl3) δ 7.51 (dd, J = 7.7, 1.0 Hz, 1H), 7.47 (d, J = 7.8 Hz, 

1H), 7.36 (td, J = 7.6, 1.3 Hz, 1H), 7.27 – 7.22 (m, 1H), 6.77 – 6.71 (m, 2H), 6.68 – 

6.63 (m, 2H), 6.31 – 6.23 (m, 2H), 6.21 – 6.13 (m, 2H), 5.47 (dd, J = 9.2, 5.6 Hz, 

2H), 5.32 (dd, J = 9.1, 5.5 Hz, 2H), 3.36 (t, J = 5.7 Hz, 1H), 2.66 (t, J = 5.5 Hz, 1H). 

13
C NMR (126 MHz, CDCl3) δ 145.6, 132.8, 131.1, 131.0, 128.6, 127.3, 126.6, 

124.8, 124.6, 124.6, 123.2, 123.1, 95.9, 79.3, 44.0, 32.5.  

HRMS-APCI: calculated for C22H19 [M+H]+: 283.1481; found: 283.1479. 

(E)-4b-styryl-4a,4a
1
,4b,8b-tetrahydrobenzo[a]cyclopropa[cd]azulene (57) 

 

To a solution of 7-((2-(cyclohepta-2,4,6-trien-1-yl)phenyl)ethynyl)cyclohepta-1,3,5-

triene (40.0 mg, 142 µmol) chloroform-d (0.5 mL) at 0 °C was added gold complex 

A  (5.5 mg, 5 mol%) and the resulting solution stirred for 1 h. Solvent was 

evaporated under reduced pressure and the resulting residue was purified by 

preparative TLC (eluent: pentane Rf = 0.05) to give the title compound (24 mg, 

yield: 60%) as a yellow oil. 

1
H NMR (500 MHz, CDCl3) δ 7.40 – 7.36 (m, 2H), 7.35 – 7.28 (m, 3H), 7.24 – 7.19 

(m, 2H), 7.16 (td, J = 7.4, 1.2 Hz, 1H), 6.98 (d, J = 7.8 Hz, 1H), 6.65 (d, J = 16.1 

Hz, 1H), 6.53 (d, J = 16.1 Hz, 1H), 6.32 (dd, J = 10.7, 8.7 Hz, 1H), 5.85 (dd, J = 

11.4, 3.8 Hz, 1H), 5.80 (dd, J = 10.9, 5.8 Hz, 1H), 5.58 (ddd, J = 11.4, 5.8, 0.9 Hz, 

1H), 4.26 – 4.21 (m, 1H), 2.46 (t, J = 7.1 Hz, 1H), 2.22 (dd, J = 7.3, 3.8 Hz, 1H). 

13
C NMR (126 MHz, CDCl3) δ 146.1, 143.7, 137.7, 133.2, 133.0, 131.0, 129.4, 

128.7, 128.5, 128.0, 127.1, 126.9, 126.4, 125.9, 124.7, 123.6, 44.3, 35.2, 34.9, 34.2.  

HRMS-APCI: calculated for C22H19 [M+H]+: 283.1481; found: 283.1482. 

Digold complex 63 

 

A (5 mol%)

CDCl3, 0 ºC, 1 h, 60%

2) IPrAuCl, 23 ºC, 4 h
AuIPr

1) n-BuLi, THF, -78 ºC, 30 min
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n-BuLi (1.6 M, 0.3 mL, 0.48 mmol) was added dropwise to the solution of 7-

ethynylcyclohepta-1,3,5-triene110 (56 mg, 0.48 mmol) in 5 mL THF at -78 ºC. The 

mixture was stirred for 10 min at -78 ºC, and then IPrAuCl (200 mg, 0.32 mmol) in 

5 mL THF was added. The cooling bath was removed and the reaction was stirred at 

23 ºC for 4 h. The solvent was evaporated under reduced pressure. The crude 

reaction mixture was purified by chromatography on aluminum using 

cyclohexane/EtOAc as eluent (10:1) to give the product 62 (white crystal, 168 mg, 

74%). 

1H NMR (400 MHz, CDCl3) δ 7.53 - 7.48 (m, 2H), 7.33 - 7.27 (m, 6H), 6.54 - 6.51 

(m, 2H), 6.05 - 6.00 (m, 2H), 5.30 (dd, J = 8.6, 5.5 Hz, 2H), 2.63 (p, J = 6.9 Hz, 

4H), 2.43 (tt, J = 5.5, 1.5 Hz, 1H), 1.39 (d, J = 6.9 Hz, 12H), 1.23 (d, J = 6.9 Hz, 

12H). 

13C NMR (101 MHz, CDCl3) δ 145.6, 134.4, 130.4, 130.4, 126.5, 124.2, 123.1, 

115.9, 105.4, 33.10, 28.80, 24.57, 24.04. 

HRMS-ESI: calculated for C36H43AuN2Na [M+Na]+: 723.2984; found: 723.3015. 

 

IPrAuPhCNSbF6 (gold complex E, 26.4 mg, 28.6 µmol) was added in one portion to 

3 mL CH2Cl2 solution of (cyclohepta-2,4,6-trien-1-ylethynyl) goldIPr complex (20 

mg, 28.6 µmol) at 23 ºC. After stirred for 5 min, the solvent was removed and the 

solid crude was washed with c-hexane and is pure enough for nmr (63, 36 mg, yield: 

83%). The crystal was obtained by growing in CH2Cl2:c-hexane=1:2. 

1
H NMR (500 MHz, CDCl3) δ 7.52 - 7.50 (m, 4H), 7.31 - 7.24 (m, 12H), 6.51 - 6.46 

(m, 2H), 5.93 - 5.90 (m, 2H), 4.56 (dd, J = 9.0, 5.6 Hz, 2H), 2.46 (hept, J = 6.9 Hz, 

8H), 2.31 - 2.26 (m, 1H), 1.21 (d, J = 6.9 Hz, 24H), 1.10 (d, J = 6.9 Hz, 24H). 

13
C NMR (101 MHz, CDCl3) δ 182.9, 145.5, 133.6, 132.8, 132.2, 130.8, 130.8, 

129.1, 124.8, 124.2, 124.1, 122.2, 119.6, 115.0, 33.6, 28.7, 24.6, 23.9. 

HRMS-ESI: calculated for C63H79Au2N4
+

 [M]+: 1285,5630; found: 1285,5639. 

(1S*,1aS*,7bS*)-1-phenyl-1a,7b-dihydro-1H-cyclopropa[a]naphthalene (65) 

 

��������������������������������������������������������
110 Prepared according to: Hoskinson, R. M. Aust. J. Chem. 1970, 23, 399–402. 

AuIPr
CH2Cl2, 23 ºC

AuIPr
AuIPr

SbF6
IPrAuPhCNSbF6

A (5 mol%)

DCE, 23 ºC, 2 h
Ph

H

HPh PhPh Ph

CHO

+ P

N2

OMe

OO
OMe

K2CO3, MeOH

0 ºC to 23 ºC, 1 h
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Dimethyl (1-diazo-2-oxopropyl)phosphonate111 (114 mg, 0.59 mmol) was added to 

a 2 mL dry MeOH solution of (2R*,3R*)-2,3-diphenylcyclopropane-1-carbaldehyde 

(120 mg, 0.54 mmol) at 0 ºC, then K2CO3 (149 mg, 1.08 mmol) was added in one 

portion. The mixture was stirred at 23 ºC for 1 h, then quenched by water and 

extracted with ether. After column chromatography on SiO2, the product 64 was 

obtained as a white solid (83 mg, yield: 70%). 

M.p.: 92-94 ºC. 

1
H NMR (400 MHz, CDCl3) δ 7.44 - 7.21 (m, 10H), 2.73 - 2.62 (m, 2H), 2.16 (ddd, 

J = 8.8, 5.5, 2.2 Hz, 1H), 1.97 (d, J = 2.2 Hz, 1H). 

13
C NMR (101 MHz, CDCl3) δ 139.9, 137.0, 128.6, 128.4, 128.0, 126.7, 126.6, 

126.3, 82.2, 69.5, 32.8, 32.6, 19.1. 

HRMS-APCI: calculated for C17H15 [M+H]+: 219.1168; found: 219.1166. 

To a solution of ((1S*,2S*)-3-ethynylcyclopropane-1,2-diyl)dibenzene (22 mg, 0.1 

mmol) in DCE (1 mL) at 23 °C was added gold complex A  (3.7 mg, 5 mol%) and 

the resulting solution stirred for 2 h. Solvent was evaporated under reduced pressure 

and the resulting residue was purified by preparative TLC to give the title compound 

65 (20 mg, yield: 91%) as a colorless oil. 

1
H NMR (400 MHz, CDCl3) δ 7.43 - 7.32 (m, 3H), 7.26 - 7.16 (m, 4H), 7.08 (dd, J 

= 8.3, 1.4 Hz, 2H), 6.47 - 6.35 (m, 2H), 2.82 (dd, J = 7.9, 4.5 Hz, 1H), 2.41 (dtd, J = 

8.0, 4.4, 1.0 Hz, 1H), 1.30 (t, J = 4.3 Hz, 1H). 

13
C NMR (101 MHz, CDCl3) δ 142.7, 134.4, 130.6, 128.5, 128.2, 127.8, 127.8, 

127.4, 126.2, 125.6, 125.3, 124.3, 32.4, 29.2, 26.9. 

HRMS-APCI: calculated for C17H15 [M+H]+: 219.1168; found: 219.1174. 

 

 

 

��������������������������������������������������������
111 Known: Rauhut, C. B.; Cervino C.; Krasovskiy, A.; Knochel, P. Synlett. 2009, 67–70. 
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Chapter 2. (4+1) Cycloaddition of methylenecyclopropanes or 

cyclobutenes with gold(I) carbenes 

Background 

From both synthetic applications and mechanistic understanding points of view, 

much attention has been focused on the addition reaction between carbenes and 

alkenes to form cyclopropanes.12  

On the other hand, there are very few reported analogous (4+1)112 cycloadditions 

due to the high propensity of carbenes to cyclopropanate 1,3-dienes (Scheme 2-

1).113 Of the few (4+1) cycloadditions that have been successfully achieved, most 

involve the reactions of chromium aminocarbenes 114  and dialkoxycarbenes. 115 

Several representative reactions are discussed in the following paragraph. 

�

Scheme 2- 1 

Fischer alkoxy(alkenyl)carbene complexes reacted with electronically neutral 1,3-

dienes to give a mixture of (3+2) and (4+1) cycloadducts (Scheme 2-2).114c,d 

Interestingly, the solvent has a strong influence on the selectivity of this reaction. 

When toluene was used, (3+2) products were obtained exclusively with excellent 

yields. Whereas heating the reaction in THF at 120 ºC in a sealed flask afforded 

��������������������������������������������������������
112 According to the IUPAC, two different notations can be used to describe cycloaddition reactions. 
Round and square brackets describe the number of atoms or electrons, respectively, involved in the 
cycloaddition. Therefore, a reaction between a carbene and a conjugated diene should be described as a 
(4+1) cycloaddition or as a [4+2] cycloaddition. See: Muller, P. Pure Appl. Chem. 1994, 66, 1077–1184. 
To avoid any confusion with the Diels–Alder cycloaddition, we shall use the former throughout. 
113 For theoretical investigations on the concerted (4+1) cycloaddition and its competitive 
cyclopropanation reaction, see: (a) Fujimoto, H.; Hoffmann, R. J. Phys. Chem. 1974, 78, 1167–1173. (b) 
Schoeller, W. W.; Yurtsever, E. J. Am. Chem. Soc. 1978, 100, 7548–7550. (c) Bauld, N. L.; Wirth, D. J. 
Comput. Chem. 1981, 2, 1–6. (d) Schoeller, W. W.; Aktekin, N. J. Chem. Soc., Chem. Commun. 1982, 
20–22. (e) Evanseck, J. D.; Mareda, J.; Houk, K. N. J. Am. Chem. Soc. 1990, 112, 73–80 and references 
cited therein. 
114 (a) Kurahashi, T.; Wu, Y.-T.; Meindl, K.; Ruhl, S.; de Meijere, A. Synlett 2005, 805–808. (b) 
Kamikawa, K.; Shimizu, Y.; Takemoto, S.; Matsuzaka, H. Org. Lett. 2006, 8, 4011–4014. (c) Barluenga, 
J.; López, S.; Flórez, J. Angew. Chem. Int. Ed. 2003, 42, 231–233. (d) Zaragoza Dorwald, F. Angew. 
Chem. Int. Ed. 2003, 42, 1332–1334. (e) Déry, M.; Lefebvre, L.-P. D.; Aissa, K.; Spino, C. Org. Lett. 
2013, 15, 5456–5459. (f) Sierra, M. A.; Soderberg, B.; Lander, P. A.; Hegedus, L. S. Organometallics 
1993, 12, 3769–3771. 
115 (a) Spino, C.; Rezaei, H.; Dupont-Gaudet, K.; Bélanger, F. J. Am. Chem. Soc. 2004, 126, 9926–9927. 
(b) Boisvert, L.; Beaumier, F.; Spino, C. Org. Lett. 2007, 9, 5361–5363. (c) For a detailed discussion 
regarding (4+1) cycloadditions: Beaumier, F.; Dupuis, M.; Spino, C.; Legault, C. Y. J. Am. Chem. Soc. 
2012, 134, 5938–5953. 
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only the (4+1) cycloadduct in moderate yield. However, only three examples were 

given in this publication, which shows the apparent limitations of this reaction. 

�

Scheme 2- 2 

Chromium aminocarbenes have been found to be less reactive toward alkenes and 

can react with electron deficient dienes to give exclusively (4+1) cycloadduct albeit 

in low yields (Scheme 2-3).114f 

�

Scheme 2- 3 

Interestingly, intramolecular (4+1) cycloadditions proceed more satisfactorily with 

comparatively broader scopes (Scheme 2-4).114e 

�

Scheme 2- 4 

Dialkoxycarbenes, generated by the pyrolysis of 2,2-dialkoxy-5,5-dimethyl-Δ3-

1,3,4-oxadiazolines, exhibit outstanding reactivity towards (4+1) cycloaddition with 

1,3-dienes (Scheme 2-5).115 Although they can react intermolecularly with dienes 

activated by electron-withdrawing groups with modest yields, the intramolecular 

version exhibits much broader scope, higher yields, regio- and diastereoselectivity. 

�

Scheme 2- 5
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Objectives 

To the best of our knowledge, there is no report on the (4+1) cycloaddition of 

simple aryl carbenes with 1,3-dienes, which is still a challenging topic in carbene 

chemistry.  

We postulated that cyclobutenes could be used as synthetic equivalents of 1,3-

dienes for the development of a (4+1) cycloaddition with metal carbenes. As shown 

in Scheme 2-6, after (2+1) addition of cyclobutenes with carbenes, the expected 

intermediate contains a highly strained bicyclo[2.1.0]pentane structure. This high 

strain makes the intermediate rather unstable and prone to collapse. In the presence 

of a metal complex, it may afford the thermodynamically more favored 

cyclopentene derivatives. The overall transformation would be a formal (4+1) 

cycloaddition and could be applied as a new strategy for effective synthesis of 

cyclopentene derivatives. 

�

Scheme 2- 6 New strategy for (4+1) addition. 

This newly proposed strategy is based on two fundamental steps: cyclopropanation 

of cyclobutenes and ring-opening of the bicyclo[2.1.0]pentanes. A survey of the 

literature indicated that there is precedent for both. 

Cyclobutenes can be cyclopropanated with diazo compounds or Simmons-Smith 

reagents to form bicyclo[2.1.0]pentanes (Scheme 2-7).116 

��������������������������������������������������������
116 (a) Gassman, P. G.; Mansfield, K. T. J. Org. Chem. 1967, 32, 915–920. (b) Wiberg, K. B.; Ashe III, A. 
J. J. Am. Chem. Soc. 1968, 90, 63–74. (c) Gassman, P. G.; Atkins, T. J.; Lumb, J. T. J. Am. Chem. Soc. 
1972, 94, 7757–7761. (d) Wiberg, K. B.; Bishop III, K. C. Tetrahedron Lett. 1973, 14, 2727–2730. (e) 
McKinney, Michael A.; Chou, S. K. Tetrahedron Lett. 1974, 15, 1145–1148. (f) Wiberg, K. B.; Williams 
Jr., V. Z.; Friedrich, L. E. J. Am. Chem. Soc. 1970, 92, 564–567. (g) Wittig, G.; Wingler, F. Chem. Ber. 
1964, 97, 2146–2164.  
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�

Scheme 2- 7 

The cleavage of bicyclo[2.1.0]pentanes catalyzed by different metals to form 

cyclopentenes is also reported.117 ZnI2 was found to be the best reagent to promote 

this transformation, whereas Rh(I) and Ag(I) in this case gave a mixture of two 

regio-isomers (Scheme 2-8).117f 

�

Scheme 2- 8 

Interestingly, the stereochemistry has a strong influence on the reactivity of the 

substrates towards this cleavage. The endo-isomers can give the desired products in 

the presence of appropriate rhodium catalysts, whereas the exo-isomers show no 

reactivity under the standard conditions (Scheme 2-9).117c 

�

Scheme 2- 9 

 

��������������������������������������������������������
117 Cleavage of bicyclo[2.1.0]pentanes to form cyclopentenes with Rh(I): (a) Gassman, P. G.; Atkins, T. 
J.; Lumb, J. T. Tetrahedron Lett. 1971, 12, 1643–1646. (b) Gassman, P. G.; Atkins, T. J.; Lumb, J. T. J. 
Am. Chem. Soc. 1972, 94, 7757–7761. (c) Wiberg, K. B.; Bishop III, K. C. Tetrahedron Lett. 1973, 14, 
2727–2730. (d) Yamaguchi, R.; Kawanisi, M. J. Org. Chem. 1984, 49, 4460–4462. (e) Sohn, M.; Blum, 
J.; Halpern, J. J. Am. Chem. Soc. 1979, 101, 2694–2698. (f) Cleavage with Zn(II): McKinney, Michael 
A.; Chou, S. K. Tetrahedron Lett. 1974, 15, 1145–1148. (g) Cleavage via radical cations with 
tris(aryl)aminium hexachloroantimonates: Adam. W.; Sahin, C. Tetrahedron Lett. 1994, 35, 9027–9030. 
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It is known that methylenecyclopropanes (MCPs) can undergo rearrangement to 

give cyclobutenes under platinum or palladium catalysis.8,118 Based on our novel 

and practically safe method to generate aryl gold-carbenes from 7-substituted 1,3,5-

cycloheptatrienes through a retro-Buchner pathway, we decided to test the 

feasibility of the proposed new (4+1) strategy with this carbene precursor and 

readily available methylenecyclopropanes119 (Scheme 2-10). 

�

Scheme 2- 10 

�

�

�

�

�

�

�

��������������������������������������������������������
118 For one recent intramolecular reaction of α-imino rhodium(II) carbenes generated from N-Sulfonyl 
1,2,3-Triazoles with methylenecyclopropanes: Chen, K.; Zhu, Z.-Z.; Zhang, Y.-S.; Tang, X.-Y.; Shi, M. 
Angew. Chem. Int. Ed. 2014, 53, 6645–6649. 
119 Methylenecyclopropanes (MCPs) can be readily prepared in one step by Wittig olefination of carbonyl 
compounds with commercially available 3-bromo-triphenylphosphonium bromide. For recent reviews on 
the chemistry of MCPs: (a) Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, A. Chem. Rev. 2014, 114, DOI: 
10.1021/cr400686j. (b) Zhang, D.-H.; Tang, X.-Y.; Shi, M. Acc. Chem. Res. 2014, 47, 913–924. (c) Shi, 
M.; Lu, J.-M.; Wei, Y.; Shao, L.-X. Acc. Chem. Res. 2012, 45, 641–652. (d) Yu, L.; Guo, R. Org. Prep. 
Proc. Int. 2011, 43, 209–259. (e) Pellissier, H. Tetrahedron 2010, 66, 8341–8375. (f) Brandi, A.; Cicchi, 
S.; Cordero, F. M.; Goti, A. Chem. Rev. 2003, 103, 1213–1269. 
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Results and discussions 

Reaction with methylenecyclopropanes (MCPs) 

We first examined the reaction of 7-naphthyl-cyclohepta-1,3,5-triene (1a) with 

phenylmethylenecyclopropane (3a) in the presence of gold(I) complexes (Table 2-

1). To our delight, using cationic [JohnphosAu(MeCN)]SbF6 complex A� in 1,2-

dichloroethane at 120 ºC, the desired disubstituted cyclopentene 5a was obtained in 

76% isolated yield (Table 2-1, entry 1). Carbene complex E gave a lower yield and 

catalysts B, C and D also led to poor results (Table 2-1, entries 2-5). Catalysts F and 

G were unable to promote this transformation, due to their instability at the high 

temperature required to initiate the retro-Buchner process. In contrast, other typical 

metal cations used in carbene chemistry, such as silver(I), copper(I) and platinum(II) 

complexes (H, I, and J) failed at catalyzing this transformation. 

Table 2- 1 Screening of conditions for the (4+1) cycloaddition.
a
 

 

Entry Catalyst Yield (%)b Entry Catalyst Yield (%) 

1 A 81 (76)c 6 F -d 

2 B 25 7 G -d 

3 C 28 8 H -d 

4 D <5 9 I -d 

5 E 47 10 J -d 

a Reaction at 120 °C (0.2 M in 1,2-dichloroethane), 2 equiv of 3a, catalyst (5 mol%), 2 h. b Yields 

determined by 1H NMR using 1,4-diacetylbenzene as internal standard. c Isolated yield. d Not detected. 
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With the best conditions in hand, the substrate scope was investigated (Table 2-2).120 

7-Aryl-cyclohepta-1,3,5-trienes containing substituents with different electronic and 

steric effects at the ortho, meta, or para positions partook in the reaction to yield 

(4+1) cycloadducts in good yields (5b-5g). The scope with regard to the MCP 

component was also studied. The (4+1) cycloaddition can tolerate various MCPs 

bearing substituted arenes including fluoro-, chloro- and bromo-substituents. 

However, it is a slightly sensitive to ortho substituent, affording cycloadduct 5k in 

lower yield. The structure of 5k was confirmed by X-ray diffraction (Figure 2-1). To 

demonstrate the synthetic utility of this method, cyclopentene 5l was prepared on 

500 mg scale using only 1 mol% gold catalyst A in 51% yield after purification by 

column chromatography. 

Table 2- 2 Substrate scope of (4+1) cycloaddition from MCPs.
a
 

 
a Reaction at 120 °C, 0.2 M in 1,2-dichloroethane, 2 equiv of 3a-k, catalyst A (5 mol%), 2 h. Yields are 

for isolated adducts. b Reaction time = 3 h. 

��������������������������������������������������������
120 In collaboration with Dr. Michael E. Muratore. 
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Figure 2- 1 X-ray crystal structures of 5k and 6. 

MCPs substituted with alkyl groups gave (4+1) cycloaddition products as a mixture 

of isomers 5n/n´-5p/p´ (the major products are list in Table 2-3). Interestingly, the 

selectivity of the reaction was much higher with a cyclopropyl substituent (5p, 5p´). 

Other stable gold(I) catalysts were screened, but all led to poor selectivities. The 

formation of minor products is rationalized in the mechanistic discussion later in 

this chapter. 

Table 2- 3 Scope with alkyl-substituted MCPs. 

 

Substrate 3q, which is predisposed to undergo an intramolecular cycloaddition, was 

prepared by using biphenyl as linking group. In the presence of gold complex E, 

initially formed 5q-i was not stable at high temperature and isomerized to 

symmetrical compound 9,10-cyclopentanyl-fused phenanthrene 5q, presenting an 

extended conjugated system, in moderate isolated yield (Scheme 2-11, eq. 1).  

Compound 5f, prepared with our method (see: Table 2-2), can undergo a one pot 

photo-induced isomerization/oxidative Mallory cyclization121 to give cyclopentanyl 

fused benzo[g]chrysene 5ff in good yield (Scheme 2-11, eq. 2). This procedure may 

be applicable to the synthesis of polycyclic aromatic hydrocarbons (PAHs). 

��������������������������������������������������������
121 Mallory, F. B.; Mallory, C. W. Org. React. 1984, 30, 1–456. 
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Scheme 2- 11 Intramolecular cyclization and photo-induced isomerization/oxidative 

Mallory cyclization. 

Tetrasubstituted MCP 3m reacted with 7-naphthyl-cyclohepta-1,3,5-triene 1a to 

give cyclopropanated product 6 in good yield without detection of any other isomers 

(Scheme 2-12). The structure of 6 was confirmed by X-ray diffraction (Figure 2-1). 

Given that 3m cannot undergo ring-expansion to cyclobutene, the isolation of spiro 

biscyclopropyl derivative 6 instead of the corresponding cyclopentene strongly 

suggests that the cyclopropanation of MCP is not the initial step in the formal (4+1) 

cycloaddition and that cyclobutenes are likely intermediates in this transformation. 

�

Scheme 2- 12 Cyclopropanation of tetrasubstituted MCP 3m. 

Reaction with cyclobutenes 

To confirm the hypothesis that cyclobutenes are intermediates in the (4+1) reaction 

of MCPs, we performed the reaction of cycloheptatriene 1a with cyclobutene 4a, 

which was isolated from the reaction mixture for preparing 5l from corresponding 

methylenecyclopropane 3g. Under identical conditions, cycloadduct 5l was isolated 

in 77% yield (Table 2-4), similar to the 82% yield obtained by reaction of the 

corresponding MCP 3g (Table 2-2). 
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Trisubstituted cyclobutenes, which were prepared by the intermolecular gold(I)-

catalyzed [2+2] cycloaddition of alkynes with alkenes, reported by our laboratory,78 

also took part in the (4+1) cycloaddition reaction to afford desired cyclopentenes 5r-

z (Table 2-4). However, the attempt to develop a one pot [2+2]/(4+1) cycloadditions 

was unsuccessful. Control experiments show that either the excess of alkene or 

alkyne deactivates the gold catalyst for the sensitive (4+1) addition.  

It is worthy of note that when using cyclobutenes instead of a MCP slightly longer 

reaction times (in general 3 h) were required, perhaps due to steric hindrance 

presented by the bulky tethering group (cyclohexyl or diethyl). Cyclopentenes 5s 

and 5z with strong electron donating group were successfully obtained, which was 

found to be problematic in the past due to the ease of the dimerization of these 

cyclobutenes.8a  

Table 2- 4 Substrate scope of (4+1) cycloaddition from cyclobutenes.
a 

 
a Reaction at 120 °C, 0.2 M in 1,2-dichloroethane, 2 equiv of 4a-g, catalyst A (5 mol%), 3 h. Yields are 

for isolated adducts. b Cyclobutene 4a was isolated from the reaction mixture for preparing 5l. c 2 equiv 

of 7-(4-chlorophenyl)cyclohepta-1,3,5-triene was used, 4 h. 

Mechanistic studies 

To test the generality of new this strategy for (4+1) cycloadditions, other carbene 

precursors were also studied. Cyclobutenes also react with intermediate gold(I) 

carbenes generated by 1,2-acyloxy migration of propargylic acetates47 to give 
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desired products as a mixture of two regioisomers with excellent yields.122 Mixing 

phenyl diazomethane with cyclobutene 4c in the presence of gold catalyst A at room 

temperature led to an inseparable mixture of 5ad and 5ae (with exo configuration). 

Interestingly, heating the isolated mixture (5ad and 5ae) at 60 ºC in the presence of 

gold gave 5ad quantitatively (Scheme 2-13).� This strongly suggested that 

cyclopropanation of cyclobutenes116 is the initial step for this overall (4+1) 

cycloaddition. However, it also gave the same mixture (5ad and 5ae) when this 

reaction was performed at 60 ºC with gold complex A. It seems as though gold 

catalyst is poisoned by some byproduct, probably, benzalazine (Ph=N–N=Ph), 

generated during the course of the reaction.123 

�

Scheme 2- 13 (4+1) cycloadditions of cyclobutenes with phenyl diazomethane. 

We also screened some representative disubstituted diazomethanes, like methyl 2-

diazo-2-phenylacetate, but only homo-coupling product of diazo compound was 

observed. Because of the presence of 1,2-hydrogen shift in our proposed 

mechanism, we presumed that only monosubstituted diazomethanes would be 

suitable substrates for this transformation. Commercially available ethyl 

diazoacetate (EDA) was also tested with cyclobutenes in the presence of Rh2(OAc)4. 

Along with the dimerized byproduct, a similar cyclopropanated intermediate was 

also obtained as a mixture of endo and exo-isomers, 5af, 5af´ without detection of 

the desired (4+1) adduct (Scheme 2-14). However, when this isolated mixture was 

heated at 60 ºC in the presence of gold complex A for 1 h, only the major isomer 

was consumed. Due to difficulties in its purification, we were unable to assign the 

structure of the resulting product. 

��������������������������������������������������������
122 This study was carried out by Zhouting Rong. For the details, see: reference 10. 
123 For detection of the benzalazine formation by diazo decomposition, see: (a) Bailey, R. J.; Card, P. J.; 
Shechter, H. J. Am. Chem. Soc. 1983, 105, 6096–6103. (b) Nakajima, M.; Anselme, J.-P. J. Chem. Soc. 
1980, 796–797. (c) Onaka, M.; Kita, H.; Izumi, Y. Chem. Lett. 1985, 14, 1895–1898. Synthesis of 
Au(C6F5)(Ph2C=N–N=CPh2) from Au(C6F5)(SC4H8) and Ph2CN2: (d) Bordoni, S.; Busetto, L.; Cassani, 
M. C. Inorganica Chimica Acta 1994, 222, 267–273. 
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�

Scheme 2- 14 using ethyl diazoacetate 

Because it is known that the exo-isomer of bicyclo[2.1.0]pentane intermediate reacts 

sluggishly for the next ring-opening step compared with its endo-isomer,117c we 

presumed that the endo-isomer was also generated in our reaction, but was 

converted to the final product even at room temperature. For this purpose, milder 

coinage metals were chosen for catalyzing the decomposition of phenyl 

diazomethane. As expected, two isomers (exo-5ae and endo-5ae´) were isolated as 

an inseparable mixture in moderate yield with silver(I) or copper(I) complexes 

(Scheme 2-15). However, heating of this mixture with the same silver complex H at 

60 ºC for 1 h led exclusively to unexpected 5ad´ in excellent yield,124 whereas with 

copper complex, no reaction was observed. These observations suggest that 

copper(I), silver(I) and gold(I) complexes have very different reactivities towards 

the ring-opening of bicyclo[2.1.0]pentane intermediate. 

�

Scheme 2- 15 Comparing silver and copper with gold catalysts. 

To shed additional light on the mechanism of this unusual (4+1) cycloaddition, we 

carried out the reaction of cycloheptatriene 1a with MCP 3a-d1 in the presence of 

catalyst A (Scheme 2-16). In this experiment, 5a-d1 was obtained with the deuterium 

label transferred completely to C-3. 

��������������������������������������������������������
124 A silver mirror was formed after 1 h at 60 ºC. 
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�

Scheme 2- 16 Cycloaddition of deuterated MCP 3a-d1. 

We propose a mechanism that fits all of the experimental results for this (4+1) 

cycloaddition from cycloheptatrienes 1 and MCPs in which gold(I) plays a triple 

role (Scheme 2-17). In the first catalytic cycle, MCP-gold(I) complexes I undergoes 

ring expansion to form intermediate II. Subsequent 1,2-H shift of this intermediate 

gives cyclobutene-gold(I) complexes III. Associative ligand exchange with the 7-

aryl-1,3,5-cycloheptatriene, then followed by retro-Buchner reaction leads to highly 

reactive gold(I) carbenes, which are trapped by cyclobutenes 4 to form unstable 

bicyclo[2.1.0]pentane-gold(I) complexes IV. Electrophilic cyclopropane opening125 

forms tertiary carbocation V, followed by a final 1,2-H shift leads to complexes VI. 

Formation of regioisomeric 3-alkyl-3-arylcyclopent-1-enes together with 5n-p in the 

reaction of alkyl-substituted MCPs can be explained by the competitive migration of 

the aryl group in intermediates V. 

�

Scheme 2- 17 Proposed mechanism for (4+1) cycloaddition. 

��������������������������������������������������������
125 The cyclopropanation of 4 by 2, followed by electrophilic cleavage probably follows a pathway 
similar to that occurring in the gas phase cyclopropanation/retrocyclopropanation of enol ethers with 
gold(I) carbenes: Fedorov, A.; Batiste, L.; Bach, A.; Birney D. M.; Chen, P. J. Am. Chem. Soc. 2011, 
133, 12162–12171. 
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Conclusion 

We found that methylenecyclopropanes (MCPs) and cyclobutenes can be used as 

synthetic equivalents of 1,3-dienes for very challenging (4+1) cycloadditions with 

carbenes. In addition to using gold(I) carbenes generated by retro-Buchner reaction 

from 7-aryl-1,3,5-cycloheptatrienes, other methods of carbene formation can also be 

applied in this new (4+1) cycloaddition strategy. 

 



� 105 

Experimental part 

1. Cycloheptatrienes have been described in Chapter 1 

2. The procedure for the preparation of methylenecyclopropanes was adapted 

from literature
126

 

 

To a suspension of (3-bromopropyl)triphenylphosphonium bromide (1.1 equiv) in 

anhydrous THF (3 mL/mmol) was added KOt-Bu (2.2 equiv) in THF (1 mL/mmol) 

at room temperature (23 ºC). The mixture was then heated at 70 ºC for 10 min, and 

the aldehyde (1 equiv) was added dropwise, then heating at 70 ºC was continued for 

2-4 h. The reaction mixture was then cooled to room temperature. Cyclohexane (20 

mL) was added and filtered. The solvent was removed in vacuo, and the resulting 

crude material was subjected to flash column chromatography to afford the desired 

methylenecyclopropane. 

1-Bromo-4-(cyclopropylidenemethyl)benzene (3g) 

 

3-Bromopropylphosphonium bromide (2.79 g, 6 mmol, 1.2 equiv) was dissolved in 

dry THF (10 mL) and t-BuOK (1.35 g, 12 mmol, 2.4 equiv) was added as a solution 

in dry THF (10 mL). The resulting suspension was heated at reflux for 10 minutes 

and 4-bromobenzaldehyde (925 mg, 5 mmol, 1 equiv) was added as a solution in 

dry THF (5 mL). The mixture was heated at reflux for 2 h. After cooling down to 

room temperature, the mixture was layered with cyclohexane (20 mL) and the 

cloudy suspension filtered over Celite washing thoroughly with cyclohexane. The 

filtrate was concentrated and the residue purified by chromatography on silica gel 

eluting with cyclohexane to afford 780 mg of colorless solid (yield: 75%). 

NMR data in agreement with the literature.127 

��������������������������������������������������������
126 (a) Hui, W.-Q.; Chiba, S. Org. Lett. 2009, 11, 729–732. (b) Shi, M.; Liu, L.-P.; Tang, J. J. Am. Chem. 
Soc. 2006, 128, 7430–7431. 
127 Katritzky, A.R.; Du, W.; Levell, J. R.; Li, J. J. Org. Chem. 1998, 63, 6710–6711. 
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1
H NMR (500 MHz, CDCl3) δ 7.48 - 7.44 (m, 2H), 7.43 - 7.38 (m, 2H), 6.71 (s, 

1H), 1.42 (ddd, J = 10.0, 5.8, 2.3 Hz, 2H), 1.19 (ddd, J = 9.9, 5.8, 1.9 Hz, 2H). 

13
C NMR (126 MHz, CDCl3) δ 137.1, 131.5, 128.1, 125.3, 120.3, 117.2, 4.2, 0.6. 

(Cyclopropylidenemethyl-d)benzene (3a-d1) 

 

The title compound (colorless liquid, 1.64 g, yield: 93%) was prepared according to 

the general procedure from d1-benzaldehyde128 (1.45 g, 13.5 mmol). 

1
H NMR (400 MHz, CDCl3) δ 7.58 (dd, J = 7.5, 1.4 Hz, 2H), 7.36 (t, J = 7.4 Hz, 

2H), 7.25 (t, J = 7.3 Hz, 1H), 6.77 - 6.80 (m, residual signal, 6%), 1.49 - 1.43 (m, 

2H), 1.25 - 1.18 (m, 2H). 

13
C NMR (101 MHz, CDCl3) δ 138.2, 128.4, 126.7, 126.6, 124.2, 117.9 (t, J = 24.1 

Hz), 4.1, 0.5. 

HRMS-APCI: calculated for C10H10D [M+H]+: 132.0924; found: 132.0928. 

2-(Cyclohepta-2,4,6-trien-1-yl)-2'-(cyclopropylidenemethyl)-1,1'-biphenyl (3q) 

 

2-Bromo-2'-(cyclopropylidenemethyl)-1,1'-biphenyl (colorless oil, 1.52 g, yield: 

68%) was synthesized according to the general procedure from known 2'-bromo-

[1,1'-biphenyl]-2-carbaldehyde129 (2.04 g, 7.8 mmol).  

1
H NMR (300 MHz, CDCl3) δ 8.00 (d, J = 7.8 Hz, 1H), 7.72 (dd, J = 8.0, 1.3 Hz, 

1H), 7.47 - 7.18 (m, 6H), 6.48 (s, 1H), 1.51 - 1.36 (m, 2H), 1.18 - 1.05 (m, 2H). 

13
C NMR (75 MHz, CDCl3) δ 142.0, 139.6, 136.0, 132.6, 131.7, 129.9, 128.8, 

127.9, 127.1, 126.3, 125.5, 125.3, 124.1, 115.8, 4.3, 0.7. 

HRMS-APCI: calculated for C16H14Br [M+H]+: 285.0273; found: 285.0270. 

��������������������������������������������������������
128 Prepared according to: Gajewski, J. J.; Bocian, W.; Harris, N. J.; Olson, L. P.; Gajewski, J. P. J. Am. 
Chem. Soc. 1999, 121, 326–334. 
129 Wang, H.; Zhao, W.; Zhou, Y.; Duan, Z.; Mathey, F. Eur. J. Inorg. Chem. 2011, 4585–4589. 
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n-BuLi (2.5 M in hexanes, 0.67 mL, 1.68 mmol) was added dropwise to a solution 

of 2-bromo-2'-(cyclopropylidenemethyl)-1,1'-biphenyl (400 mg, 1.4 mmol) in 10 

mL of dry THF at −78 ºC under argon. The mixture was stirred for 1 h at −78 ºC and 

tropylium tetrafluoroborate (299 mg, 1.68 mmol) was added in one portion. The 

cooling bath was removed and the reaction was stirred at room temperature (23 ºC) 

for 12 h. The reaction was quenched by addition of water. The aqueous phase was 

extracted with diethyl ether, the combined organic extracts were dried over MgSO4 

and the solvent was evaporated. The crude reaction mixture was purified by column 

chromatography on silica gel with cyclohexane as eluent to obtain 232 mg (yield: 

56%) of white solid.  

M.p.: 84-86 ºC. 

1
H NMR (300 MHz, CDCl3) δ 7.79 (d, J = 7.8 Hz, 1H), 7.65 (d, J = 7.8 Hz, 1H), 

7.48 (td, J = 7.6, 1.5 Hz, 1H), 7.35 - 7.08 (m, 5H), 6.54 - 6.47 (m, 2H), 6.42 (s, 1H), 

6.09 (dddd, J = 10.9, 6.1, 3.0, 1.6 Hz, 2H), 5.36 (dd, J = 9.4, 5.4 Hz, 1H), 5.25 (dd, J 

= 9.3, 5.4 Hz, 1H), 2.71 - 2.63 (m, 1H), 1.42 - 1.21 (m, 2H), 1.10 - 1.02 (m, 2H). 

13
C NMR (126 MHz, CDCl3) δ 143.0, 140.6, 139.1, 136.4, 130.4, 130.3, 130.1, 

128.0, 127.4, 127.2, 127.1, 127.1, 126.1, 126.0, 125.5, 124.7, 124.0, 124.0, 116.6, 

42.0, 3.9, 0.7. 

HRMS-APCI: calculated for C23H21 [M+H]+: 297.1638; found: 297.1638. 

9-(Bicyclo[4.1.0]heptan-7-ylidene)-9H-fluorene (3m) 

 

The solution of 9-(1H-tetrazol-5-yl)-9H-fluoren-9-ol130 (400 mg, 1.6 mmol) and 

DCC (660 mg, 3.2 mmol) in 5 mL of cyclohexene was heated at 60 ºC overnight. 

After cooling to room temperature, the mixture was directly loaded on silica gel and 

purified by column chromatography to obtain 198 mg of white solid (yield: 48%).  

M.p.: 122-124 ºC. 

1
H NMR (500 MHz, CDCl3) δ 7.80 (d, J = 7.2 Hz, 2H), 7.76 (d, J = 7.2 Hz, 2H), 

7.42 - 7.33 (m, 4H), 2.23 - 2.18 (m, 2H), 2.13 - 2.05 (m, 4H), 1.40 - 1.28 (m, 2H), 

1.26 - 1.16 (m, 2H). 

��������������������������������������������������������
130 Prepared according to: Wardrop, D. J.; Komenda, J. P. Org. Lett. 2012, 14, 1548–1551. 
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13
C NMR (126 MHz, CDCl3) δ 139.5, 138.4, 136.7, 127.2, 126.8, 126.7, 122.2, 

119.7, 22.0, 21.4, 12.6. 

HRMS-APCI: calculated for C20H19 [M+H]+: 259.1481; found: 259.1482. 

3. Procedure for the preparation of cyclobutenes 

Cyclobutenes were prepared using a modified literature procedure.78 

 

A solution of arylacetylene (1 equiv), alkene (5 equiv) and gold complex B (3 

mol%) in dichloromethane (0.5 mL/mmol) was heated at 50 ºC overnight (12 h). 

The solvent and excess alkene were removed under vacuum. The crude was purified 

by flash column chromatography to obtain the desired cyclobutene. 

2-Phenylspiro[3.5]non-1-ene (4b) 

 

The title compound (colorless oil, 499 mg, yield: 92%) was synthesized according 

to the general procedure from phenylacetylene (279 mg, 2.73 mmol) and 

methylenecyclohexane (788 mg, 8.19 mmol).  

NMR data in agreement with the literature.78  

1
H NMR (400 MHz, CDCl3) δ 7.41 - 7.31 (m, 4H), 7.25 (t, J = 7.2 Hz, 1H), 6.57 (s, 

1H), 2.46 (s, 2H), 1.64 - 1.39 (m, 10H). 

13
C NMR (101 MHz, CDCl3) δ 143.4, 135.6, 135.3, 128.2, 127.4, 124.3, 44.3, 40.2, 

36.5, 26.0, 24.5. 

2-(4-Methoxyphenyl)spiro[3.5]non-1-ene (4c) 

 

The title compound (white solid, 870 mg, yield: 42%) was synthesized according to 

the general procedure from 1-ethynyl-4-methoxybenzene (1.19 g, 9 mmol) and 

methylenecyclohexane (1.73 g, 18 mmol).  

Ar +
Catalyst B

CH2Cl2, 50 ºC, 12 h

Ar

Catalyst B

CH2Cl2, 50 ºC, 12 h
Ph +

Ph

Catalyst B

CH2Cl2, 50 ºC, 12 h
+O

O
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M.p.: 76-79 ºC. 

1
H NMR (400 MHz, CDCl3) δ 7.31 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 

6.42 (s, 1H), 3.83 (s, 3H), 2.42 (s, 2H), 1.62 - 1.47 (m, 10H). 

13
C NMR (101 MHz, CDCl3) δ 159.1, 142.9, 133.0, 128.5, 125.7, 113.7, 55.3, 44.1, 

40.3, 36.6, 26.0, 24.6. 

HRMS-APCI: calculated for C16H21O [M+H]+: 229.1587; found: 229.1587. 

2-(4-Bromophenyl)spiro[3.5]non-1-ene (4d) 

 

The title compound (white solid, 420 mg, yield: 55%) was synthesized according to 

the general procedure from 1-bromo-4-ethynylbenzene (500 mg, 2.76 mmol) and 

methylenecyclohexane (797 mg, 8.29 mmol).  

M.p.: 85-87 ºC. 

1
H NMR (400 MHz, CDCl3) δ 7.45 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 

6.58 (s, 1H), 2.43 (s, 2H), 1.64 - 1.40 (m, 10H). 

13
C NMR (101 MHz, CDCl3) δ 142.4, 136.5, 134.2, 131.4, 126.0, 121.1, 44.5, 40.1, 

36.3, 25.9, 24.5. 

HRMS-APCI: calculated for C15H18Br [M+H]+: 277.0586; found: 277.0575. 

2-(4-(tert-Butyl)phenyl)spiro[3.5]non-1-ene (4e) 

 

The title compound (colorless oil, 610 mg, yield: 95%) was synthesized according 

to the general procedure from 1-(tert-butyl)-4-ethynylbenzene (400 mg, 2.53 mmol) 

and methylenecyclohexane (1.22 g, 12.64 mmol). 

1
H NMR (400 MHz, CDCl3) δ 7.37 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 

6.51 (s, 1H), 2.44 (s, 2H), 1.64 - 1.47 (m, 10H), 1.34 (s, 9H). 

13
C NMR (101 MHz, CDCl3) δ 150.5, 143.2, 134.7, 132.7, 125.2, 124.0, 44.3, 40.2, 

36.5, 34.6, 31.3, 26.0, 24.6. 

Catalyst B

CH2Cl2, 50 ºC, 12 h
+Br

Br

Catalyst B

CH2Cl2, 50 ºC, 12 h
+



� 110 

HRMS-APCI: calculated for C19H27 [M+H]+: 255.2107; found: 255.2098. 

(3,3-Diethylcyclobut-1-en-1-yl)benzene (4f) 

 

The title compound (colorless oil, 490 mg, yield: 54%) was synthesized according 

to the general procedure from phenylacetylene (500 mg, 4.9 mmol) and 3-

methylenepentane (2.06 g, 24.5 mmol).  

1
H NMR (400 MHz, CDCl3) δ 7.43 - 7.31 (m, 4H), 7.25 (t, J = 7.1 Hz, 1H), 6.49 (s, 

1H), 2.44 (s, 2H), 1.65 - 1.55 (m, 4H), 0.92 (t, J = 7.4 Hz, 6H). 

13
C NMR (101 MHz, CDCl3) δ 143.3, 135.2, 134.5, 128.2, 127.3, 124.3, 46.9, 38.1, 

28.9, 9.5. 

HRMS-EI: calculated for C14H18 [M]+: 186.1409; found: 186.1408. 

3-(Spiro[3.5]non-1-en-2-yl)phenol (4g) 

 

The title compound (colorless oil, 270 mg, yield: 93%) was synthesized according 

to the general procedure from phenylacetylene (160 mg, 1.35 mmol) and 3-

methylenepentane (391 mg, 4.06 mmol). 

1
H NMR (300 MHz, CDCl3) δ 7.21 (t, J = 7.8 Hz, 1H), 6.97 (d, J = 7.7 Hz, 1H), 

6.83 (dd, J = 2.6, 1.4 Hz, 1H), 6.73 (ddd, J = 8.1, 2.6, 1.0 Hz, 1H), 6.55 (s, 1H), 4.71 

(s, 1H), 2.42 (s, 2H), 1.68 - 1.41 (m, 10H). 

13
C NMR (75 MHz, CDCl3) δ 155.5, 143.0, 137.1, 136.3, 129.5, 117.1, 114.4, 

111.1, 44.4, 40.2, 36.4, 26.0, 24.5. 

HRMS-APCI: calculated for C15H19O [M+H]+: 215.1430; found: 215.1436. 

Catalyst B

CH2Cl2, 50 ºC, 12 h
+

+

HO

OH

Catalyst B

CH2Cl2, 50 ºC, 12 h
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4. Procedure for gold catalyzed (4+1) reactions 

 

A solution of the arylcycloheptatriene substrate (0.15 mmol), 

methylenecyclopropane or cyclobutene (0.3 mmol) and gold complex A (5.5 mg, 5 

mol%) in 1,2-dichloroethane (DCE, 0.75 mL) was heated at 120 ºC in a sealed tube 

until the starting material had been fully consumed (2-3 h). After the reaction 

mixture had been allowed to cool to room temperature, the solvent was removed in 
vacuo and the crude residue was purified by preparative TLC. The reaction was 

performed under an air atmosphere with no special precautions taken to exclude 

water. 

 

1-(5-Phenylcyclopent-1-en-1-yl)naphthalene  (5a)

 

The title compound (white solid, 20.5 mg, yield: 76%) was synthesized according to 

the general procedure from 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (22 mg, 0.1 

mmol) and (cyclopropylidenemethyl)benzene (26 mg, 0.2 mmol). 

M.p.: 72-74 ºC. 

1
H NMR (400 MHz, CDCl3) δ 8.31 (dd, J = 8.2, 1.0 Hz, 1H), 7.84 - 7.80 (m, 1H), 

7.65 (d, J = 8.3 Hz, 1H), 7.55 - 7.45 (m, 2H), 7.28 (dd, J = 8.2, 7.1 Hz, 1H), 7.21 - 

Ar1

R1

A (5 mol%)

DCE, 120 ºC, 2-3 h
Ar1

R1

Ar1

Ar2

Ar2

R2

R2

R2

R2

or or

+
A (5 mol%)

DCE, 120 ºC, 2 h
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7.13 (m, 5H), 7.06 - 7.12 (m, 1H), 6.18 (q, J = 2.1 Hz, 1H), 4.52 - 4.45 (m, 1H), 

2.93 - 2.82 (m, 1H), 2.82 - 2.66 (m, 2H), 2.18 - 2.07 (m, 1H). 

13
C NMR (101 MHz, CDCl3) δ 145.2, 144.8, 135.7, 133.8, 132.7, 131.8, 128.3, 

128.2, 127.6, 126.9, 125.9, 125.6, 125.4, 125.3, 125.1, 125.1, 55.4, 34.9, 32.7. 

HRMS-APCI: calculated for C21H19 [M+H]+: 271.1481; found: 271.1487. 

Cyclopent-2-ene-1,2-diyldibenzene  (5b) 

 

The title compound (colorless oil, 11.6 mg, yield: 53%) was synthesized according 

to the general procedure from 7-phenylcyclohepta-1,3,5-triene (17 mg, 0.1 mmol) 

and (cyclopropylidenemethyl)benzene (26 mg, 0.2 mmol). 

1
H NMR (400 MHz, CDCl3) δ 7.37 - 7.10 (m, 10H), 6.48 - 6.45 (m, 1H), 4.37 - 4.28 

(m, 1H), 2.69 - 2.48 (m, 3H), 1.97 - 1.89 (m, 1H). 

13
C NMR (101 MHz, CDCl3) δ 145.4, 144.6, 136.0, 128.8, 128.5, 128.1, 127.3, 

126.7, 126.3, 126.0, 51.7, 35.4, 31.6. 

HRMS-APCI: calculated for C17H17 [M+H]+: 221.1325; found: 221.1318. 

1-Phenethyl-2-(5-phenylcyclopent-1-en-1-yl)benzene  (5c) 

 

The title compound (colorless oil, 21.0 mg, yield: 65%) was synthesized according 

to the general procedure from 7-(2-phenethylphenyl)cyclohepta-1,3,5-triene (27 mg, 

0.1 mmol) and (cyclopropylidenemethyl)benzene (26 mg, 0.2 mmol). 

1
H NMR (400 MHz, CDCl3) δ 7.39 - 7.33 (m, 2H), 7.29 - 7.19 (m, 5H), 7.19 - 7.09 

(m, 5H), 7.04 (td, J = 7.6, 1.6 Hz, 1H), 7.00 (td, J = 8.0, 1.6 Hz, 1H), 5.90 (q, J = 

2.1 Hz, 1H), 4.23 (d qui, J = 8.8, 2.3 Hz, 1H), 3.94 - 2.70 (m, 5H), 2.69 - 2.57 (m, 

2H), 2.12 - 2.03 (m, 1H). 

13
C NMR (101 MHz, CDCl3) δ 146.2, 145.0, 142.2, 139.3, 137.2, 130.9, 129.1, 

129.0, 128.4, 128.4, 128.3, 128.2, 128.2, 127.6, 126.7, 125.9, 125.9, 125.4, 55.4, 

37.9, 35.4, 34.6, 32.4. 

+
A (5 mol%)

DCE, 120 ºC, 2 h

+
A (5 mol%)

DCE, 120 ºC, 2 h

Ph

Ph
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HRMS-APCI: calculated for C25H25 [M+H]+: 325.1951; found: 325.1958. 

1-(Phenoxymethyl)-2-(5-phenylcyclopent-1-en-1-yl)benzene  (5d) 

 

The title compound (colorless oil, 25.2 mg, yield: 81%) was synthesized according 

to the general procedure from 7-(2-phenoxyphenyl)cyclohepta-1,3,5-triene (26 mg, 

0.1 mmol) and (cyclopropylidenemethyl)benzene (26 mg, 0.2 mmol). 

1
H NMR (400 MHz, CDCl3) δ 7.35 - 7.28 (m, 3H), 7.25 - 7.19 (m, 2H), 7.17 - 7.13 

(m, 3H), 7.13 - 7.07 (m, 2H), 6.99 (td, J = 7.6, 1.3 Hz, 1H), 6.90 - 6.85 (m, 2H), 

6.83 (dd, J = 8.1, 1.3 Hz, 1H), 6.53 - 6.50 (m, 1H), 4.50 - 4.43 (m, 1H), 2.67 - 2.46 

(m, 3H), 1.90 - 1.81 (m, 1H). 

13
C NMR (101 MHz, CDCl3) δ 157.5, 154.1, 145.6, 141.7, 133.2, 130.1, 129.5, 

128.9, 128.2, 127.7, 127.6, 125.7, 123.4, 122.5, 119.8, 118.1, 53.2, 35.0, 32.2. 

HRMS-APCI: calculated for C23H21O [M+H]+: 313.1587; found: 313.1583. 

1-Chloro-4-(5-phenylcyclopent-1-en-1-yl)benzene (5e) 

 

The title compound (colorless oil, 26.2 mg, yield: 69%) was synthesized according 

to the general procedure from 7-(4-chlorophenyl)cyclohepta-1,3,5-triene (30.4 mg, 

0.15 mmol) and (cyclopropylidenemethyl)benzene (39 mg, 0.3 mmol). 

1
H NMR (400 MHz, CDCl3) δ 7.30 - 7.26 (m, 4H), 7.25 - 7.18 (m, 5H), 6.47 - 6.45 

(m, 1H), 4.34 - 4.27 (m, 1H), 2.67 - 2.46 (m, 3H), 1.90 - 1.81 (m, 1H). 

13
C NMR (75 MHz, CDCl3) δ 145.0, 143.6, 134.5, 132.3, 129.4, 128.6, 128.3, 

127.5, 127.3, 126.1, 51.7, 35.3, 31.7. 

HRMS-APCI: calculated for C17H14Cl [M-H]+: 253.0779; found: 253.0784. 

9-(5-Phenylcyclopent-1-en-1-yl)phenanthrene (5f) 

+
A (5 mol%)

DCE, 120 ºC, 2 h

OPh

PhO

+
A (5 mol%)

DCE, 120 ºC, 2 h
Cl

Cl
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The title compound (colorless oil, 31.5 mg, yield: 66%) was synthesized according 

to the general procedure from 9-(cyclohepta-2,4,6-trien-1-yl)phenanthrene (40 mg, 

0.15 mmol) and (cyclopropylidenemethyl)benzene (39 mg, 0.3 mmol). 

1
H NMR (500 MHz, CDCl3) δ 8.71 - 8.68 (m, 1H), 8.61 (d, J = 8.2 Hz, 1H), 8.36 - 

8.32 (m, 1H), 7.72 (dd, J = 7.9, 1.5 Hz, 1H), 7.68 - 7.62 (m, 2H), 7.58 (ddd, J = 8.4, 

6.9, 1.5 Hz, 1H), 7.52 (ddd, J = 8.0, 7.0, 1.2 Hz, 1H), 7.41 (s, 1H), 7.24 - 7.20 (m, 

2H), 7.19 - 7.14 (m, 2H), 7.09 - 7.04 (m, 1H), 6.22 (q, J = 2.1 Hz, 1H), 4.58 - 4.52 

(m, 1H), 2.93 - 2.86 (m, 1H), 2.82 - 2.70 (m, 2H), 2.22 - 2.15 (m, 1H). 

13
C NMR (126 MHz, CDCl3) δ 145.1, 145.1, 134.1, 132.8, 131.4, 131.1, 130.5, 

129.6, 128.4, 128.2, 127.5, 126.4, 126.4, 126.3, 126.1, 126.1, 125.9, 125.9, 122.8, 

122.3, 55.4, 34.7, 32.6. 

HRMS-APCI: calculated for C25H21 [M+H]+: 321.1638; found: 321.1641. 

1-(5-(3-Chlorophenyl)cyclopent-1-en-1-yl)-2-cyclopropylbenzene  (5g) 

 

The title compound (colorless oil, 15 mg, yield: 51%) was synthesized according to 

the general procedure from 7-(2-cyclopropylphenyl)cyclohepta-1,3,5-triene (21 mg, 

0.1 mmol) and 1-chloro-3-(cyclopropylidenemethyl)benzene (33 mg, 0.2 mmol). 

1
H NMR (400 MHz, CDCl3) δ 7.16 (t, J = 1.8 Hz, 1H), 7.14 - 6.97 (m, 6H), 6.83 (d, 

J = 7.7 Hz, 1H), 6.11 (q, J = 2.1 Hz, 1H), 4.41 - 4.34 (m, 1H), 2.77 - 2.67 (m, 1H), 

2.66 - 2.54 (m, 2H), 2.10 (tt, J = 8.5, 5.4 Hz, 1H), 2.02 - 1.93 (m, 1H), 1.03 - 0.87 

(m, 2H), 0.73 (dtd, J = 9.7, 5.5, 4.2 Hz, 1H), 0.63 (dtd, J = 9.1, 5.6, 3.7 Hz, 1H). 

13
C NMR (101 MHz, CDCl3) δ 147.5, 145.5, 140.6, 137.5, 133.9, 131.8, 129.4, 

128.4, 127.7, 126.8, 126.0, 125.9, 125.0, 124.2, 54.6, 34.6, 32.3, 13.9, 9.9, 8.0. 

HRMS-APCI: calculated for C20H20Cl [M+H]+: 295.1248; found: 295.1255. 

1-(5-(4-Fluorophenyl)cyclopent-1-en-1-yl)naphthalene  (5h) 

+
A (5 mol%)

DCE, 120 ºC, 2 h

+
A (5 mol%)

DCE, 120 ºC, 2 h

Cl

Cl
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The title compound (colorless oil, 16.7 mg, yield: 58%) was synthesized according 

to the general procedure from 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (22 mg, 

0.1 mmol) and 1-(cyclopropylidenemethyl)-4-fluorobenzene (30 mg, 0.2 mmol). 

1
H NMR (400 MHz, CDCl3) δ 8.25 (d, J = 8.1 Hz, 1H), 7.83 - 7.78 (m, 1H), 7.65 

(d, J = 8.3 Hz, 1H), 7.53 - 7.43 (m, 2H), 7.28 (dd, J = 8.2, 7.2 Hz, 1H), 7.13 - 7.07 

(m, 3H), 6.86 - 6.79 (m, 2H), 6.15 (q, J = 2.1 Hz, 1H), 4.49 - 4.42 (m, 1H), 2.88 - 

2.79 (m, 1H), 2.77 - 2.65 (m, 2H), 2.11 - 2.02 (m, 1H). 

13
C NMR (101 MHz, CDCl3) δ 162.4, 160.0, 144.7, 140.8, 140.8, 135.4, 133.7, 

132.7, 131.7, 128.9, 128.8, 128.4, 127.0, 125.7, 125.6, 125.6, 125.5, 125.4, 125.1, 

125.0, 115.1, 114.8, 54.7, 34.8, 32.5. 

HRMS-APCI: calculated for C21H18F [M+H]+: 289.1387; found: 289.1388. 

1-(5-(4-(tert-Butyl)phenyl)cyclopent-1-en-1-yl)naphthalene  (5i) 

 

The title compound (colorless oil, 21 mg, yield: 64%) was synthesized according to 

the general procedure from 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (22 mg, 0.1 

mmol) and 1-(tert-butyl)-4-(cyclopropylidenemethyl)benzene (37 mg, 0.2 mmol). 

1
H NMR (400 MHz, CDCl3) δ 8.29 (d, J = 8.2 Hz, 1H), 7.82 - 7.78 (m, 1H), 7.64 

(d, J = 8.2 Hz, 1H), 7.48 (app. qui d, J = 6.9, 1.6 Hz, 2H), 7.28 (dd, J = 8.2, 1.7 Hz, 

1H), 7.19 - 7.14 (m, 3H), 7.11 - 7.06 (m, 2H), 6.15 (q, J = 2.1 Hz, 1H), 4.48 - 4.41 

(m, 1H), 2.88 - 2.78 (m, 1H), 2.74 - 2.62 (m, 2H), 2.14 - 2.05 (m, 1H), 1.23 (s, 9H). 

13
C NMR (101 MHz, CDCl3) δ 148.5, 144.7, 142.0, 135.8, 133.7, 132.7, 131.8, 

128.2, 127.0, 126.7, 125.8, 125.5, 125.3, 125.1, 54.7, 34.9, 34.2, 32.5, 31.3. 

HRMS-APCI: calculated for C25H27 [M+H]+: 327.2107; found: 327.2103. 

1-(5-([1,1'-Biphenyl]-4-yl)cyclopent-1-en-1-yl)naphthalene  (5j) 

+
A (5 mol%)

DCE, 120 ºC, 2 h
F

F

+
A (5 mol%)

DCE, 120 ºC, 2 h
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The title compound (colorless oil, 22 mg, yield: 63%) was synthesized according to 

the general procedure from 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (22 mg, 0.1 

mmol) and 4-(cyclopropylidenemethyl)-1,1'-biphenyl (41 mg, 0.2 mmol). 

1
H NMR (400 MHz, CDCl3) δ 8.30 (dd, J = 8.4, 0.9 Hz, 1H), 7.79 (dd, J = 7.8, 1.8 

Hz, 1H), 7.63 (d, J = 8.3 Hz, 1H), 7.52 - 7.42 (m, 4H), 7.40 - 7.33 (m, 4H), 7.30 - 

7.24 (m, 2H), 7.24 - 7.19 (m, 2H), 7.17 (dd, J = 7.1, 1.3 Hz, 1H), 6.18 (q, J = 2.2 

Hz, 1H), 4.53 - 4.46 (m, 1H), 2.89 - 2.81 (m, 1H), 2.77 - 2.66 (m, 2H), 2.17 - 2.08 

(m, 1H). 

13
C NMR (101 MHz, CDCl3) δ 144.6, 144.3, 141.0, 138.7, 135.6, 133.8, 132.9, 

131.8, 128.6, 128.3, 127.9, 127.0, 127.0, 126.9, 126.9, 126.8, 125.7, 125.6, 125.4, 

125.1, 125.0, 55.0, 34.9, 32.6. 

HRMS-APCI: calculated for C27H23 [M+H]+: 347.1794; found: 347.1787. 

1-(5-(2-Bromophenyl)cyclopent-1-en-1-yl)naphthalene  (5k) 

 

The title compound (white solid, 22.1 mg, yield: 32%) was synthesized according to 

the general procedure from 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (44 mg, 0.2 

mmol) and 1-bromo-2-(cyclopropylidenemethyl)benzene (84 mg, 0.4 mmol). 

M.p.: 151-153 ºC. 

1
H NMR (400 MHz, CDCl3) δ 8.44 (dd, J = 8.5, 0.8 Hz, 1H), 7.82 (dd, J = 8.0, 1.6 

Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.53 (ddd, J = 8.5, 6.8, 1.6 Hz, 1H), 7.48 (ddd, J 

= 8.1, 6.8, 1.4 Hz, 1H), 7.44 (dd, J = 8.0, 1.3 Hz, 1H), 7.31 (dd, J = 7.4, 0.9 Hz, 1H), 

7.23 (dd, J = 7.2, 1.3 Hz, 1H), 7.19 (dd, J = 7.8, 1.7 Hz, 1H), 7.04 (td, J = 7.6, 1.3 

Hz, 1H), 6.90 (ddd, J = 8.0, 7.3, 1.7 Hz, 1H), 6.32 (q, J = 2.3 Hz, 1H), 5.08 (dddd, J 
= 8.9, 6.3, 4.6, 2.4 Hz, 1H), 2.86 - 2.66 (m, 3H), 1.96 - 1.86 (m, 1H). 

13
C NMR (101 MHz, CDCl3) δ 144.2, 143.3, 134.9, 134.2, 133.9, 132.4, 131.7, 

128.5, 128.4, 127.5, 127.4, 127.0, 125.7, 125.6, 125.6, 125.4, 125.1, 124.8, 124.6, 

53.6, 33.9, 32.4. 

+
A (5 mol%)

DCE, 120 ºC, 2 h
Ph

Ph

+
A (5 mol%)

DCE, 120 ºC, 2 h

Br

Br
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HRMS-APCI: calculated for C21H16Br [M-H]+: 347.0430; found: 347.0425. 

1-(5-(4-Bromophenyl)cyclopent-1-en-1-yl)naphthalene  (5l) 

 

The title compound (white solid, 42 mg, yield: 80%) was synthesized according to 

the general procedure from 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (33 mg, 0.15 

mmol) and 1-bromo-4-(cyclopropylidenemethyl)benzene (63 mg, 0.3 mmol). 

Procedure for reaction scale-up: 

1-(Cyclohepta-2,4,6-trien-1-yl)naphthalene (262 mg, 1.2 mmol, 1 equiv) and 1-

bromo-4-(cyclopropylidenemethyl)benzene (502 mg, 2.4 mmol, 2 equiv) were 

placed in a microwave vial and [JohnPhosAu(NCMe)]SbF6 (9.3 mg, 1 mol%) was 

added as a solution in 1,2-dichloroethane (4 mL). The vial was sealed and the 

mixture heated at 120 °C for 8 h. 

TLC showed full conversion of the limiting cycloheptatriene reagent. 

The solvent was removed under a stream of nitrogen and the residue triturated with 

cyclohexane and loaded on silica gel. Purification by column chromatography (long 

path column) eluting with pentane/cyclohexane 2:1 to 1:1 then cyclohexane gave 

215 mg of pale yellow oil (51%, contains ca. 5% of impurity). 

80 mg of pure 1-Bromo-4-(cyclobut-1-en-1-yl)benzene (4a) were also isolated 

(16%, based on amount of methylenecyclopropane substrate engaged). 

The product may be crystallized from hot hexane (then cooled to r.t., 4 ºC and 

finally −30 ºC). 150 mg of oil crystallized to give 127 mg of colorless solid (85%). 

M.p.: 90-92 ºC. 

1
H NMR (500 MHz, CDCl3) δ 8.24 (dd, J = 8.2, 1.0 Hz, 1H), 7.81 (dd, J = 7.5, 1.8 

Hz, 1H), 7.66 (d, J = 8.2 Hz, 1H), 7.50 (ddd, J = 8.7, 6.9, 1.9 Hz, 1H), 7.47 (ddd, J 

= 8.1, 6.8, 1.6 Hz, 1H), 7.30 - 7.24 (m, 3H), 7.11 (dd, J = 7.2, 1.2 Hz, 1H), 7.05 - 

7.01 (m, 2H), 6.17 (q, J = 2.1 Hz, 1H), 4.43 (app. tdt, J = 6.0, 4.7, 2.2 Hz, 1H), 2.88 

- 2.77 (m, 1H), 2.75 - 2.66 (m, 2H), 2.08 - 2.01 (m, 1H). 

13
C NMR (126 MHz, CDCl3) δ 144.3, 144.2, 135.3, 133.8, 133.0, 131.7, 131.3, 

129.3, 128.4, 127.1, 125.7, 125.5, 125.5, 125.1, 125.0, 119.6, 54.8, 34.7, 32.6. 

HRMS-APCI: calculated for C21H18Br [M+H]+: 349.0586 & 351.0566; found: 

349.0586 & 351.0567. 

+
A (5 mol%)

DCE, 120 ºC, 2 h

Br

Br +

Br
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1-Bromo-4-(cyclobut-1-en-1-yl)benzene (4a) 

1
H NMR (500 MHz, CD2Cl2) δ 7.44 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 

6.33 (s, 1H), 2.81 - 2.78 (m, 2H), 2.52 (t, J = 2.5 Hz, 2H). 

13
C NMR (126 MHz, CD2Cl2) δ 145.7, 134.4, 131.7, 128.6, 126.2, 121.4, 29.0, 

26.6. 

HRMS-APCI: calculated for C10H10Br [M+H]+: 208.9960 & 210.9940; found: 

208.9957 & 210.9936. 

1-(5-(3-Chlorophenyl)cyclopent-1-en-1-yl)naphthalene  (5m) 

 

The title compound (colorless oil, 25.1 mg, yield: 82%) was synthesized according 

to the general procedure from 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (22 mg, 

0.1 mmol) and 1-chloro-3-(cyclopropylidenemethyl)benzene (33 mg, 0.2 mmol). 

1
H NMR (400 MHz, CDCl3) δ 8.25 (dd, J = 8.2, 1.0 Hz, 1H), 7.84 - 7.79 (m, 1H), 

7.67 (d, J = 8.3 Hz, 1H), 7.54 - 7.44 (m, 2H), 7.30 (dd, J = 8.2, 7.1 Hz, 1H), 7.20 - 

7.18 (m, 1H), 7.14 (dd, J = 7.1, 1.2 Hz, 1H), 7.07 - 6.99 (m, 3H), 6.19 (q, J = 2.1 

Hz, 1H), 4.47 - 4.40 (m, 1H), 2.89 - 2.81 (m, 1H), 2.77 - 2.66 (m, 2H), 2.13 - 2.04 

(m, 1H). 

13
C NMR (101 MHz, CDCl3) δ 147.3, 144.2, 135.2, 133.9, 133.8, 133.1, 131.7, 

129.5, 128.4, 127.7, 127.1, 126.1, 125.7, 125.7, 125.5, 125.5, 125.1, 125.0, 55.1, 

34.6, 32.6. 

HRMS-APCI: calculated for C21H18Cl [M+H]+: 305.1092; found: 305.1088. 

1-(5-Cyclohexylcyclopent-1-en-1-yl)naphthalene  (5n, 5n´) 

 

The title compound (colorless oil, 24 mg, overall yield: 87%) was synthesized 

according to the general procedure from 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene 

(22 mg, 0.1 mmol) and (cyclopropylidenemethyl)cyclohexane (27 mg, 0.2 mmol) as 

+
A (5 mol%)

DCE, 120 ºC, 2 h

Cl

Cl

+
A (5 mol%)

DCE, 120 ºC, 3 h +

major            :               minor
   2                :                  1
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a 2:1 mixture of isomers. These two isomers can be partially separated by careful 

preparative TLC. 

1
H NMR (400 MHz, CDCl3, major) δ 8.20 - 8.16 (m, 1H), 7.90 - 7.85 (m, 1H), 7.76 

(d, J = 8.3 Hz, 1H), 7.52 - 7.43 (m, 3H), 7.33 (dd, J = 7.1, 1.3 Hz, 1H), 5.92 (q, J = 

2.2 Hz, 1H), 3.32 - 3.24 (m, 1H), 2.64 - 2.49 (m, 2H), 2.14 (dtd, J = 13.1, 9.0, 7.0 

Hz, 1H), 1.95 (ddt, J = 13.2, 8.1, 5.2 Hz, 1H), 1.68 - 0.84 (m, 11H). 

13
C NMR (101 MHz, CDCl3, major) δ 144.6, 136.8, 133.9, 131.8, 131.5, 128.3, 

126.8, 126.0, 125.5, 125.5, 125.2, 125.1, 54.4, 39.9, 32.8, 32.2, 27.0, 26.7, 26.6, 

26.4, 25.2. 

1
H NMR (400 MHz, CDCl3, minor) δ 8.35 - 8.31 (m, 1H), 7.91 - 7.86 (m, 1H), 7.71 

(dd, J = 6.9, 2.3 Hz, 1H), 7.52 - 7.44 (m, 2H), 7.39 - 7.34 (m, 2H), 6.23 (dt, J = 6.0, 

2.1 Hz, 1H), 5.96 (dt, J = 5.9, 2.1 Hz, 1H), 2.82 - 2.71 (m, 1H), 2.48 - 2.38 (m, 3H), 

2.34 (tt, J = 11.5, 3.4 Hz, 1H), 1.99 - 1.91 (m, 1H), 1.86 - 1.78 (m, 1H), 1.65 - 0.84 

(m, 8H). 

13
C NMR (101 MHz, CDCl3, minor) δ 146.4, 135.1, 134.2, 131.0, 130.3, 129.4, 

126.8, 126.7, 124.8, 124.7, 124.7, 124.5, 62.0, 46.8, 35.9, 33.4, 29.5, 28.3, 27.0, 

27.0, 26.6. 

HRMS-APCI: calculated for C21H25 [M+H]+: 277.1951; found: 277.1950. 

1-(5-Heptylcyclopent-1-en-1-yl)naphthalene  (5o, 5o´) 

 

The title compound (colorless oil, 24.2 mg, overall yield: 83%) was synthesized 

according to the general procedure from 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene 

(22 mg, 0.1 mmol) and octylidenecyclopropane (30 mg, 0.2 mmol) as a 3:2 mixture 

of  isomers. 

1
H NMR (300 MHz, CDCl3) δ 8.37 - 8.31 (m, 1H minor), 8.15 - 8.09 (m, 1H 

major), 7.91 - 7.84 (m, 1H major + 1H minor), 7.77 (d, J = 8.3 Hz, 1H major), 7.73 

(dt, J = 7.8, 1.1 Hz, 1H minor), 7.54 - 7.34 (m, 3H major + 4H minor), 7.31 (dd, J = 

7.1, 1.3 Hz, 1H major), 6.29 (dt, J = 5.9, 1.7 Hz, 1H minor), 5.95 (dt, J = 5.6, 1.8 

Hz, 1H minor), 5.85 (q, J = 2.2 Hz, 1H major), 3.28 - 3.15 (m, 1H major), 2.71 - 

2.29 (m, 3H major + 2H minor), 2.18 (ddd, J = 13.5, 11.8, 4.5 Hz, 1H minor), 2.00 

(ddd, J = 13.5, 12.0, 4.4 Hz, 1H minor), 1.77 (ddt, J = 12.7, 8.8, 6.4 Hz, 1H major), 

1.48 - 0.75 (m, 15H major + 15H minor). 

+
n-C7H15 A (5 mol%)

DCE, 120 ºC, 3 h

n-C7H15

+

n-C7H15

major            :               minor
   3                :                  2
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13
C NMR (75 MHz, CDCl3) δ 146.5, 145.4, 137.7, 136.8, 135.0, 133.7, 132.0, 

131.2, 130.2, 129.5, 129.3, 128.2, 127.0, 126.8, 126.5, 126.0, 125.5, 125.2, 125.2, 

125.2, 124.9, 124.8, 124.6, 124.1, 57.7, 49.2, 42.1, 37.5, 34.0, 32.7, 32.1, 31.8, 31.8, 

30.2, 30.1, 29.7, 29.2, 29.1, 27.7, 25.6, 22.6, 14.1. 

HRMS-APCI: calculated for C22H29 [M+H]+: 293.2264; found: 293.2259. 

1-(5-Cyclopropylcyclopent-1-en-1-yl)naphthalene  (5p, 5p´) 

 

The title compound (colorless oil, 24.5 mg, yield: 52% in total) was synthesized 

according to the general procedure from 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene 

(44 mg, 0.2 mmol) and (cyclopropylidenemethyl)cyclopropane 131  (38 mg, 0.4 

mmol) as a 10:1 mixture of isomers. 

1
H NMR (400 MHz, CDCl3) δ 8.08 - 8.04 (m, 1H major), 8.04 - 7.99 (m, 1H 

minor), 7.88 - 7.83 (m, 1H major + 1H minor), 7.76 (d, J = 8.2 Hz, 1H major), 7.59 

(dt, J = 7.1, 1.2 Hz, 1H minor), 7.52 - 7.41 (m, 3H major + 4H minor), 7.35 (dd, J = 

7.1, 1.3 Hz, 1H major), 6.84 (d, J = 11.8 Hz, 1H minor), 5.99 (d, J = 11.7 Hz, 1H 

minor), 5.83 (q, J = 2.3 Hz, 1H major), 2.70 - 2.48 (m, 3H major + 2H minor), 2.38 

- 2.27 (m, 1H major), 1.88 (ddt, J = 12.8, 8.9, 5.8 Hz, 1H major), 1.02 (tt, J = 8.3, 

5.2 Hz, 1H minor), 0.93 - 0.83 (m, 1H minor), 0.74 - 0.63 (m, 1H major), 0.34 - 

0.16 (m, 1H major + 3H minor), 0.07 - −0.03 (m, 2H major + 2H minor), −0.25 - 

−0.33 (m, 1H major). 

13
C NMR (101 MHz, CDCl3, major) δ 146.5, 137.3, 133.6, 132.1, 130.3, 128.1, 

126.7, 126.0, 125.5, 125.4, 125.4, 125.1, 54.0, 31.9, 30.2, 15.4, 4.1, 2.1. 

Detected signals for minor isomer: δ 137.8, 128.2, 127.0, 126.5, 125.6, 125.5, 16.1, 

12.7, 2.7. 

HRMS-APCI: calculated for C18H19 [M+H]+: 235.1481; found: 235.1480. 

2,3-Dihydro-1H-cyclopenta[l]phenanthrene (5q) 

��������������������������������������������������������
131 Prepared according to: Kopp, R.; Hanack, M. Angew. Chem. 1975, 87, 874–875 

+
A (5 mol%)

DCE, 120 ºC, 3 h +

major            :               minor
   10                :                  1
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A solution of 2-(cyclohepta-2,4,6-trien-1-yl)-2'-(cyclopropylidenemethyl)-1,1'-

biphenyl (60 mg, 0.2 mmol) and gold complex E (7.4 mg, 5 mol%) in 1,2-

dichloroethane (DCE, 2 mL) was heated at 120 ºC in a sealed tube for 6 h. After the 

reaction mixture had been allowed to cool to room temperature, the solvent was 

removed in vacuo and the crude residue was purified by preparative TLC to obtain 

19.8 mg of white solid (yield: 44%). 

M.p.: 135-138 ºC. 

1
H NMR (400 MHz, CDCl3) δ 8.78 - 8.71 (m, 2H), 7.93 - 7.87 (m, 2H), 7.69 - 7.61 

(m, 4H), 3.40 (t, J = 7.5 Hz, 4H), 2.39 (qui, J = 7.5 Hz, 2H). 

13
C NMR (101 MHz, CDCl3) δ 137.5, 130.1, 130.1, 126.6, 125.5, 124.9, 123.1, 

32.3, 23.4. 

HRMS-APCI: calculated for C17H15 [M+H]+: 219.1168; found: 219.1159. 

2,3-Dihydro-1H-benzo[g]cyclopenta[p]chrysene (5ff) 

 

A solution of 9-(5-phenylcyclopent-1-en-1-yl)phenanthrene (48 mg, 0.15 mmol) and 

iodine (76 mg, 0.3 mmol) in 100 mL benzene was stirred in a Rayonet 

photochemical reactor under 300 nm light irradiation for 6 h. The solvent was 

removed in vacuo and the product (32 mg, white solid, yield: 67%) was obtained by 

preparative TLC.  

M.p.: 175-182 ºC. 

1
H NMR (400 MHz, CDCl3) δ 8.84 (d, J = 8.0 Hz, 1H), 8.80 - 8.68 (m, 4H), 8.02 

(d, J = 8.0 Hz, 1H), 7.74 - 7.55 (m, 6H), 3.84 (t, J = 7.1 Hz, 2H), 3.44 (t, J = 7.2 Hz, 

2H), 2.36 (qui, J = 7.2 Hz, 2H). 

E  (5 mol%)

DCE, 120 oC, 6 h

hv (300nm), I2

Benzene, r.t., 6 h
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13
C NMR (101 MHz, CDCl3) δ 140.4, 136.8, 130.9, 130.4, 130.1, 129.9, 129.6, 

129.2, 127.7, 126.8, 126.6, 126.6, 126.2, 125.9, 124.8, 124.1, 123.4, 123.2, 38.5, 

31.4, 26.1. 

HRMS-APCI: calculated for C25H19 [M+H]+: 319.1481; found: 319.1468. 

(1R*,3'R*,6S*)-3'-(Naphthalen-1-yl)dispiro[bicyclo[4.1.0]heptane-7,1'-

cyclopropane-2',9''-fluorene] (6) 

 

The title compound (white solid, 34 mg, yield: 85%) was synthesized according to 

the general procedure from 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (22 mg, 0.1 

mmol) and 9-(bicyclo[4.1.0]heptan-7-ylidene)-9H-fluorene (52 mg, 0.2 mmol).  

M.p.: 158-161 ºC. 

1
H NMR (400 MHz, CDCl3) δ 7.94 - 7.90 (m, 1H), 7.79 - 7.72 (m, 3H), 7.65 (d, J = 

7.4 Hz, 2H), 7.51 - 7.42 (m, 3H), 7.31 - 7.26 (m, 1H), 7.16 - 7.11 (m, 2H), 7.06 

(ddd, J = 8.3, 6.7, 1.3 Hz, 1H), 6.74 (td, J = 7.6, 1.1 Hz, 1H), 6.54 (d, J = 7.8 Hz, 

1H), 3.80 (s, 1H), 2.35 (ddd, J = 9.1, 7.1, 2.1 Hz, 1H), 1.91 (ddd, J = 9.0, 7.2, 2.2 

Hz, 1H), 1.81 - 1.56 (m, 4H), 1.02 - 0.89 (m, 2H), 0.60 - 0.50 (m, 1H), 0.49 - 0.38 

(m, 1H). 

13
C NMR (101 MHz, CDCl3) δ 146.0, 142.5, 140.3, 140.3, 134.2, 133.7, 133.5, 

128.1, 127.4, 126.5, 126.3, 126.1, 125.7, 125.7, 125.4, 125.1, 124.7, 124.2, 123.2, 

121.2, 120.0, 119.5, 41.7, 35.9, 32.6, 21.1, 21.0, 20.8, 20.8, 14.0, 13.8. 

HRMS-MALDI: calculated for C31H26
+� (M+�): 398.2029; found: 398.2010. 

1-(5-(4-Bromophenyl)cyclopent-1-en-1-yl)naphthalene (5l) 

 

1-(5-(4-Bromophenyl)cyclopent-1-en-1-yl)naphthalene (white solid, 27 mg, yield: 

77%) was synthesized according to the general procedure from 1-(cyclohepta-2,4,6-

trien-1-yl)naphthalene (22 mg, 0.1 mmol) and 1-bromo-4-(cyclobut-1-en-1-

yl)benzene (42 mg, 0.2 mmol). The collected NMR data were identical to that 

+

A (5 mol%)

DCE, 120 ºC, 2 h

H

H

+ A (5 mol%)

DCE, 120 ºC, 3 h

Br

Br
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obtained previously from 1-(5-(4-bromophenyl)cyclopent-1-en-1-yl)naphthalene 

and 1-bromo-4-(cyclopropylidenemethyl)benzene. 

2-(Naphthalen-1-yl)-3-phenylspiro[4.5]dec-1-ene (5r) 

 

The title compound (colorless oil, 21.2 mg, yield: 63%) was synthesized according 

to the general procedure from 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (22 mg, 

0.1 mmol) and 2-phenylspiro[3.5]non-1-ene (40 mg, 0.2 mmol).  

1
H NMR (300 MHz, CDCl3) δ 8.35 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 7.8 Hz, 1H), 

7.60 (d, J = 7.9 Hz, 1H), 7.55 - 7.40 (m, 2H), 7.30 - 6.97 (m, 7H), 6.12 (s, 1H), 4.62 

(t, J = 8.2 Hz, 1H), 2.61 (dd, J = 13.1, 8.4 Hz, 1H), 1.92 - 1.40 (m, 11H). 

13
C NMR (75 MHz, CDCl3) δ 145.3, 142.7, 141.2, 135.5, 133.8, 131.8, 128.4, 

128.1, 127.9, 126.8, 125.8, 125.6, 125.6, 125.4, 125.1, 125.0, 53.8, 49.4, 47.4, 39.4, 

36.9, 26.1, 23.7, 23.5. 

HRMS-APCI: calculated for C26H27 [M+H]+: 339.2107; found: 339.2105. 

3-(4-Methoxyphenyl)-2-(naphthalen-1-yl)spiro[4.5]dec-1-ene (5s) 

 

The title compound (colorless oil, 41 mg, yield: 74%) was synthesized according to 

the general procedure from 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (33 mg, 0.15 

mmol) and 2-(4-methoxyphenyl)spiro[3.5]non-1-ene (69 mg, 0.3 mmol).  

1
H NMR (300 MHz, CDCl3) δ 8.35 (d, J = 8.1 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 

7.62 (d, J = 8.2 Hz, 1H), 7.56 - 7.44 (m, 2H), 7.28 (t, J = 7.2 Hz, 1H), 7.20 (d, J = 

7.1 Hz, 1H), 7.09 (d, J = 8.1 Hz, 2H), 6.67 (d, J = 8.2 Hz, 2H), 6.12 (s, 1H), 4.62 

(td, J = 8.3, 2.1 Hz, 1H), 3.68 (s, 3H), 2.62 (dd, J = 13.1, 8.4 Hz, 1H), 1.87 - 1.45 

(m, 11H). 

13
C NMR (75 MHz, CDCl3) δ 157.6, 142.5, 141.6, 137.5, 135.6, 133.8, 131.8, 

128.7, 128.4, 126.7, 125.6, 125.4, 125.2, 125.1, 113.6, 55.1, 53.0, 49.3, 47.5, 39.4, 

37.0, 26.1, 23.7, 23.5. 

+ A (5 mol%)

DCE, 120 ºC, 4 h

A (5 mol%)

DCE, 120 ºC, 3 h
+

MeO

OMe
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HRMS-ESI: calculated for C27H29O [M+H]+: 369.2213; found: 369.2229. 

3-(4-Bromophenyl)-2-(naphthalen-1-yl)spiro[4.5]dec-1-ene (5t) 

 

The title compound (colorless oil, 47.2 mg, yield: 75%) was synthesized according 

to the general procedure from 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (33 mg, 

0.15 mmol) and 2-(4-bromophenyl)spiro[3.5]non-1-ene (83 mg, 0.3 mmol).  

1
H NMR (500 MHz, CDCl3) δ 8.34 (d, J = 8.4 Hz, 1H), 7.83 (dd, J = 8.3, 1.2 Hz, 

1H), 7.66 (d, J = 8.3 Hz, 1H), 7.57 - 7.48 (m, 2H), 7.32 - 7.28 (m, 1H), 7.25 (d, J = 

8.4 Hz, 2H), 7.18 (dd, J = 7.2, 1.3 Hz, 1H), 7.05 (d, J = 8.4 Hz, 2H), 6.17 (s, 1H), 

4.63 (td, J = 8.4, 2.1 Hz, 1H), 2.63 (dd, J = 13.2, 8.5 Hz, 1H), 1.87 - 1.41 (m, 11H). 

13
C NMR (126 MHz, CDCl3) δ 144.4, 143.0, 140.8, 135.1, 133.9, 131.7, 131.3, 

129.6, 128.5, 127.0, 125.8, 125.5, 125.4, 125.2, 125.0, 119.5, 53.3, 49.5, 47.3, 39.4, 

36.9, 26.1, 23.7, 23.5. 

HRMS-APCI: calculated for C26H26Br [M+H]+: 417.1212; found: 417.1202. 

3-(4-(tert-Butyl)phenyl)-2-phenylspiro[4.5]dec-1-ene (5u) 

 

The title compound (white solid, 14.5 mg, yield: 42%) was synthesized according to 

the general procedure from 7-phenylcyclohepta-1,3,5-triene (17 mg, 0.1 mmol) and 

2-(4-(tert-butyl)phenyl)spiro[3.5]non-1-ene (51 mg, 0.2 mmol).  

M.p.: 146-149 ºC. 

1
H NMR (400 MHz, CDCl3) δ 7.33 (dd, J = 8.4, 1.3 Hz, 2H), 7.26 - 7.09 (m, 7H), 

6.34 (d, J = 1.8 Hz, 1H), 4.45 - 4.38 (m, 1H), 2.48 (dd, J = 13.1, 9.2 Hz, 1H), 1.71 

(dd, J = 13.1, 6.2 Hz, 1H), 1.63 - 1.34 (m, 10H), 1.29 (s, 9H). 

13
C NMR (75 MHz, CDCl3) δ 148.3, 143.2, 141.5, 138.5, 136.4, 128.0, 127.2, 

126.5, 126.5, 125.2, 50.2, 48.6, 47.7, 38.7, 37.7, 34.3, 31.4, 26.0, 23.6, 23.4. 

HRMS-APCI: calculated for C26H33 [M+H]+: 345.2577; found: 345.2563. 

A (5 mol%)

DCE, 120 ºC, 3 h
+

Br

Br

A (5 mol%)

DCE, 120 ºC, 3 h
+
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3-(4-(tert-Butyl)phenyl)-2-(naphthalen-1-yl)spiro[4.5]dec-1-ene (5v) 

 

The title compound (white solid, 40.5 mg, yield: 68%) was synthesized according to 

the general procedure from 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (33 mg, 0.15 

mmol) and 2-(4-(tert-butyl)phenyl)spiro[3.5]non-1-ene (76 mg, 0.3 mmol).  

M.p.: 106-108 ºC. 

1
H NMR (300 MHz, CDCl3) δ 8.42 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 8.1 Hz, 1H), 

7.64 (d, J = 8.1 Hz, 1H), 7.58 - 7.45 (m, 2H), 7.34 - 7.06 (m, 6H), 6.15 (s, 1H), 4.66 

(t, J = 8.2 Hz, 1H), 2.63 (dd, J = 13.1, 8.4 Hz, 1H), 1.94 - 1.41 (m, 11H), 1.24 (s, 

9H). 

13
C NMR (75 MHz, CDCl3) δ 148.3, 142.8, 142.3, 141.3, 135.7, 133.9, 131.9, 

128.3, 127.4, 126.6, 125.8, 125.6, 125.4, 125.1, 125.1, 53.2, 49.3, 47.5, 39.4, 37.0, 

34.3, 31.4, 26.1, 23.7, 23.5. 

HRMS-APCI: calculated for C30H35 [M+H]+: 395.2733; found: 395.2728. 

1-(3,3-Diethyl-5-phenylcyclopent-1-en-1-yl)naphthalene (5w) 

 

The title compound (white solid, 21 mg, yield: 43%) was synthesized according to 

the general procedure from 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (33 mg, 0.15 

mmol) and (3,3-diethylcyclobut-1-en-1-yl)benzene (56 mg, 0.3 mmol).  

M.p.: 74-76 ºC. 

1
H NMR (300 MHz, CDCl3) δ 8.42 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 7.8 Hz, 1H), 

7.62 (d, J = 7.8 Hz, 1H), 7.57 - 7.43 (m, 2H), 7.31 - 6.98 (m, 7H), 5.99 (d, J = 2.2 

Hz, 1H), 4.67 (td, J = 8.4, 2.2 Hz, 1H), 2.46 (dd, J = 13.2, 8.5 Hz, 1H), 1.92 (dd, J = 

13.2, 8.3 Hz, 1H), 1.80 - 1.55 (m, 4H), 1.10 (t, J = 7.5 Hz, 3H), 1.02 (t, J = 7.4 Hz, 

3H). 

A (5 mol%)

DCE, 120 ºC, 3 h
+

A (5 mol%)

DCE, 120 ºC, 3 h
+
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13
C NMR (75 MHz, CDCl3) δ 145.5, 142.4, 141.5, 135.6, 133.9, 131.8, 128.4, 

128.2, 127.8, 126.7, 125.8, 125.7, 125.6, 125.4, 125.0, 54.5, 52.7, 45.2, 32.1, 31.5, 

9.6, 9.3. 

HRMS-APCI: calculated for C25H27 [M+H]+: 327.2107; found: 327.2105. 

3-(4-(tert-Butyl)phenyl)-2-(2-phenoxyphenyl)spiro[4.5]dec-1-ene (5x) 

 

The title compound (colorless oil, 48 mg, yield: 73%) was synthesized according to 

the general procedure from 7-(2-phenoxyphenyl)cyclohepta-1,3,5-triene (39 mg, 

0.15 mmol) and 2-(4-(tert-butyl)phenyl)spiro[3.5]non-1-ene (76 mg, 0.3 mmol).  

1
H NMR (300 MHz, CDCl3) δ 7.36 (dd, J = 7.6, 1.8 Hz, 1H), 7.32 - 7.24 (m, 2H), 

7.19 (d, J = 8.4 Hz, 2H), 7.13 - 6.97 (m, 5H), 6.82 (dd, J = 8.0, 1.3 Hz, 1H), 6.76 

(dd, J = 8.7, 1.0 Hz, 2H), 6.31 (s, 1H), 4.61 - 4.47 (m, 1H), 2.40 (dd, J = 12.9, 8.7 

Hz, 1H), 1.64 - 1.35 (m, 11H), 1.31 (s, 9H). 

13
C NMR (75 MHz, CDCl3) δ 157.5, 153.7, 148.1, 142.9, 142.5, 139.6, 130.3, 

129.7, 129.4, 127.7, 127.5, 125.0, 123.6, 122.3, 120.1, 117.9, 51.5, 48.7, 47.9, 38.8, 

36.8, 34.3, 31.5, 26.1, 23.7, 23.4. 

HRMS-APCI: calculated for C32H37O [M+H]+: 437.2839; found: 437.2825. 

9-(3-Phenylspiro[4.5]dec-1-en-2-yl)phenanthrene (5y) 

 

The title compound (colorless oil, 31 mg, yield: 80%) was synthesized according to 

the general procedure from 9-(cyclohepta-2,4,6-trien-1-yl)phenanthrene (27 mg, 0.1 

mmol) and 2-phenylspiro[3.5]non-1-ene (40 mg, 0.2 mmol).  

1
H NMR (400 MHz, CDCl3) δ 8.72 - 8.68 (m, 1H), 8.63 - 8.60 (m, 1H), 8.47 - 8.43 

(m, 1H), 7.75 (dd, J = 7.9, 1.4 Hz, 1H), 7.70 - 7.65 (m, 2H), 7.61 - 7.51 (m, 2H), 

7.48 (s, 1H), 7.24 (dd, J = 8.2, 1.4 Hz, 2H), 7.14 (dd, J = 8.3, 6.9 Hz, 2H), 7.07 - 

A (5 mol%)

DCE, 120 ºC, 3 h
+

O
Ph

O
Ph

A (5 mol%)

DCE, 120 ºC, 3 h
+
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7.00 (m, 1H), 6.20 (d, J = 2.1 Hz, 1H), 4.79 - 4.71 (m, 1H), 2.69 (dd, J = 13.2, 8.6 

Hz, 1H), 1.93 (dd, J = 13.2, 7.8 Hz, 1H), 1.88 - 1.48 (m, 10H). 

13
C NMR (75 MHz, CDCl3) δ 145.3, 142.9, 141.6, 134.0, 131.5, 131.1, 130.6, 

129.5, 128.4, 128.2, 127.9, 126.5, 126.3, 126.3, 126.1, 126.1, 125.9, 125.9, 122.9, 

122.3, 54.0, 49.4, 47.4, 39.3, 37.1, 26.1, 23.8, 23.5. 

HRMS-APCI: calculated for C30H29 [M+H]+: 389.2264; found: 389.2278. 

3-(3-(4-Chlorophenyl)spiro[4.5]dec-3-en-2-yl)phenol (5z) 

 

The title compound (colorless oil, 35 mg, yield: 69%) was synthesized according to 

the general procedure from 7-(4-chlorophenyl)cyclohepta-1,3,5-triene (61 mg, 0.3 

mmol) and 3-(spiro[3.5]non-1-en-2-yl)phenol (32 mg, 0.15 mmol).  

1
H NMR (500 MHz, CDCl3) δ 7.23 (d, J = 8.6 Hz, 2H), 7.16 (d, J = 8.6 Hz, 2H), 

7.12 (t, J = 7.8 Hz, 1H), 6.78 (d, J = 7.7 Hz, 1H), 6.65 - 6.61 (m, 2H), 6.33 (s, 1H), 

4.75 (s, 1H), 4.34 (ddd, J = 9.2, 6.2, 1.8 Hz, 1H), 2.49 (dd, J = 13.2, 9.2 Hz, 1H), 

1.72 (dd, J = 13.2, 6.2 Hz, 1H), 1.63 - 1.38 (m, 10H). 

13
C NMR (75 MHz, CDCl3) δ 155.6, 148.2, 140.1, 139.3, 134.6, 132.3, 129.7, 

128.2, 127.7, 120.4, 114.4, 112.9, 50.6, 48.8, 47.3, 38.6, 37.6, 26.0, 23.5, 23.3. 

HRMS-APCI: calculated for C22H24ClO [M+H]+: 339.1510; found: 339.1507. 

3-(4-Methoxyphenyl)-2-phenylspiro[4.5]dec-1-ene (5ad) 

 

To the 1 mL CH2Cl2 solution of 2-(4-methoxyphenyl)spiro[3.5]non-1-ene (34 mg, 

0.15 mmol) and gold complex A (5.5 mg, 5 mol%) was added phenyl 

diazomethane132 (0.21 M in toluene, 1.43 mL, 0.3 mmol) by syringe pump, over 1 h, 

��������������������������������������������������������
132 Prepared and titrated according to reference: Zhou, Y.; Trewyn, B. G.; Angelici, R. J.; Woo, L. K. J. 
Am. Chem. Soc. 2009, 131, 11734–11743. 
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at room temperature. After addition, stirring was continued for 0.5 h. After 

removing the solvent, the starting material 2-(4-methoxyphenyl)spiro[3.5]non-1-ene 

(14 mg) and the product (24 mg, colorless oil, 3 : 4 mixture, overall yield: 50%, 

85% brsm) were obtained by preparative TLC.  

To this mixture (20 mg, 0.063 mmol) in 1 mL CDCl3 was added gold complex A (1 

mg, 2 mol%) and the solution was heated at 60 ºC for 1 h. After filtering through a 

short silica gel column, the product 3-(4-methoxyphenyl)-2-phenylspiro[4.5]dec-1-

ene (5ad) was collected (colorless oil, 20 mg, yield: quantitative). 

3-(4-Methoxyphenyl)-2-phenylspiro[4.5]dec-1-ene (5ad) 

1
H NMR (400 MHz, CDCl3) δ 7.32 - 7.29 (m, 2H), 7.22 - 7.17 (m, 2H), 7.14 - 7.10 

(m, 3H), 6.78 (d, J = 8.6 Hz, 2H), 6.32 (d, J = 1.9 Hz, 1H), 4.39 (ddd, J = 9.2, 6.1, 

1.8 Hz, 1H), 3.76 (s, 3H), 2.47 (dd, J = 13.1, 9.2 Hz, 1H), 1.68 (dd, J = 13.1, 6.1 Hz, 

1H), 1.63 - 1.40 (m, 10H). 

13
C NMR (75 MHz, CDCl3) δ 157.6, 141.6, 138.5, 138.4, 136.3, 128.6, 128.1, 

126.6, 126.5, 113.8, 55.1, 49.9, 48.6, 47.7, 38.7, 37.8, 26.0, 23.6, 23.4. 

HRMS-APCI: calculated for C23H27O [M+H]+: 319.2056; found: 319.2058. 

Signals detected in the mixture for:

(1R*,4R*,5R*)-4-(4-methoxyphenyl)-5-phenylspiro[bicyclo[2.1.0]pentane-2,1'-

cyclohexane] (5ae) 

1
H NMR (300 MHz, CDCl3) δ 7.20 - 7.09 (m, 3H), 6.96 (d, J = 8.6 Hz, 2H), 6.91 - 

6.87 (m, 2H), 6.70 (d, J = 8.6 Hz, 2H), 3.74 (s, 3H), 2.72 (s, 1H), 2.27 (s, 1H), 1.67 - 

1.25 (m, 12H). 

13
C NMR (75 MHz, CDCl3) δ 157.5, 139.3, 131.8, 130.0, 128.0, 127.6, 125.2, 

113.2, 55.1, 44.1, 39.4, 37.4, 37.4, 36.3, 33.7, 32.6, 26.3, 23.2, 22.7. 

 

Cu or Ag (5 mol%)

CH2Cl2, 23 ºC
+

Ph H

N2

MeO

OMe
Ph

H
OMe

Ph

H
+

5ae 5ae´

Cu: 5ae:5ae´ = 6:1, yield: 47%
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S

O

O

H: [Ag(CH3CN)2]+ SbF6
-
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Cu:
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To the 0.8 mL CH2Cl2 solution of 2-(4-methoxyphenyl)spiro[3.5]non-1-ene (28 mg, 

0.12 mmol) and copper(I) thiophene-2-carboxylate (1.1 mg, 5 mol%) was added 

phenyl diazomethane (0.21 M in toluene, 1.1 mL, 0.24 mmol) by syringe pump, 

over 1 h, at room temperature. After addition, stirring was continued for 0.5 h. After 

removing the solvent, the product (18 mg, colorless oil, 5ae:5ae´=6:1 mixture, 

overall yield: 47%) was obtained by preparative TLC.  

To the 0.8 mL CH2Cl2 solution of 2-(4-methoxyphenyl)spiro[3.5]non-1-ene (28 mg, 

0.12 mmol) and silver complex H (2.6 mg, 5 mol%) was added phenyl 

diazomethane (0.21 M in toluene, 1.1 mL, 0.24 mmol) by syringe pump, over 1 h, at 

room temperature. After addition, stirring was continued for 0.5 h. After removing 

the solvent, the product (16 mg, colorless oil, 5ae:5ae´=3:1 mixture, overall yield: 

43%) was obtained by preparative TLC. 

Signals detected in the mixture for 5ae´: 

1
H NMR (300 MHz, CDCl3) δ 7.50 - 6.80(m, 5H), 3.83 (s, 3H), 2.79 (d, J = 6.5 Hz, 

1H), 2.18 (d, J = 6.5 Hz, 1H), 1.67 - 1.25 (m, 12H). 

13
C NMR (75 MHz, CDCl3) δ 157.5, 131.8, 130.6, 128.6, 128.0, 127.5, 125.5, 

113.7, 62.9, 55.3, 40.6, 37.7, 37.1, 36.6, 32.2, 28.4, 26.2, 23.1, 22.9.  

To this mixture (16 mg, 0.05 mmol) in 1 mL CDCl3 was added gold complex H (1 

mg, 5 mol%) and the solution was heated at 60 ºC for 1 h. After filtering through a 

short silica gel column, the product 5ad´ was collected (colorless oil, 15 mg, yield: 

95%). 

NMR for 5ad´: 

1
H NMR (300 MHz, CDCl3) δ 7.30 - 7.16 (m, 5H), 7.12 (d, J = 8.7 Hz, 2H), 6.76 

(d, J = 8.7 Hz, 2H), 3.79 (s, 3H), 2.71 (s, 4H), 1.66 - 1.41 (m, 10H). 

13
C NMR (126 MHz, CDCl3) δ 158.2, 139.0, 135.0, 134.4, 131.0, 129.2, 128.1, 

128.0, 126.3, 113.4, 55.2, 51.5, 39.9, 38.6, 26.2, 23.5. 
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d-1-(5-Phenylcyclopent-1-en-1-yl)naphthalene (5a-d1) 

 

The title compound (white solid, 25.1 mg, yield: 72%) was synthesized according to 

the general procedure from 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene (22 mg, 0.1 

mmol) and (cyclopropylidenemethyl-d)benzene (26 mg, 0.2 mmol).  

M.p.: 73-75 ºC. 

1
H NMR (400 MHz, CDCl3) δ 8.31 (dd, J = 8.3, 0.7 Hz, 1H), 7.83 - 7.80 (m, 1H), 

7.66 (d, J = 8.2 Hz, 1H), 7.55 - 7.46 (m, 2H), 7.32 - 7.28 (m, 1H), 7.23 - 7.14 (m, 

5H), 7.12 - 7.06 (m, 1H), 6.19 (q, residual signal 8%), 4.49 (ddt, J = 8.3, 4.9, 2.7 Hz, 

1H), 2.92 - 2.82 (m, 1H), 2.79 - 2.67 (m, 2H), 2.18 - 2.06 (m, 1H). 

13
C NMR (101 MHz, CDCl3) δ 145.2, 144.6, 135.7, 133.8, 132.5 (t, J = 25.0 Hz), 

131.8, 128.3, 128.2, 127.6, 126.9, 125.9, 125.7, 125.6, 125.4, 125.1, 125.1, 55.4, 

34.9, 32.5. 

HRMS-APCI: calculated for C21H18D [M+H]+: 272.1544; found: 272.1544. 
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Chapter 3. Formal C-H insertions of gold carbenes 

Background 

Various selective C-H bond functionalization methods133 developed in recent years 

have rapidly become powerful tools for direct C-C bond constructions. Among 

them, methods for the intramolecular insertion of metal-carbene complexes into C-H 

bonds134 have attracted much attention due to their specificity in terms of both regio- 

and stereo-chemical control. 

There have been many publications in this area that focus on the use of diazo 

derivatives or analogues as carbene precursors (shown below). Competitive 

reactions with side-chain C-H bonds and phenyl groups are anticipated for reactions 

involving such reactants. It has been known that neighboring heteroatoms influence 

the reactivity of the C-H bonds as well as that of the carbene.135 Pyrolysis of 

tosylhydrazone sodium salts or photolysis of diazo derivatives (with X = CH2, O) 

gave C-H insertions (Scheme 3-1). Surprisingly, substrates with a silicon tethering 

group afforded a mixture under the same conditions. Along with the expected 1,1-

dimethylsilacyclopentane, a norcaradiene derivative, instead of its cycloheptatriene-

form, was identified as the other major component, which was generated by a 

cyclopropanation of the terminal phenyl group.  

�

Scheme 3- 1 

When silicon was used as linking group, six-membered ring formation through C-H 

insertion of the carbene is possible, albeit with low selectivity (Scheme 3-2).135 

��������������������������������������������������������
133 (a) Shilov, A. E.; Shul´pin, G. B. Chem. Rev. 1997, 97, 2879–2932. (b) Dick, A. R.; Sanford, M. S. 
Tetrahedron 2006, 62, 2439–2463. (c) Godula, K.; Sames, D. Science 2006, 312, 67–72. (d) Bergman, R. 
G. Nature 2007, 446, 391–393. (e) Dyker, G. (ed.) Handbook of C–H Transformations Vols 1 & 2, 
Wiley–VCH, Weinheim, 2005. 
134 For reviews: (a) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417–424. (b) Davies, H. M. L.; 
Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861–2903. (c) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 
98, 911–936. 
135 Kirmse, W.; Konrad, W.; Özkir, I. S. Tetrahedron 1997, 53, 9935–9964. 
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�

Scheme 3- 2 

An ylide can also be generated from the substrates with a judiciously positioned 

heteroatom. In the case shown in Scheme 3-3, subsequent Stevens rearrangement 

gives rise to 7-phenoxybicyclo[4.2.0]octa-1,3,5-triene. A direct C-H insertion 

pathway was excluded by the deuterium labeling experiment (Scheme 3-3).135 

�

Scheme 3- 3 

When chiral metal complexes (mainly rhodium-based) were involved, 

enantioselective sp3 C-H insertion products were obtained in good yields under mild 

conditions.134b In general, formation of five-membered rings dominates. 

�

Scheme 3- 4 

Metal carbenes (mainly rhodium derivatives) can also undergo sp2 C-H insertion to 

form fluorene-type of products in good yields. Reactions of this type generally 

tolerate a wide range of functional groups.136 

�

Scheme 3- 5 

Interestingly, the formation of six-membered rings in such intramolecular C-H 

insertion reactions is more difficult and often leads to a mixture of several 

compounds. The constitution of the products depends largely on the nature of the 

��������������������������������������������������������
136 (a) Hrytsak, M.; Etkin, N.; Durst, T. Tetrahedron Lett. 1986, 27, 5679–5682; (b) Doyle, M. P.; 
Shanklin, M. S.; Pho, H. Q.; Mahapatro, S. N. J. Org. Chem. 1988, 53, 1017–1022; (c) Kim, J.; Ohk, Y.; 
Park, S. H.; Jung, S.; Chang, S. Chem. Asian J. 2011, 6, 2040–2047 and references cited therein. 
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tethering group.137 When tosylhydrazone sodium salts, with CH2 or NH as linking 

group, were pyrolyzed, the desired C-H insertions occurred preferentially. 

Conversely, for substrates tethered by O or S, benzo[b]cyclohepta[d]furans or 
benzo[b]cyclohepta[d]thiophenes and their tautomers were obtained. It seems likely 

that such products arise from Buchner insertion into the aromatic ring, followed by 

electrocyclic ring-opening and 1,5-hydrogen migration (Scheme 3-6). 

�

Scheme 3- 6 

Based on the precedent for C-H insertions discussed above, one might expect that 

similar reactivity could occur between metal carbenes and the C-H bonds of olefins. 

To our surprise, however, no example of alkenyl C-H insertion has ever been 

reported starting from diazo derivatives. In one case, 1,7-electrocyclization followed 

by 1,5-hydrogen shift was observed instead, to give 1H-2,3-benzodiazepines 

(Scheme 3-7).138 This study demonstrates that diazo derivatives serve as a 1,3-

dipoles, rather than carbene precursors, towards reactions with alkenes that are 

predisposed to undergo intramolecular cyclization. 

�

Scheme 3- 7 

An interesting intramolecular reductive coupling of CF3 group and C-H bond was 

reported (Scheme 3-8).139 The substrates undergo a low-valent niobium-mediated 

formal dehydrofluorination from benzylic C-F bond and aromatic ortho C-H bond to 

form 9,9-difluorofluorene intermediates. The final fluorenes were obtained by in 
situ reduction, and a formal “carbene-like” C-H insertion transformation was 

achieved through this reductive coupling procedure. 

��������������������������������������������������������
137 Crow, W. D.; McNab, H. Aust. J. Chem. 1981, 34, 1037–1350. 
138 (a) Munro, D. P.; Sharp, J. T. J. Chem. Soc. Perkin Trans. 1. 1984, 849–858. (b) Munro, D. P.; Sharp, 
J. T. Tetrahedron Lett. 1980, 21, 4109–4110. (c) Padwa, A.; Ku, H. J. Org. Chem. 1980, 45, 3756–3766. 
(d) Reid, A. A.; Sharp, J. T.; Sood, H. R.; Thorogood, P. B. J. Chem. Soc. Perkin Trans. 1. 1973, 2543–
2551. (e) Blake, A. J.; Harding, M.; Sharp, J. T. J. Chem. Soc. Perkin Trans. 1. 1994, 3149–3161. 
139 Fuchibe, K.; Akiyama, T. J. Am. Chem. Soc. 2006, 128, 1434–1435. 
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�

Scheme 3- 8 

Similarly, indenes can also be obtained by this reaction (Scheme 3-9).140 However, 

when a labeling group was anchored to desymmetrize the product, a mixture of two 

isomers was obtained. The exact mechanism for this formal isomerization is still 

unknown. 

�

Scheme 3- 9 

��������������������������������������������������������
140 Fuchibe, K.; Mitomi, K.; Akiyama, T. Chem. Lett. 2007, 36, 24–25. 

CF3
FF

NbCl5/LiAlH4 [H]

–HF
R1 R2 R1

R2

R1
R2

CF3

Ar

NbCl5/LiAlH4

–HF

F
F

Ar
[H]

Ar

R R R
+ Ar

R



135 

Objectives 

We recently found that 7-substituted 1,3,5-cycloheptatrienes 1 react with cationic 

gold(I) complexes under catalytic conditions through their norcaradiene tautomers 2 

to generate gold(I) carbenes 3. These gold(I) carbenes can be trapped by alkenes 

inter- or intramolecularly. However intramolecular sp3 C-H insertion of gold(I) 

carbenes were found not to be effective, and the desired product 6 was obtained only 

as a minor product (Scheme 3-10).141 

�

Scheme 3- 10 

Based on our own research, we postulated that gold(I) carbenes generated by retro-

Buchner reaction may undergo this sp2 C-H insertion to give indenes more easily. 

(Scheme 3-11) and that fluorenes could be also obtained by a similar procedure. 

�

Scheme 3- 11 C-H insertion. 

Although much has been done to advance our understanding of the C-H insertion of 

carbenes, as shown in the introduction of this chapter, previous attempts to perform 

intramolecular C-H insertion of carbenes to form indenes from diazo derivatives 

failed. This appears to be a consequence of the tendency of diazo compounds to 

serve as 1,3-dipoles instead of carbene precusors. 

 

 

��������������������������������������������������������
141 See chapter 1 of this thesis for details. 
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Results and discussions 

Formation of indenes 

We subjected 7-arylcycloheptatriene substrate 7a, which features an olefin in the 

ortho position, to our standard gold(I)-catalyzed retro-Buchner reaction conditions 

(see Chapter 1). To our delight, the desired product, 2-phenyl-1H-indene (8a), was 

obtained with nearly the same yields using cationic gold(I) complexes A, B, and E. 

We chose [JohnPhosAu(MeCN)]SbF6 (A) as the catalyst for further scope 

investigation since it is commercially available and generally robust (Table 3-1). 

Table 3- 1 indene 8a formation. 

 
a Determined by 1H NMR using 1,4-diacetylbenzene as internal standard. 

Table 3- 2 Reaction scope. 
a
 

 

a Reaction at 120 °C (0.1 M in DCE), A (5 mol%), 3 h, isolated yields are reported. b Reaction with 

catalyst E (5 mol%), 12 h. 

With the best conditions in hand, the reaction scope was studied in detail. As 

illustrated in Table 3-1, this reaction proceeds in a rather general manner. Many 

Ph
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substituents, such as aryl (8b-e), alkyl (8f, 8h), alkenyl (8g), or even cyclopropyl 

(8k) groups are tolerated. In the cases of 8i and 8j, only the closest double bond 

reacts with the carbene intermediate. The highly insoluble 1,4-di(1H-inden-2-

yl)benzene 8l could also be isolated in moderate yield in a double annulation 

reaction. 

At first glance, indenes 8a-l appear to have been formed by a Csp2-H insertion of a 

gold(I) carbene intermediate. However, the annulation of 7m gave exclusively 

2,3,4,4a-tetrahydro-1H-fluorene (8m). The more stable isomer 8m´,142 which was 

the expected product of direct C-H insertion, was not observed (Scheme 3-12). 

Similarly, symmetrical derivative 7n underwent two sequential retro-Buchner 

reactions (via intermediate 7o) to give 4b,5-dihydroindeno[2,1-a]indene (8n). These 

results excluded the direct C-H insertion of a gold(I) carbene as the mechanism for 

this reaction.  

 

�

Scheme 3- 12 Direct C-H insertion mechanism was excluded. 

To gain further mechanistic insight, we performed the following experiments 

(Scheme 3-13).  

�

Scheme 3- 13 Unsymmetrical indenes formation. 

Substrates (7p, 7q) led to 1:1 mixtures of indenes 8p/8p´ and 8q/8q´. By performing 

the reaction at lower temperature (100 °C for 3 h, with 57% conversion), a 1:1 

��������������������������������������������������������
142 Based on DFT calculations (B3LYP, 6–31G(d)), isomer 8m’ is 5.6 kcal·mol–1 more stable than 8m. 
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regioisomeric ratio was also obtained. Interestingly, 7r, with strong electron-

donating group, gave a higher selectivity (8r´ as the major isomer). This result 

suggests that an electrophilic addition of a gold(I) carbene to the alkene may operate 

in these systems.  

The regioisomeric indenes 8p´, 8q´, and 8r´ could have arisen from isomerization of 

8p, 8q, and 8r by two consecutive [1,5]-H sigmatropic migrations143 (or the other 

way around). However, reaction of 7a-d1 with catalyst A led exclusively to 8a-d1 

with the deuterium label at the methylene, which is not consistent with an 

isomerization via [1,5]-H sigmatropic migrations that would have also formed 8a´-

d1 (Scheme 3-14). Additionally, no deuterium incorporation was observed when 

performing the reaction of 7a in 1,2-dichloroethane saturated with D2O. Finally, no 

kinetic isotope effect144 was observed in the reaction of a 1:1 mixture of 7a and 7a-

d1 with gold(I) complex A at 100 °C.145 

�

Scheme 3- 14 Deuterated experiment. 

DFT calculations 

Based on all of those experimental results, we studied computationally the 

formation of model indenes 8s and 8t from the corresponding gold(I) carbenes by 

the DFT methods at the M06 level including solvent effects for 1,2-dichloroethane 

(Scheme 3-15). After the retro-Buchner reaction, highly electrophilic gold(I) 

carbenes Ia-b (L = PMe3) react intramolecularly with the alkene through TSIa-IIa and 

TSIb-IIb in highly exothermic processes to form benzylic carbocations IIa-b. Despite 

being formally a 5-endo-trig cyclization from the perspective of the alkene,146 the 

high electrophilicity of the gold(I) carbenes renders this process kinetically and 

thermodynamically favorable. 

��������������������������������������������������������
143 (a) Roth, W. R. Tetrahedron Lett. 1964, 1009–1013. (b) Miller, L. L.; Greisinger, R.; Boyer, R. F. J. 
Am. Chem. Soc. 1969, 91, 1578–1580. (c) Spangler, C. W. Chem. Rev. 1976, 76, 187–217. 
144  Recent essay on the interpretation of deuterium kinetic isotope effects (KIE) in C–H Bond 
functionalizations by transition-metal complexes: Simmons, E. M.; Hartwig, J. F. Angew. Chem. Int. Ed. 
2012, 51, 3066–3072. 
145 A high barrier (free energy of activation = 38.7 kcal·mol–1) was calculated for the first [1,5]-H 
migration to form the intermediate isoindene, which is higher than that required for the generation of the 
gold(I) carbene by retro-Buchner reaction. 
146 5-Endo-trig cyclizations for the formation of indenes are very rare processes: Ichikawa, J.; Sakoda, K.; 
Mihara, J.; Ito, N. J. Fluor. Chem. 2006, 127, 489–504. 
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DFT calculations show that intermediates II can evolve into II´ by a formal metal 

migration from C-1 to C-3, which actually corresponds to a suprafacial 1,4-

metalotropic migration.147 Whereas for intermediate IIa this migration is degenerate, 

in the case of the p-OMe substituted substrate, II´b is 4.2 kcal·mol-1 more stable 

than IIb as a result of the stabilization of the benzylic carbocation by the p-MeO 

group. Transitions states TSII-II´ for the 1,4-metalotropic migration show a η4-(2H-

indene)Au(I) structure, with shorter distances from the metal center to the internal 

carbons C4a-C7a (2.51-2.54 Å) than to C1 and C3 (2.86-2.88 Å). The experimental 

results support the DFT calculations. Thus, in Scheme 3-3, for R=Me (8p/8p´, 

8q/8q´) the regioisomeric ratios are 1:1. Whereas for R=OMe (8r/8r´), because 

intermediate II´b is more stable, the ratio is 1:2 favoring the formation of 8r´. 

�

Scheme 3- 15 DFT calculations. 

To study in detail why 8m and 8n were exclusively formed in Scheme 3-12, DFT 

calculations were carried out (Scheme 3-16). According to DFT calculations, the 

formation of 2,3,4,4a-tetrahydro-1H-fluorene (8m) followed a similar pathway by 

the intramolecular electrophilic attack of the gold(I) carbene on the alkene in Ic to 

form intermediate IIc, which undergoes 1,2-H shift to give η2-alkene Au(I) complex 

��������������������������������������������������������
147 For other 1,n-metal migrations, which are mechanistically unrelated, see the following lead references: 
(a) Zhang, J.; Liu, J.-F.; Ugrinov, A.; Pillai, A. F. X.; Sun, Z. M.; Zhao, P. J. Am. Chem. Soc. 2013, 135, 
17270–17273. (b) Ikeda, Y.; Takano, K.; Kodama, S.; Ishii, Y. Chem. Comm. 2013, 49, 11104–11106. 
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IIIc. In this case, however, the energy required for the suprafacial 1,4-metalotropic 

migration (IIc to II´c) was found to be 3.9 kcal·mol-1 higher than that of the 1,2-H 

shift and moreover II´c is destabilized with respect to IIc, which explains the 

selective formation of 8m over more stable 8m´ from 7m. 

�

Scheme 3- 16 DFT calculations. 

Surprisingly, cis-7a did not behave in the same manner as its trans isomer in the 

presence of catalyst A (Scheme 3-17).  

�

Scheme 3- 17 Cis-substrate reacts differently. 

Presumably, as a result of the proximity of the phenyl ring to the gold carbene in 

intermediate 13, an intramolecular Buchner reaction takes place preferentially to 
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form 14, which then undergoes disrotatory norcaradiene to cycloheptatriene opening, 

followed by a 1,5-H shift, to give 12.148 

The gold carbene generated from cis-substrate 7u is cyclopropanated by alkene 

intramolecularly to give intermediate 16. Subsequently, naphthalene is released and 

the concomitantly formed reactive gold carbene (PhCH=AuL+) trapped by 16 to 

give 15 (Scheme 3-18).149 

�

Scheme 3- 18 

In our previous study6 we found that indenes are suitable substrates for 

intermolecular cyclopropanation by gold-carbenes generated in a retro-Buchner 

reaction. An efficient tandem transformation was achieved by combining indene 

formation and intermolecular cyclopropanation with [LAu=CHPh]+ by reacting 7a 

with 1a to give 5a and 5a´ in a 4:1 ratio (67% yield) (Scheme 3-19). 

�

Scheme 3- 19 Tandem reaction. 

Formation of fluorenes 

o-Biphenyl gold(I) carbenes generated by retro-Buchner reactions behave like free 

carbenes leading to fluorenes. Thus, reaction of 2-cycloheptatrienyl biphenyls 17a-i 

with catalysts A or B gave fluorenes 18a-i in moderate to good yields by a Friedel-

Craft-type methylenation reaction (Table 3-3). 150
 The annulation proceeded 

satisfactorily with substituents at different positions, although fluorene 18g
151 was 

obtained in low yield. 

��������������������������������������������������������
148 For similar process, see: (a) Munro, D. P.; Sharp, J. T. J. Chem. Soc. Perkin Trans. 1. 1984, 849–858. 
(b) Munro, D. P.; Sharp, J. T. Tetrahedron Lett. 1980, 21, 4109–4110. (c) Maguire, A. R.; Buckley, N. R.; 
O´Leary, P.; Ferguson, G. Chem. Commun. 1996, 2595–2596. 
149 From 16 to 15 is a known process: reference 5. 
150 In collaboration with Dr. Paul R. McGonigal. 
151 In collaboration with Bart Herlé. 
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Table 3- 3 Reaction scope of fluorene synthesis 
a
 

 
a Reaction at 120 °C (0.1 M in DCE), A (5 mol%), 3 h, isolated yields are reported. b Reaction with 

catalyst E (5 mol%) 

As expected, in the case of m-ClC6H4 derivative 17f, a mixture of two regioisomers 

18f and 18f´ was obtained (Scheme 3-20). 

�

Scheme 3- 20 

Using this method, 2-binaphthyl cycloheptatriene 17j, prepared in one step from 2-

bromo-1,1´-binaphthalene, was converted into non-planar 7H-dibenzo[c,g]fluorene 

(18j) (Scheme 3-21).152,153 This is the shortest synthesis of 18j, whose anion, 

dibenzo[c,g]fluorenide, has attracted recent interest for its particular aromatic 

character154 and as a 6-π electron donor ligand in organometallic chemistry.155 

 

��������������������������������������������������������
152 (a) Martin, R. H. J. Chem. Soc. 1941, 679–685. (b) Harvey, R. G.; Pataki, J.; Cortez, C.; Di Raddo, P.; 
Yang, C. J. Org. Chem. 1991, 56, 1210–1217. (c) Régimbald-Krnel, M.; Wentrup, C. J. Org. Chem. 
1998, 63, 8417–8423. 
153 In collaboration with Bart Herlé. 
154 Pammer, F.; Sun, Y.; Weismann, D.; Sitzmann, H.; Thiel, W. R. Chem. Eur. J. 2010, 16, 1265–1270. 
155 (a) Pammer, F.; Sun, Y.; Sieger, M.; Fiedler, J.; Sarkar, B.; Thiel, W. R. Organometallics 2010, 29, 
6165–6168. (b) Pammer, F.; Sun, Y.; May, C.; Wolmershäuser, G.; Kelm, H.; Krüger, H.-J.; Thiel, W. R. 
Angew. Chem. Int. Ed. 2007, 46, 1270–1273. 
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�

Scheme 3- 21 

Indenofluorenes (IFs) have found various applications in organic electronics on 

account of the conjugation along their aromatic framework and their high rigidity, 

which stems from the methylene bridged unit of their biphenyl core.156 By extending 

our new method to a double annulation, we prepared (1,2-b)-indenofluorene (18k) 

as a mixture with (2,1-a)-indenofluorene (18k´) in 53% isolated yield from 17k 

(Scheme 3-22). 

�

Scheme 3- 22 Indenofluorene formation. 

During our attempts to form 4,8-dihydrocyclopenta[def]fluorene by generating two 

gold(I) carbenes on the same aromatic ring, we found that the rigidity of the 

fluorene backbone makes the second annulation unfavorable. Instead, an 

intermolecular dimerization occurred to give 19, without indication of other 

diastereoisomers (Scheme 3-23).  

�

Scheme 3- 23 Attempt to generate two gold(I) carbenes on the same aromatic ring. 

��������������������������������������������������������
156 (a) Thirion, D.; Poriel, C.; Rault-Berthelot, J.; Barrière, F.; Jeannin, O. Chem. Eur. J., 2010, 16, 
13646–13658. (b) Poriel, C.; Liang, J.-J.; Rault-Berthelot, J.; Barrière, F.; Cocherel, N.; Slawin, A. M. Z.; 
Horhant, D.; Virboul, M.; Alcaraz, G.; Audebrand, N.; Vignau, L.; Huby, N.; Wantz, G.; Hirsch, L. 
Chem. Eur. J., 2007, 13, 10055–10069, and references cited therein. 
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The reaction proceeds by retro-Buchner reaction from 17l to form 20, followed by a 

second retro-Buchner reaction of its tautomer 21 to form fluorenyl gold(I) carbene 

intermediate that cyclopropanates one of the double bonds of 21. 

Arylcarbenes generated by pyrolysis of the aryl diazomethanes undergo formal 

insertion into the adjacent ortho-position of the XC6H5 ring to form 

dihydroanthracenes (X = CH2) and dihydroacridines (X = NH), whereas substrates 

with X = O or S lead to products of Bucher reaction.157 In our case, reaction of 

cycloheptatrienyl derivative 22a gave 9H-xanthene (23a), the product of a formal 

insertion into the ortho-position of the phenyl, albeit in low yield (Scheme 3-24). 

�

Scheme 3- 24 
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157 Crow, W. D.; McNab, H. Aust. J. Chem. 1981, 34, 1037–1350. 
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Conclusions 

Gold(I) carbenes generated by the retro-Buchner reaction of 1,3,5-cycloheptatrienes 

catalyzed by cationic gold(I) complexes can be trapped intramolecularly by alkenes 

or arenes to form indenes or fluorenes. This methodology provides a new synthetic 

approach to indenes and fluorenes and may be applied to the synthesis of 

indenofluorenes used in organic electronics. These reactions proceed via 

intramolecular Friedel−Crafts-type attack of the highly electrophilic gold(I) 

carbenes to the alkenes and arenes. The reactivity displayed by the cationic 

intermediates generated by the retro-Buchner reaction is more similar to that of 

metal carbenes of rhodium or copper or even free carbenes than that of carbocations. 

Closer scrutiny of the mechanisms of these reactions has revealed some intriguing 

details. Thus, in the indene synthesis, we have found that a novel 1,4-metallotropic 

migration competes with the primary pathway for the formation of the (η2-indene) 

gold(I) complexes by a concerted 1,2-H migration/gold(I) elimination. The 

formation of fluorenes involves a diatropic-type process in the formation of an (η1-

fluorene)-gold(I) complex. 
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Experimental part 

1. General procedure for the synthesis of arylcycloheptatrienes 

 

Procedure A 

n-BuLi (1.6 M in hexanes, 0.33 mL, 0.53 mmol) was added dropwise to the solution 

of corresponding aryl bromide158 (0.5 mmol) in dry THF (2 mL, 0.2 M) at -78 ºC 

under argon. The mixture was stirred for 30 min at -78 ºC, and then tropylium 

tetrafluoroborate (0.33 mmol) was added in one portion. The cooling bath was 

removed and the reaction was stirred at room temperature (23 ºC) for 12 h. The 

reaction was quenched by addition of water. The aqueous phase was extracted with 

ether, the combined organic extracts were dried over MgSO4, and the solvent was 

evaporated. The crude reaction mixture was purified by column chromatography on 

silica gel with cyclohexane as eluent unless otherwise stated. 

Procedure A-2 

n-BuLi (1.6 M in hexanes, 0.63 mL, 1 mmol) was added dropwise to the solution of 

corresponding aryl bromide (0.5 mmol) in dry THF (5 mL, 0.1 M) at -78 ºC under 

argon. The mixture was stirred for 30 min at -78 ºC, and then tropylium 

tetrafluoroborate or tropylium bromide (1 mmol) was added in one portion. The 

cooling bath was removed and the reaction was stirred at room temperature (23 ºC) 

for 12 h. The reaction was quenched by addition of water. The aqueous phase was 

extracted with ether, the combined organic extracts were dried over MgSO4, and the 

solvent was evaporated. The crude reaction mixture was purified by column 

chromatography on silica gel with cyclohexane as eluent unless otherwise stated. 

(E)-7-(2-Styrylphenyl)cyclohepta-1,3,5-triene (7a) 

��������������������������������������������������������
158 The aryl bromides were prepared according to the literature procedures: (a) Li, C.-W.; Wang, C.-I.; 
Liao, H.-Y.; Chaudhuri, R.; Liu, R.-S. J. Org. Chem. 2007, 72, 9203–9207. (b) Rossi, R.; Carpita, A.; 
Ribecai, A.; Mannina, L. Tetrahedron. 2001, 57, 2847–2856. (c) Qi, W.-Y.; Zhu, T.-S.; Xu, M.-H. Org. 
Lett. 2011, 13, 3410–3413. (d) de Meijere, A.; Song, Z.-Z.; Lanskya, A.; Hyudaa, S.; Raucha, K.; 
Noltemeyera, M.; Konig, B.; Knieriem, B. Eur. J. Org. Chem. 1998, 2289–2299. 

Br

R
1) n-BuLi, THF, -78 oC

R

R

Br

R

2) tropylium tetrafluoroborate,
 23 ºC,12 h
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This compound was prepared as a yellow oil in 74% yield according to the general 

procedure A. 

1
H NMR (400 MHz, CDCl3) δ 7.69 (dd, J = 6.9, 2.2 Hz, 1H), 7.52 - 7.42 (m, 3H), 

7.39 - 7.26 (m, 6H), 6.96 (d, J = 16.1 Hz, 1H), 6.78 (t, J = 3.2 Hz, 2H), 6.35 - 6.29 

(m, 2H), 5.48 (dd, J = 9.0, 5.4 Hz, 2H), 3.12 (tt, J = 5.6, 1.6 Hz, 1H).  

13
C NMR (101 MHz, CDCl3) δ 141.0, 137.5, 136.4, 130.9, 130.6, 128.6, 127.9, 

127.6, 127.6, 126.9, 126.6, 126.6, 126.5, 124.5, 42.5. 

HRMS-APCI: calculated for C21H19 [M+H]+: 271.1487; found: 271.1497. 

(E)-7-(2-(4-Chlorostyryl)phenyl)cyclohepta-1,3,5-triene (7b) 

 

This compound was prepared as a colorless solid in 63% yield according to the 

general procedure A. 

M.p.: 65-67 ºC. 

1
H NMR (500 MHz, CDCl3) δ 7.66 (dd, J = 7.5, 1.7 Hz, 1H), 7.52 (dd, J = 7.5, 1.6 

Hz, 1H), 7.40 - 7.30 (m, 6H), 7.26 (d, J = 16.0 Hz, 1H), 6.91 (d, J = 16.0 Hz, 1H), 

6.79 (t, J = 3.2 Hz, 2H), 6.35 - 6.30 (m, 2H), 5.47 (dd, J = 9.1, 5.4 Hz, 2H), 3.09 (t, 

J = 5.4 Hz, 1H).  

13
C NMR (126 MHz, CDCl3) δ 141.0, 136.0, 136.0, 133.1, 130.9, 129.2, 128.8, 

128.1, 127.7, 127.6, 127.2, 126.9, 126.5, 126.4, 124.5, 42.5. 

HRMS-APCI: calculated for C21H18Cl [M+H]+: 305.1097; found: 305.1092. 

(E)-7-(2-(4-Methylstyryl)phenyl)cyclohepta-1,3,5-triene (7c) 

 

This compound was prepared as a colorless solid in 76% yield according to the 

general procedure A. 

Ph

Cl
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M.p.: 70-72 ºC. 

1
H NMR (500 MHz, CDCl3) δ 7.68 (dd, J = 7.0, 2.3 Hz, 1H), 7.51 (dd, J = 7.2, 2.0 

Hz, 1H), 7.39 - 7.33 (m, 4H), 7.25 (d, J = 15.9 Hz, 1H), 7.17 (d, J = 7.9 Hz, 2H), 

6.94 (d, J = 16.1 Hz, 1H), 6.78 (t, J = 3.2 Hz, 2H), 6.33 - 6.29 (m, 2H), 5.49 (dd, J 
= 9.1, 5.4 Hz, 2H), 3.12 (t, J = 5.4 Hz, 1H), 2.38 (s, 3H).  

13
C NMR (126 MHz, CDCl3) δ 140.9, 137.5, 136.6, 134.8, 130.9, 130.5, 129.3, 

127.7, 127.6, 126.8, 126.6, 126.5, 126.4, 125.6, 124.5, 42.5, 21.2. 

HRMS-APCI calculated for C22H21 [M+H]+: 285.1643; found: 285.1641. 

(E)-7-(2-(3-Methylstyryl)phenyl)cyclohepta-1,3,5-triene (7d) 

 

This compound was prepared as a yellow oil in 83% yield according to the general 

procedure A. 

1
H NMR (400 MHz, CDCl3) δ 7.67 (dd, J = 7.0, 2.2 Hz, 1H), 7.51 (dd, J = 7.3, 1.9 

Hz, 1H), 7.39 - 7.32 (m, 2H), 7.31 - 7.24 (m, 4H), 7.09 (d, J = 6.9 Hz, 1H), 6.93 (d, 

J = 16.1 Hz, 1H), 6.79 (t, J = 3.2 Hz, 2H), 6.36 - 6.29 (m, 2H), 5.49 (dd, J = 9.0, 

5.4 Hz, 2H), 3.12(t, J = 5.3 Hz, 1H), 2.38 (s, 3H).  

13
C NMR (101 MHz, CDCl3) δ 141.0, 138.2, 137.5, 136.5, 130.9, 130.8, 128.5, 

128.4, 127.8, 127.6, 127.4, 126.9, 126.6, 126.5, 126.4, 124.5, 123.5, 42.5, 21.4. 

HRMS-APCI calculated for C22H21 [M+H]+: 285.1643; found: 285.1634. 

(E)-7-(2-(2,4,6-Trimethylstyryl)phenyl)cyclohepta-1,3,5-triene (7e) 

 

This compound was prepared as a white solid in 60% yield according to the general 

procedure A. 

M.p.: 89-91 ºC. 

1
H NMR (400 MHz, CDCl3) δ 7.70 (dd, J = 7.1, 2.2 Hz, 1H), 7.53 (dd, J = 7.2, 2.0 

Hz, 1H), 7.40 – 7.36 (m, 2H), 6.98 - 6.88 (m, 3H), 6.80 - 6.70 (m, 3H), 6.27 – 6.25 

(m, 2H), 5.46 (dd, J = 9.0, 5.4 Hz, 2H), 3.07 (dd, J = 6.2, 4.6 Hz, 1H), 2.30 (s, 9H). 
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13
C NMR (101 MHz, CDCl3) δ 140.9, 137.1, 136.3, 136.1, 134.2, 131.6, 130.9, 

129.1, 128.6, 127.8, 127.3, 126.8, 126.6, 126.5, 124.5, 42.2, 21.1, 20.9. 

HRMS-APCI calculated for C24H25 [M+H]+: 313.1956; found: 313.1960. 

(E)-7-(2-(3-Phenylprop-1-en-1-yl)phenyl)cyclohepta-1,3,5-triene (7f) 

 

This compound was prepared as a yellow oil in 49% yield according to the general 

procedure A. 

1
H NMR (500 MHz, CDCl3) δ 7.50 (dd, J = 7.7, 1.5 Hz, 1H), 7.47 (dd, J = 7.7, 1.4 

Hz, 1H), 7.33 - 7.30 (m, 3H), 7.28 - 7.19 (m, 4H), 6.76 (t, J = 3.2 Hz, 2H), 6.59 (d, 

J = 15.5 Hz, 1H), 6.29 - 6.27 (m, 2H), 6.19 (dt, J = 15.5, 6.9 Hz, 1H), 5.43 (dd, J = 

9.1, 5.4 Hz, 2H), 3.52 (dd, J = 7.0, 1.5 Hz, 2H), 3.04 (t, J = 5.3 Hz, 1H).  

13
C NMR (126 MHz, CDCl3) δ 140.4, 140.1, 136.8, 131.4, 130.8, 129.0, 128.6, 

128.4, 127.4, 127.3, 126.8, 126.7, 126.6, 126.0, 124.4, 42.2, 39.5. 

HRMS-APCI calculated for C22H21 [M+H]+: 285.1643; found: 285.1649. 

7-(2-((1E,3E)-4-Phenylbuta-1,3-dien-1-yl)phenyl)cyclohepta-1,3,5-triene (7g) 

 

This compound was prepared as a colorless solid in 82% yield according to the 

general procedure A from 1-bromo-2-((1E,3E)-4-phenylbuta-1,3-dien-1-yl)benzene 

(see 7u synthesis). 

M.p.: 124-125 ºC. 

1
H NMR (500 MHz, CDCl3) δ 7.68 - 7.64 (m, 1H), 7.49 - 7.44 (m, 3H), 7.37 - 7.30 

(m, 4H), 7.25 (t, J = 7.3 Hz, 1H), 6.94 (ddd, J = 15.5, 5.9, 4.1 Hz, 1H), 6.90 - 6.84 

(m, 2H), 6.79 (dd, J = 3.7, 2.7 Hz, 2H), 6.68 (d, J = 15.3 Hz, 1H), 6.36 - 6.29 (m, 

2H), 5.45 (dd, J = 9.0, 5.3 Hz, 2H), 3.10 (t, J = 5.6 Hz, 1H).  

13
C NMR (126 MHz, CDCl3) δ 140.8, 137.3, 136.1, 132.8, 131.0, 130.9, 130.3, 

129.5, 128.6, 127.9, 127.5, 126.8, 126.8, 126.4, 126.2, 124.5, 42.4.  

HRMS-APCI calculated for C23H21 [M+H]+: 297.1643; found: 297.1650. 

(E)-7-(2-(Oct-1-en-1-yl)phenyl)cyclohepta-1,3,5-triene (7h) 

Ph

Ph
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This compound was prepared as a yellow oil in 69% yield according to the general 

procedure A. 

1
H NMR (400 MHz, CDCl3) δ 7.48 (dd, J = 7.2, 1.9 Hz, 1H), 7.45 (dd, J = 7.3, 1.8 

Hz, 1H), 7.32 - 7.24 (m, 2H), 6.76 (t, J = 3.2 Hz, 2H), 6.50 (d, J = 15.5 Hz, 1H), 

6.32 - 6.26 (m, 2H), 6.03 (dt, J = 15.5, 6.9 Hz, 1H), 5.43 (dd, J = 9.1, 5.5 Hz, 2H), 

3.05 (t, J = 5.2 Hz, 1H), 2.17 (qd, J = 7.1, 1.5 Hz, 2H), 1.45 - 1.25 (m, 8H), 0.90 (t, 

J = 7.0 Hz, 3H).  

13
C NMR (101 MHz, CDCl3) δ 140.2, 137.2, 133.5, 130.8, 127.5, 127.4, 127.1, 

126.9, 126.7, 126.6, 124.3, 42.3, 33.2, 31.7, 29.2, 28.8, 22.6, 14.1. 

HRMS-APCI calculated for C21H27 [M+H]+: 279.2113; found: 279.2108. 

 (E)-7-(2-(6-Methylhepta-1,5-dien-1-yl)phenyl)cyclohepta-1,3,5-triene (7i) 

 

This compound was prepared as a colorless oil in 78% yield according to the 

general procedure A. 

1
H NMR (400 MHz, CDCl3) δ 7.52 - 7.44 (m, 2H), 7.34 - 7.22 (m, 2H), 6.76 (t, J = 

3.2 Hz, 2H), 6.52 (d, J = 15.6 Hz, 1H), 6.30 - 6.26 (m, 2H), 6.05 (dt, J = 15.6, 6.7 

Hz, 1H), 5.43 (dd, J = 9.1, 5.5 Hz, 2H), 5.17 - 5.13 (m, 1H), 3.04 (t, J = 5.6 Hz, 1H), 

2.24 - 2.17 (m, 2H), 2.13 (q, J = 6.9 Hz, 2H), 1.71 (s, 3H), 1.62 (s, 3H).  

13
C NMR (101 MHz, CDCl3) δ 140.2, 137.1, 132.9, 131.9, 130.8, 127.8, 127.4, 

127.2, 126.9, 126.7, 126.6, 124.3, 123.7, 42.3, 33.4, 27.8, 25.7, 17.7.  

HRMS-APCI calculated for C21H25 [M+H]+: 277.1956; found: 277.1969. 

(E)-7-(2-(4,8-Dimethylnona-1,7-dien-1-yl)phenyl)cyclohepta-1,3,5-triene (7j) 

 

Br

P
O

O
O

1) NaH / THF, 0 oC-->23 ºC

2)O Br

1) n-BuLi, THF, -78 oC

2) tropylium tetrafluoroborate,
 23 ºC,12 h
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To a suspension of NaH (60% in oil, 290 mg, 7.3 mmol) in THF (20 mL) at 0 ºC 

was slowly added diethyl 2-bromobenzylphosphonate159 (2 g, 6.6 mmol). The 

resulting suspension was stirred for 1 h at room temperature (23 ºC). The reaction 

mixture was cooled to 0 ºC, and then (±)-citronellal (1.02 g, 6.6 mmol) was added 

dropwise and slowly warmed to room temperature. After stirring overnight (12 h), 

the reaction was quenched with ice water and the aqueous phase was extracted with 

Et2O. The combined organic layers were washed with brine and dried over MgSO4. 

After concentration in vacuo, the residue was purified by silica gel flash column 

chromatography to give 1.65g (E)-1-bromo-2-(4,8-dimethylnona-1,7-dien-1-

yl)benzene as colorless oil in 81% yield. 

1
H NMR (400 MHz, CDCl3) δ 7.55 (dd, J = 8.0, 1.3 Hz, 1H), 7.51 (dd, J = 7.8, 1.7 

Hz, 1H), 7.30 - 7.22 (m, 1H), 7.08 (ddd, J = 8.0, 7.3, 1.7 Hz, 1H), 6.72 (d, J = 15.7 

Hz, 1H), 6.17 (dt, J = 15.7, 7.3 Hz, 1H), 5.19 - 5.05 (m, 1H), 2.35 - 2.27 (m, 1H), 

2.19 - 1.98 (m, 3H), 1.77 - 1.61 (m, 7H), 1.50 - 1.42 (m, 1H), 1.28 - 1.20 (m, 1H), 

0.98 (d, J = 6.7 Hz, 3H).  

13
C NMR (75 MHz, CDCl3) δ 137.8, 132.8, 132.8, 131.3, 129.8, 128.1, 127.4, 

126.9, 124.7, 123.1, 40.5, 36.7, 32.8, 25.7, 25.6, 19.5, 17.7. 

HRMS-APCI calculated for C17H24Br [M+H]+: 307.1056; found: 307.1050. 

The title compound was prepared according to general procedure A from (E)-1-

bromo-2-(4,8-dimethylnona-1,7-dien-1-yl)benzene as colorless oil in 71% yield. 

1
H NMR (400 MHz, CDCl3) δ 7.49 – 7.45 (m, 2H), 7.31 - 7.25 (m, 2H), 6.75 (dd, J 

= 3.7, 2.7 Hz, 2H), 6.50 (d, J = 15.6 Hz, 1H), 6.30 - 6.24 (m, 2H), 6.01(dt, J = 15.5, 

7.3 Hz, 1H), 5.45 - 5.39 (m, 2H), 5.12 (ddt, J = 8.6, 5.7, 1.4 Hz, 1H), 3.13 - 3.00 (m, 

1H), 2.24 - 2.16 (m, 1H), 2.07 - 1.95 (m, 3H), 1.71 (s, 3H), 1.64 - 1.56 (m, 4H), 1.43 

- 1.34 (m, 1H), 1.20 – 1.15 (m, 1H), 0.91 (d, J = 6.7 Hz, 3H).  

13
C NMR (75 MHz, CDCl3) δ 140.2, 137.3, 132.0, 131.1, 130.8, 128.9, 127.4, 

127.2, 126.9, 126.9, 126.7, 124.8, 124.3, 42.4, 40.6, 36.6, 32.8, 25.7, 25.6, 19.5, 

17.7. 

HRMS-APCI calculated for C24H31 [M+H]+: 319.2420; found: 319.2429. 

7-(2-((E)-2-((1R*,2S*,3R*)-2,3-diphenylcyclopropyl)vinyl)phenyl)cyclohepta-

1,3,5-triene (7k) 

��������������������������������������������������������
159 Alexander, J. B.; Mervyn, H.; John, T. S. J. Chem. Soc., Perkin Trans. 1 1994, 3149–3161. 
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The title compound was prepared according to general procedure A from (((E)-2-

bromostyryl)cyclopropane-1,2-diyl)dibenzene160 as colorless oil in 84% yield. 

1H NMR (400 MHz, CDCl3) δ 7.54 (dd, J = 7.4, 1.8 Hz, 1H), 7.49 (dd, J = 7.4, 1.7 

Hz, 1H), 7.35 - 7.29 (m, 2H), 7.18 - 7.09 (m, 6H), 6.99 - 6.95 (m, 4H), 6.82 - 6.76 

(m, 3H), 6.34 - 6.30 (m, 2H), 5.99 (dd, J = 15.5, 8.3 Hz, 1H), 5.47 (dd, J = 9.1, 5.4 

Hz, 2H), 3.13 - 3.09 (m, 1H), 2.63 (d, J = 5.5 Hz, 2H), 2.46 (dt, J = 8.3, 5.6 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 140.3, 137.4, 136.5, 134.5, 130.9, 128.9, 127.8, 

127.6, 127.4, 126.9, 126.8, 126.5, 126.5, 125.9, 124.5, 42.3, 33.3, 30.1. 

HRMS-APCI calculated for C30H27 [M+H]+: 387.2107; found: 387.2105. 

1,4-Bis((E)-2-(cyclohepta-2,4,6-trien-1-yl)styryl)benzene (7l) 

 

To a suspension of NaH (60% in oil, 217 mg, 5.42 mmol) in THF (4 mL) at 0 ºC 

was slowly added diethyl 2-bromobenzylphosphonate (1.51 g, 4.92 mmol). The 

resulting suspension was stirred for 1 h at room temperature (23 ºC). The reaction 

mixture was cooled to 0 ºC, and then a solution of terephthalaldehyde (300 mg, 2.24 

mmol) in THF (2 mL) was added dropwise and slowly warmed to room 

temperature. After stirring for 2 days at room temperature (during which time a 

precipitate formed), the reaction was quenched with ice water and the precipitate 

��������������������������������������������������������
160 Which has been described in Chapter 1. 
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was collected by filtering, and washed with Et2O and water, dried with vacuum. 1,4-

bis((E)-2-bromostyryl)benzene was obtained as a light yellow solid. (620 mg, 63%). 

M.p.: 170-172 ºC. 

1
H NMR (400 MHz, CDCl3) δ 7.71 (dd, J = 7.9, 1.6 Hz, 2H), 7.62 (dd, J = 8.1, 1.2 

Hz, 2H), 7.59 (s, 4H), 7.53 (d, J = 16.2 Hz, 2H), 7.35 (td, J = 7.6, 1.2 Hz, 2H), 7.15 

(td, J = 7.7, 1.7 Hz, 2H), 7.08 (d, J = 16.1 Hz, 2H).  

13
C NMR (101 MHz, CDCl3) δ 137.0, 136.8, 133.1, 130.9, 128.8, 127.5, 127.2, 

126.6, 124.2.  

HRMS-LDI+ calculated for C22H16Br2 [M]+: 437.9619; found: 437.9621 

The title compound was prepared according to general procedure A-2 from the 1,4-

bis((E)-2-bromostyryl)benzene as yellow solid in 41% yield. 

M.p.: 161-163 ºC. 

1
H NMR (500 MHz, CDCl3) δ 7.73 - 7.66 (m, 2H), 7.54 - 7.26 (m, 12H), 6.97 (d, J 

= 16.0 Hz, 2H), 6.80 (t, J = 3.1 Hz, 4H), 6.32 - 6.30 (m, 4H), 5.50 (dd, J = 9.0, 5.3 

Hz, 4H), 3.15 - 3.08 (m, 2H).  

13
C NMR (126 MHz, CDCl3) δ 141.0, 136.9, 136.3, 130.9, 130.1, 127.9, 127.7, 

126.9, 126.8, 126.6, 126.5, 126.5, 124.5, 42.6.  

HRMS-LDI+ calculated for C36H29 [M-H]+: 461.2269; found: 461.2264. 

2'-(Cyclohepta-2,4,6-trien-1-yl)-2,3,4,5-tetrahydro-1,1'-biphenyl (7m) 

 

2'-bromo-2,3,4,5-tetrahydro-1,1'-biphenyl was prepared according to a reported 

procedure.161 

[Ir(COD)Cl]2 (2 mol%, 20 mg) and bis(pinacolato)diboron (1.5 mmol, 381 mg) 

were dissolved in 1 mL neat cyclohexene. The reaction mixture was stirred at 70 °C 

for 24 h under argon. After cooling to room temperature the reaction mixture was 
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161 Olsson, V. J.; Szabó, K. J. Angew. Chem. Int. Ed. 2007, 46, 6891–6893. 
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diluted with a dioxane/water (6:1) mixture (4 ml), then 2-bromoiodobenzene (1.5 

mmol), Pd(PPh3)4 (5 mol %, 80 mg) and Ba(OH)2·8H2O (3.0 mmol, 946 mg) were 

added. Then stirring was continued for 24 h at 70 ºC. The crude reaction mixture 

was evaporated and the residue was purified by silica gel column chromatography to 

give 240 mg aryl bromide as colorless oil in 67% yield. 

1
H NMR (400 MHz, CDCl3) δ 7.55 (dd, J = 8.0, 1.2 Hz, 1H), 7.25 (td, J = 7.4, 1.2 

Hz, 1H), 7.17 (dd, J = 7.6, 1.9 Hz, 1H), 7.10 (td, J = 7.9, 1.8 Hz, 1H), 5.65 (tt, J = 

3.8, 1.8 Hz, 1H), 2.32 – 2.28 (m, 2H), 2.22 - 2.16 (m, 2H), 1.83 - 1.76 (m, 2H), 1.75 

- 1.66 (m, 2H).  

13
C NMR (101 MHz, CDCl3) δ 145.4, 139.1, 132.6, 130.0, 127.9, 127.1, 127.0, 

122.5, 29.3, 25.3, 22.8, 21.9.  

HRMS-EI calculated for C12H13Br [M]+: 236.0201; found: 236.0204. 

This title compound was prepared as a colorless oil in 55% yield according to the 

general procedure A from 2'-bromo-2,3,4,5-tetrahydro-1,1'-biphenyl. 

1
H NMR (400 MHz, CDCl3) δ 7.55 (dd, J = 7.8, 1.4 Hz, 1H), 7.35 (td, J = 7.5, 1.5 

Hz, 1H), 7.25 (td, J = 7.4, 1.4 Hz, 1H), 7.14 (dd, J = 7.7, 1.5 Hz, 1H), 6.73 (t, J = 

3.2 Hz, 2H), 6.26 - 6.22 (m, 2H), 5.49 - 5.47 (m, 1H), 5.37 (dd, J = 9.0, 5.4 Hz, 2H), 

2.95 (t, J = 5.6 Hz, 1H), 2.10 - 2.03 (m, 4H), 1.64 - 1.51 (m, 4H).  

13
C NMR (101 MHz, CDCl3) δ 144.7, 141.5, 138.0, 130.6, 128.4, 127.8, 127.1, 

126.1, 126.1, 124.0, 42.0, 30.9, 25.2, 22.9, 22.0.  

HRMS-EI calculated for C19H20 [M]+: 248.1565; found: 248.1562. 

(E)-1,2-Bis(2-(cyclohepta-2,4,6-trien-1-yl)phenyl)ethane (7n) 

 

To a suspension of NaH (60% in oil, 145 mg, 3.63 mmol) in THF (4 mL) at 0 ºC 

was slowly added diethyl 2-bromobenzylphosphonate (1 g, 3.3 mmol). The resulting 

suspension was stirred for 1 h at room temperature (23 ºC). The reaction mixture 

was cooled to 0 ºC, and then a solution of 2-bromobenzaldehyde (611 mg, 3.3 
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mmol) in THF (2 mL) was added dropwise and slowly warmed to room 

temperature. After stirring overnight, the reaction was quenched with ice water and 

the aqueous phase was extracted with Et2O. The combined organic layers were 

washed with brine and dried over Na2SO4. After concentration in vacuo, the residue 

was purified by silica gel flash column chromatography to give 730 mg (E)-1,2-

bis(2-bromophenyl)ethene as a colorless solid in 65% yield. The spectroscopic data 

match with those reported in the literature.162 

The title compound was prepared according to general procedure A-2 from (E)-1,2-

bis(2-bromophenyl)ethene as white solid in 42% yield. 

M.p.: 135-137ºC. 

1
H NMR (300 MHz, CDCl3) δ 7.56-7.48 (m, 4H), 7.38-7.27 (m, 4H), 7.10 (s, 2H), 

6.76 (t, J = 3.1 Hz, 4H), 6.29 (d, J = 9.0 Hz, 4H), 5.45 (dd, J = 9.1, 5.5 Hz, 4H), 

3.10 (t, J = 5.4 Hz, 2H).  

13
C NMR (75 MHz, CDCl3) δ 141.0, 136.6, 130.9, 128.5, 127.9, 127.6, 126.9, 

126.7, 126.5, 124.5, 42.4. 

HRMS-MALDI: calculated for C28H24 [M]+: 360.1878; found: 360.1935. 

(E)-7-(4-Methyl-2-styrylphenyl)cyclohepta-1,3,5-triene (7p) 

 

This compound was prepared as a white solid in 59% yield according to the general 

procedure A from (E)-1-bromo-4-methyl-2-styrylbenzene.163 

M.p.: 75-76 ºC. 

1
H NMR (400 MHz, CDCl3) δ 7.51 (s, 1H), 7.44 (d, J = 7.8 Hz, 2H), 7.40 (d, J = 

7.8 Hz, 1H), 7.36 (t, J = 7.7 Hz, 2H), 7.31 - 7.24 (m, 2H), 7.18 (dd, J = 7.9, 1.9 Hz, 

1H), 6.96 (d, J = 16.0 Hz, 1H), 6.78 (t, J = 3.2 Hz, 2H), 6.34 - 6.28 (m, 2H), 5.47 

(dd, J = 9.1, 5.5 Hz, 2H), 3.09 (t, J = 5.6 Hz, 1H), 2.43 (s, 3H).  

13
C NMR (126 MHz, CDCl3) δ 138.2, 137.6, 136.3, 136.1, 130.9, 130.3, 128.7, 

128.6, 127.6, 127.5, 127.1, 126.9, 126.6, 126.5, 124.4, 42.2, 21.1.  
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162 Wyatt, P.; Hudson, A.; Charmant, J.; Orpen, A. G.; Phetmung, H. Org. Biomol. Chem. 2006, 4, 2218–
2232. 
163 (E)-1-Bromo-4-methyl-2-styrylbenzene is a known compound: Watanabe, S.; Yamamoto, K.; Itagaki, 
Y.; Iwamura, T.; Iwama, T.; Kataoka, T. Tetrahedron 2000, 56, 855–863. It can be also prepared by the 
Heck reaction of 1-bromo-2-iodo-4-methylbenzene with styrene.  
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HRMS-APCI calculated for C22H21 [M+H]+: 285.1643; found: 285.1613. 

(E)-7-(4-Methyl-2-(oct-1-en-1-yl)phenyl)cyclohepta-1,3,5-triene (7q) 

 

(E)-1-Bromo-4-methyl-2-(oct-1-en-1-yl)benzene 

To a DME/H2O (5 ml/2 ml) solution of 15 mg Pd(OAc)2, 50 mg PPh3, 424 mg 

K2CO3 and 243 mg (1.56 mmol) (E)-oct-1-en-1-ylboronic acid was added 1-bromo-

2-iodo-4-methylbenzene (420 mg, 1.41 mmol) at room temperature. The mixture 

was then heated at 80 °C for 3 h. After cooling to room temperature, the mixture 

was quenched by adding saturated NH4Cl(aq). The mixture was extracted with ethyl 

acetate, and the combined organic extracts were dried over MgSO4. The solvent was 

removed in vacuo, and the crude residue was purified by silica gel flash column 

chromatography (SiO2, c-hexane) to give (E)-1-bromo-4-methyl-2-(oct-1-en-1-

yl)benzene (360 mg) colorless oil in 91% yield. 

1
H NMR (400 MHz, CDCl3) δ 7.41 (d, J = 8.2 Hz, 1H), 7.32 (s, 1H), 6.89 (d, J = 

8.2 Hz, 1H), 6.69 (d, J = 15.7 Hz, 1H), 6.18 (dt, J = 15.7, 7.0 Hz, 1H), 2.32 (s, 3H), 

2.30 - 2.22 (m, 2H), 1.54 - 1.46 (m, 2H), 1.41 - 1.30 (m, 6H), 0.92 (t, J = 6.9 Hz, 

3H).  

HRMS-APCI calculated for C15H22Br [M+H]+: 281.0899; found: 281.0901. 

(E)-7-(4-Methyl-2-(oct-1-en-1-yl)phenyl)cyclohepta-1,3,5-triene 

The title compound was prepared as a colorless oil in 56% yield according to 

general procedure A from (E)-1-bromo-4-methyl-2-(oct-1-en-1-yl)benzene. 

1
H NMR (400 MHz, CDCl3) δ 7.33 (d, J = 7.8 Hz, 1H), 7.30 (s, 1H), 7.11 (d, J = 

7.8 Hz, 1H), 6.75 (dd, J = 3.6, 2.6 Hz, 2H), 6.48 (d, J = 15.6 Hz, 1H), 6.31 - 6.24 

(m, 2H), 6.03 (dt, J = 15.5, 7.0 Hz, 1H), 5.50 - 5.36 (m, 2H), 3.03 - 2.97 (m, 1H), 

2.38 (s, 3H), 2.16 (qd, J = 7.1, 1.5 Hz, 2H), 1.47 - 1.40 (m, 2H), 1.35 – 1.27 (m, 

6H), 0.92 (d, J = 6.8 Hz, 3H).  

13
C NMR (101 MHz, CDCl3) δ 137.4, 137.0, 136.1, 133.2, 130.8, 127.9, 127.6, 

127.4, 127.4, 127.2, 124.2, 42.0, 33.2, 31.7, 29.3, 28.8, 22.6, 21.1, 14.1. 
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HRMS-APCI calculated for C22H29 [M+H]+: 293.2264; found: 293.2263. 

(E)-7-(4-Methoxy-2-styrylphenyl)cyclohepta-1,3,5-triene (7r) 

 

To a suspension of NaH (60% in oil, 131 mg, 3.28 mmol) in THF (4 mL) at 0 ºC 

was slowly added diethyl 2-bromo-5-methoxylbenzylphosphonate (1 g, 3 mmol). 

The resulting suspension was stirred for an additional 1 h at room temperature (23 

ºC). The reaction mixture was cooled to 0 ºC, and then a solution of benzaldehyde 

(290 mg, 2.73 mmol) in THF (1 mL) was added dropwise and slowly warmed to 

room temperature. After stirring overnight (12 h), the reaction was quenched with 

ice water and extracted with Et2O, dried with MgSO4. (E)-1-bromo-4-methoxy-2-

styrylbenzene was obtained as a colorless solid by silica gel column 

chromatography. (612 mg, yield: 78%). 

M.p.: 65-67 ºC. 

1
H NMR (500 MHz, CDCl3) δ 7.59 (d, J = 7.5 Hz, 2H), 7.50 (d, J = 8.8 Hz, 1H), 

7.45 (d, J = 16.2 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.4 Hz, 1H), 7.22 (d, 

J = 3.0 Hz, 1H), 7.05 (d, J = 16.2 Hz, 1H), 6.75 (dd, J = 8.8, 3.0 Hz, 1H), 3.88 (s, 

3H).  

13
C NMR (126 MHz, CDCl3) δ 159.0, 137.8, 136.9, 133.6, 131.5, 128.7, 128.1, 

127.5, 126.9, 115.1, 114.9, 111.8, 55.6. 

HRMS-APCI calculated for C15H14BrO [M+H]+: 289.0223; found: 289.0218. 

(E)-7-(4-Methoxy-2-styrylphenyl)cyclohepta-1,3,5-triene 

The title compound was prepared according to general procedure A as colorless oil 

in 86% yield from (E)-1-bromo-4-methoxy-2-styrylbenzene. 

1
H NMR (300 MHz, CDCl3) δ 7.44 - 6.92 (m, 10H), 6.77 (t, J = 3.2 Hz, 2H), 6.31 - 

6.26 (m, 2H), 5.51 - 5.38 (m, 2H), 3.90 (s, 3H), 3.04 (t, J = 5.5 Hz, 1H).  

13
C NMR (75 MHz, CDCl3) δ 158.4, 137.5, 137.4, 133.6, 130.9, 130.7, 128.8, 

128.7, 127.7, 127.0, 126.6, 126.5, 124.4, 113.6, 111.6, 55.4, 41.9. 

HRMS-APCI calculated for C22H21O [M+H]+: 301.1587; found: 301.1587. 
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(E)-7-(2-styrylphenyl)cyclohepta-1,3,5-triene-d1 (7a-d1) 

 

The isotopically labeled (E)-1-bromo-2-styrylbenzene-d1
164  was synthesized as 

follows: 

To a suspension of NaH (60% in oil, 145 mg, 3.63 mmol) in THF (4 mL) at 0 ºC 

was slowly added diethyl 2-bromobenzylphosphonate (1 g, 3.3mmol). The resulting 

suspension was stirred for an additional 1 h at room temperature (23 ºC). The 

reaction mixture was cooled to 0 ºC, and then a solution of benzaldehyde-α-d1
165 

(353 mg, 3.3 mmol) in THF (2 mL) was added dropwise and slowly warmed to 

room temperature. After stirring overnight (12 h), the reaction was quenched with 

ice water and the aqueous phase was extracted with Et2O. The combined organic 

layers were washed with brine and dried over Na2SO4. After concentration in vacuo, 

the residue was purified by silica gel flash column chromatography to give 650 mg 

isotopically labeled (E)-1-bromo-2-styrylbenzene-d1 as colorless oil in 76% yield. 

1
H NMR (400 MHz, CDCl3) δ 7.70 (dd, J = 7.8, 1.7 Hz, 1H), 7.63 - 7.57 (m, 3H), 

7.50 (s, 1H), 7.42 (t, J = 7.5 Hz, 2H), 7.38 - 7.30 (m, 2H), 7.15 (td, J = 7.8, 1.7 Hz, 

1H), 7.08 (d, J = 16.1 Hz, 6% residual signal).  

13
C NMR (101 MHz, CDCl3) δ 137.1, 136.9, 133.0, 131.1 (t, JCD = 23.5 Hz), 128.7, 

128.7, 128.0, 127.5, 127.3, 126.8, 126.7, 124.1.  

HRMS-APCI calculated for C14H11DBr [M+H]+: 260.0185; found: 260.0189. 

The title compound was prepared according to general procedure A from 

isotopically labeled (E)-1-bromo-2-styrylbenzene-d1 as yellow oil in 82% yield. 

1
H NMR (400 MHz, CDCl3) δ 7.69 (dd, J = 6.9, 2.2 Hz, 1H), 7.52 - 7.42 (m, 3H), 

7.39 - 7.26 (m, 6H), 6.96 (residual signal, 7%), 6.78 (t, J = 3.2 Hz, 2H), 6.35 - 6.30 

(m, 2H), 5.47 (dd, J = 9.0, 5.4 Hz, 2H), 3.12 (tt, J = 5.6, 1.6 Hz, 1H).  
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164 Xue, F.; Li, X.; Wan, B. J. Org. Chem. 2011, 76, 7256–7262. 
165 Gajewski, J. J.; Bocian, W.; Harris, N. J.; Olson, L.P.; Gajewski, J. P. J. Am. Chem. Soc. 1999, 121, 
326–334. 
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13
C NMR (126 MHz, CDCl3) δ 141.0, 137.4, 136.4, 130.9, 130.2 (t, J = 23.1 Hz), 

128.6, 127.9, 127.6, 127.6, 126.9, 126.6, 126.5, 126.4, 124.5, 42.5.  

HRMS-APCI calculated for C21H18D [M+H]+: 272.1550; found: 272.1538. 

(Z)-7-(2-Styrylphenyl)cyclohepta-1,3,5-triene (cis-7a) 

 

This compound was prepared as a colorless oil from (Z)-1-bromo-2-styrylbenzene166 

in 78% yield according to the general procedure A. 

1
H NMR (400 MHz, CDCl3) δ 7.55 (dd, J = 7.8, 1.2 Hz, 1H), 7.35 (td, J = 7.5, 1.8 

Hz, 1H), 7.22 - 7.13 (m, 5H), 7.12 - 7.03 (m, 2H), 6.71 (t, J = 3.2 Hz, 2H), 6.61 (d, J 

= 12.1 Hz, 1H), 6.55 (d, J = 12.0 Hz, 1H), 6.25 - 6.19 (m, 2H), 5.38 (dd, J = 9.1, 5.5 

Hz, 2H), 3.09 - 3.05 (m, 1H).  

13
C NMR (101 MHz, CDCl3) δ 141.7, 136.9, 136.6, 131.0, 130.7, 129.7, 129.1, 

129.0, 128.0, 127.8, 127.3, 127.0, 126.5, 126.3, 124.5, 42.4.  

HRMS-EI calculated for C21H18 [M]+: 270.1409; found: 270.1400. 

 

To a solution of 2-bromobenzyltriphenylphosphonium bromide (2 g, 3.9 mmol) and 

(E)-cinnamaldehyde (516 mg, 3.9 mmol) in 30 mL chloroform was slowly added 

50% NaOH(aq) (780 mg NaOH, 19.5 mmol). The resulting mixture was stirred 

overnight (12 h) at room temperature (23 ºC). The layers were separated, and the 

aqueous phase extracted twice with DCM. The combined organic extracts were 

washed with water then dried over MgSO4. After concentration in vacuo, 5 mL c-

hexane was added and the resulting triphenylphosphine oxide precipitate was 

removed by filtration. The c-hexane solution was passed through a short pad of 

silica gel then concentrated in vacuo to give 860 mg colorless oil (77%, Z:E = 1:1). 

The pure samples of Z (320mg, colorless oil) and E (280mg, light yellow solid) 

products were obtained by very careful silica gel chromatography using c-hexane as 

eluent.  
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Note: The (1E,3E) sample can be also prepared from diethyl 2-

bromobenzylphosphonate and (E)-cinnamaldehyde using the same procedure 

described for deuterated (E)-1-bromo-2-styrylbenzene synthesis shown in this SI as 

well. By using this HWE olefination, only the desired (1E,3E) isomer was obtained, 

and the purification is easier. 

1-Bromo-2-((1E,3E)-4-phenylbuta-1,3-dien-1-yl)benzene 

M.p.: 104-105 ºC. 

1
H NMR (500 MHz, CDCl3) δ 7.65 (dd, J = 7.9, 1.6 Hz, 1H), 7.59 (dd, J = 8.0, 1.2 

Hz, 1H), 7.49 (d, J = 7.8 Hz, 2H), 7.37 (t, J = 7.7 Hz, 2H), 7.33 - 7.26 (m, 2H), 7.12 

(ddd, J = 8.0, 7.3, 1.6 Hz, 1H), 7.08 - 7.03 (m, 2H), 6.97 - 6.90 (m, 1H), 6.75 (d, J = 

16.1 Hz, 1H).  

13
C NMR (126 MHz, CDCl3) δ 137.1, 136.9, 134.0, 133.1, 131.8, 131.0, 129.0, 

128.7, 128.6, 127.8, 127.4, 126.5, 126.3, 123.9. 

1-Bromo-2-((1Z,3E)-4-phenylbuta-1,3-dien-1-yl)benzene 

1
H NMR (400 MHz, CDCl3) δ 7.65 (dd, J = 8.0, 1.2 Hz, 1H), 7.47 (dd, J = 7.7, 1.7 

Hz, 1H), 7.41 - 7.22 (m, 6H), 7.18 (td, J = 7.7, 1.7 Hz, 1H), 7.12 (dd, J = 15.6, 10.4 

Hz, 1H), 6.77 (d, J = 15.6 Hz, 1H), 6.63 - 6.50 (m, 2H).  

13
C NMR (126 MHz, CDCl3) δ 137.4, 137.1, 135.4, 132.7, 131.2, 131.2, 129.7, 

128.6, 128.6, 127.8, 127.0, 126.6, 124.7, 124.0. 

HRMS-MALDI: calculated for C16H13Br [M]+: 284.0195; found: 284.0166. 

7-(2-((1E,3E)-4-Phenylbuta-1,3-dien-1-yl)phenyl)cyclohepta-1,3,5-triene (7g) 

 

This compound was prepared as a white solid in 82% yield according to the general 

procedure A from 1-bromo-2-((1E,3E)-4-phenylbuta-1,3-dien-1-yl)benzene. 

M.p.: 124-125 ºC. 

1
H NMR (500 MHz, CDCl3) δ 7.68 - 7.64 (m, 1H), 7.49 - 7.44 (m, 3H), 7.37 - 7.30 

(m, 4H), 7.25 (t, J = 7.3 Hz, 1H), 6.94 (ddd, J = 15.5, 5.9, 4.1 Hz, 1H), 6.90 - 6.84 

(m, 2H), 6.79 (dd, J = 3.7, 2.7 Hz, 2H), 6.68 (d, J = 15.3 Hz, 1H), 6.36 - 6.29 (m, 

2H), 5.45 (dd, J = 9.0, 5.3 Hz, 2H), 3.10 (t, J = 5.6 Hz, 1H).  

13
C NMR (126 MHz, CDCl3) δ 140.8, 137.3, 136.1, 132.8, 131.0, 130.9, 130.3, 

129.5, 128.6, 127.9, 127.5, 126.8, 126.8, 126.4, 126.2, 124.5, 42.4.  

Ph
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HRMS-APCI calculated for C23H21 [M+H]+: 297.1643; found: 297.1650. 

7-(2-((1Z,3E)-4-Phenylbuta-1,3-dien-1-yl)phenyl)cyclohepta-1,3,5-triene (7u) 

 

This compound was prepared as a colorless oil in 49% yield according to the 

general procedure A from1-bromo-2-((1Z,3E)-4-phenylbuta-1,3-dien-1-yl)benzene. 

1
H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 7.8 Hz, 1H), 7.43 - 7.21 (m, 8H), 7.07 

(ddd, J = 15.6, 10.9, 0.9 Hz, 1H), 6.73 (dd, J = 3.6, 2.8 Hz, 2H), 6.67 (d, J = 15.6 

Hz, 1H), 6.51 (d, J = 11.3 Hz, 1H), 6.42 (td, J = 11.1, 0.8 Hz, 1H), 6.31 - 6.24 (m, 

2H), 5.42 (dd, J = 8.8, 5.4 Hz, 2H), 3.02 (ddd, J = 5.4, 3.9, 1.5 Hz, 1H).  

13
C NMR (101 MHz, CDCl3) δ 142.0, 137.3, 136.3, 134.3, 131.0, 130.8, 130.5, 

129.3, 128.5, 127.9, 127.6, 127.3, 126.5, 126.4, 126.3, 125.4, 124.6, 42.46. 

HRMS-MALDI: calculated for C23H19 [M-H]+: 295.1481; found: 295.1496. 

2-(Cyclohepta-2,4,6-trien-1-yl)-1,1'-biphenyl (17a) 

 

2-Biphenylmagnesium bromide solution (0.5 M, 5.6 mL, 2.8 mmol) was added 

dropwise to a solution of tropylium tetrafluoroborate (500 mg, 2.8 mmol) in 10 mL 

dry THF at 0 ºC under argon. The reaction was then stirred at room temperature (23 

ºC) overnight (12 h). The reaction was quenched by addition of water. The aqueous 

phase was extracted with ether, the combined organic extracts were dried over 

MgSO4, and the solvent was evaporated. The crude reaction mixture was purified by 

chromatography to give the title compound (460 mg) as a colorless solid in 67% 

yield. 

M.p.: 48-50 ºC. 

1
H NMR (400 MHz, CDCl3) δ 7.64 (dd, J = 7.9, 1.3 Hz, 1H), 7.45 (td, J = 7.5, 1.7 

Hz, 1H), 7.37 - 7.18 (m, 7H), 6.57 (t, J = 3.2 Hz, 2H), 6.22 - 6.13 (m, 2H), 5.37 (dd, 

J = 9.0, 5.3 Hz, 2H), 2.88 (t, J = 5.2 Hz, 1H).  

13
C NMR (101 MHz, CDCl3) δ 141.9, 141.0, 130.5, 130.1, 129.2, 128.0, 127.8, 

127.7, 127.6, 126.8, 126.3, 124.1, 41.9. 

Ph
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HRMS-APCI calculated for C19H17 [M+H]+: 245.1330; found: 245.1334.  

4'-(tert-Butyl)-2-(cyclohepta-2,4,6-trien-1-yl)-1,1'-biphenyl (17b) 

 

This compound was prepared as a colorless solid in 76% yield according to the 

general procedure A. 

M.p.: 87-89 ºC. 

1
H NMR (500 MHz, CDCl3) δ 7.66 (dd, J = 7.8, 1.1 Hz, 1H), 7.46 (t, J = 7.8 Hz, 

1H), 7.38 - 7.31 (m, 4H), 7.19 (d, J = 8.4 Hz, 2H), 6.61 (t, J = 3.2 Hz, 2H), 6.25 - 

6.16 (m, 2H), 5.40 (dd, J = 9.1, 5.2 Hz, 2H), 3.00 (t, J = 5.2 Hz, 1H), 1.35 (s, 9H). 

13
C NMR (126 MHz, CDCl3) δ 149.6, 142.0, 141.7, 137.9, 130.5, 130.3, 128.9, 

127.8, 127.8, 127.7, 126.2, 124.7, 124.1, 41.9, 34.4, 31.3. 

HRMS-APCI calculated for C23H25 [M+H]+: 301.1956; found: 301.1957. 

2-(Cyclohepta-2,4,6-trien-1-yl)-1,1':4',1''-terphenyl (17c) 

 

This compound was prepared as a white solid in 59% yield according to the general 

procedure A. 

M.p.: 86-89 ºC. 

1
H NMR (500 MHz, CDCl3) δ 7.69 (d, J = 7.6 Hz, 1H), 7.63 (d, J = 8.0 Hz, 2H), 

7.57 (d, J = 8.2 Hz, 2H), 7.52 - 7.44 (m, 3H), 7.39 - 7.32 (m, 5H), 6.60 (t, J = 3.2 

Hz, 2H), 6.24 – 6.21 (m, 2H), 5.43 (dd, J = 9.0, 5.3 Hz, 2H), 3.00 (t, J = 5.3 Hz, 

1H).  

13
C NMR (126 MHz, CDCl3) δ 142.0, 141.4, 140.7, 140.0, 139.5, 130.6, 130.1, 

129.7, 128.7, 128.0, 127.9, 127.6, 127.2, 127.0, 126.5, 126.3, 124.2, 41.9. 

HRMS-APCI calculated for C25H21 [M+H]+: 321.1643; found: 321.1647. 

2-(Cyclohepta-2,4,6-trien-1-yl)-4'-methoxy-1,1'-biphenyl (17d) 

Ph
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This compound was prepared as a white solid in 76% yield according to the general 

procedure A. 

M.p.: 74-75 ºC. 

1
H NMR (400 MHz, CDCl3) δ 7.66 (dd, J = 7.6, 1.2 Hz, 1H), 7.46 (td, J = 7.5, 1.8 

Hz, 1H), 7.38 - 7.29 (m, 2H), 7.18 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 

6.62 (dd, J = 3.6, 2.6 Hz, 2H), 6.20-6.22 (m, 2H), 5.40 (dd, J = 9.0, 5.3 Hz, 2H), 

3.83 (s, 3H), 2.91 (t, J = 5.3 Hz, 1H).  

13
C NMR (101 MHz, CDCl3) δ 158.5, 142.0, 141.5, 133.4, 130.6, 130.3, 130.2, 

127.8, 127.7, 127.7, 126.2, 124.1, 113.3, 55.2, 41.9. 

HRMS-APCI calculated for C20H19O [M+H]+: 275.1436; found: 275.1442. 

4'-Chloro-2-(cyclohepta-2,4,6-trien-1-yl)-1,1'-biphenyl (17e) 

 

This compound was prepared as a white solid in 74% yield according to the general 

procedure A. 

M.p.: 114-115 ºC. 

1
H NMR (400 MHz, CDCl3) δ 7.67 (dd, J = 7.9, 1.3 Hz, 1H), 7.49 (td, J = 7.6, 1.5 

Hz, 1H), 7.36 (td, J = 7.5, 1.3 Hz, 1H), 7.31 - 7.25 (m, 3H), 7.18 (d, J = 8.4 Hz, 

2H), 6.63 (t, J = 3.2 Hz, 2H), 6.24 - 6.18 (m, 2H), 5.38 (dd, J = 9.0, 5.3 Hz, 2H), 

2.83 (tt, J = 5.3, 1.5 Hz, 1H).  

13
C NMR (101 MHz, CDCl3) δ 141.8, 140.6, 139.4, 132.9, 130.6, 130.5, 130.0, 

128.3, 128.0, 127.8, 127.2, 126.4, 124.2, 41.9. 

HRMS-APCI calculated for C19H16Cl [M+H]+: 279.0941; found: 279.0942. 

3'-Chloro-2-(cyclohepta-2,4,6-trien-1-yl)-1,1'-biphenyl (17f) 

 

O

Cl

Cl
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This compound was prepared as a white solid in 71% yield according to the general 

procedure A. 

M.p.: 89-90 ºC. 

1
H NMR (400 MHz, CDCl3) δ 7.68 (dd, J = 7.8, 1.3 Hz, 1H), 7.50 (td, J = 7.5, 1.6 

Hz, 1H), 7.36 (td, J = 7.5, 1.3 Hz, 1H), 7.31 - 7.24 (m, 4H), 7.12 (dt, J = 6.8, 1.7 

Hz, 1H), 6.63 (t, J = 3.2 Hz, 2H), 6.24 - 6.20 (m, 2H), 5.39 (dd, J = 9.1, 5.3 Hz, 

2H), 2.81 (tt, J = 5.4, 1.5 Hz, 1H).  

13
C NMR (101 MHz, CDCl3) δ 142.7, 141.8, 140.5, 133.7, 130.6, 129.9, 129.3, 

129.0, 128.4, 127.8, 127.4, 127.1, 126.9, 126.4, 124.2, 41.9. 

HRMS-APCI calculated for C19H16Cl [M+H]+: 279.0941; found: 279.094. 

2-Bromo-2'-(cyclohepta-2,4,6-trien-1-yl)-1,1'-biphenyl (17g) 

 

A solution of 2,2'-dibromobiphenyl (1.258 g, 4 mmol) in THF (16 mL) in a dried 50 

mL round-bottom flask was cooled to -78 ºC and a n-BuLi solution (2.5 M in 

hexanes, 1.68 mL, 4.2 mmol) was added. After stirring for 40 minutes, tropylium 

tetrafluoroborate (1.424 g, 8 mmol) was added and the cooling bath was removed. 

When the reaction reached ambient temperature (23 ºC), cyclohexane (30 mL) was 

added and the mixture was loaded directly onto a column of SiO2 and purified by 

flash chromatography (cyclohexane as eluent), yielding the desired cycloheptatriene 

(958 mg, 2.9 mmol, 74%) as a colorless oil. 

1
H NMR (300 MHz, CDCl3) δ 7.65 (dd, J = 7.8, 1.3 Hz, 1H), 7.61 - 7.54 (m, 1H), 

7.50 (td, J = 7.6, 1.5 Hz, 1H), 7.34 (td, J = 7.5, 1.3 Hz, 1H), 7.30 - 7.10 (m, 4H), 

6.61 - 6.45 (m, 2H), 6.22 - 6.05 (m, 2H), 5.45 (dd, J = 9.4, 5.4 Hz, 1H), 5.23 (dd, J = 

9.3, 5.4 Hz, 1H), 2.56 (tt, J = 5.5, 1.5 Hz, 1H).  

13
C NMR (75 MHz, CDCl3) δ 183.3, 132.5, 131.3, 130.9, 130.3, 130.0, 128.9, 

128.8, 127.4, 127.1, 126.9, 126.4, 126.2, 124.5, 124.3, 42.2. 

HRMS-APCI calcd for C19H16Br [M+H]+: 323.0430; found: 323.0427. 

2-(Cyclohepta-2,4,6-trien-1-yl)-2'-methyl-1,1'-biphenyl (17h) 

Br

Br
I) n-BuLi, -78 ºC, 

THF, 40 min.

II) BF4
-

-78 ºC to 23 ºC

Br
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This compound was prepared as a colorless solid in 79% yield according to the 

general procedure A. 

M.p.: 58-60 ºC. 

1
H NMR (400 MHz, CDCl3) δ 7.65 (dd, J = 7.9, 1.3 Hz, 1H), 7.48 (td, J = 7.6, 1.5 

Hz, 1H), 7.34 (td, J = 7.5, 1.4 Hz, 1H), 7.24 - 7.11 (m, 4H), 7.05 (dd, J = 7.3, 1.4 

Hz, 1H), 6.55 - 6.52 (m, 2H), 6.19 - 6.09 (m, 2H), 5.39 (dd, J = 9.4, 5.4 Hz, 1H), 

5.26 (dd, J = 9.3, 5.3 Hz, 1H), 2.58 (tt, J = 5.4, 1.6 Hz, 1H), 2.03 (s, 2H).  

13
C NMR (101 MHz, CDCl3) δ 142.4, 141.2, 140.5, 135.9, 130.5, 130.3, 129.6, 

129.5, 129.5, 127.9, 127.3, 127.1, 127.0, 126.9, 126.1, 125.2, 124.5, 124.1, 41.9, 

20.2. 

HRMS-APCI calculated for C20H19 [M+H]+: 259.1487; found: 259.1488. 

1-(2-(Cyclohepta-2,4,6-trien-1-yl)phenyl)naphthalene (17i) 

 

n-BuLi (1.6 M in hexanes, 0.23 mL, 0.37 mmol) was added dropwise to the solution 

of 1-(2-bromophenyl)naphthalene (100 mg, 0.23 mmol) in dry THF (1.4 mL, 0.25 

M) at -78 ºC under argon. The mixture was stirred for 30 min at -78 ºC, and then 

tropylium tetrafluoroborate (75 mg, 0.42 mmol) was added in one portion. The 

cooling bath was removed and the reaction was stirred at room temperature (23 ºC) 

overnight (12 h). The reaction was quenched by addition of water. The aqueous 

phase was extracted with ether, the combined organic extracts were dried over 

MgSO4, and the solvent was evaporated. The crude reaction mixture was purified by 

preparative TLC (eluent: pentane) to yield the title compound as a colorless oil that 

solidified upon standing (67 mg, 64%). 

M.p.: 80-81 ºC. 

1
H NMR (500 MHz, CDCl3) δ 7.83 (d, J = 8.1 Hz, 1H), 7.79 (d, J = 8.2 Hz, 1H), 

7.72 (dd, J = 7.8, 1.3 Hz, 1H), 7.54 (td, J = 7.6, 1.5 Hz, 1H), 7.49 (d, J = 8.4 Hz, 

1H), 7.45 – 7.32 (m, 4H), 7.27 (ddd, J = 9.6, 7.3, 1.1 Hz, 2H), 6.39 (dd, J = 11.0, 5.6 

Hz, 1H), 6.31 (dd, J = 11.0, 5.7 Hz, 1H), 6.08 (dd, J = 9.3, 5.7 Hz, 1H), 5.97 (dd, J 
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= 9.3, 5.7 Hz, 1H), 5.37 (dd, J = 9.3, 5.4 Hz, 1H), 5.28 (dd, J = 9.3, 5.4 Hz, 1H), 

2.54 (t, J = 5.4 Hz, 1H).  

13
C NMR (126 MHz, CDCl3) δ 143.4, 140.0, 138.7, 133.5, 132.4, 131.0, 130.6, 

130.3, 128.4, 128.1, 127.7, 127.6, 127.2, 127.2, 127.0, 126.5, 126.2, 125.8, 125.7, 

125.1, 124.5, 124.1, 42.3.  

HRMS-MALDI: calculated for C23H17 [M-H]+: 293.1330; found: 293.1361. 

2-(Cyclohepta-2,4,6-trien-1-yl)-1,1'-binaphthalene (17j). 

 

Following a literature procedure, a solution of 2,2'-dibromo-1,1'-binaphtyl (412 mg, 

1 mmol) in THF (10 mL) in a dried 25 mL round-bottom flask was cooled to -78 ºC 

and a n-BuLi solution (2.5 M in hexanes, 0.4 mL, 1 mmol) was added. After stirring 

for 1 hour, methanol (5 mL) was added and 10 minutes later the reaction was 

allowed to warm to room temperature (23 ºC). The solution was concentrated on a 

rotary evaporator and then purified by flash chromatography (cyclohexane) to yield 

2-bromo-1,1'-binaphtyl (312 mg, 0.94 mmol, 94%) as a colorless solid. The 

spectroscopic data matched with those reported in the literature.167 

A 10 mL round-bottom flask with a solution of 2-bromo-1,1'-binaphtyl (288 mg, 

0.87 mmol) in THF (3.5 mL) was cooled to -78 ºC and n-BuLi solution (2.5 M in 

hexanes, 0.381 mL, 1.1 equiv.) was added. After stirring for 40 minutes, tropylium 

tetrafluoroborate (308 mg, 1.73 mmol, 2 equiv.) was added and the solution was 

allowed to warm to room temperature. The reaction was quenched with water, 

extracted with diethyl ether and washed with two portions of water and brine. After 

drying and concentrating, the mixture was purified by flash chromatography 

(cyclohexane) to yield the target compound (186 mg, 0.54 mmol, 62%) as a viscous 

pale-yellow oil.  

1
H NMR (300 MHz, CDCl3) δ 8.06 (d, J = 8.6 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 

7.86 (t, J = 7.9 Hz, 3H), 7.53 - 7.38 (m, 3H), 7.31 (d, J = 6.9 Hz, 1H), 7.26 - 7.19 

(m, 3H), 7.08 (d, J = 8.5 Hz, 1H), 6.40 (d, J = 16.3 Hz, 1H), 6.30 (d, J = 16.3 Hz, 

1H), 6.10 (dd, J = 9.3, 5.5 Hz, 1H), 5.96 (dd, J = 9.2, 5.5 Hz, 1H), 5.38 (d, J = 28.5 

Hz, 2H), 2.58 (t, J = 5.1 Hz, 1H).  

��������������������������������������������������������
167 Nagaki, A.; Takabayashi, N.; Tomida, Y.; Yoshida, J. Org. Lett. 2008, 10, 3937–3940. 

Br
Br

I) n-BuLi, -78 ºC, 
THF, 1 h.

II) MeOH, -78 ºC, 
to 23 ºC

Br
H

I) n-BuLi, -78 ºC, 
THF, 40 min.

II) BF4
-

-78 ºC to 23 ºC
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13
C NMR (75 MHz, CDCl3) δ 140.5, 136.3, 133.5, 133.3, 133.0, 132.3, 130.7, 

130.3, 128.9, 128.1, 128.1, 127.9, 127.9, 127.2, 127.0, 126.5, 126.3, 126.0, 125.9, 

125.5, 125.5, 125.4, 124.6, 124.3, 42.9. 

HRMS-APCI calcd for C27H21Br [M+H]+: 345.1638; found: 345.1646. 

2,2''-Di(cyclohepta-2,4,6-trien-1-yl)-1,1':4',1''-terphenyl (17k) 

 

The title compound was prepared according to general procedure A-2 from the 

known compound 2,2''-dibromo-1,1':4',1''-terphenyl168 as a colorless solid in 54% 

yield. 

M.p.: 182-184 ºC. 

1
H NMR (500 MHz, CDCl3) δ 7.67 (d, J = 8.0 Hz, 2H), 7.47 (ddd, J = 7.8, 7.0, 1.8 

Hz, 2H), 7.39 - 7.31 (m, 4H), 7.19 (s, 4H), 6.61 (dd, J = 3.8, 2.7 Hz, 4H), 6.23 - 6.18 

(m, 4H), 5.39 (ddd, J = 9.5, 5.3, 0.8 Hz, 4H), 2.94 (ddd, J = 5.4, 3.8, 1.5 Hz, 2H). 

13
C NMR (126 MHz, CDCl3) δ 141.8, 141.5, 139.4, 130.6, 130.2, 128.8, 127.9, 

127.8, 127.5, 126.3, 124.1, 41.8. 

HRMS-APCI calculated for C32H27 [M+H]+: 411.2113; found: 411.2113. 

2,6-Di(cyclohepta-2,4,6-trien-1-yl)-1,1'-biphenyl (17l) 

 

n-BuLi (1.6 M in hexanes, 2.2 mL, 3.53 mmol) was added dropwise to the solution 

of 550 mg (1.76 mmol) 2,6-dibromo-1,1'-biphenyl169 in 20 mL THF at -78 ºC under 

argon. After addition, the mixture was warmed to room temperature (23 ºC) slowly 

and allowed to stir for 1 h. After cooling down to -78 ºC again, tropylium 

��������������������������������������������������������
168 Velian, A.; Lin, S.; Miller, A. J. M.; Day, M. W.; Agapie, T. J. Am. Chem. Soc. 2010, 132, 6296–
6297. 
169 Machuy, M. M.; Würtele, C.; Schreiner, P. R. Synthesis 2012, 44, 1405–1409. 

54%

Br

Br

1) n-BuLi, THF, -78 oC

2) tropylium tetrafluoroborate,
 23 ºC,12 h

Br

Br

54%

1) n-BuLi, THF, -78 oC

2) tropylium, 23 ºC,12 h
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tetrafluoroborate (628mg, 3.53mmol) was added in one portion. The cooling bath 

was removed and the reaction was stirred at room temperature overnight (12 h). The 

reaction was quenched by addition of water. The aqueous phase was extracted with 

ether, the combined organic extracts were dried over MgSO4, and the solvent was 

evaporated. The crude reaction mixture was purified by chromatography to yield 

320 mg of the title compound as a colorless crystalline solid (yield: 54%). 

M.p.: 137-138 ºC. 

1
H NMR (500 MHz, CDCl3) δ 7.62 - 7.55 (m, 3H), 7.18 – 7.16 (m, 3H), 7.02 - 6.97 

(m, 2H), 6.49 (dd, J = 3.8, 2.7 Hz, 4H), 6.14 - 6.11 (m, 4H), 5.35 (dd, J = 8.7, 5.4 

Hz, 4H), 2.52 (tt, J = 5.4, 1.5 Hz, 2H).  

13
C NMR (101 MHz, CDCl3) δ 142.7, 141.5, 138.4, 130.3, 129.4, 128.4, 127.5, 

127.3, 126.6, 125.3, 123.9, 42.6. 

HRMS-MALDI: calculated for C26H22 [M]+: 334.1722; found: 334.1711. 

2. General procedure B for the gold-catalyzed formation of indenes and 

fluorenes 

 

A solution of the o-arylcycloheptatriene substrate (0.1 mmol) and gold complex (5 

mol %) in 1,2-dichloroethane (DCE, 1 mL) was heated at 120 ºC in a sealed tube 

until the starting material had been fully consumed (2-3 h). The reaction was 

performed under an air atmosphere with no special precautions taken to exclude 

water. After the reaction mixture had been allowed to cool to room temperature, the 

solvent was removed in vacuo, and the crude residue was purified by preparative 

TLC.  

2-Phenyl-1H-indene (8a) 

 

This compound was prepared as a colorless solid in 74% yield from 7a according to 

the general procedure B. 

The spectroscopic data match with those reported in the literature.170 

��������������������������������������������������������
170 Deng, R.; Sun, L.; Li, Z. Org. Lett. 2007, 9, 5207–5210. 

5 mol % [Au]

DCE, 120 oC, 3 h

R

R

Ph
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1
H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 7.1 Hz, 2H), 7.52 (d, J = 7.4 Hz, 1H), 

7.46 - 7.40 (m, 3H), 7.34 - 7.26 (m, 3H), 7.23 (td, J = 7.4, 1.2 Hz, 1H), 3.83 (s, 2H). 

13
C NMR (101 MHz, CDCl3) δ 146.4, 145.3, 143.1, 136.0, 128.7, 127.5, 126.6, 

126.5, 125.6, 124.7, 123.6, 121.0, 39.0. 

2-(4-Chlorophenyl)-1H-indene (8b) 

 

This compound was prepared as a colorless solid in 65% yield from 7b according to 

the general procedure B. 

The spectroscopic data match with those reported in the literature.171 

1
H NMR (400 MHz, CDCl3) δ 7.58 (d, J = 8.6 Hz, 2H), 7.50 (d, J = 7.2 Hz, 1H), 

7.43 (d, J = 7.6 Hz, 1H), 7.37 (d, J = 8.5 Hz, 2H), 7.31 (td, J = 7.5, 1.1 Hz, 1H), 

7.26 - 7.18 (m, 2H), 3.79 (s, 2H).  

13
C NMR (101 MHz, CDCl3) δ 145.1, 145.0, 143.0, 134.5, 133.1, 128.8, 127.1, 

126.8, 126.7, 125.0, 123.7, 121.1, 38.9. 

2-(p-Tolyl)-1H-indene (8c) 

 

This compound was prepared as a colorless solid in 74% yield from 7c according to 

the general procedure B. 

The spectroscopic data match with those reported in the literature.172 

1
H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 8.1 Hz, 2H), 7.50 (d, J = 7.3 Hz, 1H), 

7.42 (d, J = 7.6 Hz, 1H), 7.32 (dd, J = 7.6, 1.1 Hz, 1H), 7.25 - 7.18 (m, 4H), 3.81 (s, 

2H), 2.41 (s, 3H).  

13
C NMR (101 MHz, CDCl3) δ 146.5, 145.5, 143.0, 137.4, 133.2, 129.3, 126.5, 

125.6, 125.5, 124.5, 123.6, 120.8, 39.0, 21.2. 

2-(m-Tolyl)-1H-indene (8d) 

 

��������������������������������������������������������
171 Greifenstein, L. G.; Lambert, J. B.; Nienhuis, R. J.; Fried, H. E.; Pagani, G. A. J. Org. Chem. 1981, 
46, 5125–5132. 
172 Jayamani, M.; Pant, N.; Ananthan, S.; Narayanan, K.; Pillai, C. N. Tetrahedron 1986, 42, 4325–4332. 

Cl
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This compound was prepared as a colorless solid in 78% yield from 7d according to 

the general procedure B. 

The spectroscopic data match with those reported in the literature.171  

1
H NMR (400 MHz, CDCl3) δ 7.53 - 7.47 (m, 3H), 7.44 (d, J = 7.1 Hz, 1H), 7.32 (t, 

J = 7.5 Hz, 2H), 7.26 (s, 1H), 7.22 (td, J = 7.4, 1.2 Hz, 1H), 7.14 (d, J = 7.2 Hz, 

1H), 3.83 (s, 2H), 2.44 (s, 3H).  

13
C NMR (101 MHz, CDCl3) δ 146.6, 145.4, 143.1, 138.2, 135.9, 128.6, 128.3, 

126.6, 126.4, 124.6, 123.6, 122.8, 120.9, 39.0, 21.5. 

2-Mesityl-1H-indene (8e) 

 

This compound was prepared as a colorless solid in 83% yield from 7e according to 

the general procedure B. 

The spectroscopic data match with those reported in the literature.173 

1
H NMR (400 MHz, CDCl3) δ 7.53 (d, J = 7.3 Hz, 1H), 7.46 (d, J = 7.3 Hz, 1H), 

7.35 (td, J = 7.4, 1.0 Hz, 1H), 7.25 (td, J = 7.5, 1.2 Hz, 1H), 6.98 (s, 2H), 6.69 (s, 

1H), 3.60 (s, 2H), 2.37 (s, 3H), 2.22 (s, 6H).  

13
C NMR (101 MHz, CDCl3) δ 147.6, 145.4, 143.5, 136.7, 136.2, 134.7, 130.2, 

128.0, 126.4, 124.2, 123.5, 120.7, 42.1, 21.0, 20.5. 

2-Benzyl-1H-indene (8f) 

 

This compound was prepared as a colorless solid in 78% yield from 7f according to 

the general procedure B. 

The spectroscopic data match with those reported in the literature.174 

1
H NMR (400 MHz, CDCl3) δ 7.39 - 7.22 (m, 8H), 7.13 (td, J = 7.4, 1.3 Hz, 1H), 

6.55 (s, 1H), 3.85 (s, 2H), 3.32 (s, 2H).  

13
C NMR (101 MHz, CDCl3) δ 149.2, 145.3, 143.4, 140.0, 128.8, 128.4, 127.8, 

126.2, 126.2, 123.8, 123.4, 120.2, 40.8, 37.9. 

��������������������������������������������������������
173 Lebedev, A. Y.; Izmer, V. V.; Asachenko, A. F.; Tzarev, A. A.; Uborsky, D. V.; Homutova, Y. A.; 
Shperber, E. R.; Canich, J. A. M.; Voskoboynikov, A. Z. Organometallics 2009, 28, 1800–1816. 
174 Martinez, A.; Fernandez, M.; Estevez, J. C.; Estevez, R. J.; Castedo, L. Tetrahedron 2005, 61, 485–
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(E)-2-Styryl-1H-indene (8g) 

 

This compound was prepared as a colorless solid in 42% yield from 7g according to 

the general procedure B. 

The spectroscopic data match with those reported in the literature.175 

1
H NMR (500 MHz, CDCl3) δ 7.51 (d, J = 7.2 Hz, 2H), 7.46 (d, J = 7.4 Hz, 1H), 

7.40 - 7.35 (m, 3H), 7.31 - 7.19 (m, 4H), 6.88 (s, 1H), 6.81 (d, J = 16.2 Hz, 1H), 

3.70 (s, 2H).  

13
C NMR (126 MHz, CDCl3) δ 146.3, 145.1, 142.8, 137.3, 131.3, 129.4, 128.7, 

127.5, 126.6, 126.3, 125.0, 124.9, 123.6, 120.9, 37.4. 

2-Hexyl-1H-indene (8h) 

 

This compound was prepared as a colorless solid in 89% yield from 7h according to 

the general procedure B. 

The spectroscopic data match with those reported in the literature.176 

1
H NMR (400 MHz, CDCl3) δ 7.41 (d, J = 7.3 Hz, 1H), 7.31 - 7.22 (m, 2H), 7.13 

(td, J = 7.3, 1.3 Hz, 1H), 6.53 (s, 1H), 3.34 (s, 2H), 2.51 (t, J = 7.6 Hz, 2H), 1.71 - 

1.59 (m, 2H), 1.43 - 1.29 (m, 6H), 0.92 (t, J = 7.6 Hz, 3H).  

13
C NMR (101 MHz, CDCl3) δ 151.0, 145.7, 143.1, 126.2, 126.0, 123.4, 123.3, 

119.8, 41.0, 31.7, 31.2, 29.1, 29.0, 22.6, 14.1. 

2-(4-Methylpent-3-en-1-yl)-1H-indene (8i) 

 

This compound was prepared as a colorless oil in 69% yield from 7i according to 

the general procedure B. 

1
H NMR (500 MHz, CDCl3) δ 7.41 (d, J = 7.3 Hz, 1H), 7.30 (d, J = 7.4 Hz, 1H), 

7.25 (t, J = 7.4 Hz, 1H), 7.13 (td, J = 7.3, 1.3 Hz, 1H), 6.55 (s, 1H), 5.21 (t, J = 7.0 

��������������������������������������������������������
175 Deng, R.; Sun, L.; Li, Z. Org. Lett. 2007, 9, 5207–5210. 
176 Lee, D.-H.; Kwon, K.-H.; Yi, C. S. Science 2011, 333, 1613–1616. 
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Hz, 1H), 3.34 (d, J = 1.3 Hz, 2H), 2.58 - 2.51 (m, 2H), 2.33 (q, J = 7.4 Hz, 2H), 1.73 

(d, J = 1.3 Hz, 3H), 1.66 (s, 3H).  

13
C NMR (126 MHz, CDCl3) δ 150.6, 145.7, 143.1, 132.0, 126.2, 126.2, 123.9, 

123.5, 123.3, 119.8, 41.1, 31.4, 27.6, 25.7, 17.7.  

HRMS-EI calculated for C15H18 [M]+: 198.1409; found: 198.1405. 

2-(2,6-Dimethylhept-5-en-1-yl)-1H-indene (8j) 

 

A 1 mL DCE solution of substrate 7j (32 mg, 0.1 mmol) and gold catalyst E (4 mg, 

5 mol%) was heated at 120 °C overnight. After cooling to room temperature, the 

solvent was removed in vacuo. The residue was purified with preparative TLC to 

give 8j as a colorless oil (19.2 mg, 80%). 

1
H NMR (400 MHz, CDCl3) δ 7.41 (d, J = 7.6 Hz, 1H), 7.30 (d, J = 7.3 Hz, 1H), 

7.25 (t, J = 7.1 Hz, 1H), 7.13 (td, J = 7.3, 1.3 Hz, 1H), 6.54 (d, J = 1.1 Hz, 1H), 5.19 

- 5.09 (m, 1H), 3.34 (d, J = 22.9 Hz, 1H), 3.32 (d, J = 22.7 Hz, 1H), 2.52 (ddd, J = 

14.2, 6.1, 1.4 Hz, 1H), 2.33 (ddd, J = 14.0, 8.0, 1.2 Hz, 1H), 2.15 - 1.98 (m, 2H), 

1.82 – 1.76 (m, 1H), 1.73 (s, 3H), 1.65 (s, 3H), 1.48 – 1.43 (m, 1H), 1.28 – 1.19 (m, 

1H), 0.96 (d, J = 6.6 Hz, 3H).  

13
C NMR (101 MHz, CDCl3) δ 149.7, 145.7, 143.3, 131.3, 127.5, 126.2, 124.7, 

123.5, 123.4, 119.8, 41.2, 39.1, 37.0, 32.7, 25.7, 25.6, 19.8, 17.7. 

HRMS-APCI: calculated for C18H25 [M+H]+: 241.1951; found: 241.1953. 

2-((1R*,2S*,3R*)-2,3-diphenylcyclopropyl)-1H-indene (8k) 

 

This compound was prepared according to the general procedure B. The 1 mL DCE 

solution of substrate 7k (39 mg, 0.1 mmol) and gold catalyst A (3.7 mg, 5 mol%) 

was heated at 120 °C for 2 h. After cooling to room temperature, the solvent was 

removed in vacuo. The residue was purified with preparative TLC to give 8k as a 

colorless solid (19.2 mg, 62%). 

M.p.: 129-131 ºC. 

1
H NMR (400 MHz, CDCl3) δ 7.45 (d, J = 7.4 Hz, 1H), 7.34 (d, J = 7.1 Hz, 1H), 

7.28 (t, J = 7.2 Hz, 1H), 7.21 - 7.11 (m, 7H), 7.05 - 7.01 (m, 4H), 6.75 (s, 1H), 3.48 

(s, 2H), 2.85 - 2.75 (m, 3H).  
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13
C NMR (101 MHz, CDCl3) δ 150.2, 145.4, 142.4, 137.5, 128.9, 127.9, 126.5, 

126.0, 125.6, 123.8, 123.5, 120.0, 39.8, 34.3, 27.8. 

HRMS-APCI calculated for C24H21 [M+H]+: 309.1638; found: 309.1637. 

1,4-Di(1H-inden-2-yl)benzene (8l) 

 

This compound was prepared from 7l according to the general procedure B. A 

highly insoluble yellow solid was collected by filtration after cooling down to r.t. (in 

41% yield). No further purification was necessary.  

1
H NMR (500 MHz, 1,1,2,2-tetrachloroethane-d2; 398 K) δ 7.60 (s, 4H), 7.44 (d, J 

= 7.3 Hz, 2H), 7.37 (d, J = 7.5 Hz, 2H), 7.24 (t, J = 7.4 Hz, 2H), 7.19 (s, 2H), 7.15 

(t, J = 7.3 Hz, 2H), 3.78 (s, 4H).  

13
C NMR (126 MHz, 1,1,2,2-tetrachloroethane-d2; 398 K) δ 13C NMR (126 MHz, 

1,1,2,2-tetrachloroethane-d2) δ 145.7, 144.8, 142.6, 134.9, 126.2, 126.1, 125.4, 

124.3, 123.0, 120.4, 38.6.  

HRMS-MALDI: calculated for C24H18 [M]+: 306.1403; found 306.1402. 

2,3,4,4a-Tetrahydro-1H-fluorene (8m) 

 

This compound was prepared as a colorless oil in 73% yield from 7m according to 

the general procedure B. 

1
H NMR (500 MHz, CDCl3) δ 7.38 (d, J = 7.3 Hz, 1H), 7.31 (d, J = 7.4 Hz, 1H), 

7.24 (td, J = 7.5, 1.1 Hz, 1H), 7.13 (td, J = 7.5, 1.3 Hz, 1H), 6.40 (s, 1H), 3.08 (dd, J 

= 12.5, 6.1 Hz, 1H), 2.82 - 2.76 (m, 1H), 2.59 - 2.54 (m, 1H), 2.42 - 2.34 (m, 1H), 

2.07 - 2.00 (m, 1H), 1.92 - 1.88 (m, 1H), 1.65 - 1.58 (m, 1H), 1.29 - 1.21 (m, 1H), 

0.94 (qd, J = 12.8, 3.5 Hz, 1H).  

13
C NMR (126 MHz, CDCl3) δ 153.6, 147.7, 144.8, 126.3, 123.4, 122.3, 121.7, 

120.0, 50.0, 32.4, 29.2, 28.0, 25.4.  

HRMS-APCI: calculated for C13H15 [M+H]+: 171.1174; found: 171.1169. 

4b,5-Dihydroindeno[2,1-a]indene (8n) 
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This compound was prepared from 7n according to the general procedure B as a 

colorless solid in 31% yield. 

M.p.: 103-105 ºC. 

1
H NMR (400 MHz, CDCl3) δ 7.57 (dd, J = 7.5, 0.6 Hz, 1H), 7.48 (d, J = 7.4 Hz, 

1H), 7.39 (d, J = 7.5 Hz, 1H), 7.34 (d, J = 7.3 Hz, 1H), 7.31 - 7.26 (m, 2H), 7.23 – 

7.16 (m, 2H), 6.75 (d, J = 2.5 Hz, 1H), 4.45 (td, J = 8.5, 2.6 Hz, 1H), 3.45 (dd, J = 

14.8, 8.6 Hz, 1H), 2.70 (dd, J = 14.7, 8.5 Hz, 1H).  

13
C NMR (101 MHz, CDCl3) δ 158.8, 151.1, 149.2, 145.2, 136.9, 127.3, 127.0, 

126.9, 125.7, 124.1, 123.5, 121.8, 121.7, 119.1, 58.5, 33.1. 

HRMS-MALDI: calculated for C16H12 [M]+: 204.0939; found: 204.0957. 

5-Methyl-2-phenyl-1H-indene (8p′) and 6-methyl-2-phenyl-1H-indene (8p) 

 

This mixture of compounds was prepared as a colorless solid in 81% yield (1:1 

mixture) from 7p according to the general procedure B. 

M.p.: 180-181 ºC. 

Some proton signals arising of the two isomers could be differentiated (labeled as 

isomer a and isomer b); however, these could not be assigned definitively to 8p or 

8p.  

1
H NMR (500 MHz, CDCl3) δ 7.69 - 7.66 (m, 2H), 7.45 - 7.23 (m, 6H), 7.16 - 7.13 

(d, J = 7.9 Hz, 1H, isomer a), 7.06 (dd, J = 7.7, 1.5 Hz, 1H, isomer b), 3.80 (s, 2H), 

2.46 (s, 3H, isomer a), 2.45 (s, 3H, isomer b).  

13
C NMR (126 MHz, CDCl3, mixture of signals) δ 146.6, 145.6, 145.3, 143.5, 

142.7, 140.2, 136.2, 136.1, 134.5, 128.6, 127.4, 127.3, 127.3, 126.5, 126.4, 125.6, 

125.5, 124.6, 123.3, 121.7, 120.6, 38.8, 38.6, 21.5, 21.5.  

HRMS-APCI calculated for C16H15 [M+H]+: 207.1174; found: 207.1173. 

2-Hexyl-5-methyl-1H-indene (8q′) and 2-hexyl-6-methyl-1H-indene (8q) 

 

Ph Ph

1:1

84%, 1:1

+
A (5 mol%)

DCE, 120 oC, 2h
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This mixture of compounds was prepared as a colorless oil in 84% yield (1:1 

mixture) from 7q according to the general procedure B. 

1
H NMR (400 MHz, CDCl3) δ 7.28 (d, J = 7.7 Hz, 1H), 7.23 (s, 1H), 7.18 (d, J = 

7.6 Hz, 1H), 7.12 (s, 1H), 7.05 (d, J = 7.7 Hz, 1H), 6.95 (d, J = 7.7 Hz, 1H), 6.48 

(m, 2H), 3.29 (s, 4H), 2.53 - 2.47 (m, 4H), 2.40 (s, 6H), 1.68 - 1.58 (m, 4H), 1.39 - 

1.29 (m, 12H), 0.94 (t, J = 6.8 Hz, 6H).  

13
C NMR (101 MHz, CDCl3) δ 151.3, 149.9, 146.0, 143.5, 143.1, 140.2, 135.7, 

133.0, 126.8, 126.0, 125.8, 124.4, 124.2, 123.0, 120.6, 119.4, 40.8, 40.6, 31.8, 31.3, 

31.2, 29.1, 29.0, 22.6, 21.5, 21.4, 14.1. 

HRMS-APCI calculated for C16H23 [M+H]+: 215.1794; found: 215.1801. 

5-Methoxyl-2-phenyl-1H-indene (8r′) and 6-methoxyl-2-phenyl-1H-indene (8r) 

 

This mixture of compounds was prepared as a colorless solid in 81% yield (2:1 

mixture, 8r′ as the major product) from 7r according to the general procedure B. 

The ratio of products was determined by integration of peaks in the 1H NMR 

spectrum. HMBC was used to elucidate which were the major and minor products. 

1
H NMR (400 MHz, CDCl3) δ 7.67 - 7.61 (m, major 2H + minor2H), 7.44 - 7.31 

(m, major 4H + minor 4H), 7.20 (s, major 1H + minor 1H), 7.10 (d, J = 0.7 Hz, 

minor 1H), 6.99 (d, J = 2.4 Hz, major 1H), 6.87 (dd, J = 8.2, 2.4 Hz, minor 1H), 

6.78 (dd, J = 8.1, 2.4 Hz, major 1H), 3.87 (s, major 3H + minor 3H), 3.79 (s, minor 

2H), 3.77 (s, major 2H).  

13
C NMR (101 MHz, CDCl3, mixed signals) δ 159.1, 158.0, 147.8, 146.7, 145.1, 

144.2, 138.5, 136.2, 136.0, 135.3, 128.7, 128.6, 127.6, 127.1, 126.5, 126.1, 125.6, 

125.3, 124.1, 121.3, 112.2, 110.8, 110.4, 106.5, 55.6, 55.5, 39.1, 38.3. 

HRMS-APCI calculated for C16H15O [M+H]+: 223.1117; found: 223.1116. 

HMBC cross peak of 8r (δ (H) 3.79, δ (C) 110.25) 

PhMeO
MeO

Ph

MeO
Ph+

H

HMBC

81% 2:1

5 mol% A,

DCE, 120 oC, 2 h



� 176 

 

2-Phenyl-1H-indene-d1 (8a-d1) 

 

This compound was prepared as a colorless solid in 73% yield from 7a-d1 according 

to the general procedure B. 

1
H NMR (500 MHz, CDCl3) δ 7.67 (d, J = 7.2 Hz, 2H), 7.51 (d, J = 7.2 Hz, 1H), 

7.46 - 7.40 (m, 3H), 7.33 - 7.29 (m, 2H), 7.27 (d, J = 1.4 Hz, 1H), 7.22 (td, J = 7.4, 

1.1 Hz, 1H), 3.81 (s, 1H and 7% residual signal).  

13
C NMR (126 MHz, CDCl3) δ 146.4, 145.4, 143.1, 136.0, 128.6, 127.5, 126.6, 

126.5, 125.6, 124.7, 123.6, 120.9, 38.7 (t, JCD = 19.7 Hz).  

HRMS-APCI calculated for C15H12D [M+H]+: 194.1080; found: 194.108. 

9H-Cyclohepta[a]naphthalene (12) 

 

This compound was prepared as a colorless oil in 28% yield from cis-7a according 

to the general procedure B. 

1
H NMR (500 MHz, CDCl3) δ 8.24 (d, J = 8.6 Hz, 1H), 7.88 (dd, J = 7.9, 1.5 Hz, 

1H), 7.76 (d, J = 8.6 Hz, 1H), 7.61 - 7.51 (m, 2H), 7.48 (d, J = 8.6 Hz, 1H), 7.24 (d, 

J = 10.0 Hz, 1H), 6.82 (d, J = 10.0 Hz, 1H), 6.05 (ddt, J = 9.9, 8.6, 6.9 Hz, 2H), 2.41 

(t, J = 6.9 Hz, 2H).  

�����������������������	��
���������������������

�������

�



��


��


��


��


��


��



�
���

��
�

����	�	��������
����������� ��!���"����#
$%$&'�()��
%�%(%��������������#����#)�	�

Ph

H
D(93%)



� 177 

13
C NMR (126 MHz, CDCl3) δ 134.8, 133.6, 132.2, 131.7, 130.3, 128.8, 128.3, 

128.2, 126.9, 126.5, 126.2, 125.7, 125.2, 124.8, 26.5. 

HRMS-EI calculated for C15H12 [M]+: 192.0939; found: 192.0939. 

(1R*,1aS*,1bS*,2S*,2aS*,6bS*)-1,2-diphenyl-1,1a,1b,2,2a,6b-

hexahydrodicyclopropa[a,c]naphthalene (15) 

 

The 1 mL DCE solution of 7u (45 mg, 0.15 mmol) and gold catalyst A (5.5 mg, 5 

mol %) was heated at 120 °C for 5 h. After cooling to room temperature, the solvent 

was removed in vacuo. The residue was passed through a short column of silica, and 

naphthalene (colorless solid, 4.6 mg, 24%) was separated from the crude residue. 

The remaining mixture was purified carefully with preparative TLC to give 15 as a 

colorless solid (5.9 mg, 12%). 

1
H NMR (500 MHz, CDCl3) δ 7.39 - 7.10 (m, 12H), 7.00 (td, J = 7.5, 1.4 Hz, 1H), 

6.90 (dd, J = 7.6, 1.4 Hz, 1H), 2.59 (dd, J = 9.4, 8.2 Hz, 1H), 2.38 - 2.32 (m, 2H), 

2.11 (t, J = 4.6 Hz, 1H), 2.06 (dd, J = 8.5, 4.7 Hz, 1H), 1.66 (dd, J = 8.6, 4.3 Hz, 

1H).  

13
C NMR (101 MHz, CDCl3) δ 142.2, 136.6, 135.8, 131.3, 130.9, 130.1, 128.5, 

128.3, 127.6, 125.7, 125.6, 125.5, 125.4, 125.3, 35.7, 29.7, 29.0, 25.4, 20.8, 20.2. 

HRMS-APCI calculated for C24H21 [M+H]+: 309.1643; found: 309.1649. 

(1R*,1aS*,6aR*)-1,6a-diphenyl-1,1a,6,6a-tetrahydrocyclopropa[a]indene (5a) 

and (5a′) 

 

The DCE solution of (E)-7-(2-styrylphenyl)cyclohepta-1,3,5-triene 7a (27 mg, 0.1 

mmol) and gold complex (3.7mg, 5 mol %) was heated at 120 ºC for 2h. After 

cooling to room temperature, 7-phenylcyclohepta-1,3,5-triene 1a (34 mg, 0.2 mmol) 

was added, and the mixture was heated to 120 °C overnight (12 h). The reaction 

mixture was cooled to room temperature, the solvent was removed in vacuo, and the 

Ph
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H

H

H
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Ph
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resulting residue was purified by preparative TLC to give 19 mg of the title mixture 

(67%, 4:1) as a colorless solid.  

M.p.: 85-88 ºC. 

1
H NMR (400 MHz, CDCl3) δ 7.52 - 6.83 (m, aromatic 14H major + 14H minor), 

3.68 (d, J = 16.9 Hz, 1H minor), 3.49 (d, J = 17.0 Hz, 1H minor), 3.42 (d, J = 17.3 

Hz, 1H major), 3.34 (dd, J = 8.4, 1.6 Hz, 1H major), 3.26 (dd, J = 3.6, 1.5 Hz, 1H 

minor), 3.16 (d, J = 17.3 Hz, 1H major), 2.88 (d, J = 8.3 Hz, 1H major), 2.11 (d, J = 

3.5 Hz, 1H minor).  

13
C NMR (101 MHz, CDCl3, major + minor) δ 146.3, 145.1, 142.6, 141.8, 139.8, 

138.7, 135.4, 130.7, 129.8, 128.6, 128.1, 127.6, 127.2, 126.3, 126.1, 126.1, 125.8, 

125.6, 125.3, 125.2, 124.2, 124.1, 123.3, 45.3, 41.7, 41.5, 38.5, 38.4, 37.7, 37.2, 

35.9. 

The relative configuration was confirmed by NOE. 

HRMS-APCI: calculated for C22H19 [M+H]+: 283.1481; found: 283.1498. 

9H-Fluorene (18a) 

 

This compound was prepared as a colorless solid in 64% yield from 17a according 

to the general procedure B. 

The spectroscopic data match with those reported in the literature.177 

1
H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 7.4 Hz, 2H), 7.58 (d, J = 7.4 Hz, 2H), 

7.41 (td, J = 7.5, 1.1 Hz, 2H), 7.33 (td, J = 7.4, 1.2 Hz, 2H), 3.94 (s, 2H).  

13
C NMR (101 MHz, CDCl3) δ 143.2, 141.7, 126.7, 126.6, 125.0, 119.8, 36.9.  

2-(tert-Butyl)-9H-fluorene (18b) 

 

This compound was prepared as a colorless solid in 87% yield from 17b according 

to the general procedure B. 

The spectroscopic data match with those reported in the literature.178 

��������������������������������������������������������
177 Clive, D. L. J.; Sunasee, R. Org. Lett. 2007, 9, 2677–2680. 
178 Fuchibe, K. J. Am. Chem. Soc. 2006, 128, 1434–1435. 
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1
H NMR (300 MHz, CDCl3) δ 7.69 (d, J = 7.5 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 

7.53 (s, 1H), 7.47 (d, J = 7.3 Hz, 1H), 7.37 (d, J = 7.9 Hz, 1H), 7.29 (t, J = 7.3 Hz, 

1H), 7.20 (t, J = 7.3 Hz, 1H), 3.83 (s, 2H), 1.33 (s, 9H).  

13
C NMR (75 MHz, CDCl3) δ 149.9, 143.2, 143.0, 141.6, 139.0, 126.5, 126.1, 

124.8, 123.8, 121.8, 119.5, 119.2, 36.9, 34.7, 31.5.  

2-Phenyl-9H-fluorene (18c) 

 

This compound was prepared as a colorless solid in 56% yield from 17c according 

to the general procedure B using catalyst E. 

The spectroscopic data match with those reported in the literature.179 

1
H NMR (400 MHz, CDCl3) δ 7.90 - 7.80 (m, 3H), 7.73 - 7.64 (m, 3H), 7.60 (d, J = 

7.2 Hz, 1H), 7.48 (t, J = 7.9 Hz, 2H), 7.45 - 7.32 (m, 3H), 4.00 (s, 2H).  

13
C NMR (101 MHz, CDCl3) δ 143.8, 143.4, 141.5, 141.4, 140.9, 139.8, 128.7, 

127.1, 127.1, 126.8, 126.7, 126.0, 125.0, 123.8, 120.1, 119.9, 37.0. 

2-Methoxy-9H-fluorene (18d) 

 

This compound was prepared as a colorless solid in 52% yield from 17d according 

to the general procedure B using catalyst E. 

The spectroscopic data match with those reported in the literature.180 

1
H NMR (500 MHz, CDCl3) δ 7.73 – 7.69 (m, 2H), 7.53 (d, J = 7.5 Hz, 1H), 7.37 

(t, J = 7.5 Hz, 1H), 7.26 (td, J = 7.4, 1.1 Hz, 1H), 7.13 (d, J = 2.4 Hz, 1H), 6.96 (dd, 

J = 8.4, 2.5 Hz, 1H), 3.90 (s, 5H).  

13
C NMR (126 MHz, CDCl3) δ 159.2, 145.0, 142.6, 141.6, 134.7, 126.7, 125.5, 

124.8, 120.5, 119.0, 112.9, 110.5, 55.5, 37.0. 

2-Chloro-9H-fluorene (18e) 
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179 Mu, B.; Li, T.; Li, J.; Wu, Y. J. Organomet. Chem. 2008, 693, 1243–1251. 
180 Hwang, S.-J.; Kim, H.-J.; Chang, S. Org. Lett., 2009, 11, 4588–4591. 
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This compound was prepared as a colorless solid in 42% yield from 17e according 

to the general procedure B. 

The spectroscopic data match with those reported in the literature.180 

1
H NMR (500 MHz, CDCl3) δ 7.78 (d, J = 7.6 Hz, 1H), 7.72 (d, J = 8.2 Hz, 1H), 

7.59 - 7.53 (m, 2H), 7.41 (td, J = 7.5, 1.0 Hz, 1H), 7.38 (dd, J = 8.1, 2.0 Hz, 1H), 

7.34 (td, J = 7.4, 1.2 Hz, 1H), 3.92 (s, 2H).  

13
C NMR (126 MHz, CDCl3) δ 144.8, 142.9, 140.6, 140.2, 132.3, 127.0, 126.9, 

126.9, 125.3, 125.0, 120.7, 119.9, 36.8. 

1-Chloro-9H-fluorene (18f) and 3-Chloro-9H-fluorene (18f′) 

 

These compounds were prepared as a colorless solid in 56% yield from 17f 

according to the general procedure B. 

Their spectroscopic data match with those reported in the literature. 180 

1
H NMR (400 MHz, CDCl3) δ 7.82 - 7.76 (m, major 1H, minor 2H), 7.70 (dd, J = 

7.3, 1.1 Hz, major1H), 7.63 – 7.54 (m, major 1H, minor 1H), 7.48 – 7.27 (m, major 

4H, minor 4H), 3.95 (s, major 2H), 3.88 (s, minor 2H).  

13
C NMR (101 MHz, CDCl3, major+minor) δ 143.7, 143.5, 143.5, 142.6, 141.3, 

141.1, 140.6, 128.4, 127.3, 126.9, 126.6, 126.6, 125.9, 125.1, 120.3, 120.1, 118.2, 

36.6, 36.5. 

4-Bromo-9H-fluorene (18g) 

 

Gold catalyst B (13.5 mg, 0.015 mmol) and 2-bromo-2'-(cyclohepta-2,4,6-trien-1-

yl)-1,1'-biphenyl 17g (97 mg, 0.3 mmol) were mixed in a Biotage 2–5 mL 

microwave vial. The solids were dissolved in 1,2-dichloroethane (1.2 mL) before 

the vial was sealed and heated to 120 ºC in a Biotage initiator microwave for 8 h. 

Afterwards, the solution was filtered through Celite, concentrated and purified by 

flash chromatography (cyclohexane) to yield the desired fluorene (18.1 mg, 0.074 

mmol, 25%) as a colorless solid.  

Cl

Cl

+

1.2 : 1

Br

B (5 mol%)

DCE, 8 h,
μ-wave 120 ºC

Br
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1
H NMR (300 MHz, CDCl3) δ 8.64 (d, J = 9.0 Hz, 1H), 7.60 - 7.32 (m, 5H), 7.14 (t, 

J = 7.7 Hz, 1H), 3.95 (s, 2H).  

13
C NMR (75 MHz, CDCl3) δ 146.2, 143.7, 141.2, 140.0, 131.9, 127.6, 127.4, 

126.6, 124.9, 123.9, 123.7, 117.0, 37.4.  

HRMS-APCI calculated for C13H9Br [M]+: 243.9882; found: 243.9880. 

4-Methyl-9H-fluorene (18h) 

 

This compound was prepared as a colorless solid in 74% yield from 17h according 

to the general procedure B. 

The spectroscopic data match with those reported in the literature.180 

1
H NMR (400 MHz, CDCl3) δ 7.98 (d, J = 7.7 Hz, 1H), 7.61 (d, J = 7.4 Hz, 1H), 

7.44 (td, J = 7.6, 1.1 Hz, 2H), 7.35 (td, J = 7.4, 1.2 Hz, 1H), 7.26 (t, J = 7.4 Hz, 

1H), 7.20 (d, J = 7.5 Hz, 1H), 3.96 (s, 2H), 2.79 (s, 3H).  

13
C NMR (101 MHz, CDCl3) δ 143.6, 143.6, 142.7, 139.8, 133.0, 128.9, 126.6, 

126.4, 126.0, 124.8, 123.1, 122.4, 37.1, 21.1. 

7H-benzo[c]fluorene (18i) 

 

A solution of 1-(2-(cyclohepta-2,4,6-trien-1-yl)phenyl)naphthalene 17i (20.2 mg, 69 

μmol) and gold complex A (2.6 mg, 3.4 μmol) in DCE (0.68 mL) was heated at 120 

ºC in a sealed tube until the starting material had been fully consumed (3 h). The 

reaction mixture was cooled to room temperature, the solvent was removed in 

vacuo, and the crude residue was purified by chromatography (Combiflash 4 g 

column, cyclohexane eluent) to give the title compound in 59% yield as a colorless 

solid (8.7 mg). 

The spectroscopic data match with those reported in the literature.181 

��������������������������������������������������������
181 Laali, K. K; Okazaki, T.; Sultana, F.; Bunge, S. D.; Banik, B. K.; Swartz, C. Eur. J. Org. Chem. 2008, 
1740–1752. 
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1
H NMR (500 MHz, CDCl3) δ 8.79 (d, J = 8.4 Hz, 1H), 8.41 (d, J = 7.8 Hz, 1H), 

7.98 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 8.2 Hz, 1H), 7.71 (d, J = 8.3 Hz, 1H), 7.68 – 

7.63 (m, 2H), 7.56 – 7.48 (m, 2H), 7.36 (td, J = 7.4, 1.0 Hz, 1H), 4.03 (s, 2H).  

13
C NMR (126 MHz, CDCl3) δ 144.3, 142.9, 142.4, 136.2, 133.5, 129.7, 129.3, 

127.8, 127.0, 126.6, 125.8, 125.1, 125.0, 123.8, 123.4, 123.0, 37.9. 

7H-Dibenzo[c,g]fluorene (18j) 

 

This compound was synthesized in 67% yield as a colorless solid following the 

general procedure B, starting from 2-(cyclohepta-2,4,6-trien-1-yl)-1,1'-

binaphthalene 17j and gold catalyst A. After cooling to room temperature, the 

solution was filtered through Celite, concentrated and purified by flash 

chromatography (cyclohexane) to yield the title compound. The spectroscopic data 

matched with those reported in the literature.182 

1
H NMR (300 MHz, CDCl3) δ 8.76 (dq, J = 7.9, 0.9 Hz, 2H), 8.00 (dd, J = 7.9, 1.7 

Hz, 2H), 7.89 (d, J = 8.2 Hz, 2H), 7.76 (d, J = 8.2 Hz, 2H), 7.63 - 7.50 (m, 4H), 4.14 

(s, 2H).  

13
C NMR (75 MHz, CDCl3) δ 143.0, 138.5, 134.0, 129.0, 128.9, 127.7, 126.8, 

125.0, 124.9, 123.0, 39.0. 

6,12-Dihydroindeno[1,2-b]fluorene (18k/18k′) 

 

The 1 mL DCE solution of substrate 17k (41 mg, 0.1 mmol) and gold catalyst A 

(3.7 mg, 5 mol%) was heated at 120 °C for 2 h. After cooling to room temperature, 

the solvent was removed in vacuo. 1 mL acetone was added to dissolve some of the 

��������������������������������������������������������
182 (a) Laali, K. K.; Okazaki, T.; Sultana, F.; Bunge, S. D.; Banik, B. K.; Swartz, C. Eur. J. Org. Chem. 
2008, 1740–1752. (b) Harvey, R. D.; Pataki, J.; Cortez, C.; Raddo, P. D.; Yang, C.-X. J. Org. Chem. 
1991, 56, 1210–1217. 
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residue. The liquid was decanted, leaving behind a colorless solid which was dried 

in vacuo to give a 4:1 mixture of 18k/18k  (13.5 mg, 53%).  

The spectroscopic data match with those reported in the literature.183 

1
H NMR (400 MHz, CDCl3) δ 7.97 (s, 2H, major), 7.85 - 7.81 (m, 2H major + 4H 

minor), 7.60 - 7.56 (m, 2H major + 2H minor), 7.42 (td, J = 7.5, 1.2 Hz, 2H major + 

2H minor), 7.32 (td, J = 7.4, 1.3 Hz, 2H major + 2H minor), 4.00 (s, 4H major), 

3.98 (s, 4H minor).  

13
C NMR (101 MHz, CDCl3) δ 143.6, 142.3, 141.8, 140.8, 126.8 (minor), 126.7, 

126.5 (minor), 126.4, 125.1 (minor), 125.0, 119.9 (minor), 119.5, 118.7 (minor), 

116.4, 36.7, 35.5 (minor). 

(1R*,2R*,3R*,4R*,7R*,8S*)-3,8-di(9H-fluoren-4-yl)tricyclo[5.1.0.0
2,4

]oct-5-ene 

(19) 

 

This compound (19) was prepared as a yellow oil in 35% yield from 17l according 

to the general procedure B. 

1
H NMR (400 MHz, CDCl3) δ 8.36 (d, J = 7.8 Hz, 1H), 8.20 (d, J = 8.0 Hz, 1H), 

7.61 - 7.56 (m, 2H), 7.50 - 7.31 (m, 7H), 7.21 (t, J = 7.6 Hz, 1H), 7.16 (t, J = 7.5 Hz, 

1H), 6.99 (d, J = 7.5 Hz, 1H), 5.76 (dd, J = 9.8, 4.5 Hz, 1H), 5.68 (dd, J = 9.8, 4.6 

Hz, 1H), 3.95 (s, 2H), 3.90 (s, 2H), 2.83 (t, J = 8.5 Hz, 1H), 2.67 (t, J = 4.7 Hz, 1H), 

2.54 (t, J = 8.5 Hz, 1H), 2.09 - 1.94 (m, 2H), 0.97 (dt, J = 8.6, 4.5 Hz, 1H).  

13
C NMR (101 MHz, CDCl3) δ 143.6, 143.6, 143.5, 142.6, 142.2, 141.9, 140.6, 

136.1, 132.0, 130.6, 127.1, 126.6, 126.5, 126.3, 126.0, 125.9, 125.5, 124.9, 124.7, 

124.7, 123.5, 123.2, 122.8, 122.6, 121.4, 37.1, 36.9, 35.3, 30.7, 21.9, 21.5, 20.5, 

17.4. 

HRMS-MALDI: calculated for C34H26 [M]+: 434.2035; found: 434.2098. 

9H-xanthene (23a) 

��������������������������������������������������������
183 Major isomer: (a) Poriel, C.; Liang, J.-J.; Rault-Berthelot, J.; Barrière, F.; Cocherel, N.; Slawin, 
A.   M.  Z.; Horhant, D.; Virboul, M.; Alcaraz, G.; Audebrand, N.; Vignau, L.; Huby, N.; Wantz, G.; 
Hirsch, L. Chem. Eur. J. 2007, 13, 10055–10069. Minor isomer: (b) Thirion, D., Poriel, C., Rault-
Berthelot, J.; Barrière, F.; Jeannin, O. Chem. Eur. J. 2010, 16, 13646–13658.  
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A solution of 7-(2-phenoxyphenyl)cyclohepta-1,3,5-triene 22a (26 mg, 0.1 mmol) 

and gold complex E (4 mg, 5 mol%) in toluene (1 mL) was heated at 120 ºC in a 

sealed tube for 2 h. After cooling to room temperature, the solvent was removed in 

vacuo and the residue was purified by preparative TLC (eluent: cyclohexane) to 

give 5.5 mg the title compound in 30% yield as a colorless solid.  

The spectroscopic data match with those reported in the literature.184 

1
H NMR (500 MHz, CDCl3) δ 7.25 - 7.18 (m, 4H), 7.09 - 7.03 (m, 4H), 4.08 (s, 

2H).  

13
C NMR (126 MHz, CDCl3) δ 152.0, 128.9, 127.6, 122.9, 120.6, 116.4, 27.9. 

 

��������������������������������������������������������
184 Okuma, K.; Nojima, A.; Matsunaga, N.; Shioji, K. Org. Lett. 2009, 11, 169–171. 

O



185 

General conclusions 

Based on the known equilibrium of cycloheptatrienes 1 and norcaradienes 2, we 

found a new method by which to generate gold(I) carbenes 3 through the retro-

Buchner reaction of the norcaradiene tautomer. 

Figure 1 summarizes the progress we have made recently on the intermolecular 

cycloaddition of gold(I) carbenes generated by retro-Buchner reaction. 

� The gold(I) carbenes 3 can be trapped intermolecularly by alkenes to form 

synthetically useful cyclopropanes 4. 

� Alternatively, gold(I) carbenes 3 can also react with furans 6 to form 

cyclopentene derivatives 7. 

� Methylenecyclopropanes or cyclobutenes 5 were successfully used as 

synthetic equivalent of 1,3-dienes for very challenging (4+1) 

cycloadditions. 

 

 

Figure 1. Intermolecular cycloadditions. 

 

Gold(I) carbenes generated by the retro-Buchner reaction of 1,3,5-cycloheptatrienes 

catalyzed by cationic gold(I) complexes can be trapped intramolecularly by arenes 

or alkenes to form fluorenes 9 or indenes 10. This methodology provides a new 

synthetic approach to fluorenes and indenes and may be applied to the synthesis of 

indenofluorenes used in organic electronics (Scheme 1). These reactions proceed via 

intramolecular Friedel−Crafts-type attack of the highly electrophilic gold(I) 

carbenes to the alkenes and arenes. The reactivity displayed by the cationic 
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intermediates generated by the retro-Buchner reaction is more similar to that of 

metal carbenes of rhodium or copper or even free carbenes than that of carbocations. 

 

Scheme 1 

Closer scrutiny of the mechanisms of these reactions has revealed some intriguing 

details (Scheme 2). Thus, in the indene synthesis, we have found that a novel 1,4-

metallotropic migration competes with the primary pathway for the formation of the 

(η2-indene) gold(I) complexes by a concerted 1,2-H migration/gold(I) elimination. 

The formation of fluorenes involves a diatropic-type process in the formation of an 

(η1-fluorene)-gold(I) complex. 

 

Scheme 2 
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