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Preface 
 
 
 

The focus of the work presented in this thesis was the study and analysis of 

the optical properties of the metallo-dielectric photonic crystals. The main goal of 

this work was to show that metallic scatters embedded into dielectric host can lead 

to different behaviour of such structures.  

The correctness of the results obtained in this thesis is confirmed by 

comparing with results obtained by other groups. The results of the present thesis 

were presented at national and international conferences and published in 

international journals. 

 

The thesis is organized as follows: 

The first chapter gives the short introduction to basic optical properties of 

the photonic crystals. Possible areas of applications as well as the main fabrication 

processes are also given. The brief introduction to basics optical properties of 

metals is also described. After that, the theoretical concepts of the metallo-

dielectric photonic crystals are provided in conjunction with some areas of 

application. The basic steps of the fabrication of the metallo-dielectric photonic 

crystals are shortly reviewed. 

 

Chapter 2 gives the brief introduction into the optics of the metals. It also 

describes the possible modification of Drude and Drude-Lorentz models of the 

dielectric functions used in the theoretical calculations of the optical properties of 

metals to achieve the realistic behaviour. 
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Chapter 3 described the numerical methods for calculations of the photonic 

band structures used in this work with description of the plane-wave expansion 

method (PWEM). Possible modification of this method in order to include the 

frequency-dependent dielectric constants is also outlined. After that, the finite-

difference time-domain method (FDTD) is introduced. The basics of this method 

along with stability, initial and boundary conditions are presented. The advantages 

and disadvantages are also reviewed. The modifications of the FDTD method for 

including Drude model of metals are presented. The two different approaches for 

calculation of the photonic band gaps by the FDTD method are given. The brief 

reviews of other methods used for photonic band structure analysis conclude this 

chapter. 

 

In chapter 4 it is reported that metallo-dielectric photonic crystals 

embedded into dielectric host with dielectric constant different from the air can 

essentially modify the optical properties of such structures. In particular, changing 

the dielectric constant of the background leads to augmentation of the existing 

band gaps and also to the creation of the new one. A numerical examples is given 

for a two-dimensional square lattice of metallic circular cylinders and triangular 

lattice of rods with square cross-section embedded into the dielectric matrix. 

 

Chapter 5 describes the influence of the dielectric background on the 

quality factors of the metallo-dielectric photonic crystals with defect introduced in 

it. The obtained results revealed that changing the dielectric constant of 

background and/or the radius of the defect rod can greatly enhance the quality 
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factors of the “defective” structure. Moreover, the results show that optimal value 

of the quality factor exists for some range of the radiuses of the defect. 

 

Chapter 6 presents an approach to calculate the quality factors of real 

metals under realistic conditions. When parameters that properly describe the 

metal are taking into account it was shown that quality factors are drastically 

reduced from values when lossless model is used. 

 

The summary, the discussions and the future work are given in the chapter 

7, which completes the thesis. 
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Chapter 1 
 

Fundamentals of Photonic Crystals 
 

 

 

The photonic crystals are artificially created materials that can do to 

photons what an ordinary semiconductor does to electrons: they can exhibit a 

band gap in which photons with certain energies cannot propagate inside the 

crystal, regardless of polarization and propagation direction. 

Photonic crystals are characterized by three parameters: the lattice 

topology, the spatial period and the dielectric constants of the constituent 

materials. By suitable selection of these parameters, a gap in the 

electromagnetic dispersion relation can be created, within which the linear 

propagation of electromagnetic waves is forbidden. This forbidden frequency 

range is called the photonic bandgap. It is said that a photonic bandgap is 

complete, if a forbidden gap exists for all polarizations and all propagation 

directions. It is common to distinguish one-, two- and three-dimensional 

photonic crystals by the number of dimensions within which the periodicity 
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Introduction to Photonic Crystals 12

has been introduced into the structure. Examples of one-, two- and three-

dimensional photonic crystals are given in Figure 1.1. Necessary but not 

sufficient conditions to obtain a complete photonic bandgap are a periodicity 

in the three spatial directions and a large difference in the dielectric constants 

of the constituent materials. 

In 1987 E. Yablonovitch [4] proposed to use a three-dimensional 

periodic medium, which he called a photonic crystal, to inhibit the spontaneous 

emission and to realize localized defect modes and consequently to enhance 

the spontaneous emission. In the same years, S. John [5] proposed the use 

of a disordered three-dimensional periodic medium to localize electromagnetic 

waves. Many interesting quantum optical phenomena such as the bound state 

of photons and non-exponential decay of the spontaneous emission were 

predicted. These ideas actively stimulated research area [6-10], which lead 

both to various unexpected results in the fundamental understanding of light-

matter interaction and to various new optoelectronics and photonics 

applications. 
 

 

Figure 1.1. Examples of one-, two- and three-dimensional photonic crystals. Left: SEM 
image of the cross section of a 1D all-silicon photonic crystal (after Xifre et. al. [1]). Center: 
SEM image of a 2D structure (after Trifonov et. al. [2]). Right: SEM image of a 3D structure 
(after Cheylan et. al. [3]). 
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Chapter 1 13 

1.1 The Origin of the Photonic Bandgap 
 

In conventional electromagnetic gratings such as periodic waveguides, distributed 

feedback lasers, holography, and x-ray diffraction, the gratings consist of weak 

perturbations about a mean refractive index. The theoretical treatment of these 

weak gratings is based on a perturbation approach that leads to coupled mode 

equations for a finite set of plane waves in the grating. Not all conventional periodic 

structures have weak gratings. In multilayer dielectric stacks used for high reflection 

and antireflection coatings on optical components, large one-dimensional PBGs are 

present.  

Here one can take advantage of the simplicity of the one-dimensional systems 

to explain the physical origin of the PBG. 

A one-dimensional photonic crystal is made of layers with alternating 

dielectric constant [6], as shown in Figure 1.2. This system repeats in the z-

direction with period a, which will be of the order wavelength of the light. A 

plane wave travelling in the z-direction, along the line of periodicity, will be 

scattered at the interface between two medias. This gives rise to forward and 

backward propagating waves within the structures. These waves will interfere to 

form standing waves.  

The dispersion for light in an isotropic dielectric material is given by the 

equation: 

 

( )
ε

ω ckk = ,      (1.1) 
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Figure 1.2. A one dimensional photonic crystal with periodicity a. It consists of alternating layers 
with different dielectric constants. (After [6]). 
 

where c is the speed of light, k is a wavevector and ε is a dielectric constant, given 

by the properties of the dielectric medium. This equation shows that the energy of 

light varies linearly with momentum, with zero momentum corresponding to zero 

energy. Figure 1.3 plots the dispersion relation of the previous structure  

In Figure 1.3 (a), both dielectric layers have the same dielectric constant, 

forming a single slab of material assigned an artificial periodicity. Figure 1.3 (b), 

and (c) show the dispersion of light propagating through a dielectric stack where 

the different layers have a difference in dielectric constant. Many aspects of this 

graph are similar to that of the Figure 1.3 (a), except now there is a region of 

frequency space where no photonic mode exists; this is known as a photonic 

bandgap. This bandgap arises from the difference in field energy location.  
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a) 

 
b) 

 
c) 

Figure 1.3. The photonic band structures shown for three different multilayer films, all of which 
have layers of width 0.5a. a)each layer has the same dielectric constant ε = 13; b) layers 
alternates between ε = 13 and ε = 12; c) layers alternates between ε = 13 and ε = 1. The photonic 
band gaps are shown by shaded areas. (After [6]). 
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Introduction to Photonic Crystals 16

For a physical insight into this bandgap formation it is useful to return to real 

space and consider the electric field directly above and below the gap, where k = 

π/a. Here, the modes are standing waves with wavelengths equal to 2a. These 

modes have only two possible configurations within the structure (Figure 1.4 (a), 

(b).), their nodes positioned within either the high or low dielectric constant layers.  

Any other configuration violates the symmetry of the system, and hence is 

forbidden. It now becomes clear that while both modes have the same wavelength, 

the mode concentrated in the high index material will experience a shorter 

effective distance, and hence a lower frequency, than the mode concentrated in the 

low index material. This difference in frequency provides the energy gap in the 

photonic dispersion relation analogous to the energy gap between the valence and 

conduction bands in a semiconductor material. It is common to call the lower 

frequency band as “dielectric band” and the higher frequency band as “air band”. 

Indeed, the two systems are almost completely analogous, allowing the photonic 

system to be written in ‘Bloch form’, consisting of a plane wave modulated by a 

function arising from the periodicity of the lattice. This approach becomes 

particularly useful when considering the coupling of light into two and three 

dimensional photonic crystals. 

a)  

 b)  

Figure 1.4. Schematic illustration of the modes associated with lowest band gap of Figure1.3 (c) 
Electric field of the band 1.(b) Electric field of the band 2. (After [6]). 
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1.2 Properties of Photonic Crystals 
 

1.2.1 Polarization 

 

 In the two-dimensional case, all derivatives with respect to z coordinate 

vanish and the study is restricted to the propagation along the cross-section plane 

of the crystal, i.e. the xy plane. This crucial property opens the possibility of 

separately studying the problems corresponding to the fundamental cases of 

polarisation. These polarisation modes are referred to as TM and TE [11] 

polarisations (Figure1.5). In the case of the TM polarization the components of 

magnetic field are parallel to the xy plane and 0≠zE . For the TE case the  

and electric field components lie in the xy plane. 

0≠zH

 
 

 
 

Figure 1.5. The polarization definition. a) TM polarization the components of magnetic field are 
parallel to the xy plane and .bB)For the TE case the 0≠zE 0≠zH  and electric field 
components lie in the xy plane. 
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1.2.2 Lattice 

 

A photonic crystal is built of a basic block (unit cell) repeated infinitely and 

periodically in space. The spatial arrangement of the unit cell is a lattice. Each 

lattice is spanned by direct lattice vectors [12]. For each direct lattice the 

reciprocal lattice is existed. With given set 1ar , 2ar , 3ar  of direct lattice vectors, the 

corresponding set 1b
r

, 2b
r

, 3b
r

 of reciprocal vectors is defined by the expression: 

 

⎩
⎨
⎧

≠
=

==⋅
ji
ji

ba ijijji ,0
,1

          ,2 δπδ
rr .     (1.2) 

 

The reciprocal vectors can be generated by the following equations that are given 

by: 

 

ccc V
aab

V
aab

V
aab 21

3
13

2
32

1 2             ,2             ,2
rrrrrrrrr ×

=
×

=
×

= πππ   (1.3) 

 

where  is the volume of the primitive unit cell of the crystal lattice. )( 321 aaaVc
rrr

×=

The primitive cell of the reciprocal space has a volume  that is 

related to V

)( 321 bbbVc

rrr
×=′

c by: 

 

c
c V

V
38π

=′ ,      (1.4) 
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Figure 1.6. Square lattice. (a) Direct lattice generated by the basis vectors 1ar , and 2ar . (b) The 

corresponding reciprocal lattice and reciprocal vectors 1b
r

, and 2b
r

. (c) First Brillouin zone and 
the irreducible region (dark triangle). 
 

From their definition we see that crystal lattice and reciprocal lattices are inverses 

of each other: lattice vectors have dimension of the length, while reciprocal 

vectors have dimension of the inverse length. 

In the two dimensions 3ar  can be chosen arbitrarily and the most studies 

geometries are the square and triangular lattices. Figure 1.6, shows a square lattice 

in both real and reciprocal space along with the basis vectors. In Figure 1.6 (c) the 

irreducible first Brillouin zone with the high symmetry points is shown by the 

dark triangle. 

 

The direct vectors of square lattice are  

 

 )1,0(    ),0,1( 21 aaaa ==
rr

,    (1.5) 

 

where a is the lattice constant. 
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The reciprocal vectors are: 

 

 )1,0(2    ),0,1(2
21 a

b
a

b ππ
==

rr
.   (1.6) 

 

The high symmetry points of the first Brillouin zone have coordinates: Γ = (0, 0), 

X = (π /a, 0), M = (π /a, π/a).  

Figure 1.7, shows a triangular lattice in both real and reciprocal space along with 

basis vectors. In Figure 1.7 (c) the irreducible first Brillouin zone with the high 

symmetry points is shown by the dark triangle. 

Direct vectors of triangular lattice are  

 

 
2
3,

2
1    ,

2
3,

2
1

21 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= aaaa rr .    (1.7) 

 

 

 
Figure 1.7. Triangular lattice. (a) Direct lattice generated by the basis vectors 1ar , and 2ar . (b) 

The corresponding reciprocal lattice and reciprocal vectors 1b
r

, and 2b
r

. (c) First Brillouin zone 
and the irreducible region (dark triangle). 
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The corresponding reciprocal vectors are: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

2
1,

2
32    ,

2
1,

2
32

21 a
b

a
b ππ rr

.   (1.8) 

 

The high symmetry points of the first Brillouin zone of the triangular lattice have 

coordinates: Γ = (0, 0), K = (2π /3a, 2π /√3a), M = (0, 2π /√3a). 

 

1.2.3 Density of States 

 

 The photonic density of states (DOS) plays an important role in 

understanding the optical properties of a photonic crystal because it describes the 

integral availability of allowed states in a certain frequency range regardless of 

band-index n or wavevector k
r

. The calculation of the DOS provides a cross-

check for the existence of a photonic band gap. The total DOS is defined as in Ref. 

[13] : 
 

( ) ( )( )∑ ∫ −⋅=
n BZ

n kkd
1

3
r

ωωδωρ ,    (1.9) 

 

where the k-space integration covers the whole first Brillouin zone (1BZ) and 

( )kn

r
ω  is the eigenvalue for band-index n and wavevector. δ is the Dirac delta 

function. In the homogeneous media ρ(ω) is proportional to ω2. A vanishing DOS 

is the commensurate condition for a complete photonic bandgap.  
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1.2.4 Group Velocity  

 

The group velocity of the radiation modes has very important role in the 

light propagation and optical response in the photonic crystal. The group velocity 

of the eigenmodes is defined as the gradient of the dispersion curves that is the 

derivative of the angular frequency ω with respect to the wavevector k
r

: 

 

k
v n

g r
r

∂
∂

=
ω       (1.10) 

 

Usually, in the calculations, the derivative in the equation (1.10) can be replaced 

by numerical differentiation: 

 

k
v nknkk

kg r
r rrr

r

Δ

−
= Δ+

→Δ

,,

0
lim

ωω
     (1.11) 

 

Another method to calculate the group velocity is by using the Hellman-Feynman 

theorem [8]. This procedure gives more precisely results but also is much more 

complicated. 

 
1.2.5 Example of Band Diagram, DOS, and Group 
Velocity 
 
In order to illustrate the quantities mentioned above we have computed the 

photonic band structure for TM-polarization (Figure 1.8 (a)) and TE-polarization 

(Figure 1.8 (b)) in a two-dimensional photonic crystal consisting of square lattice 

(with lattice constant a) of cylindrical air pores (rpore = 0.475a) in a silicon matrix 
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with dielectric permittivity εSi = 12. This structure exhibits two photonic bandgaps 

for TM polarization. The larger bandgap extends between ω1 = 0.238 x 2πc/a to 

ω2 = 0.292 x 2πc/a and the smaller one extends from ω1 = 0.422 x 2πc/a to ω2 = 

0.464 x 2πc/a. Also, we can define the width of the PBG as Δω = ω2 − ω1 and the 

center frequency as ωg = (ω2 + ω1) / 2. Usually, the PBG is normalized as (Δω / ωg) 

and expressed in percentage. For this example we have for first PBG Δω / ωg = 

20.4% and for second PBG the ratio Δω / ωg is equal to 9.5%. For TE polarization 

only one band gap between ω1 = 0.45 x 2πc/a to ω2 = 0.5 x 2πc/a exists with the 

ratio Δω / ωg equal to 10.5%. 

 

 

 
 

Figure 1.8. Example of band diagram for two dimensional photonic crystal made of cylindrical air 
pores with radius rpore = 0.475a in a square lattice. The material of background is silicon (εSi = 
12). The photonic band gaps are shown by shaded areas. a) TM polarization; b) TE polarization. 
 

 

To cross-check our results we also computed the DOS (Figure 1.9) of the 

given photonic crystal. We see that regions of zero DOS are photonic band gaps 

and these regions correspond to photonic band gaps of Figure 1.8. 
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Figure 1.9. Density of states for the structure shown in the Fig.1. The photonic band gaps are 
shown by shaded areas. a) TM polarization; b) TE polarization. 
 

 

In order to understand the wave propagation in a photonic crystal, it is 

necessary to obtain group velocities from the photonic band structure. In 

Figure 1.10 we show the variation of the group velocities along the high-

symmetry lines of the first Brillouin zone associated with bands 1, 3, and 5 of our 

model system. As expected from the corresponding band structure in Figure 1.8, 

the higher bands exhibit rather low values of the group velocity. In particular, the 

values of group velocity for band 3 along the Γ-X direction are about an order of 

magnitude smaller than the group velocity in band 1. A low group velocity 

increases a field amplitude and also cause a long interaction time between an 

electromagnetic field and a matter. 
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Figure 1.10. Group velocities for bands 1, 3, and 5 corresponding to the band structure in Figure 
1.8 (a). The group velocities of these bands exhibit extreme variations which may have numerous 
applications. 
 

1.3 Devices Based on the Photonic Crystals 
 

With the demonstration the physics of the photonic band gap formation, focus 

turned to the engineering of devices utilizing the photonic band structure. 

Waveguides 

Guiding light using waveguides is a one of fundamental properties of 

optics that enables a range of all-optical devices to be created. Waveguides not 

only transfer light from one part of a circuit to another, but also are used in many 

applications such as junctions, couplers and lasers. Although three dimensional 

photonic crystals would be preferred since they control light propagation in all 

three directions, they are difficult to fabricate. A more suitable approach is the use 

of two-dimensional photonic crystal waveguides [14-17], which are based on 

planar structures.  

The planar photonic crystal waveguide consists of a guiding layer with a 

high refractive index and a lower and upper cladding layers, with a lower 
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refractive index. The width of the guided mode depends on the thickness of the 

core layer and the difference of the refractive index between core and cladding.  

The feature to guide light through low-loss sharp bends in photonic 

crystals (Figure 1.11) has attracted a lot of attention. High-efficiency bends have 

been demonstrated in many different photonic crystal geometries [18]. 

 

 
 

Figure 1.11. Electric field distribution in a sharp bend photonic crystal waveguide. (After [18]). 
 

 

Microcavities 

Any defect surrounded by a photonic crystal with a band gap defines a cavity. 

Microcavities provide both sharp spectral responses and large field enhancement 

within the microcavity. The former can be used for narrow bandwidth filters and 

wavelength selective filters. High field intensities due to the light being confined 

in a small microcavity can enhance light-matter interaction, making them ideal for 

photonic applications such as lasers. 
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In 2001 Vuckovic et al. reported a theoretical study of various microcavity 

designs [19]. Microcavities with quality factor > 10000 were achieved by varying 

the radius and shape of the cylinders in the area surrounding defect. Recently, in 

2005 group by Noda reported the measured quality factor ≈ 1000000. This huge 

value was achieved by shifting the position of the neighbour holes surrounding the 

microcavity (Figure 1.12) [20]. 

 

(a)

(a)

(b) (c)
 

Figure 1.12. (a) Schematic of the point-defect nanocavity in a 2D photonic crystal l slab. The base 
cavity structure is composed of three missing air holes in a line. The photonic crystal structure has 
a triangular lattice of air holes with lattice constant a. The thickness of the slab and the radius of 
the air holes are 0.6a and 0.29a, respectively. (b) The designed cavity structure created by 
displacing two air holes at both edges in order to obtain high-quality factor. (c) The designed 
cavity structure created by fine-tuning the positions of six air holes near both edges to obtain an 
even higher quality factor. (After [20]). 
 

 

Photonic Crystal Fibers 

Photonic-crystal fiber (PCF) [21, 22], is a new class of optical fiber based on the 

properties of photonic crystals (Figure 1.13 (a), (b)). Because of its ability to 

confine light in hollow cores or with confinement characteristics not possible in 

conventional optical fibers, PCF is now finding applications in optical 
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communications, fiber lasers, nonlinear devices, high-power transmission, highly 

sensitive gas sensors (etc.), and other areas.  

More specific categories of PCF include photonic-bandgap fiber (PCFs that 

confine light by band gap effects), holey fiber (PCFs using air holes in their cross-

sections), hole-assisted fiber (PCFs guiding light by a conventional higher-index 

core modified by the presence of air holes), and Bragg fiber (photonic-bandgap 

fiber formed by concentric rings of multilayer film).Photonic crystal fibers can be 

divided into two modes of operation, according to their mechanism for 

confinement.  

 

(a) (b)  
Figure 1.13. Photonic crystal fibers. (a) Brag fiber, utilizing one-dimensional photonic crystal. (b) 
Photonic crystal fiber, utilizing concept of two-dimensional photonic crystal. 
 

Those with a solid core, or a core with a higher average index than the 

microstructured cladding, can operate on the same index-guiding principle as 

conventional optical fiber — however, they can have a much higher effective-

index contrast between core and cladding, and therefore can have much stronger 

confinement for applications in nonlinear optical devices, polarization-

maintaining fibers, etc. (or they can also be made with much lower effective index 

contrast). Alternatively, one can create a "photonic bandgap" fiber, in which the 
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light is confined by a photonic bandgap created by the microstructured cladding - 

such a bandgap, properly designed, can confine light in a lower-index core and 

even a hollow (air) core. Bandgap fibers with hollow cores can potentially 

circumvent limits imposed by available materials, for example to create fibers that 

guide light in wavelengths for which transparent materials are not available 

(because the light is primarily in the air, not in the solid materials). Another 

potential advantage of a hollow core is that one can dynamically introduce 

materials into the core, such as a gas that is to be analyzed for the presence of 

some substance. 

 

1.4 Fabrication Methods 
 

A wide variety of methods have been used to fabricate photonic crystals. 

Some of them are more suitable for the fabrication of 1D and 2D photonic crystals, 

while others are useful when one needs to localize photons in three dimensions. 

 

Self-assembly methods. Colloidal self-assembly methods seems to be the most 

efficient method for fabrication of 3D photonic crystals. In this method, 

predesigned building blocks (usually monodispersed silica or polystyrene 

nanospheres) spontaneously organise themselves into a stable structure [23].  

A number of techniques are available for colloidal fabrication. A widely used 

technique for creating colloidal crystals is gravity sedimentation. Sedimentation is 

a process whereby particles, suspended in a solution, settle to the bottom of the 

container, as the solvent evaporates. Another self-assembling technique is called 

cell method [24]. In this method an aqueous dispersion of spherical particles is 

injected into a cell formed by two glass substrates and a frame of photoresist 
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placed on the surface of the bottom substrate. One side of the frame has channels 

that can retain the particles, while allowing the solvent to flow through. The 

particles settle down in the cell to form an ordered structure (usually fcc structure). 

 

Lithography. Generally, lithography is used to pattern the substrate for 2D 

photonic crystals. Considering the small size of the lattice (periodicity between 

0.2 and 0.7 μm, with sub-0.1 nm control of feature size desirable) for a PBG in 

optical range, standard photolithography techniques cannot be used. The most 

poplar alternative is electron beam lithography. Electron beam lithography is a 

method that enables to create various photonic crystals with extremely high 

resolution. In this method, the sample (wafer) is covered with an electron-

sensitive material called resist. The material, used as resist, undergoes a 

substantial change in its chemical or physical properties, when it is exposed to an 

electron beam [25]. The beam position and intensity are computer-controlled, and 

electrons are delivered only to a certain areas to get the desired pattern. After 

exposition, a part of the resist is dissolved away and the sample can be further 

processed with etching procedures to get the final structure. Although its 

resolution is high, electron beam lithography is very expensive method. 

 

Etching methods. These methods are more suitable for the fabrication of 2D 

photonic crystals. These methods utilize marking of a planar pattern of unwanted 

areas on the surface of a semiconductor, using a lithographic technique. There are 

two different etchings: 

Dry etching. An example is reactive-ion etching (RIE), which utilizes reactive 

ions generated by plasma discharge in a chloride-based (SiCl4 and Cl2) or 

fluorine-based (CHF3, CF4, CF6, and SF6) reactive gas. These ions are accelerated 

toward the sample surface under an electric field. This dry etching provides a 
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good control over the hole size, but has a limited maximum etching depth. The 

method has been used for many semiconductors, such as GaAs, AlGaAs, and Si. 

Wet etching. An example is electrochemical etching that has also been used for 

many semiconductors. Electrochemical etching of Si to produce macroporous 

silicon photonic crystal is an example. In this case, a pre-pattern with etch pits 

was first created on the front of a silicon wafer by using lithographic patterning 

and subsequent alkaline chemical etching using KOH or TMAH solutions. The 

wafer was then mounted in an electrochemical cell and electrochemically etched 

using an HF solution. The pre-etched pits form nucleation centres for 

electrochemical etching. The advantage provided by an electrochemical etching 

method is that high aspect ratio can be easily produced. 

Another approach to produce 2D photonic crystal using an electrochemical 

method is provided by anodic oxidation of aluminum in acidic solutions, which is 

known to produce highly ordered porous structure in the resulting alumina (Al2O3) 

that consists of a closely packed array of columnar cells [26, 27]. The pore size 

and density of the pores in alumina can be precisely controlled by selecting the 

anodization condition (choice of acid, applied voltage) and pre-texturing of the 

aluminium surface with an array of nanoidentation using a SiC mold [28]. This 

porous Al2O3 can be used as a template to form other photonic media that can be 

grown in the pores, and Al2O3 can subsequently be etched out. Filling of a 

polymer in the pores can produce a negative replica that can subsequently be used 

for growth of other periodic structures [29]. 

 

Holographic methods. These methods, which utilize interference between two or 

more coherent light waves to produce a periodic intensity pattern [30], have been 

used to produce a periodic photoproduced photonic structure in a resin 

(photoresist). This method has been in practice for a long time. Recent 

UNIVERSITAT ROVIRA I VIRGILI
DESING AND ANALYSIS OF METALLO-DIELECTRIC PHOTONIC CRYSTALLS.
Mykhaylo Ustyantsev
ISBN: 978-84-690-7584-5 / DL: T.1603-2007



Introduction to Photonic Crystals 32

developments use photopolymerizable (or photocrosslinkable) medium containing 

inorganic nanoparticles (as TiO2, metallic nanoparticles) or liquid crystal 

nanodroplets.  

The holographic method can also be used to fabricate an electrically 

switchable polymer-dispersed liquid crystal photonic bandgap material [31] 

 

1.5 Metallic Photonic Crystals 

 
1.5.1 Basics 

 

To achieve the band gap, the system must have the high contrast in the 

refractive index, while at same time have negligible absorption of light. These 

conditions have severely restricted the set of dielectrics that exhibit a photonic 

bandgap. One suggestion is to use metallic scatterers rather than dielectric one. 

The huge value of the metallic dielectric function means that a fewer number of 

periods would be enough to achieve photonic bandgap effect [32, 33]. However, 

care must be taken, since metals are very absorptive, especially at optical 

frequencies. That is why the most early proposed metallic photonic crystals 

operated at microwave frequencies where the absorption is smaller [34-40]. 

However, there are some situations where the redistribution of the photon wave 

field, due to the periodicity, prevents the metal from absorbing the light. [41]. 

Another interesting field that attracted a lot of attention is called surface plasmon 

optics. Surface plasmons are characterized as surface bound waves that propagate 

at the interface between metal and dielectrics. 
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In 1994 Kuzmiak et al. [42] studied the two-dimensional case of an array 

consisting of infinitely long metallic cylinders arranged in square and triangular 

lattices embedded in air. Their results showed a qualitative difference in the band 

structure of the two different polarizations. 

For TE polarization (Figure 1.14), the obtained results show that the band 

structure is very similar to that of free space with exception of number 

superimposed flat bands. For TM polarization (Figure 1.15) the situation was 

different. No flat bands were founded, but a finite cut-off frequency was observed, 

below which no propagating modes exist. This was explained that TM modes can 

couple to longitudinal oscillations of charge along the length of the cylinders. In 

the TE polarization case the existence of flat bands was explained by discrete 

excitations associated with isolated cylinders. Later, in 2001 Sakoda proved that 

these flat bands are due to the presence of the surface plasmon polaritons [43]. 

 

 

 
 

Figure 1.14. The photonic band structure of a square lattice of metallic cylinders in air with r = 
0.0178a. TE polarization. 
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Figure 1.15. The photonic band structure of a square lattice of metallic cylinders in air with r = 
0.472a. TM polarization. 
 

First three-dimensional metallic photonic crystal was proposed by group of 

Yablonovitch [44]. This structure was made from metal wires based on diamond 

lattice with centimetre lattice spacing. The forbidden band bellow a cut-off 

frequency in GHz frequency range was demonstrated. Another group [45] 

proposed a more simple structure based on metallic square mesh separated by 

dielectric. Their results were in qualitative agreement with the Yablonovitch 

structure, identifying a finite cut-off frequency below which no modes could 

propagate. 

In 1999 A. Moroz [46] suggested that it is possible to avoid constraint on 

the dielectric constant by using metallic spheres coated by dielectric layer. The 

results showed that the gap width can increase up to 50% as compared to the same 
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crystal made from simple dielectric spheres. He proposed to incorporate metals 

into a photonic crystal that has gap in a certain frequency window, in which metal 

behaves as conventional, but also highly dispersive, dielectrics. In this frequency 

window the absorption can be neglected. For example in a system of metal 

spheres in dielectric background with εb = 1, if the periodicity is chosen such that 

the stop band opens in the frequency range that εsphere <1< εb, then this system acts 

as an air sphere type structure and the plasma frequency, εsphere (ωp) = 0, the 

dielectric contrast becomes extremely large. The first property is necessary for 

opening a complete photonic band gap, and the second ensures opening of the 

maximum width band gap for this structure. 

 

 

1.5.2 Examples of Applications  

 

Although, that metallic photonic crystals have received far less attention 

than dielectric photonic crystals, it has been suggested that periodic metallic 

structures have important applications, such as cavities [47], waveguides [48], and 

antennas [49, 50]. Furthermore, metallic photonic crystals, with careful design, 

have robust photonic band gaps. Chan et al. [51, 52] have designed a three-

dimensional photonic crystal constructed by metallic ‘photonic atoms’, which are 

spheres with a dielectric core, a metal coating, and an outer insulating layer (a 

system made up of nontouching solid metal spheres will have qualitatively similar 

behavior). As long as the sphere filling ratio exceeds a threshold, robust photonic 

band gap exist in any periodic structure, such as face-centered cubic (FCC), body-

centered cubic (BCC), the diamond structure, and even simple cubic (SC). 
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The other interesting is that metals offer exciting phenomena that can be usefully 

applied to light emitting devices. Surface plasmons, for example, the quanta of 

electron oscillations at metal-dielectric interfaces, have been used to explain the 

“supertransmission” effect observed recently [53], where a transmission of around 

4% was measured through a thin metal film perforated with holes of 2% area fill-

factor and size well below cut-off (150 nm diameter holes at 1.55 μm wavelength). 

The best explanation put forward so far is that the incoming light excites the 

plasmon on one surface, which then couples to the plasmon on the other side of 

the metal film. This second plasmon subsequently couples to radiation modes, 

which makes the whole process appear as if the incoming light had been 

transmitted directly through the metal film. These surface plasmons are a form of 

surface wave that occurs at dielectric-metal interfaces, and are closely related to 

waveguide modes. When the metal film is corrugated, the surface plasmon 

experiences band gaps [54] in the same way as a mode does in a corrugated 

waveguide. Surface plasmons are usually associated with thin films, but they can 

also be observed in small metal spheres [55]. Recent works, where resonances in 

small metal particles have been studied, have shown that the detection efficiency 

of thin-film photodectors can be increased by over an order of magnitude (in a 

limited wavelength range) if the surface is covered with metal islands [56]. The 

explanation that the authors propose is that the incoming radiation couples to the 

metallic resonance and then to the waveguide mode of the thin absorbing film. 

This mechanism increases the interaction length between the incident light and the 

film, and thereby greatly enhances the detection efficiency. 
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1.5.3 Fabrication of Metallic Photonic Crystals 

One of the widely used approaches to fabricate metal rods is based on 

various templates. One of the commonly used templates is anodic porous alumina. 

The pores in the template are formed by anodizing aluminum films in an acidic 

electrolyte. The individual pores in the alumina can be ordered into a close-packed 

honeycomb structure. The diameter of each pore and the separation between two 

adjacent pores can be controlled by changing the anodization conditions. The 

fabrication method of anodic porous alumina can be traced back to the work done 

in the 1950’s, which involves a one-step anodization process. This original one-

step anodization method is still used to fabricate most commercial alumina 

membranes. 

Using the alumina membrane templates, wires of various metals, 

semiconductors can be fabricated. These structures can be deposited into the pores 

by the electrochemical deposition method. Electrodeposition is one of the most 

widely used methods to fill conducting materials into the pores to form continuous 

rods with large aspect ratios [57-60]. One of the great advantages of the 

electrodeposition method is the ability to create highly conductive rods. This is 

because electrodeposition relies on electron transfer, which is the fastest along the 

highest conductive path. The electrodeposition method is not limited to wires of 

pure elements. It can fabricate rods of metal alloys. Another important advantage 

of the electrodeposition method is the ability to control the aspect ratio of the 

metal rods by monitoring the total amount of passed charge. This is important for 

many applications. For example, the optical properties of the rods are critically 

dependant on the aspect ratio.  

UNIVERSITAT ROVIRA I VIRGILI
DESING AND ANALYSIS OF METALLO-DIELECTRIC PHOTONIC CRYSTALLS.
Mykhaylo Ustyantsev
ISBN: 978-84-690-7584-5 / DL: T.1603-2007



Introduction to Photonic Crystals 38

Al2O3

Al

Pores
a)

b)

c)

d)

e)

 
 

Figure 1.16. Preparation steps for ordered array of metallic rods embedded in an alumina 
matrix. 

The fabrication of two-dimensional metallic photonic crystal will require 

five steps (Figure 1.16). First, is anodization of alumina membranes to obtain 

ordered pore array with straight pores from top to bottom (Figure 1.16a). Second 

step involved process of pores widening to thinning barrier layer which help to 

decrease the potential barrier for electrons to tunnel through barrier layer, when 

metal is deposited at the pore tips (Figure 1.16b). Third step is electrodeposition 

of metal from aqueous electrolyte (Figure 1.16c). The forth step includes 

removing of Al and barrier layer (Figure. 1.16d). The fifth step, when freely 

standing rods are desired, it is necessary to remove the template hosts after 

forming the rods in the templates (Figure 1.16e).  

This task is usually accomplished by dissolving away the template 

materials in a suitable solvent, for example NaOH.  
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Chapter 2 
 

Optical Properties of Metals 
 

 

 

This chapter will give a short introduction into the linear optical properties of 

metal nanostructures. The precise knowledge of these properties will be 

fundamentally important when dealing with more complex optical phenomena in 

the metallo-dielectric structures. The dielectric function and the bulk properties of 

metals are discussed. In addition to the Drude dielectric function, Drude-Lorentz 

dielectric function will be presented. 
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2.1 Optics of metals 
 

Metals occupy a significant fraction of the periodic table. Despite of high 

reflection, metals are still an attractive material in optics. It is not surprising that a 

lot of research was devoted to understand and to use their optical properties.  

As a first approximation, metal can be considered to be an isotropic 

medium of dielectric constant ε, permeability μ, and conductivity σ. Using the 

material equations for electric displacement field ED
rr

ε= , for magnetic flux 

density HB
rr

μ= ,and for the current density EJ
rr

σ=  Maxwell’s equations take the 

form [1]: 

 

0=
∂

∂
+×∇

t
HE
r

r
μ ,     (2.1) 

E
t
EH

r
r

r
σε =

∂
∂

−×∇ ,     (2.2) 

ε
ρ

=⋅∇ E
r

, and    (2.3) 

0=⋅∇ H
r

.     (2.4) 

 

Here E
r

 is the electric field, H
r

is the magnetic field, μ is magnetic permeability, e 

is dielectric permittivity, σ is the conductivity and ρ is the charge density. 

By considering monochromatic light tieEE ω−= 0

rr
, tieHH ω−= 0

rr
and assuming the 

plane-wave solution, the wave equation for a metal can be written: 

 

0ˆ22 =+∇ EkE
rr

,     (2.5) 
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where  

⎟
⎠
⎞

⎜
⎝
⎛ +=

ω
σεμω ik 22ˆ .     (2.6) 

The complex dielectric constant is defined as: 

 

( )
ir ii εε

ω
ωσεε +=+=ˆ  with ( )

Γ−
=

ω
σωσ
i1

0 .    (2.7) 

Here ( )ωσ  is AC conductivity, 0σ  is the conductivity measured with DC 

electric field and Γ is the damping constant. 

In addition to the complex wave number k  and a complex dielectric constant ˆ ε̂ , 

the complex refractive index can also to be defined: n̂

 

κinn +=ˆ ,      (2.8) 

 

where n is the refractive index and κ is known as extinction coefficient.  

Refractive index and dielectric constant are linked trough the following 

relations: 

 
2ˆˆ n=ε ,  and  ( ) 22 κωε −= nr ( ) κωε ni 2= .    (2.9) 

 

Now the plane wave equation can be rewritten, taking into account the 

complex wave vector: 
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here, 
n
c

ω
πλ 2

=  is the wavelength of the radiation in the medium with refractive 

index n. In the equation (2.10) the first exponential is real and quantifies the 

absorption of the wave, the second part is imaginary, corresponding to the 

oscillatory part of the wave. A value for penetration depth, δ, can now be defined 

as the distance into a material the light has travelled when it reaches a field 

strength 1/e of its initial strength, this is also known as the skin depth. 

 

πκ
λδ

2
= .      (2.11) 

 

δ is usually a small fraction of the wavelength, especially for large conductivities. 

For instance, at a frequency 100GHz, the skin depth of a copper conductor (δ ≈ 

5x107Ω-1m-1) is smaller than 1μm [2]. 

 

2.2 Drude model 
 

In the previous section it was assumed that a metal’s conductivity, 

dielectric constant and magnetic permeability were all constants; in reality these 

properties are dependent on the frequency of the incident light. This can be 

accounted for by calculating the frequency response of the dielectric constant, 

while the other properties can be considered constant over the spectral region of 

interest.  

The dielectric constant of a medium is purely dependent on how the 

charges within the material respond to an optical field. In metals, unlike in a 
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dielectric, not all the electrons are bound to the atoms. Some electrons move 

freely between atoms and are said to be “free” electrons. In the absence of an 

electromagnetic field the free electrons have random motion and they do not give 

rise to a current flow. When an electric field is applied, free electrons are engaged 

in a more orderly motion. This motion of electrons gives rise to a current flow, 

and effect of the collisions with stationary atoms enters to the picture as a 

damping force opposite in direction and proportional to velocity of the electrons. 

The equation of motion of an electron with velocity vr  in a material can be 

written as [3, 4]: 

 

Eevm
dt
vdm

rr
r

−=Γ+ ,     (2.12) 

 

where m and e are the mass and the charge of the electron, respectively, and Γ is 

the damping constant referred to unit mass. Denoting by N the electron density in 

the metal, the instantaneous current density can be expressed in the form: 

vNej rr
−= . In the harmonic regime, equation (2.12) thus leads to the following 

relations: 

 

( )
( )

( ) 0

2

0

2

)()( E
im
iNeE

im
NeEj

rrrr

ω
ω

ω
ωσω

+Γ
+Γ

=
−Γ

== .   (2.13) 

 

 Using the expression of the conductivity σ(ω) given in equation (2.7) the 

following equation yields the effective dielectric permittivity of the metals, known 

as Drude model, and any material that this model is applicable to it is called 

Drude-like material: 
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( ) ( )Γ+
−= ∞ i

p

ωω
ω

εωε
2

,    (2.14) 

where ∞ε  is a dielectric constant at infinite frequency (usually equal to 1) ωp 

represents the plasma frequency of the electron gas , as given by the equation: 

 

0

2
2

ε
ω

m
Ne

p = .      (2.15) 

The real and imaginary of part of Equation (2.14) are thus 

 

( ) ( )22

2

Γ+
−= ∞ ω

ω
εωε p

r ,    (2.16) 

 

and 

 

( ) ( )22

2

Γ+
Γ

=
ωω
ω

ωε p
i .     (2.17) 

 

 In the optical region of high frequencies ranging from the near-infrared to 

the visible and ultraviolet, the parameters ωpΓ and ω are ordered in a different 

manner, so that the following relation typically holds true: Γ>≈ ωω p . The 

equation (2.16) clearly evidences the role of the plasma resonance in the metal. 

From this point two different situations can be observed separately. 

 In the infrared and visible regions, the optical frequency is usually 

significantly lower than the plasma frequency. Since the  term is )/( 22 ωω p−
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predominant in the equation (2.16), the permittivity of the metal is a negative real 

number with a large modulus compared to unity and the refractive index will be a 

purely imaginary number of large amplitude. In other terms, metals remain good 

reflectors in these regions. 

 In the deep ultraviolet region, the optical frequency reaches at loast larger 

order than the plasma frequency, and therefore Γ>> pωω . Accordingly, the 

permittivity of the metal will be presented by a real positive number smaller than 

unity. The metal thus tends to behave as a weakly absorbing dielectric and exhibit 

a permittivity smaller than the permittivity of vacuum. In Figure 2.1 the Drude 

model has been used to calculate the real and imaginary parts of ε(ω) for silver.  

 

 
a)             b) 

Figure 2.1. (a)The real part of the dielectric function for silver. Experimental values from Palik 
et.al [5]. The theoretical values from Drude model using Eq. 2.16. (b) The imaginary part of 
dielectric function for silver. Experimental values from Palik et.al [5]. The theoretical values from 
Drude model using Equation 2.17. 
 

The parameters of ωp = 9.2 eV and Γ = 0.016eV were used to fit the experimental 

values from Ref. [5]. Qualitatively, the Drude model seems to work quite well, 
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although, some significant deviation is clearly observed for the imaginary part 

(Figure 2.1(b)). 

This deviation is caused by the interband transitions which are neglected in 

this simple approach for obtaining the dielectric function of the metal. The 

influence of these interband transitions will be shortly discussed in the following 

section. 

Table 2.1, taken from [6], list Drude free electron densities N and plasma 

frequencies for a number of common metals. 

 
Table 2.1. Electron densities and plasma properties of some metals  

Metal N (1028m-3) ωp/2π (1015 Hz) λp (nm) 

Ag 5.86 2.17 138 

Al 18.1 3.82 79 

Au 5.9 2.18 138 

Cu 8.47 2.61 115 

 

2.3 Influence of the interband transitions. Drude-Lorentz 
model 
 

The Drude model implies that the only the plasma frequency should 

dictate the appearance of metals. This works for many metals. But does not 

explain why copper is red, gold is yellow and silver is colorless. In fact the 

appearance of these metals is characterized by an edge in the reflectance spectrum, 

similar to that predicted by the Drude model, but the problem is that all three 
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Figure 2.2. Schematic example of the interband transitions 

metals have the same number of valence electrons, so the plasma frequency 

cannot in itself account for the colors of Cu, Ag and Au.  

All three metals have filled D-shells [6]. The d-electron bands lie below 

the Fermi energy (Figure 2.2) of the conduction band. Transitions from the D-

band to the empty states above the Fermi level can occur over a fairly narrow 

band of energies, around dF EE −=ωh which can be modelled as an additional 

Lorentz oscillator. The combined effects of the free-electrons (Drude model) and 

the bound D-electrons (known as Lorentz model) influence the reflectance 

properties of the metal. 

Therefore, in extension to the treatment of free conduction electrons, the 

complex dielectric function ε(ω) incorporating the interband transitions is given 

by [7]: 

 

( ) ( ) ( )ωεωεωε ibDrude += .     (2.18) 
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a)             b) 

Figure 2.3. (a)The real part of dielectric function for silver. Experimental values from Palik et.al 
[5]. The theoretical values from Drude-Lorentz model using Eq. 2.20 with three Lorentzian poles. 
(b) The real part of dielectric function for silver. Experimental values from Palik et.al [5].The 
theoretical values from Drude-Lorentz model using Eq. 2.20 with three Lorentzian poles [7]. 
 
Here εib(ω) denotes the contribution from the interband transitions. The analytical 

expression for the interband contributions can be derived, consisting of a sum of 

Lorentzian functions: 

 

( ) ∑ Γ−−
=

N

j jj

jib

i
f

ωωω
ωε 22 ,    (2.19) 

 

where fj is known as oscillator strength. 

Finally, the dielectric function of a metal can be written: 

 

( ) ∑ Γ−−
+

Γ+
−= ∞

N

j jj

pjp

i
f

i ωωω
ω

ωω
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Here ε∞ is a dielectric constant at infinite frequency, j is a number of oscillators 

with frequency ωj. 

 The example of Drude-Lorentz model to fit the experimental results of 

silver is shown in Figure 2.3. Three Lorentzian poles from Ref. [7] were used in 

equation (2.20). This figure clearly demonstrates the better fitting over a wide 

range of wavelengths. 

 

2.4 Surface plasmon polaritons 
 

Many of the fundamental electronic properties of the solid state can be 

successfully described by single electrons moving in the periodic grating of atoms. 

Another approach is based on a plasma concept that assumes that free electrons of 

a metal are treated as an electron liquid of high density of about 1023 cm−3, 

ignoring the lattice in a first approximation. From this approach, it follows that 

longitudinal density fluctuations, plasma oscillations, will propagate through the 

volume of the metal. 

An important extension of the plasmon physics is the concept of “surface 

plasmons” (SP). Maxwell theory shows that electromagnetic surface waves can 

propagate along a metallic surface or on metallic films with a broad spectrum of 

eigenfrequencies from ω = 0 up to ω = ωp/√2 depending on the wavevector k. 

Their dispersion relation ω(k) lies to the right of the light line which means that 

the surface plasmon have a longer wavevector than light waves of the same 

energy ωh , propagating along the surface. Therefore they are called 

“nonradiative” surface plasmons, which describe fluctuations of the surface 

electron density. Their electromagnetic fields decay exponentially into the space 
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perpendicular to the surface and have their maximum in the surface, as is 

characteristic for surface waves. The excitation with light needs special light-

plasmon couplers (grating couplers, prism couplers), since the dispersion relation 

lies to the right of the light line. 

The electron charge oscillations on a metal boundary can perform coherent 

fluctuations which are called surface plasma oscillations [8, 9]. A schematic viev 

of such oscillations is shown in the left part of Figure 2.4.The longitudinal surface 

charge oscillations give rise to an electric field perpendicular to the interface 

which decays exponentially with distance (right part of Figure 2.4). This 

corresponds to an evanescent field above the surface with a decay length similar 

to that of the wavelength of light.  

 
Figure 2.4. Shematic view of surface Plasmon polariton propagating on a surface in the x 
direction. The right panel displays the exponential decay of the field Ez. 
 

The field distribution along the surface can be described by the following 

eexpression 

 

( )[ ]tzkxkiEE zx ω−±= ± exp
0

,   (2.21) 

 

with + for z ≥ 0, − for z ≤ 0. Here the evanescent decay of the fields in the z 

directio is caused by the imaginary wavevector kz. The eigenfrequency ω of these 
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surface plasmon polaritons is directly connected with a complex wave vector 

 in the x direction. Theoretical calculations starting from Maxwell's 

equations with the assumption predict that the dispersion relation of surface 

plasmon polariton is then given by the equations [12] 

xxx kikk ′′+′=

 
2/1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+′
′

=′
dm

dm
x c

k
εε

εεω   and    
( )2

2/3

2 m

m

dm

dm
x c

k
ε
ε

εε
εεω

′
′′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+′
′

=′′ ,   (2.22) 

 

where ε ′  and ε ′′  are real and imaginary parts of dielectric function of metal and 

dε  is dielectric constant of the real, nonabsorptive dielectric material. 

 
Figure 2.5. The dispersion relation of a nonradiative surface plasmon polariton at a metañ-air 
interface. The dot-dashed line represents the air lightline (dispersion of light in air, ω = ckx). The 

dispersion of light in a free electron metal can be described by the relation 222
xp kc+= ωω  

and is plotted left to the lightline. 
 

The SPP dispersion relation, ω(k) plotted in Figure 2.5, shows that for small wave 

vectors the plasmon is close to that of the light line, but always to the right hand 

side. Therefore, the plasmon has similar properties to the optical field but always 
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has a greater momentum and is non-radiative. This increased momentum is 

associated with the binding of the mode to the surface. For larger wave vectors the 

surface plasmon dispersion tends towards a maximum value of ωp/√2. 

 

Recent years have seen a strong revival of the interest in exploiting the 

properties of surface plasmon polaritons, motivated by the possibility they offer 

for realizing a strong spatial confinement of electromagnetic fields. Because SPs 

are surface-bound waves, light manipulation can be restricted to only two 

dimensions. This significantly simplifies the procedure, e.g. full band gaps are 

much easier to achieve in two dimensions. Two-dimensional SP photonic crystals 

exhibiting a plasmonic band-gap have been reported [10 -12]. Moreover, surface 

plasmon waveguiding in plasmonic crystals, enhanced optical transmission 

through nanosize holes, as well as light-controlled optical switching have been 

demonstrated [13, 14]. Many interesting ”plasmon optical devices” were brought 

forward, for example waveguides [15, 16], mirrors [17], and a plasmon 

interferometer [18]. It is now widely expected that SPs will play an important role 

in future integrated nanooptical devices. 
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Chapter 3 
 

Numerical Methods 
 
 
 
Theoretical calculations of photonic crystals are, in principle, exact, because 

Maxwell's equations are derived from first principles. Therefore, the power of 

computations is comparable to that of experiments in characterization of photonic 

crystals. 

Fabrication processes of photonic crystals are expensive in general, especially in 

the optical and near-infrared regions of the spectrum. For this reason, it is 

important to start with a judicious design, taking into account fabrication 

tolerances. Such a design should be based on a rigorous modelling. Rules of 

thumb can provide only trends in photonic crystal properties, not exact numbers 

needed to embark into the fabrication. 

The aim of this chapter is to present an overview of most common computational 

methods and modeling tools applicable to photonic crystals analysis and design. 
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Many numerical approaches have been proposed for the research of 

photonic band gap materials, for example, the transfer matrix method [1], 

scattering matrix method [2], plane wave expansion method [3], Finite difference 

time domain (FDTD) method [4], finite element method [5], etc. Among them, the 

plane wave expansion method and the FDTD method are the most popular 

numerical methods for photonic crystal analysis. The transfer matrix and the 

scattering matrix methods can be used to obtain the transmission spectrum for finite 

photonic crystals by calculating the respective matrices for each layer; the plane 

wave expansion method is a frequency domain method, and it can obtain the band 

structure and mode fields. FDTD is a time domain method, which can be used to 

study the dynamics of PBG devices. It was first introduced in PBG research just a 

few years ago and has been showing great promise to treat some complicated PBG 

structures, especially the dynamics of real PBG devices, which other methods are 

incapable of dealing with. 

 

3.1 Plane-Wave Expansion Method 
 

The plane wave expansion method (PWEM) consists in expanding the periodic 

functions in appropriate Fourier series and inserting the expansions into the wave 

equation [3]. The result is an infinite matrix-eigenvalue problem, which has to be 

truncated for numerical calculations. Through solving the eigenproblem one 

obtains the spectrum of eigenfrequencies (i.e. band structure) and expansion 

coefficients for the Bloch eigenmodes. PWEM has become the most popular 

method for analyzing photonic crystals. 
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Assuming that the electromagnetic filed has a harmonic time dependence 

eiωt the Maxwell curl equations in frequency domain can be written as:  

 

HriE
rrr

)(ωμ−=×∇       (3.1) 

EriH
rrr

)(ωε=×∇ ,     (3.2) 

 

where E
r

 is the electric field, H
r

is the magnetic field, ω is an angular frequency, 

( )rrμ  is magnetic permeability, and ( )rrε  is dielectric, position dependent function 

of photonic crystal. Eliminating E
r

the above equation can be further simplified to 

so-called “master equation”: 

 

H
c

H
r

rr
r 2

2

)(
1 ω

ε
=⎟⎟

⎠

⎞
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⎝

⎛
×∇×∇ ,    (3.3) 

 

This is the eigenvalue equation where 00/1 εμ=c is the speed of light in vacuum. 

Here the ε0 and μ0 are the permittivity and permeability of free space, respectively. 

Similar derivation can be obtained for E
r

 by eliminating H
r

. Because of the spatial 

periodicity of ( )rrε we can use the Bloch’s theorem to expand the H
r

 field in the 

term of plane waves, 

 

∑∑
=

⋅+=
G

rGki
G eehrH

r

rrrrr

2,1

)(
, ˆ)(

λ
λλ ,   (3.4) 

 

UNIVERSITAT ROVIRA I VIRGILI
DESING AND ANALYSIS OF METALLO-DIELECTRIC PHOTONIC CRYSTALLS.
Mykhaylo Ustyantsev
ISBN: 978-84-690-7584-5 / DL: T.1603-2007



Numerical Methods 64

where  and  are unit vectors chosen such that they are perpendicular to 1̂e 2ê Gk
rr

+  

due to the transverse requirement (i.e. 0=⋅∇ H
r

). By substituting equation (3.4) 

into equation (3.3) we will obtain, after some algebra, the following expression 
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This is the standard eigenvalue problem that can be written in the matrix form 
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For N plane waves used the will be a 2N linear equations.  

The periodic dielectric function in the equation (3.3) can be expanded in a Fourier 

series of plane waves as follows:  

 

∑=
G

rGieG
r r

rrr
r )(ˆ
)(

1 κ
ε

,    (3.7) 

 

where the Fourier coefficients )(ˆ G
r

κ  are obtained through an integration over the 

primitive unit cell. 

For two-dimensional problem the simplification can be made. Assuming that 

dielectric function is invariant in the z direction the equation (3.5) is decomposed 

into TE (Ex, Ey, Hz) and TM (Hx, Hy, Ez) polarizations.  

For TE polarization we will get the following expression: 
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( ) ( ) GG
G

h
c

hGGGkGk 2

2
1 )(  ωε =′−+⋅+∑ −

r

rrrrrr
,   (3.8) 

 

and for TM polarization we will get: 

 

GG
G

e
c

eGkGGGk 2

2
1 )( ωε =′+′−+∑ −

r

rrrrrr
,   (3.9) 

 

The above equations (3.8, 3.8) can be solved using standard matrix-

diagonalization methods. For different wavevectors k
r

, one can obtain a series of 

eigenfrequencies ω, which compose the band structures of photonic crystals. 

 

3.1.1 Drude model implementation for the Plane-Wave 
Expansion Method 

 

In 1994 Maradudin et al. [4] proposed the extension of the PWEM. This 

extension allows modeling the dielectrics that depend on the frequency. In his 

paper Maradudin et al. used Drude model in the form , where 22 /)( ωωεωε p−= ∞

1=∞ε  and the dielectric constant of background was air. In this subchapter we are 

extending the model of Maradudin in order to model metallic photonic crystals 

embedded into background with dielectric constant different from the air and 

with 1≠∞ε . The procedure of implementation of Drude media into PWEM is 

similar to dielectric one, the only difference is frequency dependence dielectric 
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function. Only TM polarization (electric field parallel to the rods)will be 

considered since PWEM for TE polarization does not reproduce results correctly. 

In the case of TM polarization the Maxwell curl equations for the three 

nonzero components (Hx, Hy, Ez) are 
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After arranging the above equations by eliminating Hx, Hy, we obtain the equation 

satisfied by Ez  
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To solve the equation (3.13) we expand ( )rrε
1  and ( )rEz

rr
 according to 
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In general case of metal rods of arbitrary cross section, the Fourier coefficients 

( )G
r

κ  are given by the following expressions: 
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where f is the filling fraction, i.e. the fraction of the total volume occupied by the 

rods. It is given by f = ar/ac, where ar is the cross-sectional area of the rod and ac 

is the unit cell area. 

By substituting equations (3.14) and (3.15) into equation (3.13) we obtain the 

following equation for TM polarization: 

 

GG
G

e
c

eGkGG 2

22
 )(ˆ ωκ =′+′−∑r

rrrr
,    (3.17) 

 

The equation (3.17) has the form of a standard eigenvalue problem and can 

be solved by using diagonalization methods.  

3.2 Finite-Difference Time-Domain Method  
 

Very generally speaking, a FDTD-program consists of four fundamental 

building blocks: first, the spatial definition of the system with a distribution of 

dielectric or magnetic materials and the choice of a proper termination of the 
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calculation space, the boundary conditions. Second, the core algorithm that 

calculates the electromagnetic fields at each spatial discretisation point and 

timestep. Third, an exciting source of some kind and fourth, routines for data 

extraction, especially when not only the fields but also derived quantities like 

energy are of interest. The structures of the different building blocks are closely 

related to each other depending on the problem under consideration. E.g. the 

use of anisotropic materials requires a special form of the core algorithm, 

periodic (Bloch) boundaries require complex fields in all other building blocks 

and so on.  
3.2.1 Finite-Difference Equations and the Yee Algorithm 

Our aim is to solve the time dependent curl Maxwell equations: 

t
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Or in vector components: 
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Now we have to divide the continuous space and time into discrete grid 

cells and replace spatial and temporal derivatives by finite differences on this 

discrete mesh. We define the spatial grid as: 

 

),,(),,( zkyjxizyxr ΔΔΔ→=
r

,   (3.26) 

for the general three dimensional case and the time dimension as 

tnt Δ→ ,    (3.27) 

Δx, Δy, Δz and Δt are the discretisation steps and i, j, k are the integer 

coordinates within the discrete mesh, and n is the timestep index. The vector 

components of the fields are therefore denoted as, e.g. 
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n
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The idea of Yee was to take advantage of the special nature of Maxwell's 

curl equations to improve accuracy by a factor of two by changing the spatial 

localization of the field components in the following way: 
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In the curl expressions this means that the neighboring components that are 

needed to calculate the derivative are only 0.5 steps away and the linearization is 
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only done over a one step interval. As E-fields only depend on H-fields and vice 

versa, the same can be done in time, shifting E-fields 0.5Δt relative to the H-fields. 

The resulting equations are therefore: 

 

y

EE

z

EE

t

H

t

H n

kjiy
n

kjiz

n

kjiy

n

kjiy

n

kjix

n

kjix

Δ

−
−

Δ

−
+

Δ
=

Δ

++++++

−

++

+

++
2
1,,2

1,1,,
2
1,1,

2
1,

2
1

2
1,

2
1,

2
1

2
1,

2
1,

 , 

 (3.35) 

z

EE

x

EE

t

H

t

H n

kjix
n

kjix
n

kjiz
n

kjiz

n

kjiy

n

kjiy

Δ

−
−

Δ

−
+

Δ
=

Δ

++++++

+

++

+

++ ,,
2
1,1,

2
1

2
1,,

2
1,,1

2
1

2
1,,

2
1

2
1

2
1,,

2
1

,  

 (3.36) 

x

EE

y

EE

t

H

t

H n

kjiy

n

kjiy
n

kjix
n

kjix

n

kjiz

n

kjiz

Δ

−
−

Δ

−
+

Δ
=

Δ

++++++

+

++

+

++ ,
2
1,,

2
1,1,,

2
1,1,

2
1

2
1

,
2
1,

2
1

2
1

,
2
1,

2
1

, 

 (3.37) 

 

for H-fields components and 
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 (3.40) 

 

for E-fields components. The arrangement of the shifted grids for each 

component is illustrated in Figure 3.1. 

 

 

 
Figure 3.1. Illustration of the spatial localization of the field components in a three 
dimensional Yee cell. 
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3.2.2 Stability 

 

Yee’s algorithm is an explicit scheme, and to be stable, the size of the time step 

must be chosen in certain way. In fact, a well known rule [5] for stability of this 

scheme is 

 

222 111
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⎛
Δ
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+⎟
⎠
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⎜
⎝
⎛
Δ

≤Δ

zyx
c

t .    (3.41) 

 

This is called the Courant condition. The c is the speed of light in vacuum. In 

order to understand this relationship the one-dimensional case is used here. A 

wave propagating in the vacuum covers the distance of a cell at a maximum speed 

c (the speed of light in a vacuum). In order to assure stability, Δt must be 

 

c
xt Δ

≤Δ .     (3.42) 

 

This process can be characterised by a quantity S, where 

 

,
x
tcS
Δ
Δ

=             1≤S    (3.43) 

 

This is called the Courant number. As has been already shown in [5], numerical 

instability is achieved if the minimum number of sampling points per wavelength 
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in the vacuum is ten, i.e. Nvacuum = 10. The number of sampling points in any 

medium is defined as Nλ. The latter is obtained as follows: the maximum speed of 

the waves propagating will depend on the dielectric constant of the media (ε), in 

fact the wavelength in the medium will be λmedium = λvacuum / ε  , therefore the 

size of the spatial step in the medium must be Δx = λvacuum / ε Nvacuum. Similarly 

the values of Δy and Δz can be calculated in this way. Once the spatial steps are 

calculated the next action is to compute the temporal step Δt, using equation 

(3.41).The accuracy of the discrete numerical scheme depends mainly on the 

discrete space and time steps. As a rule of thumb the smallest wavelength 

appearing in the calculations should be at least resolved with 12 numerical 

grid points. 

 

3.2.3 Boundary Conditions 

 

The computation space is divided into cells in the FDTD method and in 

every time step six new field values are being calculated at every cell. We can not 

extend the computation space to infinity, as this would require an infinite number 

of cells, which is impossible. In fact it is better to keep the computation space as 

small as possible. The smaller the computation space, the smaller the number of 

cells and the required CPU time to perform the calculations. When the 

computation space is truncated, it is going to have boundaries. Then, boundary 

conditions should be considered in the calculations. If the boundaries are chosen 

to be perfect electric conductors, it is sufficient to set the tangential electric field 

components at the boundary cells to zero in order to satisfy the PEC (perfect 
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electric conductor) boundary conditions. If the boundaries are chosen to be perfect 

magnetic conductors, it is sufficient to set the tangential magnetic field 

components at the boundary cells to zero in order to satisfy the PMC (perfect 

magnetic conductor) boundary conditions. But if the problem is to calculate 

scattering from a body in free space, then needed boundaries do not exist. So the 

solution is to set artificial boundaries such that the field will, as it propagates in 

free space, not reflect from them. In order to solve this problem, absorbing 

boundary conditions should be used. 

 

Metallic Boundary Conditions 

 

Metallic boundary conditions are a kind of Dirichlet boundary condition, 

where the values on the border of the simulation space are known. A metal 

surface with assumed perfect conductivity requires the transverse components of 

the electric field to be 0. This kind of boundary condition totally reflects 

electromagnetic waves, implying a phase shift of π on them. Only the electric 

field components along the border have to be set to 0 in the algorithm calculating 

the boundary values, and luckily these are the only ones which are accessed on the 

border by the core algorithm. The magnetic field positions outside do not have to 

be calculated as only the transverse electric field components on the border would 

rely on them but they are forced to be 0 anyway. 

 

Bloch Boundary Conditions 

 

For perfectly periodic systems (which means they are infinitely 

extended in the direction(s) of periodicity) we know from Bloch's theorem that 
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the field values at equivalent positions in different unit cells only differ by a 

phase factor. Numerically this has the consequence that we can describe the 

entire infinite system by just one unit cell and apply periodic boundaries that 

fulfill Bloch's theorem. We illustrate this for a one dimensional system 

extending in x-direction and bounded by i=0 and i=imax. We know from the 

introduction of this section that we have to take special care of Ey|i=0, Ey|i=imax+1, 

Ez|i=0 and Ez|i=imax+1. If we assume a periodicity of length imaxΔx we can relate the 

components at the boundaries by applying Bloch's theorem in the following 

way: 
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0 iiy
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=
⋅= ,   (3.44) 
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11
max

max =
Δ−

+=
⋅=

iz
xiik

iiz EeE x .   (3.47) 

 

For the application of Bloch's theorem we have to introduce a 

wavevector kx in the direction of periodicity. This is a parameter in the 

calculation and has to be given from the outside. The restriction to only one 

k-value is the price one has to pay for the benefit of limiting the 

computational domain to just one unit cell. Moreover, the phase factor in 

Bloch's theorem is complex, requiring complex electric and magnetic fields also. 

In practice this doubles the memory requirements of the calculation. The 
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generalization to three dimensions is straightforward but requires a 

wavevector with components in all space directions. 

Mirror Boundary Conditions 

Many structures possess mirror reflection symmetry with respect to a given 

symmetry plane, from which we can derive the mirror boundary conditions. One 

advantage of these mirror boundary conditions is that they can lead to reduction 

of the computational domain by a factor of 2 or even more. In particular, this 

can be very helpful for the 3D simulations, where limited computer memory 

often limits the size of structure that can be calculated. Also, the mirror 

boundary conditions can be used to resolve the degeneracy dictated by 

symmetry properties of the simulated structures. 

 

Perfectly Matched Layers Boundary 

 

In many cases it is desirable to simulate a structure embedded in 

infinitely extended free space because this is closest to most experimental 

situations. Numerically this means we have to define boundary conditions 

with the property that waves approaching the interfaces of the computational 

domain are completely absorbed without any spurious reflection back into the 

system. This has to be achieved for waves of arbitrary frequency and angle of 

incidence. There are several propositions in literature for addressing this task 

like Mur's boundary conditions [7] of first and second order or perfectly 
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matched layers (PML) invented by Berenger [8] in several variations. In this 

work we use the so-called convolution perfectly matched layers (CPML) 

boundary [9, 5]. The idea of PML boundaries is simple: we introduce a layer of 

a certain thickness d (in units of numerical discretisation points) consisting of 

an artificial conducting material that absorbs incoming waves. The absorbing 

layer is terminated by metallic boundaries that reflect the rests of the wave 

entirely and the wave is damped again on its way back. Only a vanishing 

part of the original amplitude reenters the calculation domain. The obvious 

difficulty that has to be solved is that for conventional absorbing materials 

there would be a partial reflection at the interface between the calculation 

volume and the absorbing material due to impedance mismatch. We have to 

choose the material properties therefore in a way that there is no impedance 

discontinuity for any frequency and angle of incidence. 

 

3.2.4 The Drude Media in the FDTD 

 

Electromagnetic simulation of dispersive media is vital in many applications and 

FDTD provides efficient means to model these media. The frequency dependence 

of material parameters causes dispersion and various methods have been used to 

model the frequency dependence of the material parameters in the FDTD method. 

The recursive convolution (RC) method [10, 11] and the auxiliary differential 

equation (ADE) method [12, 13] are the two most common approaches in this 

application.  
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The Recursive Convolution Method 

 

Generally the constitutive relations for complex media are given in the frequency 

domain. As an example (with eiωt time harmonic convention) 

 

( ) ( ) ( )ωωεεω ED
rr

0= ,    (3.48) 

( ) ( )ωμμω HB
rr

0= ,    (3.49) 

 

with constant permeability and frequency dependent complex permittivity. In 

order to construct the FDTD updating equations, time domain forms of the 

constitutive relations are needed together with Maxwell’s curl equations. The 

product in Equation (3.48) will turn into a convolution as 
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0
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rrr
,  (3.50) 

 

where ∞ε  is permittivity at infinite frequency and eχ  is electric susceptibility.  

The Equation (3.50) can be written in the discrete form as: 
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Where the continuous time function E
r

is approximated by a constant value over 

each time step . Using the definition tΔ ( )
( )

ττχχ ′′= ∫
Δ+

Δ

d
tm

tm
em

1

 and mmm χχχ −=Δ +1 , 

the electric field component in the time discrete form can be written as 
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A new term nψ can be defined as  

 

m

n

m

mnn E χψ Δ= ∑
−

=

−
1

0

r
.     (3.53) 

 

Where at this point the frequency dependent form of eχ  will be taken into 

account. Let eχ  be given by: 

 

( ) ( )
Γ+
Γ

−=
/1

/
ω

ω
ωχ p

e  .    (3.54) 

 

where ωp is plasma frequency and Γ is the damping constant. 

As for Drude media in the time domain eχ  will be: 

 

( ) ( ) ( )tUet t
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p
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χ .     (3.55) 
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Then, after some manipulations nψ  can be evaluated by a recursion relation 

called in [10] recursive accumulator. This is of the form 

 
1

0
−ΓΔ−+Δ= ntnn eE ψχψ

r
.     (3.56) 

Equation (3.56) permits an efficient updating of the electric field without the need 

to explicitly evaluate the convolution sum embedded in Equation (3.51). 

 

The Auxiliary Differential Equation (ADE) Method 

 

The ADE method utilizes the time domain auxiliary differential equations linking 

the polarization and electric flux density [14, 15].  

The goal of the ADE technique is to develop a simple time-stepping scheme for 

polarization current  which can be updated synchronously with the electric 

filed. A phasor polarization current is associated by 

cJ
r

 

E
i

iJ p
c

((

⎟
⎟
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⎞
⎜
⎜
⎝

⎛

Γ−
=

ωω
ω

ωε 2

2

0 .    (3.57) 

 

After some manipulations we perform an inverse Fourier transform of each term 

of Equation (3.57) and integrating once with respect to time we obtain the 

following equation: 

 

EJ
t

J
pc

c
rr

r
2

0ωε=Γ+
∂
∂ .     (3.58) 
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Equation (3.58) is the required ADE for cJ
r

. This can be easily and accurately 

implemented in an FDTD code using semi-implicit scheme: 
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Upon collecting like terms, we obtain the following explicit time-stepping relation 

for electric filed component: 
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 (3.60) 

 

Thus the ADE-FDTD algorithm for modelling dispersive media with Drude 

model is a fully explicit procedure. 

 

 

3.2.5 Advantage and Disadvantage 

 

Advantages of FDTD: 

1. FDTD uses no linear algebra. Being a fully explicit computation, FDTD avoids 

the difficulties with linear algebra. 
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2. FDTD is accurate and robust. The sources of error in FDTD calculations are 

well understood, and can be bounded to permit accurate models for a very large 

variety of electromagnetic wave interaction problems. 

3. FDTD treats impulsive behavior naturally. A single FDTD simulation can 

provide either ultrawideband temporal waveforms or the sinusoidal steady state 

response at any frequency within the excitation spectrum. 

4. FDTD treats nonlinear behavior naturally. Being a time domain technique, 

FDTD directly calculates the nonlinear response of an electromagnetic system. 

5. FDTD is a systematic approach. With FDTD, specifying a new structure to be 

modeled is reduced to a problem of mesh generation rather than the potentially 

complex reformulation of an integral equation.  

 

Disadvantages of FDTD: 

The amount of computational resources required to simulate a particular problem. 

This is the major disadvantage of the FDTD method. In order to be confident you 

will get the right answer, 3D FDTD simulations must be large and slow. Large 

simulations come from the need to discretize at a fine spatial scale. Slow 

simulations come from a combination of simulation size (many grid points to be 

updated every timestep), the small timestep, and the need to run simulations for 

many optical cycles to attain high frequency resolution. 

 

3.2.6 Methods for Photonic Band Structure Calculations 

Order-N Method 

To compute the eigenfrequencies the method called Order-N (also known as Ho 

method) (Chan et al. [16]) can be applied. The method is a combination of the 
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standard FDTD with complex fields and periodic boundary conditions (Equations 

(3.36- 3.39)). For the initial conditions a linear combination of a small number of 

plane waves G
r

 must be used: 

 

( ) ( )( ) ( )( )rGkiGkvrH
G

rrrrrrrr

r
⋅++×=∑ exp .   (3.61) 

This choice of initial condition will ensure that 0=⋅∇ H
r

 throughout the 

simulation. The v  is a unit vector that controls the resulting polarization. For 

example, the 

r

( zvv ,0,0= )r
 results in exciting the TM modes, while the choice of 

( )0,, yx vvv =
r  will excite the TE modes. In such a case we can selectively excite 

modes in 2D simulations. 

The simulation is started with this setup and is run for a certain total simulation 

time T. Electromagnetic field components are recorded at several positions on the 

computational grid at every time step. These time series are Fourier transformed 

and the spectra are searched for peaks. The peaks that are still present in later 

times of the simulation belong to the eigenfrequencies of the periodic system. The 

necessity to predefine a certain wave vector to compute the periodic boundary 

condition in Equations (3.44)-(3.47) requires several simulation runs to cover 

enough points in reciprocal space for a band structure analysis.  

The accuracy of the algorithm is limited by two factors, the length of the timestep 

Δt and the total simulation time T. Increasing the simulation time decreases the 

smallest detectable frequency as ωmin ~2π/T and similarly defining the frequency 

resolution. The time-step Δt is linked to the highest achieved frequency as ωmax 

~2π/Δt. 
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Virtual Dipole Method 

 

Sakoda proposed the numerical method used to obtain band structures for 

photonic crystals is based on the approach developed on the FDTD method and 

the Green’s function formalism [17]. In this method both electric and magnetic 

oscillating dipoles are embedded into the photonic crystal lattice. 

We start from Maxwell’s equations 

 

( ) ( ) ( )[ ]trPtrH
t

trE M ,,, 0
rrrrrr

+
∂
∂

−=×∇ μ ,   (3.62) 

( ) ( ) ( )[ ]trPtrEr
t

trH E ,,),(, 0
rrrrrrr

+
∂
∂

=×∇ ωεε ,   (3.63) 

 

where  and  represent the polarization fields of the magnetic and 

electric virtual oscillating dipole, respectively. In the explicit form the polarisation 

fields can be expressed as 

( trPM ,r
r

) )( trPE ,r
r

 

( ) ( ) ( )tirretrPE ωδ exp, 0
rrrrr

−= ,     (3.64) 

( ) ( ) ( )tirrhtrPM ωδ exp, 0
rrrrr

−= .    (3.65) 

 

where ( )t,re rr
 and ( )t,rh rr  are the amplitudes of the electric and magnetic dipoles, 

0r
r  denotes their position within the photonic crystal and ω  is the angular 

frequency of the oscillation; i  refers to the imaginary unit and ( )0rrδ
rr

−  denotes the 

Dirac delta function. 

UNIVERSITAT ROVIRA I VIRGILI
DESING AND ANALYSIS OF METALLO-DIELECTRIC PHOTONIC CRYSTALLS.
Mykhaylo Ustyantsev
ISBN: 978-84-690-7584-5 / DL: T.1603-2007



Numerical Methods 86

The electromagnetic energy density U emitted per unit time by the 

oscillating dipole placed at 0r
r  within the photonic crystal lattice can be calculated 

by using the following expression [18] 

 

( ) ( ) ( )[ ]trHtrErU ,,,
4
1 22 rrrrr

+⋅= ωε .    (3.66) 

 

The calculation procedure proceeds as follows: first, the wavevector is 

defined; second, the normal FDTD procedure is carrying out; third, the 

electromagnetic energy density is calculated from Equation (3.66) for the current 

angular frequency ω. After the finish of the calculation process one has the energy 

density distribution (U, ω) for all wavevectors. The resonance peaks of the energy 

density distribution (U, ω) give the eigenfrequencies. The eigenfrequencies can be 

obtained after sufficient cycles of oscillation of the dipole. Usually, 50 cycles are 

enough. Each cycle must be divided into 100-300 temporal points. The flow chart 

of the calculation process can be found in [19]. 

 

3.3 Other Numerical Methods 
 

3.3.1 Finite Element Method (FEM) 
 

The Finite Element Method (FEM or FE method) is a method originally 

developed for simulations in civil engineering. It is used for complex nonlinear 

analysis as well as static problems, e.g. for designing steel and concrete structures.  
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FEM is very well suited for calculations of photonic crystals due to its 

discretization method. FEM uses an unstructured mesh for representing the 

domain, which is broken down into many elements of simple shape and different 

size and orientation. A continuous domain is divided into a set of subdomains 

with a mesh consisting of triangles (Figure 3.2). Due to their different sizes these 

triangles match the form of the holes very well. The meshing grid, however, is not 

only limited to triangular shapes. Principally, it can have any given form, but for 

simplicity reasons it is advisable to use simple polygons. This kind of mesh brings 

up two main improvements with respect to e.g. a uniform Cartesian grid:  

1) regions of arbitrary shape are represented better (no staircase approximation);  

2) the FEM mesh can use locally a higher density of nodes in key regions that 

require it (e.g. narrow veins of high refractive index, typical in photonic crystals), 

without refining the discretization of the whole domain.  

Moreover, since the discontinuous refractive index is handled in real space, FEM 

does not have the convergence problems of classical plane-wave method. Briefly, 

FEM goes as follows. Maxwell’s equations are cast into a set of linear equations 

which approximate the field over an element: some interpolation function is 

chosen and its coefficients are computed for each element and stored as elemental 

matrices; these matrices are then assembled into global matrices that form an 

eigenvalue problem whose dimension depends on the number of elements. A 

detailed description of FEM technique applied to photonic crystals can be found 

in [6]. The eigenproblem matrices appearing in FEM are very sparse, leading to 

an algorithm complexity O(N), where N is the number of degrees of freedom, 

proportional to the number of nodes. Despite this favorable scaling, FEM runs 

into trouble for large 3D domains, due to huge memory requirements. However, 
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FEM can be successfully applied for 2D finite-sized photonic crystals and 3D 

primitive-cell problems with Bloch boundary conditions. 

 

 
Figure 3.2. The computational domain of the photonic crystal discretised with FEM mesh. 

 

 

3.3.2 Transfer Matrix Method (TMM) 
 

 This method has been introduced by Pendry and MacKinnon [1]. Instead 

of transforming to Fourier space, TMM is based on representing Maxwell’s 

equations on a discrete lattice (Cartesian, in general) of real space points. The 

resulting discrete equations are recast into the form of a transfer matrix that 

connects the electric and magnetic fields in one layer of lattice points to those in 
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next layer. By taking products of transfer matrices one can find the fields at every 

point of the domain. But it is well-known that the multiplication of transfer 

matrices can suffer from serious numerical instabilities, due to exponentially 

growing terms. The solution to this problem is to divide the domain in “slices” 

thin enough so that these instabilities do not occur, then combine these slices 

using a stable recursion algorithm (e.g. scattering matrix). However, stability 

comes at the price of reduced speed, because the simple multiplication of sparse 

transfer matrices is replaced by a more involved recursion. 

TMM yields the transmission spectrum directly (this can then be compared with 

experimental data) and Bloch wavevectors via the eigenvalues of the matrix. 

TMM uses a uniform Cartesian grid, but it can be better adapted by a coordinate 

transformation. 

The original computer code developed by the group of John Pendry has been 

rewritten by Andrew Reynolds who added a graphical user interface, and is freely 

available under the name “Translight” [20]. 

 

3.3.3 Scattering Matrix Method (SMM) 
 

 The scattering matrix method (SMM) is used to analyze systems composed 

of a finite set of parallel circular cylinders [2]. In the SMM the source wave and 

the scattering objects are initially defined. The electromagnetic wave of light at an 

arbitrary position is subsequently calculated from the summation of two waves: 

the wave arriving directly from the source position and the wave that is scattered 

by other objects. Every scattered wave is represented in terms of cylindrical 

function expansion. The amplitude of each degree of cylindrical function, which 
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is excited by waves from source positions, is represented by the scattering matrix. 

The source position, the scattering matrix, and the scattered wave are related to 

each other in simultaneous equations, and the excited amplitudes are found by 

solving linear systems, immediately giving electromagnetic field distributions at 

arbitrary positions. The main limitations of the method are: it can be applied only 

to 2D photonic crystals; the objects must be isolated from each other and must be 

uniform; almost all calculations are restricted to objects with circular cross-section; 

and only static solutions of electromagnetic fields can be obtained. 

 

3.3.4 Multiple Multipole Method (MMP) 
 

The Multiple Multipole (MMP) method is a well established numerical 

technique for solving time-harmonic 2D scattering problems [21]. It belongs to 

the group of generalized multipole techniques. The unknown fields within 

individual domains are approximated by a set of expansion functions representing 

analytical solutions of Maxwell equations. Typical expansions for the field inside 

a domain are Bessel-type, whereas Hankel-type expansions are used outside. The 

system is solved by means of the least squares technique, which is numerically 

equivalent to an error minimization technique and is solved using orthogonal 

matrix triangulation. On the boundary points the errors are calculated as the 

mismatch of the analytical field description between the field inside and outside of 

the domain. This method involves a large number of multipoles, especially when 

the problem is not periodic, as it is the case with open structures. The setting of 

the multipoles and choosing their parameters is critical. The sizes of the structure 

are limited with the size of the overdetermined matrix. Therefore, this method is 

not applicable for simulations of large structures.  
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3.3.5 Korringa-Kohn-Rostoker Method (KKR method) 
 

 This method is adapted from Solid State Physics to calculate 

semiconductor electronic band structures. It was independently developed by 

Korringa [22] and Konh and Rostoker [23]. In the semiconductor case, the method 

begins with the integral form of the Schrödinger equation in terms of Green’s 

functions. For photons the development is similar except for the complications 

brought about by the full vector character of electromagnetic fields. At some point 

in the calculations, it is assumed that vector field can be expanded, to a reasonable 

degree of accuracy, by a finite number of spherical harmonics. 

The expansion of equations in terms of spherical harmonics is itself an advantage 

and a limitation at the same time. On the one hand, for systems made of spherical 

scatterers, the convergence of this method is very fast. Also, the discontinuities of 

the dielectric functions are accurately represented. On the other hand this method 

looses its effectiveness when scatterers are not spherical. For example, this 

method is ideal for colloidal crystals where ordered spheres are significantly apart 

from each other. However, for close packed arrangements where planes are much 

more interpenetrated or systems in which spheres are interpenetrated the spherical 

symmetry is lost. Another disadvantage is the lack of accuracy for high energy 

calculations. 

A variation of this method called layer-KKR has been introduced to 

compute transmission and reflection spectra of finite (in the propagation direction) 

photonic crystals [24]  
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Chapter 4 
 

Effect of the Dielectric Background on 
Dispersion Characteristic of Metallo-
Dielectric Photonic Crystals 
 
 
In this chapter we theoretically study the effect of the dielectric background in 

two-dimensional metallo-dielectric photonic crystals. Two lattices we considered. 

The metallo-dielectric photonic crystal consists of a square lattice of circular 

metallic rods and triangular lattice with square rod. We calculate the photonic 

band structure by means of the plane wave method and the frequency-dependent 

finite-difference time-domain method. The transfer matrix method is used to 

obtain the reflectivity characteristics. Results show that the band structures shift 

toward lower frequencies and become flatter when the background dielectric 

constant increases. In addition, degeneracy can be broken and new gaps can be 

created in function of the dielectric background. For the case of square lattice we  

found that the relative band gap width Δω/ωg grows with increasing background 
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dielectric constant and widths as large as 42.3 % and 13.8 % for the second and 

third band gaps can be achieved for εb = 5. We have investigated the origin of the 

new gap in these structures by studying the electric-field distribution at the band 

edges for the first five modes. For the triangular lattice we have found that the 

minimum background dielectric constant necessary to open an absolute photonic 

band gap is 1.6. The results show the possibility to achieve a relative band gap 

width larger than 10% for filling fractions away from the close packed condition 

for different backgrounds. 

 

4.1. Introduction 
 
Recently, great interest has been devoted to the study of two-dimensional metallo-

dielectric photonic crystals (MDPCs) [1-5]. A MDPC is defined as a crystal such 

that a metallic material is periodically arranged in a dielectric background. 

Compared with dielectric photonic crystals MDPCs have some interesting 

properties. There is a cut-off frequency for TM polarization, i.e. there is a broad 

photonic band gap between zero frequency and the cut-off frequency. The 

inclusion of metallic components can enlarge the size of the gaps [6] and [7] and 

produce flat bands with very low group velocities related to the plasmon 

resonances can be achieved. Finally, these structures are interesting for different 

applications such as a practical filter [8-10], polarizer [11], or waveguide [12] and 

[13], in which the dimensions of metallic photonic crystals can be kept much 

smaller than the minimum dimensions needed for a typical dielectric photonic 

crystal. All these devices are based on metallic scatterers embedded into different 

dielectric substrates. From a practical point of view, metallic photonic crystals can 

be realized by electrochemical deposition of a Drude-like material into the holes 
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of a periodic structure of air holes in a dielectric [14] and [15].  

Up to the present, a variety of numerical methods have been developed to 

study metallic and metallo-dielectric photonic crystals. For instance, Pendry et al. 

[16] calculated the transmission spectra by using the transfer matrix method 

(TMM). Kuzmiak et al. [17] used a modified plane wave method (PWM) to study 

two-dimensional photonic crystals composed of metallic cylinders with a 

dielectric constant of the Drude type metal. Nicorovici et al. [18] calculated band 

diagrams of two-dimensional arrays of perfectly conducting cylinders by a 

generalized Rayleigh identity method. Sakoda et al. [19] calculated the photonic 

bands of metallic systems by means of the numerical simulation of the dipole 

radiation based on the finite-difference time-domain method (FDTD). Later, 

Moreno et al. [20] the introduced multiple multipole method (MMP) to perform 

band structure computation of metallic photonic crystals. Arriaga et al. [21] 

calculated photonic band structures for idealized metals and other dispersive 

materials using an order-N scheme adapted to frequency-dependent dielectric 

functions. Recently, Takayma and Cada [22] reported theoretical results of 

metallic photonic crystals with circular rods embedded in anodic porous alumina. 

The calculations were performed using Translight package [23], which is based on 

the TMM. In most of the works dedicated to investigating metallic photonic 

crystals the background is usually air (εb = 1). The aim of the the present study is 

to investigate the effect of using different materials with different background 

dielectric constants on the photonic band structure and on the photonic bands of 

the MDPCs. We have used different methods: PWM and FDTD to determine the 

dispersion bands and TMM to determine the reflectivity characteristics. Only the 

E-polarization (TM modes) band gap is considered here since there is no band gap 

for the H-polarization (TE modes). 
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4.2 Method and Computational Model 
 

The photonic crystal is composed of circular metallic rods in a square 

lattice with lattice constant a. The radius r of the rods is taken as r = 0.472a, 

which corresponds to a filling fraction of 70%. We have chosen this radius, 

because this structure shows the two largest band gaps for TM polarization and 

for air background [17]. The dielectric constant of the rods is given by the Drude 

model. In the simulation, ωp has been fixed to ωpa/2πc = 1.0 in order to study only 

the influence of the background. The Drude dispersion relation is widely used to 

model the optical properties of the metals in the MDPCs [1, 19-22]. The value of 

the damping constant is kept deliberately small to γ = 10−4ωp because other 

authors [24] have demonstrated that the effect of such damping term is only to 

modify slightly the photonic band structure. Conversely, another work [25] shows 

that in some cases when the damping constant is big (as it happens for some 

metals) very strong effects can be observed, especially when flat bands related 

with plasmon resonances are considered. However, the study in this work focuses 

in the band gaps, which appear for the polarization where no flat bands are 

present. The dielectric constant of the background εb was varied from 1 (air) to 9 

(alumina) and was frequency-independent. Although it is known that the dielectric 

constant of the possible materials suitable as background is not frequency-

independent, we have taken it as constant as a first approximation because in the 

range of frequencies of practical interest the dielectric constant variation is 

reasonably small. The dispersion curves were calculated for three directions in the 

square two-dimensional Brillouin zone with highly symmetric points, Γ, X, M, 

whose coordinates are (0, 0), (π/a, 0), and (π/a, π/a), respectively. The first 
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method for the computation of the photonic band structure is the plane wave 

method (PWM). The number of plane waves used in the expansion of the 

electromagnetic fields was 625. This number of plane waves is sufficient great to 

obtain a numerical error of less than 1% for the lowest 10 bands. The second 

method is the frequency-dependent finite-difference time-domain method 

((FD)2TD) [26-28] with Bloch’s boundary conditions. All simulations were done 

using a spatial grid resolution 40 × 40 points per lattice constant, with 50 

oscillation periods, and each period of oscillation was divided between 160 and 

850 time steps, depending on the frequency range of interest. Finally, we 

calculated the reflectivity spectra of the studied metallo-dielectric photonic crystal 

using Translight package [23], which employs the transfer matrix method. From 

the calculated reflectance spectra, the band gaps of the studied structures can be 

obtained. The band gaps obtained by this method are used to check the results 

obtained with the PWM and the (FD)2TD. 

4.3 Results and discussion 
 
Square lattice 

Figure 4.1 (a) shows the photonic band structure for air background, εb = 1. 

The inset indicates the high symmetry points in the square lattice irreducible 

Brillouin zone and the structure under study. There are two band gaps – the large 

one between the zero frequency and the cut-off frequency defined by the first 

band (TM0-1) and a smaller one between the first and the second bands (TM1-2). 

The results obtained by (FD)2TD and PWM are in good agreement. These results 

are in good agreement with those obtained by Kuzmiak [17] and Sakoda [19], 

indicating that our implementation of these methods is correct. Figure 4.1 (b)  
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Figure 4.1. a) Photonic band gap of metallic photonic crystal embedded in air ( bε = 1). Ratio r/a 
= 0.472. Reflectivity spectra for the same photonic crystal for b) Г-X direction and c) Г-M 
direction. Shaded areas represent photonic band gaps. 

 

shows the reflectivity spectra obtained by TMM, for the two directions ΓX and 

ΓM. It can be seen that the same band gaps can be found as the intersection of the 

high-reflectivity regions. 

Increasing the dielectric constant of the background leads to a different behavior 

of the photonic band structures. For instance, in Figure 4.2 (a), we show the 

photonic band structure for εb = 5. We can see that a new photonic band gap 

appears between the third and fourth bands (TM3-4). In addition, all photonic 

bands shift towards lower frequencies and consequently the cut-off moves to 

lower frequencies as well. Furthermore, the bands become flatter, which indicates 

that the group velocity associated to a band is lower. These results agree with 

those obtained by Takayma and Cada [22] and by Garcia et al. [29]. The results 

obtained with TMM indicate the same behavior (Figure 4.2 (b)). In order to 

explain this behavior we have examined how the field distribution of the  
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Figure 4.2. a) Photonic band gap of metallic photonic crystal embedded in background with 
dielectric constant bε = 5. Ratio r/a = 0.472. The displacement of photonic bands is clearly 
observed. Reflectivity spectra for the same photonic crystal for b) Г-X direction and c) Г-M 
direction. Shaded areas represent photonic band gaps. 
 

eigenmodes at the Γ point changes when the background dielectric constant is 

increased. Figure 4.3 (a) and (b) show the modal electric field distribution (Ez) at 

the Γ point obtained using the PWM for the lowest five bands for εb = 1 and εb = 5, 

respectively. The maximum of each electric field is normalized to unity. For εb = 1, 

the first mode (Figure 4.3 (a), ωa/2πc = 0.75), which corresponds to the cut-off 

frequency. This mode is analogous to the dielectric mode in the dielectric 

photonic crystals because the electric field is concentrated in the dielectric region. 

The second mode (Figure 4.3 (a), ωa/2πc = 1.26) exhibits some amount of electric 

field within the metal region, in analogy to the air modes in dielectric photonic 

crystals. The third and fourth modes (ωa/2πc = 1.29) are degenerated and 

correspond to the distribution depicted in the third image of Figure 4.3 (a). We 

only show the field distribution for one of the modes, while the distribution for the 

other is the same but rotated by 90°. It is interesting to remark the difference 
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between these third and fourth modes and the other modes shown in Figure 4.3 (a). 

While the other modes show a four-fold symmetry with respect the two horizontal 

and vertical axes and the two diagonal axes, the third and fourth modes have only 

a two-fold symmetry with respect the diagonals. This difference, however, is 

compensated for by the fact that the two modes are degenerated at this point. 

Finally, the fourth image in Figure 4.3 (a) (ωa/2πc = 1.30) corresponds to the fifth 

mode. The normalized frequencies corresponding to these modes are indicated 

together with the graphs. For εb = 5 (Figure 4.3 (b)) the same modes but with 

lower normalized frequencies can be observed. This decrease can be explained in 

terms of the variational principle: the increase of the background dielectric 

constant leads to a decrease of the frequency of the modes. This explains the shift 

of the bands toward the lower frequencies as well as the flattening of the bands. 

Furthermore, a change in the order of the modes can be realized: the fifth mode 

for εb = 5 (ωa/2πc = 0.84) corresponds to the second mode for εb = 1 

(ωa/2πc = 1.26, ‘air’-like mode), while the rest remain in the same order. This 

change in the order of the modes is produced by a smaller decrease of frequency 

for the ‘air’-like mode. This effect can also be explained with the help of 

variational principle: since the electrical field is partially within the metal region, 

this mode is less sensitive to changes in the background dielectric constant. This 

smaller decrease in frequency for the ‘air’-like mode makes possible the opening 

of the new band gap. Identifying the different modes with the five first bands in 

Figure 4.2 (a) it can be seen that the gap opens between the second and third 

(degenerated) bands (ωa/2πc = 0.69) and the fourth band (ωa/2πc = 0.78). For 

εb = 1 this new gap is not present because the band corresponding to the ‘air’-like 

mode is in the region between the third, fourth and fifth bands, closing the gap.  

UNIVERSITAT ROVIRA I VIRGILI
DESING AND ANALYSIS OF METALLO-DIELECTRIC PHOTONIC CRYSTALLS.
Mykhaylo Ustyantsev
ISBN: 978-84-690-7584-5 / DL: T.1603-2007



Chapter 4 
 

103 

 
 

Figure 4.3. Eigenmodes (at Г point) of a square lattice of metallic circular cylinders for the
lowest five photonic bands. The plotted field is Ez. The modes are labeled with the corresponding 
eigenfrequencies. a) Eigenmodes for bε = 1; b) Eigenmodes for bε = 5. The maximum of each 
electric field is normalized to unity. 
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Figure 4.4. a) Dependence of cutoff frequency, 1st, and 2nd PBG edge frequencies on the variation 
of dielectric constant of background. b) Dependence of 1st and 2nd PBG’s on variation of dielectric 
constant of background. 

Figure 4.4 (a) shows the variation of the cut-off frequency and the PBG edge 

frequencies of the TM1-2 and TM3-4 band gaps as a function of the background 

dielectric constant. One can notice that the edge frequencies decrease with 

increasing background dielectric constant. The normalized frequency width of the 

gaps Δωa/2πc tends to be a constant value as εb increases. For example, the TM1-

2 gap for εb = 3, εb = 6 and εb = 9 is Δωa/2πc = 0.24, Δωa/2πc = 0.20 and 

Δωa/2πc = 0.17, respectively. Similarly, the TM3-4 gaps for the same εb are 

Δωa/2πc = 0.09, Δωa/2πc = 0.09 and Δωa/2πc = 0.08, respectively. The shrinking 

of the band structure with increasing background dielectric constant is clearly 

observed in this figure. The dependence of the relative band gap width Δω/ωg on 

the background dielectric constant is shown in Figure 4.4 (b). The parameter ωg 

denotes the frequency in the middle of the gap. We see that Δω/ωg is increasing 

faster for smaller εb and tends to stabilize around Δω/ωg ≈ 42.3% for TM1-2 and 

Δω/ωg ≈ 13.8% for TM3-4 as εb = 9. This tendency can be explained from the 
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behavior of the bands seen in Figure 4.4 (a), where both Δω and ωg tend to a 

constant value. 

Triangular lattice 

In all of our calculations the photonic crystal is composed of square metallic rods 

with side length d in a triangular lattice with lattice constant a. The structure 

under study is shown in the Figure 4.5 (a). Previous authors noted [30] that for the 

structure we are studying, 1/12 of the irreducible Brillouin zone is not sufficient to 

identify the absolute PBG because of the breakdown of the symmetry laws. For 

this reason we calculated the dispersion curves of the MDPCs along the M-Γ-K´-

M´-K-M of the first Brillouin zone, as shown in the Figure 4.5 (b). 

In a first step we have investigated the necessary conditions to have an absolute 

PBG (for all propagation directions and for TM polarization). After a series of 

band calculations for a wide range of filling fractions, we found that the dielectric 

constant of the background must be at least εb =1.6. This minimum value 

corresponds to a d/a=0.87 (the close-packed condition). For smaller filling 

fractions, the minimum necessary εb is even bigger. The band structure for 

d/a=0.87 is shown in Figure 4.6 (a). There are two band gaps – the large one  

ad

M

M´

K

K´

a) b)  
Figure 4.5. a)structure under study; b) the first Brillouin zone. 
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Figure 4.6. Photonic band structure (a) and density of states (b) for a triangular lattice of metallic 
square rods in background with εb = 1.6. The ratio d/a = 0.87. Shaded areas represent photonic 
band gaps. 
 

between the zero frequency and the cutoff frequency defined by the first band 

(TM0-1) and a second one between the first and the second bands (TM1-2) with 

relative band gap width (the ratio of the band gap width to the mid gap frequency) 

Δω/ωg.=4.58%. In Figure 4.6 (b) we show the density of states where the 

existence of the TM1-2 PBG can be observed as a frequency range with zero 

density of states. 

In the next step, we extended our calculation to bigger εb. Figure 4.7 (a) shows the 

photonic band structure for εb =4. We see that increasing the dielectric constant of 

the background leads to changes in the photonic band structures. It is observed 

that Δω/ωg of the TM1-2 PBG increases to 11% and that new PBGs appear 

between the second and third bands (TM2-3) and the third and fourth bands 

(TM3-4) with Δω/ωg 13.8% and 9.5%, respectively. The existence of these gaps is 

confirmed in the density of states, as shown in Figure 4.7 (b). In addition, all the 

photonic bands shift towards lower frequencies and the bands become flatter.  
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Figure 4.7. Photonic band structure (a) and density of states (b) for a triangular lattice of metallic 
square rods in background with dielectric εb = 4. The ratio d/a = 0.87. The appearance of new 
PBGs and the downshifting of the dispersion curves are observed. Shaded areas represent 
photonic band gaps. 
 

 

Figure 4.8 (a), (b), and (c) show the dependences of the relative band gap width 

(Δω/ωg) on the background dielectric constant for filling fractions 0.581, 0.72, and 

0.866, respectively. It can be observed that the TM1-2 PBG does not appear for 

f=0.58. The Δω/ωg are monotonically increasing with εb and tend to converge to 

an upper limit for higher values of εb. Furthermore, this upper limit is bigger for 

bigger filling fractions. It is worth noting that for bigger εb new PBGs appear at 

higher frequencies but their Δω/ωg  are too small to be considered in our 

investigation. 
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a) 

 
b) 

 
c) 

Figure 4.8. Relative size of the band gaps as a function of εb for filling factors 0.58 (a), 0.72 (b), 
and 0.87 (c) 
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Figure 4.9. Dependence of the cutoff frequency and of the TM2-3 and TM3-4 PBG edge 
frequencies as a function of εb. The filling factor is 0.72. 
 

Figure 4.9 shows the variation of the cutoff frequency and of the PBG edge 

frequencies of the TM2-3 and TM3-4 band gaps as a function of εb (for graphic 

clarity we do not include the results for the TM1-2 PBG in this figure, although 

they have the same behaviour as the depicted data) for d/a=0.79. 

One can notice that the edge frequencies moves toward lower values with 

increasing background dielectric constant. The frequency width of the gaps Δω  

tends to a constant value as εb increases. The shrinking of the band structure with 

increasing background dielectric constant is observed in this figure.  

The dependence of the relative band gap width (Δω/ωg) on the filling fraction for 

εb =12 is plotted in Figure 4.10. It can be seen that Δω/ωg is a monotonically 

increasing function of the filling fraction. It is interesting to note that the TM1-2 is 

the smaller band gap and that the relative width of the TM3-4 gap grows faster 

with the filling fraction than the relative width of the TM2-3 gap, and becomes the 

biggest at the close packed condition. 
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Figure 4.10. Effect of the filling fraction on the relative width of the TM1-2, TM2-3 and TM3-4 
band gaps at εb=12 
 

4.4 Conclusions 
 

In conclusion, we have analyzed the effect of the variation of the background 

dielectric constant on the photonic band structure for a two-dimensional square 

lattice of circular metallic rods and triangular lattice wit square rods. The 

calculations are based on photonic band calculations using PWM and (FD)2TD 

methods and also on reflectivity spectra obtained with TMM. Increasing the 

background dielectric constant leads to the creation of a new gap, to the shift of 

the bands towards the low frequencies and to the flattening of the bands which 

means the reduction on the group velocity. We demonstrated that, for square 

lattice, increasing εb can be used to tailor the PBG frequencies to achieve a 

relative band gap as large as 42.3% for TM1-2 and 13.8% for TM3-4. By studying 

the field distributions of the first five bands at the Γ point and how they change 

with increasing background we have shown that the new band gap appears 

because some photonic bands have a larger shift to lower frequencies than others, 
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and this difference in the shift is explained by the different amount of 

electromagnetic energy within the metal region for the different bands.  

We have shown that 2D metallodielectric photonic crystals consisting of a 

triangular lattice of square rods embedded into background materials with 

different dielectric constants can have absolute Photonic Band Gaps in TM 

polarization. We have found out that in order to have such a PBG the dielectric 

constant of the background must be at least 1.6. We have also shown that the PBG 

widths can be tuned by using background materials with different εb or by 

changing the filling fraction. In this way, relative band gaps larger than 10% can 

be achieved for filling fractions away from the close packed condition. 

These results show that large relative band gap widths can be achieved by 

a careful selection of the background dielectric and of the metal composing the 

metallo-dielectric photonic crystal. Other works have suggested that the gaps can 

be enlarged or new gaps can be opened by using metallic rods with a geometry 

that breaks the crystal symmetry to obtain band splittings. Instead, in this work we 

propose another mechanism based on the increase of the background dielectric 

constant. Both mechanisms are complementary and could be used in conjunction 

to obtain photonic crystals with superior band gap widths. 
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Chapter 5 
 

Influence of the Dielectric Background on the 
Quality Factors of Metallo-Dielectric Photonic 
Crystals 
 

 

 

In this chapter the effect of varying the dielectric background on the 

quality factor of two-dimensional metallo-dielectric photonic crystals is 

theoretically studied. The studied metallo-dielectric photonic crystal consists of a 

square lattice of circular metallic rods  embedded into a dielectric background 

with a defect rod on the center that creates resonant modes within the photonic 

band gap. The metal is modeled with the Drude dispersion relation. A 

combination of the finite-difference time-domain method together with a 

frequency filtering technique is used to estimate accurately the resonant 

frequencies and their quality factors. The results show that the quality factors 

increase with increasing background dielectric constant.  If a dielectric 
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background material such as Silicon is used instead of air, an enhancement in the 

quality factor of up to 8 times can be achieved, depending on the resonant mode. 

We also show that, depending on the modes, there exists an optimal size for the 

defect rod that gives the maximum quality factor. 

 

5.1 Introduction 
 

Several studies on photonic crystals have shown that it is possible to create 

a localized electromagnetic mode (o group of modes) within the photonic band 

gap (PBG) by introducing a defect into the periodic structure [1]. A point defect 

behaves like a microcavity surrounded by reflecting walls and manifests an 

extremely sharp transmission peak in the photonic band gap. These structures 

have many potential applications such as optical filters [2], multiplexers [3], 

resonators with high quality factors [4] and low-threshold lasers [5]. A critical 

issue for developing of these applications is to obtain high quality factors (Q). The 

quality factor of a cavity is a measure of the energy loss per cycle versus the 

energy stored. Until now, most of the papers dealing with quality factors consider 

dielectric photonic crystals. Recently, there is a great interest in metallic and 

metallo-dielectric photonic crystals because of the high negative dielectric 

constants in the optical frequencies (forbidden PBG starting from zero 

frequency)[6], the possibility of wide PBG with small number of periods (more 

compact photonic integrated structures) [7-14] and the device based on the 

metallo-dielectric photonic crystals can be fabricated with low cost technologies. 

Another interesting property is that changing the dielectric constant of the 

background leads to creating new and wider band gaps [15,16]. In this context, a 
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few papers ware devoted to the study of quality factors of metallo-dielectric 

photonic crystal (MDPC) [17-20] and to our knowledge the effect of dielectric 

background in the quality effect for metallo-dielectric photonic crystals has not 

been yet studied. 

In this chapter we present the influence of the variation of the background 

dielectric constant on the quality factors of metallo-dielectric photonic crystal. 

The combination of the finite-difference time-domain (FDTD) [21] method with a 

signal processing technique is used to accurately calculate the resonant 

frequencies and quality factors. We will also investigate the dependence of the 

resonant frequencies and of the quality factors with the defect radius. 

In Section 5.2 we describe the structure under study and introduce the numerical 

method for the determination of the resonant modes. The method for evaluating 

the quality factor is discussed in detail. Then in section 5.3, we investigate and 

analyze the resonant frequencies and quality factors of the structure and their 

dependence with the background dielectric constant and defect size. Finally, in 

section 5.4 we briefly sum up our results and conclusions. 

 

5.2 Method and Computational Model 
 

We used the FDTD method combined with the auxiliary differential 

equations (ADE-FDTD) [19]. All FDTD simulations were done using a spatial 

grid resolution 40x40 points per unit cell, with 1·105 iterations to achieve 

convergence. PML boundary conditions [22] with 15 computational cells on all 

sides were used to absorb the outgoing waves.  
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Figure 5.1 (a) depicts the structure under study: the photonic crystal is composed 

of circular metallic rods in a square lattice with lattice constant a embedded in a  

 
Figure 5.1. a) The structure under study. The εm and εb are dielectric constants of metal and 
background, respectively. The center rod forms a defect with radius rd. b) Photonic band diagram 
for TM polarization of metallo-dielectric photonic crystal with air background (εb = 1). Shaded 
area represents photonic band gap. 
 

dielectric background. The radius r of the rods is taken as r = 0.472a, which 

corresponds to a filling fraction of 70%. We have chosen this radius because this 

structure shows the two largest photonic band gaps (PBG) for TM polarization 

when the background is air. The simulation area consists of 5x5 metallic rods and 

the radius of the central rod rd was varied from 0.05a to 0.4a. We assume that the 

dielectric constant of the metallic rods can be described by the Drude model. In 

the simulation, pω  has been fixed to cap πω 2/  = 1.0 and γ = 10-4
pω . It must be 

noted that the considered damping constant is kept deliberately small because, 

although other works [23, 24] have shown that quality factors are limited by 

losses, we focus on the background dielectric constant influence and thus, the 

study of the dependence on the losses is out of scope of this paper. The dispersion 
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diagram of the photonic band structure for TM mode when εb =1 is plotted in 

Figure 5.1(b).  

The background dielectric constant εb was varied to simulate the use of 

different host materials from 1 (air) to 12 (silicon) and was taken as 

frequency-independent as a first approximation. We have done this because 

although it is known that the dielectric constants of the possible materials suitable 

as background are not frequency-independent, in the range of frequencies of 

practical interest the dielectric constant variation is reasonably small.  

To obtain the resonant frequencies and quality factors (Q factors) of the 

defective photonic crystals, the structure under study is excited by a point pulse 

source placed in an asymmetric position. This permits to obtain all the resonant 

modes independently of their symmetry. The wavefront is a Gaussian modulated 

with a sinus function. The pulse is centered at a frequency ωa/2πc=0.7 and broad 

enough to cover the entire PBGs for the range of εb considered in this paper. The 

transmission spectrum of the photonic crystal is obtained as the ratio between the 

output and the input spectral intensities. 

Once the resonant peaks are identified in the transmission spectrum and 

the resonant frequencies are estimated, there are several ways to compute the 

corresponding Q factors. The simplest method consists in calculating the ratio 

between the resonant frequency ω0 and the full-width at half maximum (FWHM) 

Δω of the intensity spectrum:  

 

ω
ω
Δ

= 0Q .       (5.1) 
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However, this method leads to larger uncertainties when Q is high [1]. The second 

method consists of measuring the rate of exponential decay of the field amplitude 

at the resonant frequency for the given defect mode: 

 

( )
⎥
⎦

⎤
⎢
⎣

⎡ Δ−
−=

01

010

/ln2 EE
tNNQ ω ,   (5.2) 

 

where ω0 is the resonant frequency, Δt is the FDTD timestep, E1 and E0 are the 

amplitudes at the time steps N1 and N0, respectively [24].  

We follow the second method combined with a signal processing 

technique to improve accuracy. First, we calculate the transmission spectrum of 

MDPC structure, and then we apply a narrow bandwidth Butterworth filter of the 

third order [25] centered at the resonant frequency to obtain the time-dependent 

field component corresponding only to the defect mode. To this end, the 

frequency range of the filter was chosen to cover only the frequency range of the 

defect mode. The resulting time-dependent field evolution shows an exponential 

decay of its amplitude. The logarithm of this amplitude is fitted to a straight line 

with slope m. With this, the Q factor can be calculated from the following 

expression:  

 

m
tQ

2
0Δ

−=
ω ,     (5.3) 

where ω0 is the resonant frequency, and Δt is the FDTD timestep. 
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5.3 Results and Discussion 
 

 Figures 5.2(a) and 5.2(b) show the calculated transmission spectra when εb=1 and 

εb=9 respectively for the ideal structure (without defect) and for two defects 

radiuses rd=0.2a and rd=0.3a. The transmission peaks in the acoustic (first) and 

second PBGs corresponding to the resonant frequencies of the modes associated 

to the defects can be observed. For εb =1 (Figure 5.2(a)) when rd=0.2a the 

transmission spectrum contains four resonant modes: two in the acoustic bandgap 

A(1) and E(1) similar to those found in the [26] and two modes E(3) and B in the 

second bandgap. Their corresponding resonant frequencies are detailed in Table 

5.1. Instead, for rd=0.3a, up to six resonant modes can be observed: the same 

modes A(1), E(1), E(3) and B can be recognized but in addition, two modes can 

also be observed designated as A(2) and E(3). From Figure 5.2b we can see that 

for εb=9 the same corresponding modes can also be identified. 

 
Figure 5.2. Transmission spectrum of metallo-dielectric photonic crystal with defect rods of 
different radius and embedded into background: a) when εb = 1. b) when εb = 9. The numbers 
mark resonant frequencies under study. The insets show frequency region where acoustic modes 
appear. 
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Table 5.1: Resonant frequencies for the modes observed in Figures 5.2(a) and 5.2(b). 

 

 

 

 

 

 

 

 

 Normalized Frequency (ωa/2πc) 
 εb=1 εb=9 

Mode designation rd=0.2a rd=0.3a rd=0.2a rd=0.3a 
A(1) 0.493 0.545 0.171 0.191 
E(1) 0.511 0.551 0.176 0.192 
A(2) - 0.809 - 0.289 
E(2) - 0.849 0.303 0.328 
E(3) 0.837 0.874 0.327 0.345 

B 0.895 0.918 0.349 0.358 

 

By comparing Figures 5.2(a) and 5.2(b) we can see that both the PBG frequencies 

and the resonant frequencies shift to lower values with increasing background 

dielectric constant while the relative band gap width increases, in agreement with 

[15, 16].  

In order to recognize the corresponding modes at the different εb and defect radius, 

and to designate the modes we have studied the symmetry of the electric field 

profile distribution around the defect rod. Figure 5.3 shows the electric field 

profiles for the six modes recognizable for εb=1 and rd=0.3a. The maximum of 

each electric field is normalized to unity. The modes are designated according to 

their symmetry in the C4ν point group, as it is done in other works such as Ref. 

[27]. The number in the parentheses are given in the order of increasing resonant 

frequency, for the modes of the same symmetry. Thus, the A modes correspond to  

UNIVERSITAT ROVIRA I VIRGILI
DESING AND ANALYSIS OF METALLO-DIELECTRIC PHOTONIC CRYSTALLS.
Mykhaylo Ustyantsev
ISBN: 978-84-690-7584-5 / DL: T.1603-2007



 
Chapter 5 

125 

 

 
Figure 5.3. Electric field profiles for the defect modes of the studied structure for εb=1 and 
rd=0.3a. The maximum of each electric field is normalized to unity. The E-modes are doubly 
degenerated and only one of the profiles is shown, while the other is the equivalent rotated 90º. 
 

monopoles, the E modes to dipoles and the B mode is a quadrupole. It has to be 

noted that the E modes are degenerated, however here only one of them is 

depicted, while the other would be equivalent but rotated 90º. 

In order to confirm the tendency of the PBG frequencies and of the 

resonant frequencies to decrease observed in Figure 5.2, Figure 5.4 shows the 

behavior of the PBG edges and of the resonant frequencies of modes A(1), E(1), 

E(3) and B as a function of the background dielectric constant for rd=0.2a. It is 

also worth noting that the resonant frequencies approach the lower PBG edge 

frequencies (dielectric-like band) for bigger εb.  
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Figure 5.4. Plot of the edge frequencies of PBG and resonant frequencies as a function of 
dielectric constant of background εb when rd = 0.2a. 
 
Figure 5.5 shows the dependence of the resonant frequencies with the defect 

radius rd for εb =1, εb =3, and εb =9. A general trend of the resonant frequency of 

all the modes to increase with increasing defect radius can be observed. 

Furthermore, as a consequence of the shrinking of the band diagram of the 

photonic crystal with increasing εb, the frequency differences between the three 

modes for a given εb also decrease with increasing εb. Nevertheless, the relative 

position between the modes and the range of rd where the modes exist within the 

PBG are independent of the background dielectric constant. This can be explained 

on the basis of the field profile distributions of the modes. Since the resonant 

frequency depends on the complexity of the field profile (e.g.: the number of 

nodes) and this is independent of the background dielectric constant and of the 

defect radius, their relative positions are also independent of these parameters. 
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Figure 5.5. The dependence of the resonant frequencies as a function of defect radius rd for three 
different dielectric constants of background εb. Note different range of frequencies. 
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The modes in the acoustic PBG, A(1) and E(1), exist for all the range of 

considered rd, and for increasing defect radius, their resonant frequencies 

converge. This can also be explained on the view of the field profile: as it can be 

seen in Figure 3, the field profiles of the modes A(1) and E(1) are very similar 

except for the relative phase between the two lobes. The resonant frequency 

depends on the absolute value of the field but not on their relative phase. For 

increasing defect radius, the absolute value of the field profile of the two modes 

become more similar, leading to the observed convergence. The modes in the 

second bandgap, A(2), E(2), E(3) and B exist within a limited range of rd, and 

they disappear as their corresponding resonant frequency penetrates in the allowed 

band. In the following we will see how the Q factors of the defect resonant 

frequencies depend on the radius of defect and on the background dielectric 

constant. Figure 5.6 shows the dependence of the calculated Q factors for different 

defect radius with the background dielectric constant and for the modes A(2), E(3), 

and B. It can be observed that the Q factors increase with increasing background 

dielectric constant, with a bigger increase rate until εb=6 and then tending to 

stabilize for bigger εb. For instance, for the mode E(3) at εb =12, the Q factors 

reach 9680, 15180 and 4500 for rd =0.20a, rd=0.30a, rd=0.40a, respectively. This 

increase in the Q factor is very similar to the increase in relative PBG width 

reported in [15, 16]. It is also worth noting that the Q factors for εb =1 for the 

modes E(3) and B are nearly of the same magnitude and are practically 

independent of the defect radius rd. For example, for mode E(3), the Q factors are 

1724, 2348, 1398 for rd=0.20a, rd=0.30a, rd=0.40a, respectively. Mode B shows 

a behavior similar to mode E(3) with the difference that the bigger Q corresponds 

to the defect radius rd=0.10a. For the mode A(2), the dependence with εb is 

similar with a maximum attained Q of 5900. 
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Figure 5.6. The quality factor as a function of dielectric constant of background εb for different 
radiuses of defect rods for A(2) Mode, E(3) Mode and B Mode. 
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Figure 5.7 shows the calculated Q factors as a function of rd for different 

background dielectric constants. From this figure it can be observed that for mode 

E(3) the Q factors show a maximum for a given rd and that this maximum is 

higher for bigger εb. Instead, the behavior for mode B is quite different: the Q 

factors maintain nearly constant values in the radius range 0.0 ≤ rd ≤ 0.2a and then 

slowly decrease, with a bigger decrease rate for bigger εb. Finally, the behavior for 

mode A(2) is very similar to mode E(3) with a maximum of Q at rd=0.30a, except 

for εb =1 where maximum appears at rd=0.30a. 

 

5.4 Conclusions 
 
We have studied the influence of the background dielectric constant on the 

resonant frequencies and quality factors of two-dimensional metallo-dielectric 

photonic crystals with defect sites. We have also analyzed the dependence of these 

resonant frequencies and Q factors with the defect radius. 

We have found that, as it happens with the Photonic Band Gap edge frequencies, 

the resonant frequencies shift to lower values with increasing background 

dielectric constant, and that the relative position of the resonant frequencies within 

the PBG is not affected by the change in the host material. 

We have seen that, in general, the Q factor increases with increasing background 

dielectric constant, and that Q values as large as 15180, 4027, and 5900, for the 

modes E(3), B, and A(2) respectively can be achieved. Thus, high Q values can be 

obtained using host materials with bigger εb.  
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Figure 5.7. The quality factor as a function of defect radius rd different dielectric constant of 
background for A(2) Mode, E(3) Mode and B Mode. 
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We have also found that the quality factor can be tuned also by changing the 

defect radius, although the behavior of the Q with rd is different for the different 

modes considered. For the mode E(3), a maximum can be observed at a given rd, 

and the maximum is more evident for bigger εb. Instead, for the mode B, the Q 

shows practically constant values for all the range of rd, with a decrease at large rd, 

more marked for the big εb. Finally, for the mode A(2) a maximum can also be 

identified within the range of rd considered, although for air background the 

behavior is quite different: the Q increases linearly with rd. 

We have shown that high Q factors can be obtained by using resonant structures 

based on metallo-dielectric photonic crystals with a defect on one of the lattice 

positions. This opens a wide field of application, since the Q factors demonstrated 

in this work can be further enlarged by the consideration of more complex defects, 

as other authors have proposed for all-dielectric photonic crystals. One possibility 

would be considering two defects at two neighbor lattice points, and adequately 

shifting the defects from the lattice point. 
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Chapter 6 
 

Losses Influence on the Quality Factors of 
Silver Metallo-Dielectric Photonic Crystals 
 

 

 

In chapter 5 the influence of the dielectric background on quality factors of 

metallo-dielectric photonic crystals has been studied by FDTD method. The metal 

was treated as a Drude lossless model and the plasma frequency was chosen 

arbitrary. However, in order to model the realistic metals, the plasma frequency 

and the damping constant, that is responsible for losses, must be taken into 

account, especially at optical frequencies.  

In this chapter we model silver metallo-dielectric photonic crystal at optical 

frequencies by the FDTD method. The Drude model with parameters fit to 

empirical data was used. The results show that the primary factor of the quality 

factors degradation are due to the losses introduced by metals at the optical 

frequencies.  
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6.1 Theoretical methods 

 

It is a known fact that the Drude model in the form 

( ) ( )Γ+−= ∞ ωωωεωε ip
22 /  when ε∞ =1 does not provide an accurate 

representation of the experimental dielectric constant data for silver over a wide 

frequency range [1]. However, we can determine, from Drude model, what ε∞, ωp, 

and Γ fit better the experimental dielectric constant data for a specific frequency 

range. 

In order to determine the best set of parameters we define the objective 

function Φ as in [2]: 

 

 

( ) ( )[ ] ( ) ( )[ ]∑ −+−=Φ
j

jDjjDj
ω

ωεωεωεωε 2
exp

2
exp ImRe ,   (6.1) 

 

where ωj are discrete values of the frequency ω = 2π/λ for which permittivity is 

calculated, εexp are the experimental values taken from Palik et al. [3], and εD 

stands for permittivity of the Drude model. The minimization of objective 

function Φ is performed by using the simulated annealing method [4], and with 

controlling parameters introduced by Corana et al. [5]. Following this procedure 

we tried to fit the Drude model for the range between 300 nm and 900 nm.  

Figure 6.1 shows the real and imaginary part of experimental values of silver and 

fitted Drude model with parameters ε∞ = 3.7, ωp = 1.35·1016 rad/sec, and 

Γ, = 27.13·1012 rad/sec. We see that these parameters adequately fit experimental 

results for the optical range from ultraviolet to midinfrared. Moreover these 

UNIVERSITAT ROVIRA I VIRGILI
DESING AND ANALYSIS OF METALLO-DIELECTRIC PHOTONIC CRYSTALLS.
Mykhaylo Ustyantsev
ISBN: 978-84-690-7584-5 / DL: T.1603-2007



Chapter 6 
 

139 

parameters are in good agreement with parameters reported earlier in the literature 

[6-8].  

 

 

Figure 6.1. Fitting the real (εr) and imaginary (εi) parts of the dielectric function of Drude mode 
for silver to experimental data [3]. Fitted silver parameters: ε∞ = 3.7, ωp =1.35 x 1016 rad/sec, 
and Γ = 27.13 x 1012 rad/sec.  

 

Figure 6.2 depicts the structure under study: the silver metallo-dielectric photonic 

crystal is composed of 5x5 circular metallic rods with radius r =142 nm in a 

square lattice with lattice constant a =300 nm embedded into background with 

dielectric constant εb. The metallic rods are described by the Drude model. The 

background dielectric constant was varied from 1 to 5. These values were chosen 

in order to keep our results of the calculations of the defect modes in the range 

between 300 nm and 900 nm, since, as was shown in chapter 5, the frequencies 

are downshifted with increasing εb. The defect was formed by varying the radius 

of the center rod rd from 0.0a to 0.4a 
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Figure 6.2. The structure under study. The εm and εb are dielectric constants of metal and 
background, respectively. The defect is formed by changing the radius of the center rod rd. 

 

As a computational tool, we used the FDTD method combined with the 

auxiliary differential equations (ADE-FDTD) [9], described in detail in chapter 3. 

All FDTD simulations were done using a spatial grid resolution 40x40 points per 

unit cell, with 216 iterations to achieve convergence. The temporal step size Δt is 

chosen to satisfy the Courant stability condition ( )22/1 −− Δ+Δ=Δ yxct . Here c is 

the light velocity in vacuum, and Δx and Δy are the spatial steps along x and y 

directions, respectively. The convolution perfectly matched layers (CPML) 

boundary conditions [10] with 15 cells on all sides were used to absorb the 

outgoing waves. Moreover, the CPML were placed one lattice constant apart from 

the photonic crystal in order to minimize the influence of the reflected waves. The 

structure under study is excited by an initial field distribution similar to that used 

in the Ref. [11]. The transmission spectrum of the photonic crystal is obtained as 

the ratio between the output and the input spectral intensities. The field 

distributions of the defect modes are obtained by a Fourier transform of transient 

fields. The method to calculate the quality factors is the same as was used in 

chapter 5. 
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6.2 Results and Discussion 

 

Figure 6.3 shows the calculated transmission spectra for silver metallo-

dielectric photonic crystal when εb=1 and for defect structure with rd = 0.0a. We 

can see the four resonant modes appear when the defect is present. Two modes are 

in the acoustic gap (TM 0-1) and two defect modes are in the first band gap (TM 

1-2). These modes are monopole, dipole, 2nd order monopole and quadrupole. The 

corresponding field distributions for these modes are shown in the Figure 6.4. In 

terms of the symmetry group the monopole mode corresponds to A(1) mode, the 

dipole is E(1) mode, the 2nd order monopole is A(2) mode and quadrupole is E(2) 

mode. 

 

 

 
Figure 6.3. Transmission spectrum of silver metallo-dielectric photonic crystal withεb = 1 and 
defect rd = 0.0a. The letters show the defect modes: M-monopole, D-dipole, 2M-2nd order 
monopole and Q-quadrupole. The vertical dashed lines mark edges of photonic band gaps. 
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a)    b) 

 

   
c)    d) 

 

 
 

Figure 6.4. Electric field profiles for the defect modes of the studied structure for εb=1 and 
rd=0.0a. The maximum of each electric field is normalized to unity. a)monopole mode; b)dipole 
mode; c) 2nd order monopole mode; d) quadrupole mode. 

 
As was shown previously [12, 13] increasing εb leads to shifting 

frequencies to lower values and to creating new gaps. Figure 6.5 shows the 

calculated transmission spectra for εb=5 and rd = 0.0a. We see that transmission 

spectra together with defect modes are redshifted. Also, the new band gap 

between 0.76 and 0.94 (in the units of ωa/2πc) appears. Moreover, due to defect 

introduced into the photonic crystal, we can see two resonance modes at 0.79 and 
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0.8 (in the units of ωa/2πc). But to make comparative study we will take into 

account only the modes corresponding to that when εb=1.  

 

 

 
Figure 6.5. Transmission spectrum of silver metallo-dielectric photonic crystal withεb = 5 and 
defect rd = 0.0a. The letters correspond to that of Figure 6.3. 

 

In Figure 6.6 (a) and (b) we show the dependence of the resonant frequencies with 

the defect radius rd for εb =1, and εb =5. A general trend of the resonant frequency 

of all the modes to increase with increasing defect radius can be observed. 

Furthermore, as a consequence of the shrinking of the band diagram of the 

photonic crystal with increasing εb, the frequency differences between the modes 

for a given εb also decrease with increasing εb.  

The monopole and dipole modes in the TM 0-1 gap and 2nd order monopole mode 

in the TM 1-2 gap exist for all range of rd while the quadrupole mode exists only 

for rd from 0.0a to 0.3a. 
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          a) 

 
b) 

Figure 6.6. Plot of the resonance frequencies of defect mode for different εb as a function of radius 
of defect rd. a) εb = 1; b) εb = 5. The hatched areas represent the boundaries of the photonic band 
gaps. 
 

In the following we will see how the quality factors are affected by varying the 

the εb. In Figure 6.7 we show the quality factors as a function of the εb. From this 

figure three different cases can be observed. The quality factors of monopole 
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mode monotonically decrease with increasing εb while the quality factors of 

dipole mode have higher values at εb =2 and the quality factors of 2nd order 

monopole and of the quadrupole reach their maximum at εb =3.Moreover, for 

dipole mode the quality factors are rapidly decrease when εb =2 while the quality 

factors of 2nd order monopole and of the quadrupole decay more slowly. 

 

 

  
a)              b) 

  
c)              d) 

Figure 6.7. The quality factor as a function of dielectric constant of background εb for different 
radiuses of defect. a) monopole; b) dipole; c)2nd order monopole; d) quadrupole. 
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Furthermore, the highest values of the quality factors are obtained for 

cavity defect, irrespectively of the mode. 

In order to clarify the influence of losses we calculated the quality factors 

for different damping constants Γ.  

 

 
a) 

 

 
b) 

Figure 6.8. a)Transmission for quadrupole mode as a function of Γ for εb=3 and rd =0.0a. b)The 
quality factors of quadrupole mode as a function of dielectric constant of background εb for 
different Γ with rd =0.0a.  
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It was shown in [14] that quality factors are strongly depended on full 

width at half maximum (FWHM). To illustrate this in Figure 6.8 (a), we plot the 

transmission of quadrupole mode for different Γ. We can see that the spectral 

position of defect mode is not affected by the Γ, only the spectral width is 

increased with increasing the Γ. If we use the definition of the quality factor in 

form 
ω

ω
Δ

= dQ then it is clear that bigger Δω will lead to smaller quality factors. 

The quality factors as function of the dielectric constants of background for 

different cases of Γ are shown in Figure 6.8 (b). We can see from this figure that 

the quality factors are greatly affected by Γ. In Figure 6.9 we plot the quality 

factors as function of Γ for quadrupole mode for rd =0.0a and rd = 0.3a with εb =3.  

 

 
Figure 6.9. The quality factors as a function of  Γ/ωp  for two different radiuses at εb=3. 

6.3 Conclusions 

We have studied the influence of the background dielectric constant on the 

resonant frequencies and quality factors of two-dimensional silver metallo-

dielectric photonic crystals cavity. We used fitted parameters of Drude model to 
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adequately describe the frequency-dependent dielectric constant of silver from 

300 nm to 900 nm.  

We have shown that the quality factors of different modes of silver 

metallo-dielectric photonic crystals behave different. The quality factors of 

monopole mode are monotonically decreasing function of the εb. However, the 

quality factors of dipole reach their maximum for εb = 2, and for the 2nd order 

monopole and quadrupole the maximum quality factors found for εb = 3. Further 

increasing of dielectric constant of background leads to decreasing in the quality 

factors. Also, we have shown how the quality factors are affected by losses 

introduced by metals at optical frequencies.  
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Chapter 7 
 

Summary and conclusions 
 
 
The work presented in this dissertation has dealt with the following subjects: 

• development of the PWEM and FDTD-based numerical approaches 

for analysing dispersion characteristics of metallo-dielectric photonic 

crystals; 

• analysis of the influence of dielectric background on photonic band 

gaps and quality factors of two-dimensional metallo-dielectric 

structures; 

• analysis of the influence of dielectric background on quality factor 

when real parameters of metals are considered. 

 

 Since, dispersion characteristics of photonic crystals are of great 

importance, the main attention has been paid to the numerical methods of analysis 

For this purpose, a modification of plan-wave expansion and finite-difference 
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time-domain methods have been developed.  The basics of the developed approach 

have been outlined in Chapter 3.  

In Chapter 4, the modified method has been verified and used to calculate 

dispersion characteristics of metallo-dielectric photonic crystals as a function of 

dielectric constant of background. The investigation of these structures has 

allowed to gain understanding of how the optical properties of such structures can 

be modified and how one can make use of it in designing optical devices.  

 In what follows, in Chapter 5, an influence of dielectric constant of 

background on quality factors of metallo-dielectric photonic crystals has been 

presented and analysed. In particular, an enhancement of quality factors has been 

achieved when silicon was used as a template. 

 Chapter 6 shows how the quality factors are affected when the parameters 

of real metal are taken into account. It was shown that absorption is the critical 

parameter that limits the quality factor in metallo-dielectric photonic crystals. 
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Future work  
There are many possibilities for the future work to extend results presented 

in this thesis. Some of them are outlined below. 

 

As was demonstrated in chapter 4 the changing of dielectric background 

leads to the increasing of the existing band gaps and creation of new one. As we 

know the refractive index of nonlinear materials depends on the intensity of the 

input signal. It will be possible to use these nonlinear materials as the background 

media for metallo-dielectric photonic crystals. In this way the size, creation and 

position of the photonic band gaps can be controlled in dynamical fashion.  

The other prominent area of metallic nanoparticles is the using surface 

plasmon-polaritons to enhance electromagnetic fields at metal-dielectric interfaces 

and to guide light in subdiffraction length scale.  

The major drawback of metals is their losses, especially at optical 

frequencies. It would be possible to use dielectrics with gain to compensate the 

loss of the metal. To study the physics of problem mentioned above the tools for 

the analysis must be developed. In particular, the FDTD code developed in 

chapter 3 can be modified to include models of gain dielectrics and/or nonlinear 

models.  

Regarding to the devices based on photonic crystals the optimal design of 

geometry can be obtained through combination of numerical method (such as 

FDTD and PWEM) with one of the optimization techniques (such as simulated 

annealing or genetic algorithms). 
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